JPH07332587A - Vacuum heat insulating material - Google Patents

Vacuum heat insulating material

Info

Publication number
JPH07332587A
JPH07332587A JP6122601A JP12260194A JPH07332587A JP H07332587 A JPH07332587 A JP H07332587A JP 6122601 A JP6122601 A JP 6122601A JP 12260194 A JP12260194 A JP 12260194A JP H07332587 A JPH07332587 A JP H07332587A
Authority
JP
Japan
Prior art keywords
vacuum
resin
heat insulating
insulating material
packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6122601A
Other languages
Japanese (ja)
Inventor
Taku Nakao
卓 中尾
Yoshimitsu Inoue
好充 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6122601A priority Critical patent/JPH07332587A/en
Publication of JPH07332587A publication Critical patent/JPH07332587A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Abstract

PURPOSE:To embody the light weight and improve the productivity during vacuum-packaging by vacuum-packaging a thermoplastic resin porous sheet with a specified characteristics in gas barrier packaging material. CONSTITUTION:A thermoplasticc resin porous sheet having fine pores in communicated structure with the pore diameter of 1-20,m, the continuous bubble fraction of 90-100% and the density of 20-100kg/m<3> is vacuum-packaged in gas barrier packaging material to manufacture vacuum heat insulating material. Since the pore diameter of the porous sheet used as a filler is 1-20mum, the vacuum degree of about 10<-1>mmHg or more is sufficient, and since the density is 20-100kg/m<3>or less, the weight is extremely light. In addition, handling performance in a vacuum-packaging process can be made remarkably desirable because of not a grain state but a porous sheet state. Also with the continuous bubble fraction being 90-100%, the vacuum degree immediately after vacuum- packaging can be maintained, and the vacuum-packaging process can be simplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷蔵庫、冷凍庫等の機
器断熱や建築材料等に用いられる断熱材に関し、特に従
来の樹脂発泡体断熱材に比べ、著しく断熱性能を向上さ
せた真空断熱材であり、かつ従来の無機粉末真空断熱材
に比べ、軽量性かつ生産性に優れた特徴を有する断熱材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating material used for heat insulation of appliances such as refrigerators and freezers and construction materials, and in particular, a vacuum heat insulating material having a significantly improved heat insulating performance as compared with conventional resin foam heat insulating materials. In addition, the present invention relates to a heat insulating material having characteristics of being lightweight and excellent in productivity as compared with conventional inorganic powder vacuum heat insulating materials.

【0002】[0002]

【従来の技術】従来より断熱材用途に広く用いられてい
る樹脂発泡体は、発泡体の気泡内にフロンガス等の熱伝
導率の低い気体を封入することによって、断熱性能を発
現させていた。しかし近年、環境問題、特にオゾン層の
破壊の問題から、樹脂発泡体に使用されているフロンガ
スの一種であるクロロフルオロカーボン類の使用が制限
されつつある。その対策として、オゾン層破壊の度合い
の少ない、ハイドロクロロフルオロカーボン類やハイド
ロフルオロカーボン類等の、いわゆる代替フロンガスの
開発が進みつつあるが、前者はオゾン層の破壊への影響
は皆無ではなく、これらガス自体の熱伝導率が高いた
め、従来の断熱性能を維持するためには断熱材の厚みを
厚くしなければならないことや、これら代替フロンガス
による地球温暖化への影響が懸念される等の問題を内在
している。
2. Description of the Related Art Conventionally, resin foams which have been widely used for heat insulating materials exhibit heat insulation performance by enclosing a gas having a low thermal conductivity such as Freon gas in the bubbles of the foam. However, in recent years, the use of chlorofluorocarbons, which is one of the CFCs used in resin foams, has been restricted due to environmental problems, especially the problem of ozone layer destruction. As a countermeasure, the development of so-called alternative CFC gases such as hydrochlorofluorocarbons and hydrofluorocarbons, which have a low degree of ozone depletion, is progressing, but the former is not without any effect on the depletion of the ozone layer. Due to its high thermal conductivity, it is necessary to increase the thickness of the heat insulating material in order to maintain the conventional heat insulation performance, and there is a concern that the alternative CFC gas may affect global warming. It is inherent.

【0003】また従来より、フロンガス問題の解決策と
して、フロンガスを全く使用しない真空断熱材、特に無
機系の微粒子を充填材とし、ガスバリア性の樹脂フィル
ム包装材で真空包装した粉末真空断熱材が注目を集めて
いる。ここでの無機微粒子は、微粒子間空隙に存在する
空気の熱伝導率を低減するために、真空包装減圧時の空
気の平均自由行程以下の空隙を確保するという充填材と
して重要な役割を果たしている。
Further, conventionally, as a solution to the chlorofluorocarbon problem, a vacuum heat insulating material which does not use any chlorofluorocarbon gas, in particular, a powder vacuum heat insulating material in which inorganic fine particles are used as a filler and vacuum packed with a resin film packaging material having a gas barrier property has been attracting attention. Are gathering. The inorganic fine particles here play an important role as a filler that secures voids equal to or less than the mean free path of air during vacuum packaging depressurization in order to reduce the thermal conductivity of the air present in the interparticle voids. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この粉
末真空断熱材は、シリカやパーライト等の無機微粒子を
充填材として用いるため、次のような大きな問題点を有
している。まず、無機材料であるため、断熱材の密度が
200〜350kg/m3 と高く、樹脂発泡体に比べ重
量が重くなるため、生産工程での取扱い性に問題がある
とともに、機器断熱等に使用した場合、機器の重量に占
める断熱材の重量の割合が多くなり、その使用量を制限
せざるを得ない。
However, since this powder vacuum heat insulating material uses inorganic fine particles such as silica and pearlite as the filler, it has the following major problems. First, since it is an inorganic material, the density of the heat insulating material is as high as 200 to 350 kg / m 3, and the weight is heavier than that of the resin foam, so there is a problem in handleability in the production process and it is used for heat insulation of equipment. In this case, the weight ratio of the heat insulating material to the weight of the equipment increases, and the amount of the heat insulating material used must be limited.

【0005】次に、無機微粒子を真空包装しなければな
らず、真空包装時にその微粒子が吸引されないように、
あらかじめ通気性でかつ微粒子を保持しうる内包装材に
包装することが必須であり、素材の選定および工程の生
産性に問題があった。またさらには、非常に微細な微粒
子であるため、生産工程および廃棄処理時に微粒子が散
乱する等の粉塵が人体に影響を及ぼす問題も懸念されて
いる。
Next, the inorganic fine particles must be vacuum-packed, and the fine particles should not be sucked during vacuum packaging.
It is essential to preliminarily pack the material in an inner wrapping material that is breathable and capable of holding fine particles, and there is a problem in selection of the material and productivity of the process. Furthermore, since the particles are extremely fine, there is a concern that dust particles such as scattering of particles during the production process and the disposal process may affect the human body.

【0006】これらの無機粉末充填材の問題を解決する
ために、無機微粒子の代わりに気泡膜の一部が破れて連
続気泡化した、いわゆる連通のウレタン発泡体等が充填
材として検討されてはきたが、その発泡体の気泡径が小
さくてもせいぜい60〜70μm程度であるため、真空
包装時の減圧度を10-2〜10-3mmHg以下に高めな
ければならず、ガスバリア包装材のシール部等からの空
気の進入等のガスバリア性の長期信頼性に問題があっ
て、現実的には使用不可能なレベルであった。
In order to solve the problems of these inorganic powder fillers, so-called continuous urethane foam or the like, in which a part of the cell membrane is broken to form open cells instead of the inorganic fine particles, has not been studied as the filler. However, even if the bubble diameter of the foam is small, it is at most about 60 to 70 μm, so the degree of pressure reduction during vacuum packaging must be increased to 10 -2 to 10 -3 mmHg or less, and the seal of the gas barrier packaging material is required. There was a problem with the long-term reliability of the gas barrier property such as the entry of air from the parts, etc., and it was practically unusable.

【0007】ところで、10μm以下の気泡径を有する
微細気泡発泡体は、ポリスチレンに高圧下で窒素や炭酸
ガスを含浸し、圧を解放した後にオイルバスで加熱し発
泡させる方法等を用いて、10数年前から検討されてき
た。米国特許第4473665号、及び「Polyme
r Eng.Sc.,27,P485−492、ANT
EC.’91.P1406〜1410」等に、それらの
製法が具体的に記載されているが、微細気泡発泡体の目
的とするところが、樹脂使用量の削減にあるため、記載
されている発泡体は、いずれも独立気泡でかつ発泡倍率
が2〜3倍(高くてもせいぜい10倍程度)のものであ
り、高倍発泡でかつ連通の樹脂発泡体とはその開発思想
は明らかには異なっており、真空断熱材の充填材に使用
しうるものではなかった。
By the way, a fine cell foam having a cell diameter of 10 μm or less is prepared by impregnating polystyrene with nitrogen or carbon dioxide under high pressure, releasing the pressure, and then heating in an oil bath to foam. It has been considered for several years. U.S. Pat. No. 4,473,665, and "Polyme.
r Eng. Sc. , 27, P485-492, ANT
EC. '91. P1406 to 1410 "and the like, their production methods are specifically described. However, since the purpose of the microcellular foam is to reduce the amount of resin used, the foams described are all independent. It is a cell and has a foaming ratio of 2 to 3 times (at most about 10 times at most), and its development concept is clearly different from that of a high-foaming and continuous resin foam. It could not be used as a filler.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、従来全く検討されていなかった、連通構造でかつ微
細孔を有する低密度の樹脂多孔質体シートについて鋭意
検討した結果、軽量でかつ真空包装時の生産性が良い真
空断熱材である本発明を完成するに至った。すなわち本
発明は、気孔径1〜20μm、連続気泡率90〜100
%、密度20〜100kg/m3 の熱可塑性樹脂多孔質
体シートを、ガスバリア性包装材にて真空包装したこと
を特徴とする真空断熱材である。
[Means for Solving the Problems] In order to solve the above-mentioned problems, as a result of diligent study on a low-density resin porous sheet having a communicating structure and fine pores, which has not been studied at all in the past, it was found to be lightweight and The present invention, which is a vacuum heat insulating material having high productivity in vacuum packaging, has been completed. That is, the present invention has a pore size of 1 to 20 μm and an open cell rate of 90 to 100.
%, A porous thermoplastic resin sheet having a density of 20 to 100 kg / m 3 is vacuum-packaged in a gas barrier packaging material, which is a vacuum heat insulating material.

【0009】本発明の真空断熱材の特徴は、充填材とし
て用いる多孔質体シートの気孔径が1〜20μmである
ためその真空減圧度は10-1mmHg程度以上で十分で
あり、かつ密度は20〜100kg/m3 以下のため非
常に軽量であり、しかも微粒子形状ではなく多孔質体シ
ートであるため、真空包装工程での取扱い性が著しく良
好であることである。
The feature of the vacuum heat insulating material of the present invention is that since the pore size of the porous sheet used as the filling material is 1 to 20 μm, the degree of vacuum decompression is about 10 −1 mmHg or more, and the density is Since it is 20 to 100 kg / m 3 or less, it is extremely lightweight, and since it is not a fine particle shape but a porous sheet, it is remarkably excellent in handleability in the vacuum packaging process.

【0010】本発明で用いる熱可塑性樹脂とは、一般公
知のポリカーボネート系樹脂、ポリメタクリレート系樹
脂、ポリスチレン系樹脂、ポリフェニレン系樹脂、ポリ
アリレート系樹脂、ポリスルフォン系樹脂、ポリエーテ
ルスルフォン系樹脂、ポリエーテルイミド系樹脂等の非
晶性熱可塑性樹脂や、ポリエチレンテレフタレート系樹
脂、ポリフェニレンスルフィド系樹脂、ポリアミド系樹
脂、ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリ
オキシメチレン系樹脂等の結晶性熱可塑性樹脂が、その
最適な発泡剤との組み合わせで適宜用いうる。好ましく
は、その微細気泡形成のしやすさから、非晶性熱可塑性
樹脂である。ただし、ポリエチレンテレフタレート系樹
脂、ポリフェニレンスルフィド系樹脂等の結晶性樹脂で
もその結晶化度が成形条件にて制御でき、結晶化度を低
く抑えられるものは、非晶性樹脂と同様に好ましく用い
られる。さらに好ましくは、ポリカーボネート系樹脂、
ポリメタクリレート系樹脂、ポリスチレン系樹脂、ポリ
フェニレンエーテル系樹脂である。とくに好ましくは、
いわゆるビスフェノールAを主鎖に含むポリカーボネー
ト系樹脂、メチルメタクリレートを主鎖に含むポリメチ
ルメタクリレート系樹脂である。
The thermoplastic resin used in the present invention means generally known polycarbonate resin, polymethacrylate resin, polystyrene resin, polyphenylene resin, polyarylate resin, polysulfone resin, polyethersulfone resin, poly Amorphous thermoplastic resins such as ether imide resins and polyethylene terephthalate resins, polyphenylene sulfide resins, polyamide resins, polypropylene resins, polyethylene resins, polyoxymethylene resins and other crystalline thermoplastic resins, It may be appropriately used in combination with the optimum foaming agent. Amorphous thermoplastic resins are preferred because of their ease of forming fine bubbles. However, even a crystalline resin such as a polyethylene terephthalate resin or a polyphenylene sulfide resin whose crystallinity can be controlled by molding conditions and whose crystallinity can be suppressed to a low level is preferably used similarly to the amorphous resin. More preferably, a polycarbonate resin,
They are polymethacrylate resin, polystyrene resin, and polyphenylene ether resin. Particularly preferably,
They are a polycarbonate resin containing so-called bisphenol A in its main chain and a polymethylmethacrylate resin containing in its main chain methyl methacrylate.

【0011】これらの樹脂は、単独でも用いうるが、発
泡時の加熱状態での樹脂溶融粘度及び発泡剤の保持性を
改良するために、ブレンドして用いても良い。さらに、
必要に応じて発泡性を著しく阻害しない範囲で、公知の
滑剤、熱安定剤、紫外線吸収剤等の添加剤を加えて用い
ても良い。また、気泡径を小さくする目的で、発泡核剤
となりうる添加剤を用いうる。
These resins may be used alone, but may be used in a blended form in order to improve the resin melt viscosity in the heated state during foaming and the retention of the foaming agent. further,
If necessary, known additives such as lubricants, heat stabilizers, and ultraviolet absorbers may be added to the extent that foaming properties are not significantly impaired. Further, for the purpose of reducing the cell diameter, an additive which can serve as a foam nucleating agent may be used.

【0012】本発明の充填材である多孔質体シートの気
孔径は1〜20μmである必要がある。ここでの多孔質
体の気孔とは、発泡体形状を有するものでは、いわゆる
発泡体でいう多面体形状の気泡であり、また、多面体部
の気泡壁部が多面体部の辺部に凝集して線状の支柱を形
成している多孔質体では、その辺で構成される部分をい
い、気孔径とは、多孔質体の任意断面の電子顕微鏡写真
から、ASTMD−3576に準拠して求めた値であ
る。気孔径は空気分子の熱伝達を低減するために、その
真空包装減圧度での空気の平均自由行程以下である必要
がある。したがって、気孔径が20μmを越えると減圧
度を高めなければならず、また気孔径が1μm未満のも
のは低密度多孔質体を得ることが困難になる傾向がある
ため制限される。気孔径は、好ましくは1〜15μm、
さらに好ましくは2〜10μm、特に好ましくは2〜5
μmである。
The pore size of the porous sheet which is the filler of the present invention must be 1 to 20 μm. The pores of the porous body here are those having a foam shape, and are so-called foam-shaped cells in the form of a foam, and the bubble wall portion of the polyhedron portion aggregates on the sides of the polyhedron portion to form a line. In a porous body forming a columnar support, it refers to a portion constituted by its sides, and the pore diameter is a value obtained from an electron micrograph of an arbitrary cross section of the porous body in accordance with ASTM D-3576. Is. The pore size must be less than or equal to the mean free path of air at the vacuum packing decompression degree in order to reduce the heat transfer of air molecules. Therefore, if the pore diameter exceeds 20 μm, the degree of pressure reduction must be increased, and if the pore diameter is less than 1 μm, it tends to be difficult to obtain a low-density porous body, and this is limited. The pore size is preferably 1 to 15 μm,
More preferably 2 to 10 μm, particularly preferably 2 to 5
μm.

【0013】本発明の充填材である多孔質体シートの連
続気孔率は90〜100%が必要である。この値が低い
ものは、真空包装後に多孔質体シート中の独立気孔部分
に残存した空気が多孔質体全体へ拡散し、真空包装直後
の減圧度が維持されないため制限される。そのため、真
空包装時の減圧度保持のためこの値は高ければ高いほど
良く、好ましくは95〜100%、さらに好ましくは9
7〜100%、特に好ましくは99〜100%である。
The continuous porosity of the porous sheet which is the filler of the present invention must be 90 to 100%. Those having a low value are limited because the air remaining in the independent pores in the porous body sheet after vacuum packaging diffuses throughout the porous body and the degree of reduced pressure immediately after vacuum packaging is not maintained. Therefore, in order to maintain the degree of reduced pressure during vacuum packaging, the higher the value, the better, preferably 95 to 100%, more preferably 9%.
It is 7 to 100%, particularly preferably 99 to 100%.

【0014】ここで、連続気孔率は、ASTMD−28
56に準拠して求めた独立気孔率から算出した値であ
り、多孔質体シートの表面の多孔質化していない樹脂
層、いわゆる発泡体でいうスキン層があるものはその樹
脂層を薄く除去、あるいは樹脂層の一部を破壊した、真
空断熱材としての実使用形態で測定した連続気孔率の値
である。発泡体の多孔質化していない樹脂層を除去する
方法としては、機械的にその樹脂層全面を薄くスライス
して除去する方法、または、機械的に外部から樹脂層に
孔または溝を形成する方法、さらには発泡加熱時に、添
加剤等により樹脂層を可塑化し破泡しやすくする、また
は熱が添加剤に集中して発熱するようにする等、発泡工
程中で樹脂層を破泡する方法等が適宜選択されうる。好
ましくは、機械的に多孔質体シートの少なくとも片面か
ら、連続的にニードル等を用いて孔、またはレザー等の
刃物を用いてスリット溝を形成する方法である。その程
度は真空減圧時に、多孔質体気孔内の気体が所定時間内
に脱気されれば良く、真空包装機の減圧能力、形態等か
ら適宜決定されうる。
Here, the continuous porosity is ASTMD-28.
It is a value calculated from the independent porosity determined in accordance with No. 56, and the resin layer on the surface of the porous sheet is a non-porous resin layer, that is, a so-called foamed skin layer, the resin layer is thinly removed, Alternatively, it is a value of the continuous porosity measured in a practical use form as a vacuum heat insulating material in which a part of the resin layer is destroyed. As a method for removing the non-porous resin layer of the foam, a method of mechanically slicing and removing the entire resin layer thinly, or a method of mechanically forming a hole or groove in the resin layer from the outside In addition, when foaming is heated, the resin layer is plasticized with an additive or the like to facilitate bubble breaking, or heat is concentrated in the additive to generate heat, for example, a method of breaking the resin layer during the foaming process, etc. Can be appropriately selected. Preferably, it is a method of mechanically forming a hole using a needle or the like, or a slit groove using a blade such as a leather continuously from at least one surface of the porous sheet. The degree thereof may be appropriately determined depending on the depressurizing capacity and form of the vacuum packaging machine, as long as the gas inside the pores of the porous body is degassed within a predetermined time during vacuum depressurization.

【0015】本発明の充填材である多孔質体シートの密
度は、20〜100kg/m3 である必要がある。ここ
での多孔質体密度は、JISK−6767に準拠して求
めた値である。樹脂固体部分の熱伝導の影響を低減する
ためには、密度は好ましくは20〜80kg/m3
下、さらに好ましくは20〜60kg/m3 、特に好ま
しくは30〜50kg/m3 である。密度の下限は20
kg/m3 であり、これ以下では多孔質体の圧縮強度が
低下するため真空包装時に著しく収縮変形するため使用
が制限され、上限は固体そのものの熱伝導率の寄与が大
きくなる傾向があるため制限される。
The density of the porous sheet which is the filler of the present invention must be 20 to 100 kg / m 3 . The porous body density here is a value determined according to JIS K-6767. In order to reduce the effect of heat conduction of the resin solid portion, the density is preferably 20 to 80 kg / m 3 or less, more preferably 20 to 60 kg / m 3 , and particularly preferably 30 to 50 kg / m 3 . The lower limit of density is 20
It is kg / m 3 , and if it is less than this, the compressive strength of the porous body is lowered, so that it is contracted and deformed remarkably during vacuum packaging, so that its use is limited, and the upper limit tends to make a large contribution to the thermal conductivity of the solid itself. Limited.

【0016】本発明の真空断熱材に使用される多孔質体
シートは、真空包装時の圧縮に対する強度を高める目的
でその気泡膜存在率が60〜100%の範囲にあること
が好ましい。気泡膜存在率とは具体的には次のようにし
て求める。まず、走査型電子顕微鏡観察等により得られ
た、発泡体の任意断面の拡大写真(発泡体の気泡が少な
くとも100個以上観察しうる倍率で観察する)から気
泡壁の欠損部の有無及びその形状が十分に観察しうる気
泡を少なくとも20個以上選定する。次に画像解析装置
等を使用して、選定した気泡の各々の断面積を求めた
後、その総和(この値をAとする)を求める。さらに欠
損部を有する気泡についてはその各々の欠損部面積(写
真上で測定しうるように、欠損部分を断面に垂直に投影
した時の面積)を同様にして画像解析装置等により求め
た後、その総和(この値をBとする)を求める。ここで
は気泡壁存在率とは{1−(B/A)}×100で得ら
れる値(%)を採用する。ここで気泡壁存在率が100
%のものでは、拡大写真等では観察が困難なマイクロク
ラックが気泡壁に存在し、気泡が連通化しているものと
考えられる。特に60%以上の気泡壁存在率をもつもの
は、気泡壁に一部欠損部はあるものの、発泡時に延伸さ
れた気泡壁が実質的に存在するため、圧縮強度が高くな
る。気泡壁存在率が60%未満のものは圧縮強度が低下
する傾向があるため制限される。気泡壁存在率は好まし
くは80〜100%、より好ましくは90〜100%、
さらに好ましくは95〜100%、特に好ましくは98
〜100%である。通常このような気泡壁が存在する形
態の多孔質体シートは、そのシートの製法に依存するこ
とが多く、後述する発泡方法により得られる。
The porous sheet used for the vacuum heat insulating material of the present invention preferably has a bubble film existence rate in the range of 60 to 100% for the purpose of enhancing the strength against compression during vacuum packaging. The bubble film existence rate is specifically determined as follows. First, from the enlarged photograph of an arbitrary cross section of the foam (observed at a magnification at which at least 100 cells of the foam can be observed) obtained by scanning electron microscope observation or the like, the presence or absence of the defect portion of the cell wall and its shape At least 20 or more bubbles that can be sufficiently observed are selected. Next, using an image analysis device or the like, the cross-sectional area of each of the selected bubbles is calculated, and then the total sum (this value is set to A) is calculated. Further, for bubbles having a defect portion, after determining the area of each defect portion (the area when the defect portion is projected perpendicularly to the cross section so that it can be measured on the photograph) by an image analysis device or the like, The total sum (this value is B) is calculated. Here, as the bubble wall existence rate, a value (%) obtained by {1- (B / A)} × 100 is adopted. Here, the bubble wall existence rate is 100
%, It is considered that microcracks, which are difficult to observe in a magnified photograph or the like, exist in the cell wall and the cells are connected. In particular, those having a cell wall presence rate of 60% or more have a partially lacking portion in the cell wall, but since the cell wall stretched during foaming is substantially present, the compressive strength becomes high. Those having a bubble wall existence rate of less than 60% are limited because the compressive strength tends to decrease. The bubble wall existence rate is preferably 80 to 100%, more preferably 90 to 100%,
More preferably 95 to 100%, particularly preferably 98.
~ 100%. Usually, a porous sheet having such a form in which cell walls are present often depends on the manufacturing method of the sheet, and can be obtained by a foaming method described later.

【0017】多孔質体シートの厚みは、用途ごとに必要
とされる断熱性能に応じて厚くする必要があるが、厚い
シートでは、発泡法では熱効率が低下し、相分離法では
溶剤の除去に時間がかかる等の生産性の問題、また得ら
れた多孔質体の気孔の均一性が悪くなる傾向があるた
め、その厚さには限界が生じる。多孔質体シートの厚み
は、好ましくは0.1〜10mm、さらに好ましくは
0.5〜8mm、特に好ましくは1〜5mmの範囲であ
る。そのため、必要な多孔質体シート厚みを確保するた
めには、それぞれの製法の生産性の良い厚みで生産した
薄いシートを積層することが必要となる。また、多孔質
体シートの積層は、単に重ねるだけで良く、必要に応じ
て真空減圧による気泡からの気体の除去を妨げない範囲
で、粘着剤、接着剤を用いても良い。さらに、真空断熱
材の輻射伝熱を抑えるために積層する多孔質体シートの
間に、アルミ箔等の輻射伝熱を抑えるものを多孔質体シ
ート間に挟み込むことにより、より断熱性能向上した真
空断熱材となしうる。
The thickness of the porous sheet needs to be increased depending on the heat insulation performance required for each application, but with a thick sheet, the foaming method reduces the thermal efficiency and the phase separation method removes the solvent. There is a problem in productivity, such as taking time, and the uniformity of the pores of the obtained porous body tends to be poor, so that the thickness thereof is limited. The thickness of the porous sheet is preferably 0.1 to 10 mm, more preferably 0.5 to 8 mm, and particularly preferably 1 to 5 mm. Therefore, in order to secure the required thickness of the porous sheet, it is necessary to stack thin sheets produced by the respective production methods with good productivity. Further, the porous body sheets may be laminated simply by stacking, and if necessary, a pressure-sensitive adhesive or an adhesive may be used as long as the removal of the gas from the bubbles by vacuum decompression is not hindered. Furthermore, by sandwiching a material that suppresses radiant heat transfer such as aluminum foil between the porous material sheets that are laminated to suppress the radiant heat transfer of the vacuum heat insulating material, a vacuum with improved heat insulation performance can be obtained. Can be used as a heat insulating material.

【0018】本発明の充填材である多孔質体シートの製
法としては、含浸発泡法、押出発泡法、相分離法等の公
知の樹脂発泡方法を用いることができる。含浸発泡法、
押出発泡法としては多段発泡法が好ましく用いられる。
また、特に一段目の発泡倍率を1.5〜7倍にすること
が好ましい。これは発泡の一段目は多数の発泡核を形成
する事を目的とし、発泡倍率を抑え、発泡の二段目以降
は一次発泡で形成された発泡体に形成された気泡内部の
気泡圧を高めることにより発泡倍率の高倍化と破泡を図
るためである。具体的には、熱可塑性樹脂の押出シート
を巻き取り、その形態でオートクレーブ内で高圧の発泡
剤ガスを含浸し、その含浸シートを加熱媒体、たとえば
熱風、スチーム、遠赤外線等で加熱し発泡させながら破
泡させる方法で製造できる。
As a method for producing the porous sheet as the filler of the present invention, known resin foaming methods such as impregnation foaming method, extrusion foaming method and phase separation method can be used. Impregnation foaming method,
A multi-stage foaming method is preferably used as the extrusion foaming method.
Further, it is particularly preferable to set the expansion ratio of the first stage to 1.5 to 7 times. This aims at forming a large number of foam nuclei in the first stage of foaming, suppresses the foaming ratio, and increases the bubble pressure inside the bubbles formed in the foam formed by primary foaming after the second stage of foaming. This is to increase the expansion ratio and break the bubbles. Specifically, an extruded sheet of thermoplastic resin is wound up, and in that form is impregnated with a high-pressure blowing agent gas in an autoclave, and the impregnated sheet is heated by a heating medium such as hot air, steam, or far infrared rays to be foamed. While it can be produced by a method of breaking bubbles.

【0019】また、公知の相分離法も採用できる。具体
的には、樹脂と溶剤とを均一に溶解混合させた後、一定
の厚みのシート状物が得られる状態で相分離させ、その
状態で凍結し溶剤を抽出して多孔質体シートを得る方法
である。用いる溶剤、相分離条件等は用いる樹脂によっ
て適宜選択しうる。上記製法のうち、気泡壁存在率が6
0〜100%であるシ−トを得るためには、微細気泡を
形成できる物理発泡剤を用いる含浸発泡法、押出発泡法
が好ましい。
Also, a known phase separation method can be adopted. Specifically, after uniformly dissolving and mixing the resin and the solvent, phase separation is performed in a state where a sheet having a constant thickness is obtained, and in that state, the solvent is extracted to obtain a porous body sheet. Is the way. The solvent used, the phase separation conditions and the like can be appropriately selected depending on the resin used. Among the above production methods, the bubble wall existence rate is 6
In order to obtain a sheet of 0 to 100%, an impregnation foaming method and an extrusion foaming method using a physical foaming agent capable of forming fine cells are preferable.

【0020】本発明で用いる物理発泡剤としては、一般
公知の発泡体に用いられる溶剤系発泡剤、有機及び無機
系ガス発泡剤が適宜選択されうる。発泡体単位体積あた
りの気泡核数をできるだけ多くすること、つまり一定発
泡倍率での気泡径を小さくするためには、炭酸ガスが特
に好ましい。また、発泡剤の気泡核数を増やす目的に
て、炭酸ガスに他の無機ガスを併用あるいは追含浸して
も良い。発泡剤の量は用いる熱可塑性樹脂と発泡剤の種
類によって適宜選択されるが、一般に含浸量が少ないと
気泡核数が少なくなるため制限され、多すぎると樹脂の
可塑化の程度が大きくなり発泡倍率が抑えられるため制
限される。ポリカーボネート系樹脂、ポリメチルメタク
リレート系樹脂と炭酸ガスの組み合わせでは、含浸量は
5〜15重量部の範囲で用いられ、好ましくは7〜15
重量、より好ましくは8〜15重量部である。
As the physical foaming agent used in the present invention, solvent-based foaming agents, organic and inorganic gas-foaming agents used for generally known foams can be appropriately selected. Carbon dioxide is particularly preferable in order to increase the number of cell nuclei per unit volume of the foam as much as possible, that is, to reduce the cell diameter at a constant expansion ratio. Further, for the purpose of increasing the number of bubble nuclei of the foaming agent, carbon dioxide may be used together with or additionally impregnated with other inorganic gas. The amount of the foaming agent is appropriately selected depending on the type of the thermoplastic resin and the foaming agent to be used, but in general, when the amount of impregnation is small, the number of cell nuclei is small, and therefore the amount is limited. It is limited because the magnification is suppressed. In the combination of polycarbonate resin, polymethylmethacrylate resin and carbon dioxide gas, the impregnation amount is used in the range of 5 to 15 parts by weight, preferably 7 to 15
The weight is more preferably 8 to 15 parts by weight.

【0021】通常の一次発泡で本発明に用いる多孔質シ
ートの物性を満足できない場合、得られた多孔質シート
に再度物理発泡剤を含浸、いわゆる追添し、再度発泡し
て本発明の発泡体を得ることも可能である。これは、発
泡体に形成された気泡内部の気泡圧を高め、二次発泡以
降で破泡をしやすくするための手法である。必要に応じ
てさらに含浸、発泡を行う多段の発泡法を取り得ること
はいうまでもない。
When the physical properties of the porous sheet used in the present invention cannot be satisfied by ordinary primary foaming, the obtained porous sheet is again impregnated with a physical foaming agent, that is, so-called additional, and then foamed again to foam the foam of the present invention. It is also possible to obtain This is a method for increasing the bubble pressure inside the bubbles formed in the foam and making it easier to break the bubbles after the secondary foaming. It goes without saying that a multi-stage foaming method in which impregnation and foaming are further carried out can be adopted if necessary.

【0022】二次以降の発泡に追添する物理発泡剤とし
ては、炭酸ガス、窒素、空気等の公知のガスが、発泡温
度、発泡倍率、連続気泡化率等を考慮して適宜選択され
うる。二次の発泡剤量も、一次の場合と同様に用いる熱
可塑性樹脂と発泡剤の種類によって適宜選択される。一
般に含浸量が少ないと連通化率が低くなるため制限さ
れ、多すぎると樹脂の可塑化の程度が大きくなり発泡倍
率が抑えられるため制限される。ポリカーボネート系樹
脂、ポリメチルメタクリレート系樹脂と炭酸ガスの組み
合わせでは、含浸量は8〜40重量部、好ましくは10
〜30重量部、より好ましくは12〜25重量部であ
る。
As the physical foaming agent additionally added to the secondary and subsequent foaming, known gases such as carbon dioxide gas, nitrogen and air can be appropriately selected in consideration of the foaming temperature, the foaming ratio, the open cell formation rate and the like. . The amount of the secondary foaming agent is also appropriately selected according to the types of the thermoplastic resin and the foaming agent used as in the case of the primary. Generally, if the impregnated amount is small, the communication rate is low, and therefore the amount is limited. In the case of a combination of a polycarbonate resin, a polymethylmethacrylate resin and carbon dioxide gas, the impregnation amount is 8 to 40 parts by weight, preferably 10
-30 parts by weight, more preferably 12-25 parts by weight.

【0023】本発明の真空断熱材で使用するガスバリア
性の包装材は、公知のガスバリア性樹脂、たとえばポリ
塩化ビニリデン系樹脂、エチレンビニルアルコール系樹
脂、ポリアクリロニトリル系樹脂、ポリアミド系樹脂等
を用いた単層あるいは多層フィルム、およびそれらに熱
成形性やヒートシール性を付与するために、ポリエチレ
ンテレフタレート系樹脂、ポリプロピレン系樹脂、ポリ
エチレン系樹脂フィルムをラミネートしたものが用いら
れる。さらには、長期にわたるガスバリア性を確保する
ため、アルミ箔をラミネート、またはアルミ蒸着したフ
ィルム等が好適に用いられる。
As the gas barrier packaging material used in the vacuum heat insulating material of the present invention, a known gas barrier resin such as polyvinylidene chloride resin, ethylene vinyl alcohol resin, polyacrylonitrile resin, polyamide resin or the like is used. A single-layer or multi-layer film, and a laminate of polyethylene terephthalate-based resin, polypropylene-based resin, and polyethylene-based resin film for imparting thermoformability and heat-sealing property to them are used. Further, in order to secure a gas barrier property for a long period of time, a film laminated with aluminum foil or vapor-deposited with aluminum is preferably used.

【0024】本発明の真空断熱材の製法としては、従来
から検討されてきた粉末真空断熱材の製法が適用される
が、本発明では、充填されるものがシートであるためそ
の取扱い性は著しく改良される。前述の如く、本発明で
は微細粒子を充填するものではないため、通気性の内袋
等を使用する必要がなく、一般公知の袋状あるいは箱状
の空気に対するバリア性良好なバリア包装材に、そのま
ま積層した多孔質体シートを入れ、公知の真空包装機に
て真空包装すれば良い。その際、熱可塑性樹脂多孔質体
シートを少なくとも2層以上積層した状態で、ガスバリ
ア性包装材で真空包装することが好ましい。また必要に
応じて、樹脂中からの揮発成分や、包装材を通過する空
気、水分等の吸着剤を、同時に真空包装することも適宜
選択されうる。
As the method for producing the vacuum heat insulating material of the present invention, the method for producing the powder vacuum heat insulating material which has been studied conventionally is applied. However, in the present invention, since the material to be filled is a sheet, its handleability is remarkable. Be improved. As described above, since the present invention does not fill fine particles, it is not necessary to use a breathable inner bag or the like, and a generally known bag-shaped or box-shaped barrier packaging material having a good barrier property against air, The laminated porous body sheets may be put in and vacuum packaged by a known vacuum packaging machine. At that time, it is preferable that the porous sheet of thermoplastic resin is laminated in at least two layers and vacuum-packed with a gas barrier packaging material. Further, if necessary, it is also possible to appropriately vacuum-pack the volatile component from the resin and the adsorbent such as air and water passing through the packaging material at the same time.

【0025】[0025]

【実施例】以下、実施例を用いて本発明をさらに詳細に
説明する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0026】[0026]

【実施例1】特開平3−68627号公報記載の方法に
て、ジフェニルカーボネートと2,2−ビス(4−ヒド
ロキシフェニル)プロパンとから製造されたポリカーボ
ネート樹脂(重量平均分子量56,000)のペレット
を、Tダイ押出機を用いてシリンダー温度320℃で溶
融押出しを行い、厚さ1.1mmの押出シートを作成し
た。
Example 1 Pellets of polycarbonate resin (weight average molecular weight 56,000) produced from diphenyl carbonate and 2,2-bis (4-hydroxyphenyl) propane by the method described in JP-A-3-68627. Was melt-extruded using a T-die extruder at a cylinder temperature of 320 ° C. to prepare an extruded sheet having a thickness of 1.1 mm.

【0027】この押出シートから85×85mmのサン
プルを切り出し、オートクレーブに入れ、炭酸ガスを4
0kg/cm2 まで圧入し、雰囲気温度5℃で24時間
放置した。圧を解放し、室温でエージングして、サンプ
ル重量に対して炭酸ガス含浸量を8重量部まで調整し
た。この含浸サンプルを、温度150℃のシリコンオイ
ルバスに30秒間浸漬して加熱発泡させたところ、13
0×130mmのサイズで、倍率3.5倍の一次発泡体
シートが得られた。
A sample of 85 × 85 mm was cut out from this extruded sheet, placed in an autoclave, and carbon dioxide gas was added to 4
The mixture was press-fitted to 0 kg / cm 2 and left at ambient temperature of 5 ° C. for 24 hours. The pressure was released, and aging was performed at room temperature to adjust the carbon dioxide gas impregnation amount to 8 parts by weight with respect to the sample weight. This impregnated sample was immersed in a silicone oil bath at a temperature of 150 ° C. for 30 seconds to be heated and foamed.
A primary foam sheet having a size of 0 × 130 mm and a magnification of 3.5 was obtained.

【0028】この一次発泡品を再度オートクレーブに入
れ、同様に炭酸ガスを40kg/cm2 まで圧入し、雰
囲気温度5℃で24時間放置した。圧を解放し、室温で
エージングし、サンプル重量に対して炭酸ガス含浸量を
19重量部に調整した。この含浸サンプルを、温度19
0℃のシリコンオイルバスに15秒間浸漬して加熱発泡
させたところ、厚み3.3mm、サイズ250×250
mmで、密度46kg/m3 、気泡径9μm、気泡壁存
在率98%の多孔質シートを得た。この多孔質体シート
に、シート両面でスリット位置をずらし、両面からレザ
ーにて連続して間隔5mm、深さ2.5mmのスリット
溝を形成した後、200×200mm角にサンプリング
した。このサンプルの一部を切り出し、連続気泡率を測
定したところ、99.9%であった。
The primary foamed product was again placed in the autoclave, carbon dioxide gas was similarly injected up to 40 kg / cm 2, and the mixture was allowed to stand at an ambient temperature of 5 ° C. for 24 hours. The pressure was released, and aging was performed at room temperature to adjust the impregnated amount of carbon dioxide gas to 19 parts by weight based on the weight of the sample. This impregnated sample was subjected to a temperature of 19
When it was immersed in a silicone oil bath at 0 ° C for 15 seconds and heated for foaming, it had a thickness of 3.3 mm and a size of 250 x 250.
In mm, a porous sheet having a density of 46 kg / m 3 , a cell diameter of 9 μm, and a cell wall existence rate of 98% was obtained. On this porous sheet, the slit positions were shifted on both sides of the sheet, and a slit groove having a distance of 5 mm and a depth of 2.5 mm was continuously formed from both sides with a leather, and then the sheet was sampled at 200 × 200 mm square. A part of this sample was cut out and the open cell ratio was measured and found to be 99.9%.

【0029】このサイズの多孔質体シートを8枚積層し
た状態で、100μm厚みのPET/アルミニウム箔/
PEの構成のバリアフィルム(酸素透過度が0.3cc
以下/atm・m2 ・24hr、20℃、0%RHのも
の)を製袋したものに入れた。真空包装機にて、真空度
0.1mmHgにまで減圧にした状態で真空包装して、
真空断熱材を得た。
In a state in which eight porous sheets of this size are laminated, PET / aluminum foil / 100 μm thick
Barrier film made of PE (oxygen permeability of 0.3cc
Below / atm · m 2 · 24 hr, 20 ° C., 0% RH) was put in a bag-made product. With a vacuum packaging machine, vacuum packaging with the vacuum reduced to 0.1 mmHg,
A vacuum insulation material was obtained.

【0030】得られた断熱材を熱伝導率測定装置(AS
TMC−518に準拠)にて、測定したところ、熱伝導
率が0.007kcal/m・h・℃の性能であった。
この断熱材の重量は54gであり、比較例に比べ非常に
軽量性に優れたものであった。
The heat insulating material thus obtained was measured by a thermal conductivity measuring device (AS
According to TMC-518), the thermal conductivity was 0.007 kcal / m · h · ° C.
The weight of this heat insulating material was 54 g, which was extremely excellent in lightness as compared with the comparative example.

【0031】[0031]

【実施例2】実施例1と同条件にて得られたサイズ16
×16mmの一次発泡サンプルを、実施例1と同様に再
度含浸し、炭酸ガス含浸量が30重量部の発泡体を得
た。この含浸サンプルを、温度190℃のシリコンオイ
ルバスに45秒間浸漬して加熱し、発泡させたところ、
厚み2.7mm、250×250mmサイズで、密度7
8kg/m3 、気泡径8μm、気泡壁存在率92%の多
孔質体シートを得た。この多孔質体シートに、シート両
面でスリット位置をずらし、両面からレザーにて連続的
に間隔5mm、深さ1.8mmのスリット溝を形成した
後、200×200mm角にサンプリングした。このサ
ンプルの一部を切り出し、連続気泡率を測定したとこ
ろ、99.8%であった。
Example 2 Size 16 obtained under the same conditions as in Example 1
The primary foam sample of × 16 mm was impregnated again in the same manner as in Example 1 to obtain a foam having a carbon dioxide gas impregnation amount of 30 parts by weight. When this impregnated sample was immersed in a silicone oil bath at a temperature of 190 ° C. for 45 seconds and heated to foam,
Thickness 2.7 mm, size 250 x 250 mm, density 7
A porous sheet having 8 kg / m 3 , a cell diameter of 8 μm, and a cell wall presence rate of 92% was obtained. On this porous sheet, the slit positions were shifted on both sides of the sheet, and slit grooves with a gap of 5 mm and a depth of 1.8 mm were continuously formed from both sides with a leather, and then the sheet was sampled into a 200 × 200 mm square. A part of this sample was cut out and the open cell ratio was measured and found to be 99.8%.

【0032】実施例1と同様にして、真空包装し、熱伝
導率が0.008kcal/m・h・℃の性能の断熱材
を得た。この断熱材の重量は69gであり、比較例に比
べ非常に軽量性に優れたものであった。
Vacuum insulation was carried out in the same manner as in Example 1 to obtain a heat insulating material having a thermal conductivity of 0.008 kcal / m · h · ° C. The weight of this heat insulating material was 69 g, which was extremely excellent in lightness as compared with the comparative example.

【0033】[0033]

【実施例3】ポリメタクリレート樹脂(旭化成工業
(株)製、デルペット80N)をTダイ押出機を用いて
シリンダー温度230℃にて溶融押出しを行い厚さ0.
4mmの押出シートを作成した。この押出シートから9
0×90mmのサンプルを切り出し、n−ペンタン:メ
タノールを容量比80:20の混合溶媒中に室温で24
時間浸漬し、サンプル重量に対して17重量部溶剤が含
浸されたサンプルを得た。このサンプルを室温にて24
時間エージングし、溶剤含浸量を6重量部まで調整し
た。この含浸サンプルを120℃シリコンオイルバスに
30秒間浸漬し、一次発泡させたところ、63×63m
mの発泡倍率5倍の発泡体シートを得た。この発泡体を
オートクレーブにて炭酸ガスを40kg/cm2 まで圧
入し、雰囲気温度5℃で24時間放置した。圧を解放
し、室温でエージングし、サンプル重量に対して炭酸ガ
ス含浸量を13重量部に調整した。この含浸サンプル
を、温度140℃のシリコンオイルバスに20秒間浸漬
して加熱し、発泡させたところ、厚み1.1mm、サイ
ズ250×250mmの密度60kg/m3 、気泡径1
8μm、気泡壁存在率85%の多孔質体シートを得た。
この多孔質体シートに、深さ0.7mm、ピッチ5mm
でシート両面でスリット位置をずらし、両面からレザー
にて連続的にスリット溝を形成した後、200×200
mm角にサンプリングした。このサンプルの一部を切り
出し、連続気泡率を測定したところ、99.2%であっ
た。このサイズの多孔質体シートを20枚積層して、実
施例1と同様にして、真空包装し、熱伝導率が0.00
9kcal/m・h・℃の性能の断熱材を得た。この断
熱材の重量は50gであり、比較例に比べ非常に軽量性
に優れたものであった。
Example 3 A polymethacrylate resin (Delpet 80N, manufactured by Asahi Kasei Kogyo Co., Ltd.) was melt extruded at a cylinder temperature of 230 ° C. using a T-die extruder to a thickness of 0.
A 4 mm extruded sheet was created. 9 from this extruded sheet
A 0 × 90 mm sample was cut out, and n-pentane: methanol was added to a mixed solvent having a volume ratio of 80:20 at room temperature for 24 hours.
The sample was immersed for 17 hours to obtain a sample impregnated with 17 parts by weight of the solvent. 24 hours at room temperature
Aging was performed for a period of time to adjust the solvent impregnation amount to 6 parts by weight. When this impregnated sample was immersed in a 120 ° C. silicon oil bath for 30 seconds for primary foaming, 63 × 63 m
A foam sheet having an expansion ratio of m and a foaming ratio of 5 was obtained. Carbon dioxide gas was pressed into the foamed body in an autoclave up to 40 kg / cm 2, and the foamed body was left standing at an ambient temperature of 5 ° C. for 24 hours. The pressure was released, and aging was performed at room temperature to adjust the carbon dioxide gas impregnation amount to 13 parts by weight with respect to the sample weight. The impregnated samples, when heated by immersion for 20 seconds in a silicon oil bath temperature of 140 ° C., was foamed, thickness 1.1 mm, size 250 × 250 mm density 60 kg / m 3, the cell diameter 1
A porous sheet having a thickness of 8 μm and a bubble wall existence rate of 85% was obtained.
This porous sheet has a depth of 0.7 mm and a pitch of 5 mm.
After shifting the slit position on both sides of the sheet and forming continuous slit grooves with leather from both sides, 200 × 200
It was sampled in mm square. A part of this sample was cut out and the open cell ratio was measured and found to be 99.2%. Twenty porous sheets of this size were laminated and vacuum-packaged in the same manner as in Example 1 to obtain a thermal conductivity of 0.00
A heat insulating material having a performance of 9 kcal / m · h · ° C was obtained. The weight of the heat insulating material was 50 g, which was extremely excellent in lightness as compared with the comparative example.

【0034】[0034]

【実施例4】ポリカーボネート樹脂(帝人化成(株)
製、パンライトK1300)をジオキサン:シクロヘキ
サン=70:30容量%の混合溶媒に、濃度7.5重量
%になるように60℃にて均一に溶解した。この溶液を
室温にまで冷却した後、アルミパンに厚さ2mmとなる
ように移液した。アルミパンごと液体窒素中で急冷・凍
結し相分離した後、凍結乾燥機を用いて溶剤を除去し
た。得られた多孔質体シートの気泡径は7μm、気泡壁
存在率は0%厚み1.8mm、密度は95kg/m 3
あった。この多孔質体シートは実施例1〜3のシートに
比べ、指先での圧縮強度では劣る傾向にあった。
[Example 4] Polycarbonate resin (Teijin Kasei Co., Ltd.)
Manufactured by Panlite K1300) with dioxane: cyclohex
Sun = 70: 30% by volume of mixed solvent, concentration 7.5%
%, The solution was uniformly dissolved at 60 ° C. This solution
After cooling to room temperature, the aluminum pan becomes 2mm thick
Was transferred as follows. Quenching and freezing in liquid nitrogen together with aluminum pan
After tying and phase separation, the solvent was removed using a freeze dryer.
It was The resulting porous sheet had a cell diameter of 7 μm and a cell wall
Presence rate is 0%, thickness is 1.8 mm, and density is 95 kg / m. 3so
there were. This porous sheet is used as the sheets of Examples 1 to 3.
In comparison, the compression strength at the fingertip tended to be inferior.

【0035】この200×200mm角サイズの多孔質
体シートを8枚積層した状態で、実施例1と同様にして
真空包装し、真空断熱材を得た。得られた断熱材を熱伝
導率測定装置(ASTMC−518に準拠)にて、測定
したところ、熱伝導率が0.0095kcal/m・h
・℃の性能であった。この断熱材の重量は58gであ
り、比較例に比べ非常に軽量性に優れたものであった。
Eight sheets of the porous sheet of 200 × 200 mm square size were laminated and vacuum-packed in the same manner as in Example 1 to obtain a vacuum heat insulating material. When the obtained heat insulating material was measured with a thermal conductivity measuring device (based on ASTM C-518), the thermal conductivity was 0.0095 kcal / m · h.
・ It was a performance of ° C. The weight of this heat insulating material was 58 g, which was very excellent in lightness as compared with the comparative example.

【0036】[0036]

【比較例】ホワイトカーボン(密度300kg/m3
平均凝集径3.5〜4μm)を真空乾燥したのものを、
クラフト紙からなる200×200×25mmのサイズ
の直方体型の内袋に充填し、封をした後、軽くプレス装
置にて圧縮した。この内袋を実施例1で用いたガスバリ
アフィルムの袋と同じ袋に入れ、実施例1と同様に真空
包装して、粉末真空断熱材を得た。この断熱材の熱伝導
率は実施例とほぼ同じであったが、重量は330gであ
り、実施例に比べ重く、また包装時の工程も複雑であっ
た。
[Comparative Example] White carbon (density 300 kg / m 3 :
Vacuum-dried average agglomerate diameter 3.5-4 μm)
It was filled in a rectangular parallelepiped inner bag made of kraft paper with a size of 200 × 200 × 25 mm, sealed, and then lightly compressed by a pressing device. This inner bag was put in the same bag as the gas barrier film bag used in Example 1 and vacuum-packed in the same manner as in Example 1 to obtain a powder vacuum heat insulating material. The thermal conductivity of this heat insulating material was almost the same as that of the example, but the weight was 330 g, which was heavier than that of the example, and the packaging process was complicated.

【0037】[0037]

【発明の効果】本発明の真空断熱材は、充填材として気
泡径が小さく、しかも連続気泡の樹脂発泡体シートを使
用しているため、従来の無機系微粒子を充填材とするも
のに比べ、真空包装工程が簡略化され、しかも断熱材重
量を著しく軽量化できるものである。
EFFECT OF THE INVENTION The vacuum heat insulating material of the present invention uses a resin foam sheet having a small cell diameter and an open cell as a filler, and therefore, compared with a conventional material using inorganic fine particles as a filler, The vacuum packaging process is simplified and the weight of the heat insulating material can be remarkably reduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 気孔径1〜20μm、連続気泡率90〜
100%、密度20〜100kg/m3 の熱可塑性樹脂
多孔質体シートを、ガスバリア性包装材にて真空包装し
たことを特徴とする真空断熱材。
1. A pore size of 1 to 20 μm and an open cell rate of 90 to
A vacuum heat insulating material, characterized in that a 100% thermoplastic resin porous sheet having a density of 20 to 100 kg / m 3 is vacuum packaged with a gas barrier packaging material.
JP6122601A 1994-06-03 1994-06-03 Vacuum heat insulating material Withdrawn JPH07332587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6122601A JPH07332587A (en) 1994-06-03 1994-06-03 Vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6122601A JPH07332587A (en) 1994-06-03 1994-06-03 Vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JPH07332587A true JPH07332587A (en) 1995-12-22

Family

ID=14839976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6122601A Withdrawn JPH07332587A (en) 1994-06-03 1994-06-03 Vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JPH07332587A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139193A (en) * 2000-10-31 2002-05-17 Kyoraku Co Ltd Heat insulating structure member and its component wall molding method
JP2004011705A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator
JP2009036358A (en) * 2007-08-03 2009-02-19 Hitachi Appliances Inc Vacuum heat-insulating material and refrigerator provided with the same
JP2009063064A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2009063065A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2010276167A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Vacuum heat insulating material, heat insulated box using the same, and equipment
JP2011185442A (en) * 2011-06-22 2011-09-22 Kyoraku Co Ltd Heat insulating structural member and method of forming the same
JP2012197189A (en) * 2011-03-18 2012-10-18 Fuji Electric Co Ltd Manufacturing method of porous ceramics and vacuum heat insulating material
JP2013508652A (en) * 2010-01-05 2013-03-07 エルジー・ハウシス・リミテッド Vacuum insulation panel and method of manufacturing the same
WO2013089086A1 (en) * 2011-12-13 2013-06-20 日東電工株式会社 Affixed material for display
KR101466679B1 (en) * 2007-09-10 2014-11-28 가부시키가이샤 가네카 Heat-insulating box for membrane type liquefied-natural-gas tanker and method of transporting liquefied natural gas with the same
JP2016173174A (en) * 2015-03-18 2016-09-29 古河電気工業株式会社 Heat insulating member and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139193A (en) * 2000-10-31 2002-05-17 Kyoraku Co Ltd Heat insulating structure member and its component wall molding method
JP2004011705A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator
JP2009036358A (en) * 2007-08-03 2009-02-19 Hitachi Appliances Inc Vacuum heat-insulating material and refrigerator provided with the same
JP2009063064A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2009063065A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
KR101466679B1 (en) * 2007-09-10 2014-11-28 가부시키가이샤 가네카 Heat-insulating box for membrane type liquefied-natural-gas tanker and method of transporting liquefied natural gas with the same
JP2010276167A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Vacuum heat insulating material, heat insulated box using the same, and equipment
JP2013508652A (en) * 2010-01-05 2013-03-07 エルジー・ハウシス・リミテッド Vacuum insulation panel and method of manufacturing the same
JP2012197189A (en) * 2011-03-18 2012-10-18 Fuji Electric Co Ltd Manufacturing method of porous ceramics and vacuum heat insulating material
JP2011185442A (en) * 2011-06-22 2011-09-22 Kyoraku Co Ltd Heat insulating structural member and method of forming the same
WO2013089086A1 (en) * 2011-12-13 2013-06-20 日東電工株式会社 Affixed material for display
JP2016173174A (en) * 2015-03-18 2016-09-29 古河電気工業株式会社 Heat insulating member and method for producing the same

Similar Documents

Publication Publication Date Title
EP2276692B1 (en) Polymeric foams with nanocellular morphology and methods for making them
JPH07332587A (en) Vacuum heat insulating material
WO2012081490A1 (en) Process for producing molded body of expanded polyolefin resin particles, and molded body of expanded polyolefin resin particles
US9381723B2 (en) Microcellular thermoplastic thin films formed by a solid-state foaming process
US5965231A (en) Gas mixtures for thermal insulation
WO2007034856A1 (en) Process for producing porous laminate and porous laminate
JP2004263184A (en) Open-cell foamed body composed of high melting point plastic
JP2007083537A (en) Perforated laminate and its manufacturing method
WO2008054551A2 (en) Foam/aerogel composite materials for thermal and acoustic insulation and cryogen storage
JPS61119895A (en) Vacuum heat-insulating unit and manufacture thereof
US3787543A (en) Process for the preparation of low density microcellular foam sheets exhibiting high work-to-tear values
EP0945241A2 (en) Shape-recoverable resin foamed product
US20160137806A1 (en) Solid-state thermoplastic nanofoams
JP4594837B2 (en) Method for producing porous laminate
JP2007083549A (en) Perforated laminate and its manufacturing method
JP2017515757A (en) Foam tray for food packaging and manufacturing method thereof
JP2010059756A (en) High performance heat insulation material
JPH08311230A (en) Open-microcellular foam, its production and vacuum heat insulation material made thereof
JP4746974B2 (en) Method for producing porous body and porous body
JP2007160693A (en) Porous body and its manufacturing method
JP5124214B2 (en) Vacuum heat insulating material and refrigerator using the same
JPH0763469A (en) Vacuum heat insulating member
Wong et al. Polystyrene foams as core materials used in vacuum insulation panel
JPH091701A (en) Manufacture of vacuum heat insulator and honeycomb plate
JPS59137777A (en) Heat-insulator pack

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904