JP2000097390A - Heat insulating panel and manufacture thereof - Google Patents

Heat insulating panel and manufacture thereof

Info

Publication number
JP2000097390A
JP2000097390A JP10267790A JP26779098A JP2000097390A JP 2000097390 A JP2000097390 A JP 2000097390A JP 10267790 A JP10267790 A JP 10267790A JP 26779098 A JP26779098 A JP 26779098A JP 2000097390 A JP2000097390 A JP 2000097390A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
space
panel
inorganic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10267790A
Other languages
Japanese (ja)
Other versions
JP3137946B2 (en
Inventor
Akito Minaki
昭人 皆木
Tetsuya Yano
哲也 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Industrial Co Ltd
Original Assignee
Meisei Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Industrial Co Ltd filed Critical Meisei Industrial Co Ltd
Priority to JP10267790A priority Critical patent/JP3137946B2/en
Publication of JP2000097390A publication Critical patent/JP2000097390A/en
Application granted granted Critical
Publication of JP3137946B2 publication Critical patent/JP3137946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulating panel, maintaining the interior of an airtight space in a pressure reduction state, with a flexibility by providing a covering body formed that a heat insulating material is arranged in an airtight space surrounded with a covering material having airtightness and flexibility. SOLUTION: A plurality of grooves 1a are formed in juxtaposition at least in one side part of a covering substance 6 and an airtight space 9 is filled with inorganic powder P serving as a heat insulation material 2. In manufacture of the heat insulation panel, before the heat insulation material 2 is arranged in a covering space 8, the inorganic powder P is contained in a bag body 5 having permeability. The bag body 5 containing the inorganic powder P is nipped between a pair of upper and lower molding dice 10 at least in one of which a plurality of protrusions 11 are previously formed in juxtaposition to mold a pressure powder molded product 2A. The molded pressure powder molded product 2A forms the heat insulating material 2 of a heat insulating panel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、断熱パネル及びそ
の製造方法に関し、詳しくは、気密性を有し、且つ可撓
性を有する被覆材で包囲した気密空間内に断熱材を配置
した包被体を設けて、前記密閉空間内を減圧状態に維持
してある断熱パネル及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating panel and a method of manufacturing the same, and more particularly, to a heat insulating panel in which a heat insulating material is arranged in an airtight space surrounded by a sealing material having airtightness and flexibility. The present invention relates to a heat insulating panel provided with a body and maintaining the inside of the closed space under reduced pressure, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】上記従来の断熱パネルは、断熱容器の壁
部を形成するのに用いられることが多く、クーラボック
スを例として挙げれば、例えば図23に平断面を示すよ
うに、箱形のクーラボックス30の底部、天井部及び各
側部等の壁部31を形成する部位には、断熱パネル1と
して板状の可撓性を有しない、内部を減圧した真空断熱
材パネル1Aを配置し、これらの間の継ぎ目部32(角
を形成する各真空断熱材パネル1Aの突き合わせ部)に
は、硬質ポリウレタンフォーム等の現場発泡断熱材33
を介装してあった。前記真空断熱材パネル1Aは、図2
4に断面を示すように、珪酸カルシウム等の成形体を断
熱材2として被覆材3で包被して包被体6を形成した上
で、その包被空間8内を排気減圧したもの、或いは、前
記包被空間8内に珪酸カルシウム、シリカ等の粉体を断
熱材2として充填した上で、その包被空間8内を真空排
気したもので、可撓性には乏しいものであった。そし
て、前記現場発泡断熱材33は、前記真空断熱材パネル
1Aの継ぎ目に断熱材原料(例えば未重合のポリウレタ
ンを注入して、重合時に発泡させる。)である。従っ
て、当然ながら、これら現場発泡断熱材33は気泡が常
圧以上のものであり、被覆材3の内部は減圧されておら
ず、断熱特性の低いものである。
2. Description of the Related Art The above-mentioned conventional heat-insulating panel is often used for forming a wall portion of a heat-insulating container. For example, as an example of a cooler box, as shown in FIG. At a portion of the cooler box 30 where the wall 31 is formed, such as a bottom portion, a ceiling portion, and respective side portions, a plate-shaped non-flexible, vacuum-insulated material panel 1A having a reduced pressure is disposed as the heat-insulating panel 1. The in-situ foam insulation material 33 such as a rigid polyurethane foam is provided at the seam portion 32 (butting portion of each vacuum insulation material panel 1A forming a corner) therebetween.
Was interposed. The vacuum insulation panel 1A is shown in FIG.
As shown in FIG. 4, a molded body such as calcium silicate is covered with a covering material 3 as a heat insulating material 2 to form a covered body 6, and the inside of the covered space 8 is evacuated and reduced. In this case, the envelope space 8 is filled with a powder of calcium silicate, silica, or the like as the heat insulating material 2 and the interior of the envelope space 8 is evacuated to a vacuum. The in-situ foam insulating material 33 is a heat insulating material (for example, an unpolymerized polyurethane is injected and foamed at the time of polymerization) at a joint of the vacuum heat insulating material panel 1A. Accordingly, naturally, the foamed in-situ heat insulating material 33 has air bubbles of normal pressure or higher, and the inside of the coating material 3 is not decompressed and has low heat insulating properties.

【0003】[0003]

【発明が解決しようとする課題】上記従来のクーラボッ
クス30における断熱パネルの構成においては、真空断
熱材パネル1Aは所要の断熱特性を有してはいるもの
の、継ぎ目部32に配置される現場発泡断熱材33の断
熱特性は、前記真空断熱材パネル1Aのそれには大きく
劣る。従って、前記現場発泡断熱材33はその厚さを必
要とし、そのために、断熱材2の全体に占める容積比が
極めて大きくなるという問題を有している。因みに、内
部を減圧した硬質の断熱材(以下、硬質の真空断熱材と
いう)の熱伝導率が、0.006kcal/mh℃であるに
対して、現場発泡断熱材33のそれは、ほぼ0.012
kcal/mh℃である。従って、上記クーラボックス30
の場合にも、総合的な断熱特性は低下せざるを得ない。
また、上記硬質の真空断熱材からなる真空断熱材パネル
1Aは、極めて可撓性に乏しく、屈曲変形はおろか、湾
曲変形させることも困難である。そこで、例えば図25
に示すように、前記継ぎ目部32に湾曲形成した硬質の
真空断熱材からなる真空断熱材パネル1Aを嵌装するこ
とも考えられるが、このような湾曲した真空断熱材パネ
ル1Aを形成するには、断熱材2を湾曲した形状に成形
し(図26(イ)参照)、これを焼成又は乾燥する成型
工程の後、これを被覆材3で包被し、前記被覆材3の内
部の断熱材2を包被している包被空間を減圧する(同図
(ロ)参照)ことが必要になるが、前記成型工程の際に
変形を招くこともあり、この湾曲した真空断熱材パネル
1Aに寸法精度を求めることは困難で、しかも、このよ
うな湾曲した形状の断熱材2を気密に被覆することも困
難で、湾曲した硬質の真空断熱材2を形成するには無理
があり、継ぎ目部32に隙間なく断熱材2を配置するに
は無理がある。さらに、衝撃等でこの真空断熱材パネル
1Aに曲げ外力が作用すると、折損してしまうことがあ
り、折損すれば著しく断熱性を損なうという問題も有し
ている。
In the structure of the heat insulating panel in the above-mentioned conventional cooler box 30, the vacuum heat insulating material panel 1A has the required heat insulating properties, but the in-situ foaming panel disposed in the seam portion 32. The heat insulating property of the heat insulating material 33 is significantly inferior to that of the vacuum heat insulating material panel 1A. Therefore, the in-situ foam insulation 33 needs to have the thickness, and therefore, there is a problem that the volume ratio of the insulation 2 to the whole becomes extremely large. Incidentally, the thermal conductivity of the hard heat insulating material (hereinafter, referred to as a hard vacuum heat insulator) whose internal pressure is reduced is 0.006 kcal / mh ° C., whereas that of the foamed heat insulating material 33 in the field is approximately 0.012 kcal / mh ° C.
kcal / mh ° C. Therefore, the cooler box 30
In this case, the overall heat insulating properties must be reduced.
Further, the vacuum heat insulating material panel 1A made of the hard vacuum heat insulating material is extremely poor in flexibility, and it is difficult to bend as well as bend and deform. Therefore, for example, FIG.
As shown in FIG. 1, it is conceivable to fit a vacuum heat insulating material panel 1A made of a curved vacuum heat insulating material in the seam portion 32. However, in order to form such a curved vacuum heat insulating material panel 1A. Then, the heat insulating material 2 is formed into a curved shape (see FIG. 26 (a)), and after a forming step of firing or drying the same, the heat insulating material 2 is covered with the coating material 3 and the heat insulating material inside the coating material 3 is formed. Although it is necessary to reduce the pressure of the wrapping space that covers the wrapping 2 (see (b) in the figure), deformation may be caused during the molding process. It is difficult to obtain the dimensional accuracy, and it is also difficult to air-tightly cover the heat insulating material 2 having such a curved shape, and it is impossible to form the curved hard vacuum heat insulating material 2. It is impossible to arrange the heat insulating material 2 in the space 32 without gaps. Further, when a bending external force acts on the vacuum heat insulating material panel 1A due to an impact or the like, the vacuum heat insulating material panel 1A may be broken, and if broken, the heat insulating property is significantly impaired.

【0004】そこで、本発明の目的は、上記問題を解消
可能な可撓性を有する断熱パネルを提供する点にある。
Accordingly, an object of the present invention is to provide a flexible heat insulating panel capable of solving the above problems.

【0005】[0005]

【課題を解決するための手段】〔本発明の特徴構成〕本
発明の請求項1に係わる断熱パネルの第1特徴構成は、
包被体の少なくとも一側面部に、複数の溝を併設すると
共に、断熱材として無機質粉体を気密空間内に充填して
ある点にある。
Means for Solving the Problems The first characteristic structure of the heat insulating panel according to claim 1 of the present invention is as follows.
A plurality of grooves are provided on at least one side surface of the wrapping body, and an inorganic powder is filled in a hermetic space as a heat insulating material.

【0006】本発明の請求項2に係わる断熱パネルの第
2特徴構成は、上記第1特徴構成の無機質粉体と被覆材
との間に、繊維材層を介在させてある点にある。
A second feature of the heat insulating panel according to the second aspect of the present invention is that a fiber material layer is interposed between the inorganic powder of the first feature and the covering material.

【0007】本発明の請求項3に係わる断熱パネルの製
造方法の第1特徴手段は、断熱材を包被空間内に配置す
る前に、無機質粉体を、通気性を有する袋体内に収容
し、少なくとも一方に予め複数の突条を併設してある上
下一対の成形型の間で、前記無機質粉体を収容した袋体
を挟圧して圧粉成形体に成形し、前記成形した圧粉成形
体を、前記断熱材とする点にある。
[0007] A first feature of the method for manufacturing a heat insulating panel according to claim 3 of the present invention is that, prior to disposing the heat insulating material in the envelope space, the inorganic powder is accommodated in a bag having air permeability. A bag body containing the inorganic powder is pressed between at least one of a pair of upper and lower molds provided with a plurality of protrusions in advance to form a green compact, and the green compact is formed. The point is that the body is the heat insulating material.

【0008】本発明の請求項4に係わる断熱パネルの製
造方法の第2特徴手段は、上記第1特徴手段において、
圧粉成形体を、袋体と共に前記包被空間内に収容する点
にある。
According to a second aspect of the present invention, there is provided a method for manufacturing a heat insulating panel, comprising the steps of:
The point is that the green compact is housed in the envelope space together with the bag.

【0009】〔特徴構成の作用及び効果〕上記本発明に
係わる断熱パネルの第1特徴構成によれば、断熱パネル
が可撓性を有するものとなる。つまり、可撓性を有する
被覆材で無機質粉体を気密に減圧下で包被した断熱パネ
ルの側面部に複数の溝を形成してあることから、前記溝
の部位では断熱材である無機質粉体が他の部位に比して
薄い層を形成しており、気密空間内で無機質粉体の粒子
相互の移動も許容されるから、前記溝に沿って前記断熱
パネルを屈曲することが可能である。従って、平板状に
形成された断熱パネルであっても、湾曲させることが可
能になる。
According to the first aspect of the heat insulating panel according to the present invention, the heat insulating panel has flexibility. In other words, since a plurality of grooves are formed on the side surface of the heat insulating panel in which the inorganic powder is airtightly wrapped under reduced pressure with a flexible covering material, the inorganic powder which is the heat insulating material is formed at the groove. Since the body forms a thin layer as compared with other parts, and the movement of the particles of the inorganic powder in the airtight space is allowed, the heat insulating panel can be bent along the groove. is there. Therefore, even a heat insulating panel formed in a flat plate shape can be curved.

【0010】上記本発明に係わる断熱パネルの第2特徴
構成によれば、上記第1特徴構成の作用効果の中で、さ
らに可撓性に富むものにできる。つまり、無機質粉体と
被覆材との間に繊維材層を介在させておけば、前記無機
質粉体からなる断熱材と前記被覆材の相対変形が前記繊
維材層で吸収されるから、包被体の外形を維持しなが
ら、前記無機質粉体の局所的な相互移動を許容するよう
になり、より大きな変形が可能になる。
According to the second aspect of the heat insulating panel of the present invention, the function and effect of the first aspect can be made more flexible. That is, if a fiber material layer is interposed between the inorganic powder and the coating material, the relative deformation between the heat insulating material made of the inorganic powder and the coating material is absorbed by the fiber material layer. While maintaining the external shape of the body, local reciprocal movement of the inorganic powder is allowed, and larger deformation is possible.

【0011】上記本発明に係わる断熱パネルの製造方法
の第1特徴手段によれば、容易に、且つ、安定して、可
撓性を備える断熱材を形成できる。つまり、上下一対の
成形型の間で包被体を形成するのに、無機質粉体を袋体
に収容し、被覆材の間に介装して成型すれば、そのまま
で複数の溝を有する圧粉成形体を成形でき、その減圧吸
引に伴う無機質粉体の飛散のおそれがなく、前記袋体で
外面が保形されるから、型崩れのおそれもない。例えば
上下の被覆膜を別体にして、全周に亘って開口した包被
体の全周に亘る開口部を、前記圧粉成形体を形成の後、
減圧下で気密に封着することも可能で、前記封着を平面
上で行うことができるから、包被空間を減圧して断熱材
を包被し、且つ、前記複数の突条に対応する溝を有する
断熱パネルを容易に形成できる。また、袋状の被覆材中
に、前記袋体に収容した前記無機質粉体を配置し、一部
の開口した包被体を形成した後に、包被空間内を減圧す
ることもでき、その吸引に際して前記無機質粉体が流気
によって飛散することもなく、型崩れのおそれもない。
従って、前記包被体の形成に多様な手段・工程を選択で
きる。
According to the first feature of the method for manufacturing a heat insulating panel according to the present invention, a heat insulating material having flexibility can be easily, stably formed. In other words, when forming an envelope between a pair of upper and lower molding dies, if the inorganic powder is contained in a bag and molded by being interposed between the covering materials, a pressure having a plurality of grooves as it is is obtained. A powder compact can be formed, there is no risk of scattering of the inorganic powder due to the suction under reduced pressure, and since the outer surface is kept in shape by the bag, there is no risk of shape collapse. For example, the upper and lower coating films are separated from each other, and the opening over the entire circumference of the wrapping body that is opened over the entire circumference is formed after the green compact is formed.
It is also possible to airtightly seal under reduced pressure, and the sealing can be performed on a flat surface, so that the wrapping space is reduced in pressure to cover the heat insulating material, and corresponds to the plurality of ridges. A heat insulating panel having a groove can be easily formed. Further, the inorganic powder contained in the bag body is arranged in a bag-shaped covering material, and after forming a partially opened envelope body, the inside of the envelope space can be decompressed. At this time, the inorganic powder does not scatter due to air flow, and there is no risk of shape collapse.
Therefore, various means and steps can be selected for forming the envelope.

【0012】上記本発明に係わる断熱パネルの製造方法
の第2特徴手段によれば、上記第1特徴手段の作用効果
をさらに高めることができる。つまり、袋状の被覆材中
に、前記袋体に収容した前記無機質粉体を配置し、一部
の開口した包被体を形成した後に、包被空間内を減圧す
る場合であっても、型崩れのおそれがない。そして、被
覆材と圧粉成形体との間に袋体を形成する通気性の層が
形成され、溝部周辺で局所的な無機質粉体の相互移動を
許容するから、袋体に収容されたままの圧粉成形体は可
撓性を有するものとなる。
According to the second aspect of the method of manufacturing a heat insulating panel according to the present invention, the function and effect of the first aspect can be further enhanced. In other words, even in the case where the inside of the envelope space is decompressed, after the inorganic powder accommodated in the bag body is arranged in the bag-shaped covering material and a partially opened envelope body is formed, There is no risk of shape loss. Then, a gas-permeable layer forming a bag is formed between the covering material and the green compact, and a local mutual movement of the inorganic powder around the groove is allowed. The green compact has flexibility.

【0013】[0013]

【発明の実施の形態】以下、本発明に係わる断熱パネル
の実施形態の一例ついて図面を参照しながら説明する。
図1は本発明に係る断熱パネルの一例を示す斜視図であ
り、図2はその断面形状を説明する要部の断面図であ
り、図3はこれの製造時の状態を示す一部省略断面図で
あり、図4はその成形型を説明する斜視図であり、図5
はその成形型の縦断面図であり、図6乃至図9は断熱パ
ネルの製作工程の一例を示す工程説明図である。尚、上
記従来の技術に用いた図23乃至図26における要素と
同一の要素乃至同様の機能を果たす要素については、先
の図23乃至図26に付した符号と同一の、或いは関連
する符号を付し、詳細の説明の一部を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a heat insulating panel according to the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing an example of a heat insulating panel according to the present invention, FIG. 2 is a cross-sectional view of a main part illustrating a cross-sectional shape thereof, and FIG. FIG. 4 is a perspective view for explaining the mold, and FIG.
FIG. 6 is a longitudinal sectional view of the molding die, and FIGS. 6 to 9 are process explanatory views showing an example of a manufacturing process of the heat insulating panel. 23 to FIG. 26 used in the above-mentioned conventional technique are denoted by the same reference numerals as those shown in FIG. 23 to FIG. And a part of the detailed description is omitted.

【0014】図1には、気密性を有し、且つ可撓性を有
する被覆材3で包囲した気密空間9内に断熱材2を配置
した包被体6を気密に封止して、前記気密空間9内を減
圧状態に維持してある本発明に係る断熱パネル1の一例
(以下、真空断熱材パネル1Aという)を示した。前記
真空断熱材パネル1Aは、前記包被体6を全体として円
筒面に沿う形状に湾曲形成したものでり、前記包被体6
の一側面部6aには、ほぼ平行し、ほぼ等間隔に形成さ
れた複数の溝1aを併設すると共に、前記断熱材2とし
てシリカ粉末で例示される無機質粉体Pを、間にポリエ
ステル製の袋体5からなる繊維材層4を介在させて、前
記気密空間9内に充填してある(図2参照)。
FIG. 1 shows a case 6 in which a heat insulating material 2 is disposed in an air-tight space 9 surrounded by a covering material 3 having airtightness and flexibility. An example of the heat insulating panel 1 according to the present invention in which the inside of the airtight space 9 is maintained in a reduced pressure state (hereinafter, referred to as a vacuum heat insulating material panel 1A) is shown. The vacuum heat insulating material panel 1A is formed by curving the wrapping body 6 as a whole along a cylindrical surface.
A plurality of grooves 1a substantially parallel to each other and formed at substantially equal intervals are provided in parallel on one side surface portion 6a, and an inorganic powder P exemplified by a silica powder as the heat insulating material 2 is interposed therebetween. The airtight space 9 is filled with a fibrous material layer 4 composed of a bag 5 interposed therebetween (see FIG. 2).

【0015】図2は図1に示した真空断熱材パネル1A
の部分平断面であるが、前記包被体6の外皮を形成する
被覆材3は、ポリプロピレンフィルムの間にアルミニウ
ム蒸着膜を介在させたラミネートフィルムであり、前記
円筒状の内側(図示の例においては一側面部6a側)と
外側とから前記断熱材2を挟み付けて、前記気密空間9
内を約0.1torrに減圧し、全周に亘って融着して気密
に封止したものである。前記繊維材層4は、無機質粉体
Pを包み込んでおり、この繊維材層4で包まれた前記無
機質粉体Pは、前記外側には、周部を除きほぼ均一に膨
出した膨出部1cを形成し、前記内側(即ち一側面部6
a側)には、周部を除いて前記円筒状の軸方向に畝状に
膨出した突出部1bを形成し、前記内側の側面部6aで
前記突出部1bの間に、ほぼ平行し、ほぼ等間隔に形成
された溝1aを備えた形状に圧密成形されている。そし
て、大気圧によるほぼ1気圧の外部圧力を加えられて、
その形状を維持している。前記円筒状の真空断熱材パネ
ル1Aは、図3に示すような平板状の断熱パネル1を前
記溝1aの方向に沿う軸の回りに湾曲成型して形成され
たものである。
FIG. 2 shows the vacuum insulation panel 1A shown in FIG.
The covering material 3 forming the outer skin of the wrapping body 6 is a laminated film in which an aluminum vapor-deposited film is interposed between polypropylene films, and has a cylindrical inner side (in the illustrated example). Is sandwiched between the heat insulating material 2 from one side portion 6a side) and the outside to form the airtight space 9
The pressure in the inside was reduced to about 0.1 torr, and the whole was fused and hermetically sealed. The fiber material layer 4 wraps the inorganic powder P, and the inorganic powder P wrapped by the fiber material layer 4 has a bulging portion that bulges almost uniformly on the outside except for a peripheral portion. 1c, and the inside (that is, one side portion 6)
a side), a projection 1b bulging in the axial direction of the cylinder except for a peripheral portion is formed, and is substantially parallel to the projection 1b on the inner side surface 6a. It is compacted into a shape having grooves 1a formed at substantially equal intervals. Then, an external pressure of approximately 1 atm due to atmospheric pressure is applied,
Maintains its shape. The cylindrical vacuum heat insulating material panel 1A is formed by bending a flat heat insulating panel 1 as shown in FIG. 3 around an axis along the direction of the groove 1a.

【0016】前記真空断熱材パネル1Aは、以下のよう
にして形成される。図4に示すように、一方に予め複数
の溝状の平行する凹部12を設けることで、それら凹部
12の間に平行する複数の突条11を形成してある上下
一対の成形型10を、減圧下の雰囲気中で加圧成型可能
な成型室21(図8参照)を備える加圧成型機20に取
り付けておく(図には、前記成形型10の内の下型10
Aに突条11を形成してある例を示した)。前記成形型
10の他方の上型10Bは、前記下型10Aの凹部12
に対向する位置を全面に亘って凹入さた凹入部13を形
成しておく(図5参照)。一方、ポリエステル繊維を用
いた通気性を有する袋体5に、断熱材2として前記シリ
カ粉末で形成された無機質粉体Pを収容しておき、三方
を気密に融着した長方形のラミネートフィルムからなる
被覆材3により、前記袋体5に収容した断熱材2を包被
自在な包被空間8を形成自在な、一方の開口した包被体
6を形成して、その包被空間8内に、前記袋体5内に収
容した無機質粉体Pを装入しておく(図6及び図7参
照)。そして、前記包被体6を、前記下型10Aの上に
載置し、吸引装置22を作動させて前記成型室21内を
減圧することで、前記包被空間8内を減圧して(図8参
照)、前記圧粉成形体2Aを乾燥した後、前記上型10
Bとの間で前記被覆材3を介して前記無機質粉体Pを収
容した袋体5を挟圧して圧粉成形体2Aに成形する(図
9参照)。そして、前記包被体6を押圧しながら、前記
成形型10に備える、前記被覆材3を封止するための融
着ヒータ23により加熱して、前記包被体6の開口部7
において前記被覆材3同士を気密に封着する。
The vacuum heat insulating material panel 1A is formed as follows. As shown in FIG. 4, by providing a plurality of groove-shaped parallel concave portions 12 on one side in advance, a pair of upper and lower molds 10 having a plurality of parallel ridges 11 formed between the concave portions 12 is formed. It is attached to a pressure molding machine 20 having a molding chamber 21 (see FIG. 8) capable of pressure molding in an atmosphere under reduced pressure.
A shows an example in which the ridge 11 is formed). The other upper die 10B of the molding die 10 is provided with the recess 12 of the lower die 10A.
A recessed portion 13 is formed by recessing a position opposed to the entire surface (see FIG. 5). On the other hand, an inorganic powder P formed of the silica powder is housed as a heat insulating material 2 in a breathable bag 5 made of polyester fiber, and is made of a rectangular laminated film in which three sides are hermetically fused. The covering material 3 forms one open wrapping body 6 capable of forming a wrapping space 8 capable of wrapping the heat insulating material 2 accommodated in the bag body 5, and in the wrapping space 8, The inorganic powder P accommodated in the bag body 5 is charged in advance (see FIGS. 6 and 7). Then, the envelope 6 is placed on the lower mold 10A, and the interior of the envelope space 8 is depressurized by operating the suction device 22 to depressurize the inside of the molding chamber 21 (FIG. 8), after drying the green compact 2A, the upper mold 10
B, the bag 5 containing the inorganic powder P is sandwiched between the cover 3 and the coating material 3 to form a green compact 2A (see FIG. 9). Then, while pressing the wrapping body 6, it is heated by a fusion heater 23 for sealing the covering material 3 provided in the molding die 10, and the opening 7 of the wrapping body 6 is heated.
In the above, the covering members 3 are hermetically sealed.

【0017】以上の操作により、前記包被空間8を減圧
された気密空間9とし、内部の減圧を維持できる状態に
して前記成型室21内を大気解放する。こうして取り出
された前記包被体6は、図9に示したように、前記成形
した圧粉成形体2Aを、前記袋体5と共に前記断熱材2
として内装した平板状の断熱パネル1を構成している。
そして、前記下型10Aに面していた側の前記包被体6
の一側面部6aには、前記下型10Aの凹部12に対応
する畝状の突出部1bが形成され、夫々の突出部1bの
間に前記下型10Aの突条11によって圧入された溝1
aが形成されている。また、前記包被体6の他方の側面
部には、前記上型10Bに凹入形成された凹入部13に
対応する膨出部1cが形成されている。
By the above operation, the enclosing space 8 is turned into the depressurized airtight space 9 and the inside of the molding chamber 21 is released to the atmosphere so that the decompression inside can be maintained. As shown in FIG. 9, the wrapped body 6 thus taken out is obtained by combining the formed green compact 2A with the bag 5 and the heat insulating material 2.
This constitutes a flat heat-insulating panel 1 which is provided internally.
Then, the wrapping body 6 on the side facing the lower mold 10A
A ridge-shaped protrusion 1b corresponding to the recess 12 of the lower mold 10A is formed on one side surface 6a, and the groove 1 press-fitted between the respective protrusions 1b by the ridge 11 of the lower mold 10A.
a is formed. Further, a bulging portion 1c corresponding to the recess 13 formed in the upper die 10B is formed on the other side surface of the wrapping body 6.

【0018】上記平板状の断熱パネル1は、前記畝状の
突出部1bと溝1aとによるリブ効果によって、前記溝
1aの方向には強化されており、前記突出部1bを湾曲
させる変形に対しては強く、前記溝1aの底が薄く形成
されているから、前記突出部1bの側部が近接離間する
曲げに対しては許容するように形成されている。従っ
て、前記溝1aに沿って折り曲げるように前記断熱パネ
ル1を変形させることが可能で、図1に示したような、
円筒状に湾曲形成された可撓性の真空断熱材パネル1A
を形成できるのである。この真空断熱材パネル1Aは、
円筒状断熱容器の周壁部に好適に用いられ、先に従来の
技術の項で説明したクーラボックスの例における継ぎ目
部32(図23参照)に対応する位置に溝1aを形成し
ておけば、現場発泡断熱材33や、湾曲した真空断熱材
パネル1A(例えば図26(ロ)参照)を形成する必要
なく、同様のクーラボックス30を構成できる。このよ
うにすれば、本発明に係る可撓性の真空断熱材パネル1
Aは厚さを必要としないから、断熱材の容積を大きくし
なくてよく、しかも、断熱パネル1に可撓性を備えてい
るから、任意の形状に構成できる。
The flat heat-insulating panel 1 is reinforced in the direction of the groove 1a by a rib effect of the ridge-shaped protrusion 1b and the groove 1a, so that the heat-insulating panel 1 is not deformed by bending the protrusion 1b. Since the bottom of the groove 1a is formed thin, the protrusion 1b is formed so as to allow the side portion of the protrusion 1b to bend or bend. Therefore, it is possible to deform the heat insulating panel 1 so as to be bent along the groove 1a, as shown in FIG.
Flexible vacuum heat insulating material panel 1A curved and formed in a cylindrical shape
Can be formed. This vacuum insulation panel 1A
If the groove 1a is formed at a position corresponding to the seam 32 (see FIG. 23) in the example of the cooler box which is suitably used for the peripheral wall of the cylindrical heat insulating container and has been described in the section of the prior art, A similar cooler box 30 can be configured without the need to form the in-situ foam insulation 33 and the curved vacuum insulation panel 1A (see, for example, FIG. 26B). In this way, the flexible vacuum insulation panel 1 according to the present invention is provided.
Since A does not require a thickness, it is not necessary to increase the volume of the heat insulating material, and since the heat insulating panel 1 has flexibility, it can be configured in any shape.

【0019】〔別実施形態〕 〈1〉 上記実施の形態においては、真空断熱材パネル
1Aが、包被体6を全体として円筒面に沿う形状に湾曲
形成したものである例について説明したが、前記包被体
6を円錐面に沿う形状に湾曲させたものであってもよ
く、また、部分的に湾曲させたものであってもよい。
尚、真空断熱材パネル1Aの気密空間9内は、減圧され
ておればよく、通念的な真空程に真空度を上げる必要は
ない。例えば0.1torr以下の気圧であれば、十分な断
熱特性を示し、1torr以下の気圧にすることで、真空断
熱材パネル1Aとして機能させることが可能である。 〈2〉 上記実施の形態においては、包被体6の一側面
部6aに、ほぼ平行し、ほぼ等間隔に形成された複数の
溝1aを併設してある例について説明したが、前記溝1
aは、前記包被体6の両側面部6aに併設してあっても
よい。また、例えば図10に示すように、放射状に溝1
aを形成したものであってもよく、こうした形状であれ
ば、上記〈1〉に記述した円錐面に沿う形状に湾曲した
真空断熱材パネル1Aとすることができる。また、溝1
aの間隔は不等間隔であってもよく、部分的に溝1aを
形成してあってもよい。例えば、部分的に複数の溝1a
を併設してあれば、上記〈1〉に記述した部分的に湾曲
させた真空断熱材パネル1A(図21参照)とすること
ができる。さらに、前記溝1aを交差させて併設してあ
ってもよく、このようにすれば、側面部6aが膨出し、
或いは凹入した形状に真空断熱材パネル1Aを馴染ませ
ることが可能である。 〈3〉 上記実施の形態においては、断熱材2としてシ
リカ粉末で形成される無機質粉体Pを気密空間9内に充
填してある例について説明したが、前記無機質粉体P
は、珪酸カルシウム粉体、アルミナ粉体、その他の無機
質材料の粉体、或いはこれらを混合したもの、及びシリ
カ粉末を加えたもの、又は、シリカ粉末に珪酸カルシウ
ム粉体、アルミナ粉体、その他の無機質材料の粉体のう
ちの何れかを混合したもの等、吸湿しにくく、且つ、断
熱性のよい無機質の粉体を充填することができる。ま
た、粉体の粒径は任意であり、2mm程度の粒径のもの
であっても断面形状を上記のように形成することで可撓
性を備える断熱パネルを形成できる。 〈4〉 上記実施の形態においては、断熱材2として無
機質粉体Pを、間にポリエステルからなる繊維材層4を
介在させて、気密空間9内に充填してある断熱パネル1
の例について説明したが、前記繊維材層4を介在させる
ことなく形成してあっても断熱パネル1の可撓性を損な
うことはない。尚、前記繊維材層4を介在させる場合
に、ポリエステル繊維以外も使用可能で、例えば、アク
リル繊維、ポリビニル繊維、ポリアセテート繊維等の合
成繊維や、綿糸、麻糸、絹糸等の天然繊維も使用可能で
あり、これら繊維を単糸で使用してもよく、撚糸で使用
してもよい。何れの繊維を用いた繊維材層4であって
も、断熱材2表面における無機質粉体Pの粒子が相互に
移動することを許容し、可撓性増大に寄与する。 〈5〉 上記実施の形態においては、包被体6の外皮を
形成する被覆材3がポリプロピレンフィルムにアルミニ
ウム蒸着相を介在させたラミネートフィルムである例に
ついて説明したが、開口部7を気密に融着可能な可撓性
のフィルムであれば材料を問うものではない。また、ア
ルミニウムを蒸着したのは輻射伝熱を抑制するためであ
り、他の光輝金属膜を蒸着したものであってもよい。さ
らに、蒸着に代えて、光輝金属箔を被覆材3の内側又は
外側に配置してあってもよい。 〈6〉 上記実施の形態においては、上下一対の成形型
10の一方の下型10Aに予め複数の溝状の平行する凹
部12を設けることで、それら凹部12の間に平行する
複数の突条11を形成してある例について説明したが、
前記突条11は上型10Bに形成してあってもよく、前
記上下両方の成形型10に形成してあってもよい。さら
に、前記複数の凹部12(換言すれば突条11)は、平
行していなくてもよい。前記突条11が放射状に形成さ
れてあれば、上記〈2〉に示した放射状に溝1aを形成
した断熱パネル1(図10参照)を形成でき、その断熱
パネル1を円錐面に沿う形状に湾曲したものとすること
ができる。また、例えば図11に下型10Aの例として
示すように、交差する突条11を成形型10に形成して
おけば、上記〈2〉に示した交差させて併設した溝1a
を備える包被体6を形成でき、このようにすれば、側面
部6aが膨出し、或いは凹入した形状に真空断熱材パネ
ル1Aを馴染ませることが可能である。 〈7〉 上記実施の形態においては、上下一対の成形型
10を減圧下の雰囲気中で加圧成型可能な成型室21を
備える加圧成型機20に取り付け、三方を気密に融着し
た長方形の被覆材3で包被空間8を有する包被体6を形
成して、その包被空間8内に、無機質粉体Pを充填した
袋体5を収容し、前記両成形型10の間で挟圧して圧粉
成形体2Aに成形する例について説明したが、前記包被
空間8は二枚の被覆材3の間に形成してあってもよく、
換言すれば、前記無機質粉体Pを収容した袋体5を、前
記二枚の被覆材3の間に挟んだ状態で減圧雰囲気下で成
形してもよく、その挟圧状態で前記被覆材3の周囲を、
両成形型10の凹部12の全てを囲む周囲(又は凹入部
13の周囲)を全周に亘って連続して設けてある融着ヒ
ータ23により融着するようにしてもよい(図12参
照)。このようにすれば、前記融着の際に、前記被覆材
3の一部が塑性変形して、融着部に皺等の不具合を有す
る外形を残さないようにできる。尚、前記被覆材3とし
て一枚のものを用いて、折り畳んで前記袋体5を挟み付
けて、その周縁部を融着して密封するようにしてもよ
い。この方法に対しては、図13に示すように、下型1
0Aの凹部12の全体を囲む周縁部に連続する融着ヒー
タ23を備えさせておけばよく、上型10Bにも前記下
型10Aの融着ヒータ23に対向する位置に、連続する
融着ヒータ23を備えさせておけばよい。 〈8〉 上記実施の形態においては、複数の突条11を
形成してある上下一対の成形型10を減圧下の雰囲気中
で加圧成型可能な成型室21を備える加圧成型機20に
取り付け、被覆材3により包被空間8を有する包被体6
を形成して、その包被空間8内に無機質粉体Pを収容し
た袋体5を収容して、減圧雰囲気下で前記包被体6を、
前記両成形型10の間で挟圧して圧粉成形体2Aに成形
する例について説明したが、減圧していない状態で前記
包被体6内に前記無機質粉体Pを装入し(図14参
照)、前記包被体6の開口部7を一部を残して封止する
状態で前記無機質粉体Pを前記包被体6と共に成形し
(図15参照)、その後、残した開口部7を封止する前
に前記包被空間8内を減圧する(図16参照)ようにし
てもよい。減圧後に開口部7を完全に封止すればよい。 〈9〉 以上に代えて、無機質粉体Pを袋体5に収容し
て(図17参照)、前記袋体5と共に前記無機質粉体P
を成形型10の間に介装して乾燥し、前記成形型10で
成型して圧粉成形体2Aを形成した後(図8参照)、袋
状の包被体6に形成した被覆材3に納めて(図19参
照)、包被空間8内を減圧して開口部7を密封する(図
20参照)ようにしてもよい。 〈10〉以上に説明した真空断熱材パネル1Aの突出部
1bは台形断面のものを図示して説明したが、前記突出
部1b及び溝1aの形状はこれに限るものではなく、前
記溝1aを円弧状断面の凹溝に形成してあってもよく、
また、前記突出部1bの断面形状を三角形状に突出した
ものに形成してあってもよく、また、断面形状が円弧状
の山形に形成してあってもよく、前記溝1aと前記突出
部1bとが連続する波状の断面(図22参照)に形成し
てあってもよい。
[Other Embodiments] <1> In the above-described embodiment, an example has been described in which the vacuum heat insulating material panel 1A is formed by curving the wrapping body 6 as a whole along a cylindrical surface. The wrapping body 6 may be curved in a shape along the conical surface, or may be partially curved.
Note that the pressure inside the airtight space 9 of the vacuum heat insulating material panel 1A may be reduced, and it is not necessary to increase the degree of vacuum to the level of a conventional vacuum. For example, if the pressure is 0.1 torr or less, sufficient heat insulating properties are exhibited, and by setting the pressure to 1 torr or less, it is possible to function as the vacuum heat insulating material panel 1A. <2> In the above-described embodiment, an example has been described in which a plurality of grooves 1a substantially parallel to each other and formed at substantially equal intervals are provided on one side surface portion 6a of the envelope 6.
“a” may be provided alongside both side surfaces 6 a of the envelope 6. For example, as shown in FIG.
a may be formed, and with such a shape, the vacuum heat insulating material panel 1A curved into the shape along the conical surface described in <1> above can be obtained. Groove 1
The intervals a may be unequal, or the grooves 1a may be partially formed. For example, a plurality of grooves 1a
Is provided, the partially curved vacuum heat insulating material panel 1A described in <1> above (see FIG. 21) can be obtained. Further, the grooves 1a may be provided so as to cross each other. In this case, the side surface portions 6a bulge,
Alternatively, it is possible to conform the vacuum heat insulating material panel 1A to the concave shape. <3> In the above-described embodiment, an example in which the inorganic powder P formed of silica powder is filled in the airtight space 9 as the heat insulating material 2 has been described.
Calcium silicate powder, alumina powder, other inorganic material powder, or a mixture of these, and silica powder added, or silica powder, calcium silicate powder, alumina powder, other An inorganic powder that is less likely to absorb moisture and has good heat insulating properties, such as a mixture of any of inorganic material powders, can be filled. The particle size of the powder is arbitrary, and even if the particle size is about 2 mm, a heat insulating panel having flexibility can be formed by forming the cross-sectional shape as described above. <4> In the above embodiment, the heat insulating panel 1 in which the airtight space 9 is filled with the inorganic powder P as the heat insulating material 2 with the fiber material layer 4 made of polyester interposed therebetween.
Although the example has been described, the flexibility of the heat insulating panel 1 is not impaired even if it is formed without interposing the fiber material layer 4. When the fiber material layer 4 is interposed, non-polyester fibers can be used. For example, synthetic fibers such as acrylic fibers, polyvinyl fibers, and polyacetate fibers, and natural fibers such as cotton yarn, hemp yarn, and silk yarn can also be used. These fibers may be used as a single yarn or a twisted yarn. Regardless of the fiber material layer 4 using any fiber, the particles of the inorganic powder P on the surface of the heat insulating material 2 are allowed to move with each other, which contributes to an increase in flexibility. <5> In the above embodiment, an example has been described in which the covering material 3 forming the outer skin of the envelope 6 is a laminate film in which an aluminum vapor-deposited phase is interposed in a polypropylene film. The material does not matter as long as it is a flexible film that can be attached. Aluminum is deposited to suppress radiant heat transfer, and another bright metal film may be deposited. Further, instead of vapor deposition, a bright metal foil may be arranged inside or outside the coating material 3. <6> In the above embodiment, a plurality of groove-shaped parallel recesses 12 are provided in advance in one lower mold 10 </ b> A of a pair of upper and lower molding dies 10, so that a plurality of ridges parallel between the recesses 12 are provided. Although the example in which 11 is formed has been described,
The protrusion 11 may be formed on the upper mold 10B, or may be formed on both the upper and lower molds 10. Further, the plurality of recesses 12 (in other words, the ridges 11) need not be parallel. If the ridges 11 are formed radially, the heat insulating panel 1 (see FIG. 10) having the grooves 1a formed radially as shown in the above <2> can be formed, and the heat insulating panel 1 is formed into a shape along the conical surface. It can be curved. Also, for example, as shown in FIG. 11 as an example of the lower mold 10A, if the intersecting ridges 11 are formed in the molding die 10, the grooves 1a intersecting and juxtaposed as shown in <2> above.
In this way, it is possible to adapt the vacuum heat insulating material panel 1A to a shape in which the side surface portion 6a is bulged or recessed. <7> In the above embodiment, a pair of upper and lower molding dies 10 are attached to a pressure molding machine 20 having a molding chamber 21 capable of pressure molding in an atmosphere under reduced pressure, and a rectangular shape in which three sides are hermetically sealed. A covering body 6 having a covering space 8 is formed by the covering material 3, a bag body 5 filled with the inorganic powder P is accommodated in the covering space 8, and is sandwiched between the two molds 10. Although the example in which the molding is performed by pressing into the green compact 2A has been described, the enclosing space 8 may be formed between the two covering materials 3.
In other words, the bag 5 containing the inorganic powder P may be formed under a reduced pressure atmosphere while being sandwiched between the two covering materials 3, and the covering material 3 may be formed in the sandwiched state. Around
The periphery surrounding the entire concave portion 12 (or the periphery of the concave portion 13) of both molds 10 may be fused by a fusion heater 23 provided continuously over the entire periphery (see FIG. 12). . In this way, it is possible to prevent a part of the coating material 3 from being plastically deformed at the time of the fusion and leaving an outer shape having a defect such as wrinkles at the fusion joint. Note that a single piece of the covering material 3 may be used, folded and sandwiched with the bag body 5, and the peripheral portion thereof may be fused and sealed. For this method, as shown in FIG.
It is sufficient to provide a continuous fusion heater 23 at the peripheral portion surrounding the entire recessed portion 12 of 0A, and a continuous fusion heater is provided on the upper mold 10B at a position facing the fusion heater 23 of the lower mold 10A. 23 may be provided. <8> In the above embodiment, a pair of upper and lower molding dies 10 on which a plurality of ridges 11 are formed are attached to a pressure molding machine 20 having a molding chamber 21 capable of pressure molding in an atmosphere under reduced pressure. , An envelope 6 having an envelope space 8 by the covering material 3
Is formed, the bag body 5 containing the inorganic powder P is accommodated in the envelope space 8, and the envelope body 6 is
Although the example in which the two compacting dies 10 are pressed to form the green compact 2A has been described, the inorganic powder P is charged into the wrapping body 6 without reducing the pressure (FIG. 14). The inorganic powder P is molded together with the wrapping body 6 in a state where the opening 7 of the wrapping body 6 is sealed while leaving a part thereof (see FIG. 15). Before the sealing, the inside of the envelope space 8 may be decompressed (see FIG. 16). The opening 7 may be completely sealed after the pressure reduction. <9> Instead of the above, the inorganic powder P is accommodated in the bag 5 (see FIG. 17), and the inorganic powder P is stored together with the bag 5.
Is dried by being interposed between the molding dies 10 and molded by the molding dies 10 to form the green compact 2A (see FIG. 8), and then the covering material 3 formed on the bag-like wrapping body 6 is formed. (See FIG. 19), and the inside of the wrapping space 8 may be decompressed to seal the opening 7 (see FIG. 20). <10> Although the protrusion 1b of the vacuum heat insulating material panel 1A described above is illustrated and described as having a trapezoidal cross section, the shapes of the protrusion 1b and the groove 1a are not limited thereto, and the shape of the groove 1a is not limited thereto. It may be formed in a concave groove with an arc-shaped cross section,
Further, the cross-sectional shape of the protruding portion 1b may be formed so as to protrude in a triangular shape, or the cross-sectional shape may be formed in an arc-shaped mountain shape, and the groove 1a and the protruding portion may be formed. 1b may be formed in a continuous wavy section (see FIG. 22).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る断熱パネルの一例を示す斜視図FIG. 1 is a perspective view showing an example of a heat insulating panel according to the present invention.

【図2】図1に示した断熱パネルの要部平断面図FIG. 2 is a cross-sectional plan view of a main part of the heat insulating panel shown in FIG.

【図3】図1に示した断熱パネルの成型直後の状態を示
す要部断面図
FIG. 3 is a sectional view of an essential part showing a state immediately after molding of the heat insulating panel shown in FIG. 1;

【図4】本発明に係る成形型の下型の一例を示す斜視図FIG. 4 is a perspective view showing an example of a lower mold of a molding die according to the present invention.

【図5】本発明に係る成形型の一例を説明する断面図FIG. 5 is a cross-sectional view illustrating an example of a mold according to the present invention.

【図6】本発明に係る断熱パネルの製造方法の一例の工
程を説明する素材の斜視図
FIG. 6 is a perspective view of a material for explaining steps of an example of a method for manufacturing a heat insulating panel according to the present invention.

【図7】図6に続く工程を示す素材の縦断面図FIG. 7 is a longitudinal sectional view of the material showing a step following FIG. 6;

【図8】図7に続く工程を示す成形装置の要部縦断面図FIG. 8 is a longitudinal sectional view of a main part of the molding apparatus showing a step following FIG. 7;

【図9】図8に続く工程を示す成形型の縦断面図FIG. 9 is a longitudinal sectional view of the molding die showing a step following FIG. 8;

【図10】本発明に係る断熱パネルの他の例を説明する
斜視図
FIG. 10 is a perspective view illustrating another example of the heat insulating panel according to the present invention.

【図11】本発明に係る成形型の他の例を説明する斜視
FIG. 11 is a perspective view illustrating another example of the molding die according to the present invention.

【図12】本発明に係る成形型の他の例を説明する縦断
面図
FIG. 12 is a longitudinal sectional view for explaining another example of the molding die according to the present invention.

【図13】本発明に係る成形型の他の例を説明する斜視
FIG. 13 is a perspective view illustrating another example of the molding die according to the present invention.

【図14】本発明に係る断熱パネルの製造方法の他の例
を説明する縦断面図
FIG. 14 is a longitudinal sectional view illustrating another example of the method for manufacturing a heat insulating panel according to the present invention.

【図15】図14に続く工程を説明する成形型縦断面図FIG. 15 is a longitudinal sectional view of a molding die for explaining a step following FIG. 14;

【図16】図15に続く工程を説明する断熱パネル素材
の斜視図
FIG. 16 is a perspective view of a heat insulating panel material for explaining a step following FIG. 15;

【図17】本発明に係る断熱パネルの製造方法の他の例
を説明する金型断面図
FIG. 17 is a sectional view of a mold for explaining another example of the method for manufacturing a heat insulating panel according to the present invention.

【図18】図17に続く工程を説明する要部縦断面図FIG. 18 is a longitudinal sectional view of a main part explaining a step following FIG. 17;

【図19】図18に続く工程を説明する要部縦断面図FIG. 19 is a vertical cross-sectional view of a main part explaining a step following FIG. 18;

【図20】図19に続く工程を説明する要部縦断面図FIG. 20 is a longitudinal sectional view of an essential part explaining a step following FIG. 19;

【図21】本発明に係る断熱パネルの他の例を示す断面
FIG. 21 is a sectional view showing another example of the heat insulating panel according to the present invention.

【図22】本発明に係る断熱パネルの他の例を示す断面
FIG. 22 is a sectional view showing another example of the heat insulating panel according to the present invention.

【図23】従来の断熱パネルの使用状態の一例を説明す
るクーラボックスの平断面図
FIG. 23 is a cross-sectional plan view of a cooler box illustrating an example of a use state of a conventional heat insulating panel.

【図24】従来の断熱パネルの一例を説明する断面図FIG. 24 is a cross-sectional view illustrating an example of a conventional heat insulating panel.

【図25】従来の断熱パネルの他の例を説明するクーラ
ボックスの平断面図
FIG. 25 is a cross-sectional plan view of a cooler box illustrating another example of a conventional heat insulating panel.

【図26】図25に示したクーラボックスの断熱パネル
を説明する斜視図
26 is a perspective view illustrating a heat insulating panel of the cooler box shown in FIG. 25.

【符号の説明】[Explanation of symbols]

1a 溝 2 断熱材 2A 圧粉成形体 3 被覆材 4 繊維材層 5 袋体 6 包被体 6a 側面部 7 開口部 8 包被空間 9 気密空間 10 成形型 11 突条 P 無機質粉体 DESCRIPTION OF SYMBOLS 1a Groove 2 Heat insulation material 2A Green compact 3 Coating material 4 Fiber material layer 5 Bag 6 Enclosure 6a Side part 7 Opening 8 Enclosure space 9 Hermetic space 10 Mold 11 Mold ridge P Inorganic powder

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年8月18日(1999.8.1
8)
[Submission date] August 18, 1999 (1999.8.1)
8)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【課題を解決するための手段】〔本発明の特徴構成〕本
発明の請求項1に係わる断熱パネルの第1特徴構成は、
前記包被体の一側面部と他側面部との間の前記気密空間
内に前記断熱材としての無機質粉体を充填し、前記一側
面部に複数の溝を並設すると共に、前記並設された複数
の溝により形成される複数の溝間山部と前記溝間山部に
対向する前記他側面部とを離間状態に維持して形成して
ある点にある。
Means for Solving the Problems The first characteristic structure of the heat insulating panel according to claim 1 of the present invention is as follows.
The hermetic space between one side and the other side of the wrapping body
Is filled with an inorganic powder as the heat insulating material, and the one side
A plurality of grooves are arranged side by side on the surface, and the plurality of
A plurality of crests formed by the grooves and the crests
The point is that it is formed so as to maintain the opposing other side face part in a separated state .

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】〔特徴構成の作用及び効果〕上記本発明に
係わる断熱パネルの第1特徴構成によれば、断熱パネル
が可撓性を有するものとなる。つまり、包被体の一側面
部と他側面部との間の気密空間内に断熱材としての無機
質粉体を充填し、一側面部に複数の溝を並設すると共
に、並設された複数の溝により形成される複数の溝間山
部と前記溝間山部に対向する前記他側面部とを離間状態
に維持して形成してあることから、前記溝間山部と前記
溝間山部に対向する前記他側壁部との間の部位では断熱
材である無機質粉体が他の部位に比して薄い層を形成
ることになり、前記気密空間内で前記無機質粉体の粒子
相互の移動も許容されるから、前記溝間山部に沿って前
記断熱パネルの複数の溝間山部と前記溝間山部に対向す
る前記他端側面部との離間状態を維持したまま屈曲する
ことが可能となるので、平板状に形成された断熱パネル
であっても、前記溝間山部に沿った屈曲部位における断
熱機能を有したまま湾曲させることが可能になる。
According to the first aspect of the heat insulating panel according to the present invention, the heat insulating panel has flexibility. In other words, one side of the wrapper
Insulation as an insulating material in the airtight space between the part and the other side part
When powder is filled with fine powder and multiple grooves are
A plurality of crests formed by a plurality of grooves arranged in parallel;
Part and the other side face part facing the crest part between the grooves are separated from each other.
Since it is formed by keeping the said and the groove Mayama portion
At a portion between the groove portion and the other side wall portion , the inorganic powder which is a heat insulating material forms a thin layer as compared with other portions .
Becomes Rukoto, because the even movement of the particles each other of said inorganic powder in the hermetic space is acceptable, the groove between the ridges and a plurality of grooves between the ridge portions of the insulating panel along the groove Mayama portion Oppose
Since it is possible to bend while maintaining the state of being separated from the side surface of the other end, even in the case of a heat-insulating panel formed in a flat plate shape, the bending at the bent portion along the crest between the grooves can be achieved.
It becomes possible to bend while having a thermal function .

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】上記平板状の断熱パネル1は、前記畝状の
突出部1bと溝1aとによるリブ効果によって、前記溝
1aの方向には強化されており、前記突出部1bを湾曲
させる変形に対しては強く、前記溝1aの底、つまり、
前記溝1aにより形成される溝間山部と前記溝間山部に
対向する前記他側面部との間の部位が、離間状態を維持
した状態のままで他の部位に比して薄い層を形成するこ
とになり、前記気密空間9内で前記無機質粉体Pの粒子
相互の移動が許容されるから、前記突出部1bの側部が
近接離間する曲げに対しては許容するように形成されて
いる。従って、前記溝1aに沿って折り曲げるように前
記断熱パネル1を変形させることが可能で、図1に示し
たような、円筒状に湾曲形成された可撓性の真空断熱材
パネル1Aを形成できるのである。この真空断熱材パネ
ル1Aは、円筒状断熱容器の周壁部に好適に用いられ、
先に従来の技術の項で説明したクーラボックスの例にお
ける継ぎ目部32(図23参照)に対応する位置に溝1
aを形成しておけば、現場発泡断熱材33や、湾曲した
真空断熱材パネル1A(例えば図26(ロ)参照)を形
成する必要なく、同様のクーラボックス30を構成でき
る。このようにすれば、本発明に係る可撓性の真空断熱
材パネル1Aは厚さを必要としないから、断熱材の容積
を大きくしなくてよく、しかも、断熱パネル1に可撓性
を備えているから、任意の形状に構成できる。
The flat heat-insulating panel 1 is reinforced in the direction of the groove 1a by a rib effect of the ridge-shaped protrusion 1b and the groove 1a, so that the heat-insulating panel 1 is not deformed by bending the protrusion 1b. The bottom of the groove 1a , that is,
Between the groove crest formed by the groove 1a and the groove crest
The part between the opposing other side parts keeps the separated state
A thin layer compared to other parts
And the particles of the inorganic powder P in the hermetic space 9
Since the mutual movement is allowed , the protrusion 1b is formed so as to allow the side portion of the protrusion 1b to bend or bend. Therefore, it is possible to deform the heat insulating panel 1 so as to be bent along the groove 1a, and it is possible to form a flexible vacuum heat insulating material panel 1A curved and formed in a cylindrical shape as shown in FIG. It is. This vacuum heat insulating material panel 1A is suitably used for the peripheral wall of a cylindrical heat insulating container,
The groove 1 is located at a position corresponding to the seam portion 32 (see FIG. 23) in the example of the cooler box described above in the section of the prior art.
If a is formed, the same cooler box 30 can be configured without forming the on-site foam heat insulating material 33 or the curved vacuum heat insulating material panel 1A (see, for example, FIG. 26B). In this way, since the flexible vacuum heat insulating material panel 1A according to the present invention does not require a thickness, the volume of the heat insulating material does not need to be increased, and the heat insulating panel 1 has flexibility. Therefore, it can be configured in any shape.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3H036 AA09 AB12 AB15 AB18 AB23 AB24 AB28 AC03 AD01 AE13 4F100 AA00B AB10 AK07 AT00A AT00D BA04 BA10A BA10D DD05 DD21 DD31 DE00B DG01C EC03 EH66 EJ20 EJ24 GB71 GB87 JJ02 JK17 ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 3H036 AA09 AB12 AB15 AB18 AB23 AB24 AB28 AC03 AD01 AE13 4F100 AA00B AB10 AK07 AT00A AT00D BA04 BA10A BA10D DD05 DD21 DD31 DE00B DG01C EC03 EH66 EJ20 EJ24 GB71 GB87 JJ02 J17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 気密性を有し、且つ可撓性を有する被覆
材で包囲した気密空間内に断熱材を配置した包被体を設
けて、前記密閉空間内を減圧状態に維持してある断熱パ
ネルであって、 前記包被体の少なくとも一側面部に、複数の溝を併設す
ると共に、前記断熱材として無機質粉体を前記気密空間
内に充填してある断熱パネル。
1. A wrapping body in which a heat insulating material is disposed in an airtight space surrounded by an airtight and flexible covering material, and the inside of the closed space is maintained under reduced pressure. A heat insulating panel, wherein a plurality of grooves are juxtaposed on at least one side surface of the envelope, and an inorganic powder is filled in the airtight space as the heat insulating material.
【請求項2】 前記無機質粉体と前記被覆材との間に、
繊維材層を介在させてある請求項1記載の断熱パネル。
2. Between the inorganic powder and the coating material,
The heat insulation panel according to claim 1, wherein a fiber material layer is interposed.
【請求項3】 気密性を有し、且つ可撓性を有する被覆
材により、断熱材を包被自在な包被空間を形成し、且
つ、少なくとも一部を開口した包被体を形成して、前記
包被空間内に前記断熱材を配置した後、前記包被空間内
を減圧して、前記包被体の開口部において前記被覆材同
士を気密に封着する断熱パネルの製造方法であって、 前記断熱材を前記包被空間内に配置する前に、 無機質粉体を、通気性を有する袋体内に収容し、少なく
とも一方に予め複数の突条を併設してある上下一対の成
形型の間で、前記無機質粉体を収容した袋体を挟圧して
圧粉成形体に成形し、前記成形した圧粉成形体を、前記
断熱材とする断熱パネルの製造方法。
3. An air-tight and flexible covering material forms a wrapping space in which a heat insulating material can be wrapped, and forms a wrapping body that is open at least partially. A method for manufacturing a heat insulating panel, comprising: arranging the heat insulating material in the wrapping space; and then reducing the pressure in the wrapping space to hermetically seal the coating materials at the opening of the wrapping body. Before disposing the heat insulating material in the wrapping space, the inorganic powder is housed in a bag having air permeability, and a pair of upper and lower molding dies in which a plurality of ridges are previously provided on at least one side. A method for manufacturing a heat insulating panel, wherein the bag containing the inorganic powder is sandwiched and formed into a green compact, and the green compact is used as the heat insulating material.
【請求項4】 前記圧粉成形体を、前記袋体と共に前記
包被空間内に収容する請求項3記載の断熱パネルの製造
方法。
4. The method for manufacturing a heat insulating panel according to claim 3, wherein the green compact is housed in the envelope space together with the bag.
JP10267790A 1998-09-22 1998-09-22 Thermal insulation panel and manufacturing method thereof Expired - Lifetime JP3137946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267790A JP3137946B2 (en) 1998-09-22 1998-09-22 Thermal insulation panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10267790A JP3137946B2 (en) 1998-09-22 1998-09-22 Thermal insulation panel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000097390A true JP2000097390A (en) 2000-04-04
JP3137946B2 JP3137946B2 (en) 2001-02-26

Family

ID=17449639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267790A Expired - Lifetime JP3137946B2 (en) 1998-09-22 1998-09-22 Thermal insulation panel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3137946B2 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938968B2 (en) 2000-04-21 2005-09-06 Matsushita Refrigeration Company Vacuum insulating material and device using the same
JP2006161834A (en) * 2004-12-02 2006-06-22 Renaissance Energy Investment:Kk Heat insulation block, and cold storage cabinet
JP2007263186A (en) * 2006-03-28 2007-10-11 Hitachi Appliances Inc Heat insulating panel and equipment using the same
JP2008039282A (en) * 2006-08-04 2008-02-21 Denso Corp Heat insulation structure of hot water storage type water heater
JP2008202709A (en) * 2007-02-21 2008-09-04 Matsushita Electric Ind Co Ltd Arranging method of vacuum heat insulating material
JP2009063064A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
CN102147041A (en) * 2011-03-11 2011-08-10 苏州维艾普新材料有限公司 Special-shaped vacuum heat insulation panel and manufacturing method thereof
WO2012044001A3 (en) * 2010-10-01 2012-06-21 Lg Electronics Inc. Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
EP2472164A1 (en) * 2009-10-19 2012-07-04 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
JP2013072480A (en) * 2011-09-27 2013-04-22 Kyoraku Co Ltd Resin molded article containing vacuum heat insulating material and method for manufacturing the same
JP2013204734A (en) * 2012-03-29 2013-10-07 Mitsubishi Electric Corp Vacuum heat insulator, and refrigerator using the same
JP2014051993A (en) * 2010-10-18 2014-03-20 Mitsubishi Electric Corp Vacuum heat insulation material and method for manufacturing the same
EP2778580A3 (en) * 2013-03-15 2014-11-12 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
WO2015008533A1 (en) * 2013-07-19 2015-01-22 大日本印刷株式会社 Vacuum heat-insulating material, method for manufacturing vacuum heat-insulating material, outer cover material for vacuum heat-insulating material, and heat-insulated article
US8986805B2 (en) 2010-10-01 2015-03-24 Lg Electronics Inc. Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
US9038403B2 (en) 2012-04-02 2015-05-26 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US20170190081A1 (en) * 2015-12-30 2017-07-06 Whirlpool Corporation Method of fabricating 3d vacuum insulated refrigerator structure having core material
AT518089B1 (en) * 2016-07-12 2017-07-15 Greiner Purtec Gmbh Enclosing unit, in particular for thermally insulating body
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
EP3447412A1 (en) * 2017-08-21 2019-02-27 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
WO2020039147A1 (en) * 2018-08-22 2020-02-27 Hutchinson 3d thermoformed element
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938968B2 (en) 2000-04-21 2005-09-06 Matsushita Refrigeration Company Vacuum insulating material and device using the same
JP2006161834A (en) * 2004-12-02 2006-06-22 Renaissance Energy Investment:Kk Heat insulation block, and cold storage cabinet
JP2007263186A (en) * 2006-03-28 2007-10-11 Hitachi Appliances Inc Heat insulating panel and equipment using the same
JP4671895B2 (en) * 2006-03-28 2011-04-20 日立アプライアンス株式会社 Insulation panel, insulation box and method for producing insulation panel
JP2008039282A (en) * 2006-08-04 2008-02-21 Denso Corp Heat insulation structure of hot water storage type water heater
JP2008202709A (en) * 2007-02-21 2008-09-04 Matsushita Electric Ind Co Ltd Arranging method of vacuum heat insulating material
JP2009063064A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US8920899B2 (en) 2009-10-16 2014-12-30 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
EP2472164A1 (en) * 2009-10-19 2012-07-04 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
EP2472164A4 (en) * 2009-10-19 2014-01-29 Mitsubishi Electric Corp Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
EP2622292B1 (en) * 2010-10-01 2020-05-13 LG Electronics Inc. Vacuum insulation panel and a refrigerator with a vacuum insulation panel
US8986805B2 (en) 2010-10-01 2015-03-24 Lg Electronics Inc. Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
EP2622292A4 (en) * 2010-10-01 2015-05-13 Lg Electronics Inc Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
WO2012044001A3 (en) * 2010-10-01 2012-06-21 Lg Electronics Inc. Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
US8911847B2 (en) 2010-10-18 2014-12-16 Mitsubishi Electric Corporation Vacuum insulation material and manufacturing method thereof
JP2014051993A (en) * 2010-10-18 2014-03-20 Mitsubishi Electric Corp Vacuum heat insulation material and method for manufacturing the same
CN102147041A (en) * 2011-03-11 2011-08-10 苏州维艾普新材料有限公司 Special-shaped vacuum heat insulation panel and manufacturing method thereof
JP2013072480A (en) * 2011-09-27 2013-04-22 Kyoraku Co Ltd Resin molded article containing vacuum heat insulating material and method for manufacturing the same
JP2013204734A (en) * 2012-03-29 2013-10-07 Mitsubishi Electric Corp Vacuum heat insulator, and refrigerator using the same
US9885516B2 (en) 2012-04-02 2018-02-06 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9038403B2 (en) 2012-04-02 2015-05-26 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9071907B2 (en) 2012-04-02 2015-06-30 Whirpool Corporation Vacuum insulated structure tubular cabinet construction
US9140481B2 (en) 2012-04-02 2015-09-22 Whirlpool Corporation Folded vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9874394B2 (en) 2012-04-02 2018-01-23 Whirlpool Corporation Method of making a folded vacuum insulated structure
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9463917B2 (en) 2012-04-11 2016-10-11 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
EP2778580A3 (en) * 2013-03-15 2014-11-12 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
WO2015008533A1 (en) * 2013-07-19 2015-01-22 大日本印刷株式会社 Vacuum heat-insulating material, method for manufacturing vacuum heat-insulating material, outer cover material for vacuum heat-insulating material, and heat-insulated article
JP2015038374A (en) * 2013-07-19 2015-02-26 大日本印刷株式会社 Vacuum insulation material, method of manufacturing the same, outer wrapping material for the same, and heat insulation article
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US20170190081A1 (en) * 2015-12-30 2017-07-06 Whirlpool Corporation Method of fabricating 3d vacuum insulated refrigerator structure having core material
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
AT518089B1 (en) * 2016-07-12 2017-07-15 Greiner Purtec Gmbh Enclosing unit, in particular for thermally insulating body
AT518089A4 (en) * 2016-07-12 2017-07-15 Greiner Purtec Gmbh Enclosing unit, in particular for thermally insulating body
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
EP3447412A1 (en) * 2017-08-21 2019-02-27 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
CN112770892A (en) * 2018-08-22 2021-05-07 哈金森公司 3D thermoformed elements
WO2020039148A1 (en) * 2018-08-22 2020-02-27 Hutchinson 3d thermoformed element
WO2020039147A1 (en) * 2018-08-22 2020-02-27 Hutchinson 3d thermoformed element
US11858431B2 (en) 2018-08-22 2024-01-02 Hutchinson 3D thermoformed element
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Also Published As

Publication number Publication date
JP3137946B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
JP3137946B2 (en) Thermal insulation panel and manufacturing method thereof
KR100234637B1 (en) Heat insulated container and manufacture thereof
TW591163B (en) Process for manufacturing a flexible thermoinsulating device and so obtained device
JPH04337195A (en) Vacuum heat insulator
JP2017510763A (en) Vacuum insulation panel and container having vacuum insulation panel
KR101012664B1 (en) Method for manufacturing vacuum insulating material panel
JPH09318238A (en) Manufacture of vacuum heat insulating material
JP2001108187A (en) Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel
JP2010190257A (en) Vacuum heat insulating material and method for manufacturing the same
JP3455252B2 (en) Vacuum insulation
JPH06105152B2 (en) Vacuum insulation board manufacturing method
JP4390022B2 (en) Vacuum insulation material and manufacturing method thereof
JPH07151297A (en) Vacuum insulating structure body
JP2004519631A (en) Tubular heat insulating device and method of manufacturing tubular heat insulating device
JPS5977195A (en) Manufacture of element evacuated for heat insulation
JP2723684B2 (en) Vacuum insulation panel
JPH06159915A (en) Heat insulating door
JPH09119771A (en) Manufacture of heat insulation case and heat insulating structure
JP2703483B2 (en) Insulated container for high temperature battery
JP3441498B2 (en) Manufacturing method of vacuum insulation structure
JP2892484B2 (en) Outer shell integrated vacuum heat insulating material and method of manufacturing the same
JP3455250B2 (en) Vacuum insulation
JPH07293783A (en) Heat insulating material and heat insulating box using it
JPS63163767A (en) Manufacture of vacuum heat-insulating material
JP2564035B2 (en) Vacuum insulation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term