JP2006161834A - Heat insulation block, and cold storage cabinet - Google Patents

Heat insulation block, and cold storage cabinet Download PDF

Info

Publication number
JP2006161834A
JP2006161834A JP2004349566A JP2004349566A JP2006161834A JP 2006161834 A JP2006161834 A JP 2006161834A JP 2004349566 A JP2004349566 A JP 2004349566A JP 2004349566 A JP2004349566 A JP 2004349566A JP 2006161834 A JP2006161834 A JP 2006161834A
Authority
JP
Japan
Prior art keywords
heat insulation
heat insulating
porous spherical
low
temperature storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004349566A
Other languages
Japanese (ja)
Other versions
JP4303674B2 (en
Inventor
Masamichi Ipponmatsu
正道 一本松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renaissance Energy Investment Co Ltd
Original Assignee
Renaissance Energy Investment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renaissance Energy Investment Co Ltd filed Critical Renaissance Energy Investment Co Ltd
Priority to JP2004349566A priority Critical patent/JP4303674B2/en
Publication of JP2006161834A publication Critical patent/JP2006161834A/en
Application granted granted Critical
Publication of JP4303674B2 publication Critical patent/JP4303674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight heat insulation block having a high heat insulation performance formed into a shaped body by filling an airtight bag with a granular material and reducing inside pressure. <P>SOLUTION: The bag 2 formed by an airtight synthetic resin film is filled with the poeder and granular material 3 consisting of porous spherical particles made by a reversed micelle method and having an almost uniform grain size, and the pressure inside the bag is reduced to make the shaped body. Preferably, the shaped body is a plate-like matter having a predetermined thickness, and a joint part to be fitted or overlapped with the end of another shaped body is formed to part of or the whole of the end of the plate-like matter. Preferably, the porous spherical particle is a glass particle such as quartz glass particle, and the diameter of the porous spherical particle is 3 to 30 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低温貯蔵庫等の壁や床の断熱材に使用可能な断熱用ブロック、及び、断熱用ブロックで壁部を構成した低温貯蔵庫に関する。   The present invention relates to a heat insulating block that can be used as a heat insulating material for walls and floors such as a low temperature storage, and a low temperature storage in which a wall portion is constituted by a block for heat insulation.

低温貯蔵庫等の壁や床の断熱に用いる断熱材は、貯蔵対象となる低温貯蔵物の温度に応じて要求される断熱性能が異なり、該温度が低いほど、つまり外気温との温度差が大きいほど、熱伝導率の低い材料を使用する必要がある。断熱材の用途としては、極低温の低温貯蔵庫から家庭用の冷凍庫や冷蔵庫等に至る幅広い温度範囲の低温貯蔵庫等がある。   Insulation materials used to insulate walls and floors of low-temperature warehouses, etc. have different thermal insulation performance required according to the temperature of the low-temperature storage to be stored, and the lower the temperature, that is, the greater the temperature difference from the outside temperature. It is necessary to use a material having a low thermal conductivity. As a use of the heat insulating material, there are a low temperature storage in a wide temperature range from a cryogenic low temperature storage to a household freezer, a refrigerator and the like.

ここで、断熱材の熱伝導率は断熱材を構成する材料の熱伝導率、嵩密度、空隙率(気孔率)、気孔形状等に依存し、空隙率が大きく、嵩密度が低く、また、微細な気孔を多く含む多孔質材料ほど断熱性に優れる。気体の熱伝導率は固体に比べて低く、断熱材料の微細な気孔やその他の空隙部に気体を密閉して気体の対流による熱伝導を阻害することで断熱性能が向上する。   Here, the heat conductivity of the heat insulating material depends on the heat conductivity, bulk density, porosity (porosity), pore shape, etc. of the material constituting the heat insulating material, the porosity is large, the bulk density is low, A porous material containing many fine pores is excellent in heat insulation. The thermal conductivity of gas is lower than that of solid, and the thermal insulation performance is improved by sealing the gas in fine pores and other voids of the thermal insulation material and hindering thermal conduction by convection of the gas.

断熱材に使用可能な多孔質材料としては、硬質ウレタンフォーム等が家庭用の冷凍庫や冷蔵庫等に広く用いられているが、低温貯蔵庫内の低温化、低温貯蔵庫の壁部を軽量化或いは壁厚を薄くする場合等において、更に断熱材を高断熱化する必要がある。更に高断熱化された断熱材としては、気体による熱伝導を低減した真空断熱材が、例えば、下記の特許文献1等に開示されている。下記の特許文献1に開示されている真空断熱材は、熱伝導率の小さいパーライト、シリカ等の無機質の微粉末を通気性のある内袋に詰め、更にこれを気密性の外袋に詰めて一体的に真空引きして気密封着した構造のもので、冷蔵庫の壁部の断熱に使用されている。この真空断熱材は、従来の硬質ウレタンフォームと比較した場合、熱伝導率が低いため断熱材の厚みを薄く且つ軽量化できるため、冷蔵庫等の低温貯蔵庫の壁部の軽量化でき、壁厚を薄くできる。   As a porous material that can be used as a heat insulating material, rigid urethane foam is widely used in household freezers, refrigerators, etc., but the temperature in the low-temperature storage is reduced, the wall of the low-temperature storage is lightened or the wall thickness is reduced. In the case of reducing the thickness, it is necessary to further increase the heat insulation of the heat insulating material. Further, as a heat insulating material with higher heat insulation, a vacuum heat insulating material with reduced heat conduction by gas is disclosed in, for example, Patent Document 1 below. The vacuum heat insulating material disclosed in the following Patent Document 1 is packed with a fine powder of inorganic material such as pearlite or silica having a low thermal conductivity in a breathable inner bag, and further packed in an airtight outer bag. It has a structure that is vacuum-tightly integrated and hermetically sealed, and is used to insulate the refrigerator wall. When compared with conventional rigid urethane foam, this vacuum insulation material has a low thermal conductivity, so the thickness of the insulation material can be made thinner and lighter. Can be thin.

他方、液体窒素や液化天然ガス等の低温貯蔵物を収容する低温貯蔵庫として、二重殻構造で内槽の外壁と外槽の内壁との間の断熱層にパーライトを粒状断熱材として充填した二重殻低温貯蔵槽がある。断熱層にパーライトを充填した二重殻低温貯蔵槽としては、例えば、下記の特許文献2〜4に開示された構造のもの等がある。   On the other hand, as a low-temperature storage for storing low-temperature storage such as liquid nitrogen and liquefied natural gas, a double shell structure is used to fill the heat insulation layer between the outer wall of the inner tank and the inner wall of the outer tank as pearlite as a granular heat insulating material. There is a heavy shell cryogenic storage tank. Examples of the double-shell low-temperature storage tank in which the heat insulating layer is filled with pearlite include the structures disclosed in Patent Documents 2 to 4 below.


特開平04−160298号公報Japanese Patent Laid-Open No. 04-160298 特開平09−137626号公報JP 09-137626 A 特開平08−121695号公報Japanese Patent Laid-Open No. 08-121695 特開平08−004981号公報Japanese Patent Laid-Open No. 08-004981

しかしながら、従来のパーライト、シリカ等の無機質の微粉末を袋体に充填し、真空引きして気密封着した構造の断熱材で、充填材としてパーライトを用いたものでは、パーライトが真珠岩等の天然ガラス鉱物を高温で焼成して得られる材料であるため、以下に示すような問題がある。   However, conventional pearlite, silica, and other inorganic fine powders are filled into a bag and vacuum-tight and hermetically sealed, and the pearlite is used as a filler. Since it is a material obtained by firing natural glass mineral at a high temperature, there are the following problems.

第1に、パーライトは密に充填した場合の嵩密度が1000kg/m(=1g/cm)程度と大きいため、断熱材としての熱伝導量が大きくなり、貯蔵温度が液体窒素や液化天然ガス等の極低温レベルの場合には、低温貯蔵庫の壁部に用いる断熱材を厚くする必要があり、その結果、壁部の構造が重厚化する。 First, since pearlite has a bulk density of about 1000 kg / m 3 (= 1 g / cm 3 ) when densely packed, the thermal conductivity as a heat insulating material increases, and the storage temperature is liquid nitrogen or liquefied natural. In the case of a cryogenic level such as gas, it is necessary to thicken the heat insulating material used for the wall portion of the low temperature storage, and as a result, the structure of the wall portion becomes heavy.

第2に、パーライトは、焼成時のクラックが残っているため、長期間機械的振動のある環境で使用すると粉化し、嵩密度が増加して、密閉空間内にパーライトの充填されない空洞個所が生じ、パーライトを充填する袋体が変形自在な材質でできている場合は、断熱材の成型が崩れることがある。この結果、パーライト粒子間をバインダーで連結して成型が崩れないような工夫が必要となる場合がある。また、複数の断熱材をブロック状に成型して、それを多数組み合わせて使用する場合、ブロック状の成型が崩れると、ブロック間に隙間が生じて断熱性能が著しく低下することになる。   Secondly, since pearlite remains cracked during firing, it will be pulverized when used in an environment with mechanical vibration for a long period of time, resulting in an increase in bulk density, resulting in a cavity where pearlite is not filled in the sealed space. If the bag body filled with pearlite is made of a deformable material, the molding of the heat insulating material may be broken. As a result, it may be necessary to devise a method in which the pearlite particles are connected by a binder and the molding does not collapse. In addition, when a plurality of heat insulating materials are molded into a block shape and used in combination with a plurality of blocks, if the block shape is broken, a gap is generated between the blocks, and the heat insulating performance is remarkably deteriorated.

第3に、パーライトは、粒子形状が球状ではなく不定形であり、粉体粒子の吸着表面積が大きいため、水分を吸着しやすく断熱層内を真空引きし難い。   Thirdly, pearlite has an irregular particle shape rather than a spherical shape, and the powder particles have a large adsorption surface area, so that moisture is easily adsorbed and it is difficult to evacuate the heat insulating layer.

また、シリカ等の無機質の微粉末を充填材として使用する断熱材であっても、微粉末の性状が一様でないと、上記パーライトの場合と同様の問題が生じることになる。   Further, even in the case of a heat insulating material using an inorganic fine powder such as silica as a filler, the same problem as in the case of the above pearlite occurs if the properties of the fine powder are not uniform.

更に、従来の断熱層の充填材としてパーライトを用いた二重殻低温貯蔵槽では、二重殻構造であるため、及び、パーライトが真珠岩等の天然ガラス鉱物を高温で焼成して得られる材料であるため、以下に示すような問題がある。   Furthermore, in the double-shell low-temperature storage tank using pearlite as a filler for the conventional heat insulation layer, since it has a double-shell structure, the material obtained by calcination of natural glass minerals such as pearlite at high temperature Therefore, there are the following problems.

第1に、二重殻構造であるため構造体自体の重量が重いことに加え、パーライトは密に充填した場合の嵩密度が1000kg/m(=1g/cm)程度と大きく、液体窒素や液化天然ガス等を運搬する液化ガスタンクローリー(二重殻低温貯蔵槽の一例)の粒状断熱材として用いた場合、二重殻低温貯蔵槽全体の重量が重くなり、運搬時の車重がその分重くなって運搬コストが高騰する。また、嵩密度が大きいため、必然的に熱伝導量も大きくなる。 First, because of the double shell structure, the weight of the structure itself is heavy, and pearlite has a bulk density of about 1000 kg / m 3 (= 1 g / cm 3 ) when densely packed, and liquid nitrogen. Or liquefied gas tank lorry (an example of a double-shell cryogenic storage tank) that transports liquefied natural gas, etc., the weight of the entire double-shell cryogenic storage tank becomes heavy, and the vehicle weight during transportation The weight increases and the transportation cost increases. Moreover, since the bulk density is large, the amount of heat conduction inevitably increases.

第2に、パーライトは、焼成時のクラックが残っているため、長期間機械的振動のある環境(例えば、液化ガスタンクローリー等)で使用すると粉化し、嵩密度が増加して、断熱層内に粒状断熱材の充填されない空洞個所が生じることがある。この結果、空洞部における断熱層内の充填ガス(或いは、減圧後の残存ガス)の対流による熱伝導により断熱性能が低下する。   Secondly, since pearlite remains cracked during firing, it is pulverized when used in an environment with mechanical vibration for a long time (for example, a liquefied gas tank lorry, etc.), the bulk density increases, and the heat insulation layer There may be cavities that are not filled with granular insulation. As a result, the heat insulation performance deteriorates due to heat conduction by convection of the filling gas (or residual gas after decompression) in the heat insulation layer in the cavity.

第3に、パーライトは、粉粒体の流動性が悪いため、ブリッジ等が発生して断熱層内にパーライトが均一に充填されない虞があるため、これを防ぐため充填時に高度の作業ノウハウが必要となる。   Thirdly, because pearlite has poor fluidity of the granular material, there is a possibility that pearlite may not be uniformly filled in the heat insulation layer due to the occurrence of bridges, etc. Therefore, advanced work know-how is required at the time of filling to prevent this It becomes.

第4に、パーライトは、粒子形状が球状ではなく不定形であり、粉体粒子の吸着表面積が大きいため、水分を吸着しやすく断熱層内を真空引きし難い。また、この水分の吸着性の欠点を解消しようとすると、施工現場近傍で焼成を行い、パーライト製造時から断熱層内への充填時までの時間を短縮する必要があり、コスト高となる。   Fourthly, pearlite has an irregular particle shape rather than a spherical shape, and the powder particles have a large adsorption surface area, so that moisture is easily adsorbed and it is difficult to evacuate the heat insulating layer. Moreover, if it is going to eliminate the fault of this moisture adsorptivity, it will be necessary to perform baking in the vicinity of a construction site, and to shorten the time from the time of pearlite manufacture to the time of filling in a heat insulation layer, and it will become high-cost.

本発明は、上述の問題点に鑑みてなされたものであり、その第1の目的は、上記問題点を解消し、気密性を有する袋体の内部に粉粒体を充填して内部を減圧して成型体とした断熱用ブロックであって、軽量で高い断熱性能を備えた断熱用ブロックを提供することにあり、第2の目的は、軽量で高い断熱性能を備えた低温貯蔵庫を提供することにある。   The present invention has been made in view of the above-mentioned problems, and a first object of the present invention is to eliminate the above-mentioned problems and to fill the inside of a bag body having airtightness with a reduced pressure inside. It is a block for heat insulation made into a molded body, and is to provide a heat insulation block having light weight and high heat insulation performance, and a second object is to provide a low temperature storage with light weight and high heat insulation performance. There is.

この第1の目的を達成するための本発明に係る断熱用ブロックは、気密性を有する合成樹脂フィルムを用いて形成された袋体の内部に、逆ミセル法を用いて合成した粒径が略均一な多孔質球状粒子からなる粉粒体を充填し、前記袋体の内部を減圧して成型体としたことを特徴とする。   In order to achieve this first object, the heat insulating block according to the present invention has a particle size synthesized by the reverse micelle method inside a bag formed using a synthetic resin film having airtightness. It is characterized in that a powder body made of uniform porous spherical particles is filled, and the inside of the bag body is decompressed to form a molded body.

上記特徴の断熱用ブロックによれば、逆ミセル法を用いて合成した粒径が略均一な多孔質球状粒子が、粒子形状が球状(球形または略球形)で、且つ、粒径が略一定に揃った粉粒体として形成されるため、粒子間の空隙距離が略一定で充填ガスの平均自由行程以下に短くでき、この結果、10−1Pa(約10−3Torr)程度の低真空でも粒子間の空隙での対流を効果的に抑制でき、伝導損失の少ない極めて高い断熱を実現できる。この結果、上記特徴の断熱用ブロックを組み合わせて低温貯蔵庫の壁部を構成すると、真空断熱で得られる0.02W/mK以下の高度の断熱性能が簡易に実現できる。 According to the heat insulating block having the above characteristics, the porous spherical particles having a substantially uniform particle diameter synthesized using the reverse micelle method have a spherical particle shape (spherical or substantially spherical) and a substantially uniform particle size. Since it is formed as a uniform granular material, the gap distance between the particles is substantially constant and can be shortened below the mean free path of the filling gas. As a result, even at a low vacuum of about 10 −1 Pa (about 10 −3 Torr) Convection in the voids between particles can be effectively suppressed, and extremely high heat insulation with little conduction loss can be realized. As a result, when the wall portion of the low-temperature storage is configured by combining the heat insulation blocks having the above characteristics, a high degree of heat insulation performance of 0.02 W / mK or less obtained by vacuum heat insulation can be easily realized.

また、粒子形状が球状で粒径が略一定に揃った粉粒体であるため断熱層に密に充填された状態での粒子間の空隙の空隙率が低くなるが、粒子単体が粒子内の空隙率の高い多孔質であるため、嵩密度が150〜300kg/m(=0.15〜0.3g/cm)程度とパーライトと比較して大幅に軽減され、個々の断熱用ブロックを軽量に形成でき、低温貯蔵庫の壁部を軽量化できる。 In addition, since the particle shape is spherical and the particle size is substantially uniform, the void ratio between the particles in the state where the heat insulating layer is densely packed is low, but the single particle is in the particle Due to the high porosity, the bulk density is reduced to about 150 to 300 kg / m 3 (= 0.15 to 0.3 g / cm 3 ), which is significantly reduced compared to pearlite. It can be made lightweight and the wall of the cold storage can be lightened.

また、逆ミセル法を用いて合成されるため、パーライトのような焼成時のクラック等が存在しないため、機械的振動による微粉化の可能性は極めて低く、袋体内に断熱性を損なう大きな空洞部の発生する可能性が極めて低い。また、袋体を形成する合成樹脂フィルムが可撓性を有する場合には、袋体内に充填される粉粒体の粒子形状が球状で、且つ、粒径が略一定に揃っているため流動性が高く、断熱用ブロックを多数組み合わせた場合等においてブロック間の接合面に重力等による撓みが生じても、各ブロックの袋体の表面が当該撓みに追従して変形可能であるため、ブロック間に隙間が生じず壁部全体での高断熱性を維持できる。   In addition, since it is synthesized using the reverse micelle method, there is no cracking during firing, such as pearlite, so there is very little possibility of pulverization due to mechanical vibration, and a large cavity that impairs heat insulation in the bag Is very unlikely to occur. In addition, when the synthetic resin film forming the bag body is flexible, the particle shape of the powder body filled in the bag body is spherical and the particle size is substantially uniform, so that the fluidity Even when a large number of heat insulating blocks are combined, even if the joint surface between the blocks is bent due to gravity or the like, the surface of the bag body of each block can be deformed following the bending. No gap is generated in the wall, so that high heat insulation can be maintained throughout the wall.

更に、上記特徴の断熱用ブロックにおいて、前記成型体が所定の厚みを有する板状体で、且つ、前記板状体の端縁部の一部または全部に、他の前記板状体の端縁部と嵌合または重合して接合する接合部が形成されていることが好ましい。端縁部に接合部が形成されることで、断熱用ブロックを複数組み合わせる場合に、隣接するブロック間の位置決めが接合部によって規定されるため、ブロック間に隙間の無い効率的な組み合わせが可能となる。   Further, in the heat insulation block having the above characteristics, the molded body is a plate-like body having a predetermined thickness, and an edge of another plate-like body is formed on a part or all of the edge of the plate-like body. It is preferable that a joint portion that is fitted or superposed on the portion to be joined is formed. By forming joints at the edge, when multiple heat insulation blocks are combined, positioning between adjacent blocks is defined by the joints, enabling efficient combination without gaps between the blocks. Become.

更に、上記特徴の断熱用ブロックにおいて、前記多孔質球状粒子が、石英ガラス粒子等のガラス質であることが好ましい。一般に、低温では熱媒体の格子振動の熱伝導への寄与度が大きくなるため、粒状断熱材がガラス質であることにより、低温での熱伝導をより効果的に抑制できる。   Furthermore, in the heat insulating block having the above characteristics, it is preferable that the porous spherical particles are vitreous such as quartz glass particles. In general, since the contribution of the lattice vibration of the heat medium to the heat conduction becomes large at low temperatures, the heat conduction at low temperatures can be more effectively suppressed because the granular heat insulating material is vitreous.

更に、上記特徴の断熱用ブロックにおいて、前記多孔質球状粒子の直径は3〜30μmであることが好ましい。粒径は、大き過ぎると粒子間の空隙距離が大きくなり、そこで対流が生じて断熱性が低下し、逆に小さ過ぎると取り扱い時に飛散しやすく取り扱い難くなるため、多孔質球状粒子の直径は3〜30μmであることが好ましい。また、流動性の観点から見ると、分子間引力が無視できるサイズの間は粒径が小さいほどブリッジ等が形成され難く流動性が高い。ところが、粒径が数μmになると常温における熱揺動が粒子の運動エネルギと同程度になり、且つ、分子間力も無視できなくなるので、嵩密度300kg/m程度では10μm弱が最も流動性がよく望ましい。 Furthermore, in the heat insulating block having the above characteristics, the porous spherical particles preferably have a diameter of 3 to 30 μm. If the particle size is too large, the gap distance between the particles increases, and convection occurs there, resulting in poor heat insulation. Conversely, if the particle size is too small, the particles are easily scattered during handling and difficult to handle. It is preferable that it is -30 micrometers. Further, from the viewpoint of fluidity, the smaller the particle size, the smaller the particle size, and the higher the fluidity because the intermolecular attractive force is negligible. However, when the particle size is several μm, the thermal fluctuation at the normal temperature becomes about the same as the kinetic energy of the particles, and the intermolecular force cannot be ignored. Therefore, at a bulk density of about 300 kg / m 3 , less than 10 μm is the most fluid. Well desirable.

上記第2の目的を達成するための本発明に係る低温貯蔵庫は、上記特徴の断熱用ブロックを外壁の内側に積み重ね、積み重ねた前記断熱用ブロックの内側に、気密性を有する膜質材料で内槽を形成してなることを特徴とする。   In order to achieve the second object, the low temperature storage according to the present invention includes a heat insulating block having the above characteristics stacked on the inner side of an outer wall, and an inner tank made of an airtight film-like material inside the stacked heat insulating block. It is characterized by forming.

上記特徴の低温貯蔵庫によれば、軽量で高い断熱性能を備えた本発明に係る断熱用ブロックを用いて軽量で高い断熱性能を備えた低温貯蔵庫が容易に実現できる。また、従来の二重殻低温貯蔵槽と比べて、断熱層へ粒状断熱材を充填する作業がないため施工性が向上する。更に、内槽の内側から外壁に掛かる応力を断熱用ブロックで吸収する構造となるため、従来の二重殻低温貯蔵槽と比べて、内槽を大幅に軽量化できるため、低温貯蔵庫全体の軽量化が図れる。   According to the low-temperature storage having the above characteristics, a low-temperature storage having light weight and high heat insulation performance can be easily realized by using the heat insulation block according to the present invention that is light and has high heat insulation performance. Moreover, since there is no operation | work which fills a heat insulation layer with a granular heat insulating material compared with the conventional double shell low temperature storage tank, workability | operativity improves. In addition, the heat insulation block absorbs the stress applied to the outer wall from the inside of the inner tank, so the inner tank can be significantly lighter than conventional double-shell low-temperature storage tanks. Can be achieved.

本発明に係る断熱用ブロック(以下、適宜「本発明ブロック」という。)の実施の形態につき、図面に基づいて説明する。   An embodiment of a heat insulating block according to the present invention (hereinafter referred to as “the present invention block” as appropriate) will be described with reference to the drawings.

図1に示すように、本発明ブロック1は、気密性及び可撓性を有する低密度ポリエチレンフィルム等の合成樹脂フィルムにより、直方体等の所定の立体形状に成型された袋体2の内部に、多孔質球状粒子の粉粒体からなる粒状断熱材3を密に充填した後、袋体2内部を真空引きして、10−1Pa(約10−3Torr)程度まで減圧し、袋体2の真空引き用の開口を気密封止し、袋体2の立体形状様の成型体として形成される。但し、10−1Pa程度の減圧により断熱性を向上させることができるが、更に低真空に減圧しても構わない。 As shown in FIG. 1, the present invention block 1 is formed in a bag 2 molded into a predetermined three-dimensional shape such as a rectangular parallelepiped by a synthetic resin film such as a low-density polyethylene film having airtightness and flexibility. After the granular heat insulating material 3 made of porous spherical particles is densely packed, the inside of the bag body 2 is evacuated, and the pressure is reduced to about 10 −1 Pa (about 10 −3 Torr). The opening for vacuuming is hermetically sealed and formed as a three-dimensional shaped molded body of the bag body 2. However, although the heat insulation can be improved by reducing the pressure to about 10 −1 Pa, it may be further reduced to a low vacuum.

本発明ブロック1に使用する粒状断熱材3は、逆ミセル法を用いて合成した粒径が略均一な多孔質球状粒子からなる粉粒体であり、具体的には、以下の要領で生成される石英ガラス粒子の粉粒体である。即ち、逆ミセル法により、油性の有機溶媒中に粒子原料を含む水溶液である水ガラス溶液(珪酸ナトリウム水溶液)を乳化分散させ、その乳化分散させた水ガラスのコロイドに炭酸ナトリウム等の沈殿剤を加えると、コロイド中の表面張力により球状化していた水ガラス粒子(エマルション粒子)がその形状を保ったままガラス粒子として沈殿するため、沈殿したガラス粒子を濾過分離、洗浄、乾燥して、粒子形状が略完全に球形で粒径も略一定の石英ガラス粒子が、粒状断熱材3として生成される。尚、粒径を略均一に揃える手法として、孔径を均一に揃えた貫通孔を多数有する高分子膜等の多孔膜を利用して、水ガラス溶液をその多孔膜を通過させて有機溶媒中に注入して乳化分散させ粒子原料のエマルション粒子を得る公知の膜乳化逆ミセル法が利用できる。膜乳化逆ミセル法については、例えば、特開平04−54605号公報、特開平05−240号公報、特開平05−23565号公報、特開平05−192907号公報等に詳細が開示されている。上記要領で生成された石英ガラス粒子の粉粒体は、嵩密度として、150〜300kg/m(=0.15〜0.3g/cm)程度のものが得られる。 The granular heat insulating material 3 used in the present invention block 1 is a granular material composed of porous spherical particles having a substantially uniform particle size synthesized by the reverse micelle method, and specifically, produced in the following manner. It is a granular material of quartz glass particles. That is, by a reverse micelle method, a water glass solution (sodium silicate aqueous solution), which is an aqueous solution containing particle raw materials in an oily organic solvent, is emulsified and dispersed, and a precipitating agent such as sodium carbonate is added to the emulsified and dispersed water glass colloid. When added, water glass particles (emulsion particles) that have been spheroidized due to the surface tension in the colloid are precipitated as glass particles while maintaining their shape, so the precipitated glass particles are separated by filtration, washed, and dried to form a particle shape. However, quartz glass particles having a substantially spherical shape and a substantially constant particle size are produced as the granular heat insulating material 3. As a method for making the particle diameters substantially uniform, a porous film such as a polymer film having a large number of through-holes with uniform pore diameters is used, and a water glass solution is passed through the porous film in an organic solvent. A known membrane emulsification reverse micelle method can be used in which emulsion particles are injected and emulsified and dispersed to obtain emulsion particles of the particle material. Details of the membrane emulsification reverse micelle method are disclosed in, for example, Japanese Patent Application Laid-Open No. 04-54605, Japanese Patent Application Laid-Open No. 05-240, Japanese Patent Application Laid-Open No. 05-23565, Japanese Patent Application Laid-Open No. 05-192907, and the like. The quartz glass particles produced in the above manner have a bulk density of about 150 to 300 kg / m 3 (= 0.15 to 0.3 g / cm 3 ).

本実施形態では、生成された石英ガラス粒子の粒径として、3〜30μmの範囲のもの、特に、粉粒体の流動性の観点より10μm前後のものが好ましい。また、石英ガラス粒子の粒径のバラツキとして、体積基準の標準偏差を平均粒径の50%未満、更に好ましくは、20%未満に抑えるのが好ましい。従って、当該バラツキ範囲内のものを粒径が略均一と定義する。   In the present embodiment, the generated quartz glass particles preferably have a particle size in the range of 3 to 30 μm, particularly about 10 μm from the viewpoint of fluidity of the granular material. Further, as a variation in the particle diameter of the quartz glass particles, the standard deviation based on volume is preferably suppressed to less than 50%, more preferably less than 20% of the average particle diameter. Therefore, the particle size within the variation range is defined as substantially uniform.

尚、嵩密度が150〜300kg/m(=0.15〜0.3g/cm)程度で粒径が略均一で3〜30μmの範囲にある粒状断熱材3として、鈴木油脂工業株式会社製の商品名「ゴッドボール」(登録商標)で市販されている多孔質無機質微粒子(石英ガラス粒子)の粉粒体が利用できる。 In addition, as the granular heat insulating material 3 having a bulk density of about 150 to 300 kg / m 3 (= 0.15 to 0.3 g / cm 3 ) and a particle size of approximately 3 to 30 μm, Suzuki Oil & Fat Co., Ltd. A granular material of porous inorganic fine particles (quartz glass particles) commercially available under the trade name “Godball” (registered trademark) manufactured by the same company can be used.

次に、本発明ブロック1を使用した本発明に係る低温貯蔵庫の実施の形態につき、図面に基づいて説明する。   Next, an embodiment of a low-temperature storage according to the present invention using the present invention block 1 will be described based on the drawings.

図4に、本発明に係る低温貯蔵庫6を液化天然ガス等の低温の液化ガス(低温貯蔵物)7を運搬するタンクローリー(図示せず)等に適用した場合の概略の断面構造を模式的に示す。図4に示すように、低温貯蔵庫6は、外壁8の内側に上述の本発明ブロック1が密に積み重ねられて断熱層が形成され、その内側に液化ガス7を収容する内槽9を形成して構成されている。外壁8は、ステンレス鋼等の鋼材を溶接して形成され、内槽9は、気密性及び可撓性を有する低密度ポリエチレンフィルム等の合成樹脂フィルム、或いは、該合成樹脂フィルムにアルミニウム等の金属膜をラミネートしたフィルム(膜質材料)で形成されている。内槽9は、外壁8の内壁から本発明ブロック1により支持される。低温貯蔵庫6をタンクローリーに適用した場合、外壁8及び内槽9は、図4の紙面垂直方向の断面形状が、円形または楕円形を呈している。尚、図中符号10で示される部位は、液化ガス7を内槽9内へ注入し、また、内槽9内から取り出すための入出口である。   FIG. 4 schematically shows a schematic cross-sectional structure when the low-temperature storage 6 according to the present invention is applied to a tank lorry (not shown) for transporting a low-temperature liquefied gas (low-temperature storage) 7 such as liquefied natural gas. Show. As shown in FIG. 4, the low temperature storage 6 has an inner tank 9 that accommodates the liquefied gas 7 on the inner side of the outer wall 8 and the above-described inventive block 1 is densely stacked to form a heat insulating layer. Configured. The outer wall 8 is formed by welding a steel material such as stainless steel, and the inner tank 9 is a synthetic resin film such as an airtight and flexible low density polyethylene film or a metal such as aluminum on the synthetic resin film. It is formed of a film (film material) laminated with a film. The inner tank 9 is supported by the block 1 of the present invention from the inner wall of the outer wall 8. When the low temperature storage 6 is applied to a tank lorry, the outer wall 8 and the inner tank 9 have a circular or oval cross-sectional shape in the direction perpendicular to the paper surface of FIG. In addition, the site | part shown with the code | symbol 10 in the figure is an inlet / outlet for inject | pouring the liquefied gas 7 into the inner tank 9, and taking out from the inner tank 9. FIG.

以下に、別の実施形態につき説明する。   Hereinafter, another embodiment will be described.

〈1〉上記実施形態では、本発明ブロック1の形状は、図1において、直方体状のものを例示したが、本発明ブロック1の形状は、直方体状に限定されるものではない。   <1> In the above embodiment, the shape of the block 1 of the present invention is a rectangular parallelepiped in FIG. 1, but the shape of the block 1 of the present invention is not limited to the shape of a rectangular parallelepiped.

例えば、図2に示すように、袋体2の立体形状を、所定の厚みを有する板状体であって、その板状体の端縁部4の一部または全部に、他の板状体の端縁部4と嵌合または重合して接合する接合部5を設けた立体形状に形成し、当該袋体2の内部に、粒状断熱材3を密に充填した後、袋体2内部を真空引きして減圧し、本発明ブロック1を、端縁部4に接合部5を設けた成型体として形成するのも好ましい。端縁部4に接合部5を設けることにより、例えば、図3に示すように、本発明ブロック1を複数組み合わせて、低温貯蔵庫の大きな壁面の断熱体とする場合に、効率的な組み合わせが可能となる。また、組み合わせ時にブロック間に隙間等が生じ難くなるので、本発明ブロック1の有する高度な断熱性能を維持した断熱壁が構成できる。   For example, as shown in FIG. 2, the three-dimensional shape of the bag body 2 is a plate-like body having a predetermined thickness, and another plate-like body is formed on part or all of the edge portion 4 of the plate-like body. Are formed into a three-dimensional shape provided with a joining portion 5 that is fitted or overlapped with the end edge portion 4 and is joined to the inside of the bag body 2 with the granular heat insulating material 3 and then the inside of the bag body 2 is filled. It is also preferable to form the block 1 of the present invention as a molded body in which the joint portion 5 is provided at the end edge portion 4 by evacuation and decompression. By providing the joint 5 at the edge 4, for example, as shown in FIG. 3, when combining a plurality of the blocks 1 of the present invention to form a thermal insulator for a large wall surface of a low temperature storage, an efficient combination is possible. It becomes. Moreover, since a gap or the like is not easily generated between the blocks at the time of combination, a heat insulating wall that maintains the high heat insulating performance of the block 1 of the present invention can be configured.

尚、接合部5の端縁部4における設置個所及びその形状は、図2に示すものに限定されるものではない。   In addition, the installation location and the shape in the edge part 4 of the junction part 5 are not limited to what is shown in FIG.

〈2〉上記実施形態では、粒状断熱材3として石英ガラス粒子の粉粒体を使用したが、粒状断熱材3は、石英ガラス粒子の粉粒体に限定されるものではない。従って、多孔質球状粒子は石英以外の無機材料を含むガラスであっても構わない。   <2> In the above-described embodiment, the quartz glass particle powder is used as the granular heat insulating material 3, but the granular heat insulating material 3 is not limited to the quartz glass particle powder. Therefore, the porous spherical particles may be glass containing an inorganic material other than quartz.

〈3〉上記実施形態では、袋体2に可撓性を有する合成樹脂フィルムを用いたが、袋体2に用いる合成樹脂フィルムとして、可撓性を有しない硬質のフィルムであっても構わない。従って、袋体2に用いる合成樹脂フィルムは、上記実施形態で例示した低密度ポリエチレンフィルムに限定されるものではない。更に、袋体2を合成樹脂フィルムにアルミニウム等の金属膜をラミネートしたフィルムを用いて形成しても構わない。   <3> In the above embodiment, the flexible synthetic resin film is used for the bag body 2, but the synthetic resin film used for the bag body 2 may be a hard film that does not have flexibility. . Therefore, the synthetic resin film used for the bag 2 is not limited to the low density polyethylene film exemplified in the above embodiment. Furthermore, you may form the bag body 2 using the film which laminated metal films, such as aluminum, to the synthetic resin film.

〈4〉上記実施形態では、石英ガラス粒子の粉粒体からなる粒状断熱材3を、逆ミセル法を用いて合成する方法について簡単に説明したが、逆ミセル法に使用する多孔膜、有機溶媒、沈殿剤等は、公知の膜乳化逆ミセル法で使用されるものが使用できる。   <4> In the above embodiment, the method for synthesizing the granular heat insulating material 3 made of quartz glass particles using the reverse micelle method has been briefly described. However, the porous film and organic solvent used in the reverse micelle method As the precipitating agent, those used in the known membrane emulsification reverse micelle method can be used.

〈5〉上記実施形態では、本発明ブロック1の袋体2内部に減圧後に残留する気相成分について、特に明示しなかったが、袋体2の内部の気相成分として、空気等以外に、希ガスを使用するのがより好ましい。袋体2の内部の気相には通常空気が入っており、そのまま減圧した場合は残存気体として空気と水分が入っている場合が多い。しかしながら、空気の主成分である窒素や酸素及び水は多原子分子であるため分子全体の運動エネルギのほかに、振動回転のエネルギを持っており熱伝導率が高い。よって、袋体2の内部の気相成分として希ガスを用いることで、袋体2の内部の気相成分による熱伝導を低減でき、断熱性能の向上が図れる。また、袋体2の内部の気相成分としてはできるだけ分子量の大きな希ガスが望ましい。具体的には、本発明ブロック1を用いて構成される低温貯蔵庫内の温度が液体窒素レベルの極低温である場合にはAr(アルゴン)、常温近傍の低温(−20〜−30℃)の場合にはKr(クリプトン)、Xe(キセノン)等が望ましい。   <5> In the above embodiment, the vapor phase component remaining in the bag body 2 of the present invention block 1 after depressurization was not specified, but as the gas phase component inside the bag body 2 other than air, It is more preferable to use a rare gas. Air is usually contained in the gas phase inside the bag body 2, and when the pressure is reduced as it is, air and moisture are often contained as residual gases. However, since nitrogen, oxygen, and water, which are the main components of air, are polyatomic molecules, they have vibration and rotation energy in addition to the kinetic energy of the whole molecule, and have high thermal conductivity. Therefore, by using a rare gas as the gas phase component inside the bag body 2, the heat conduction due to the gas phase component inside the bag body 2 can be reduced, and the heat insulation performance can be improved. Further, a rare gas having a molecular weight as large as possible is desirable as a gas phase component inside the bag body 2. Specifically, when the temperature in the low-temperature storage constructed using the block 1 of the present invention is an extremely low temperature of liquid nitrogen level, Ar (argon), a low temperature around normal temperature (-20 to -30 ° C). In some cases, Kr (krypton), Xe (xenon) or the like is desirable.

〈6〉上記実施形態では、本発明に係る低温貯蔵庫6を液化天然ガス等の低温の液化ガス(低温貯蔵物)7を運搬するタンクローリー等に適用した場合を例示したが、低温貯蔵物7としては、液化ガスに限定されるものではなく、また、低温貯蔵庫6の適用対象として、タンクローリー等の車両に限定されるものではない。例えば、低温貯蔵庫6を地上に固定する低温貯蔵庫に適用しても構わない。また、低温貯蔵庫6の外壁8及び内槽9の形状、材質等も上記実施形態に限定されるものではなく、例えば、縦型の円筒状、球形、箱型等、種々の形状のものが可能である。   <6> In the above embodiment, the case where the low temperature storage 6 according to the present invention is applied to a tank truck or the like that transports a low temperature liquefied gas (low temperature storage) 7 such as liquefied natural gas is exemplified. Is not limited to liquefied gas, and is not limited to a vehicle such as a tank truck as an application target of the low temperature storage 6. For example, you may apply to the low temperature store which fixes the low temperature store 6 on the ground. Further, the shape and material of the outer wall 8 and the inner tank 9 of the low-temperature storage 6 are not limited to the above embodiment, and various shapes such as a vertical cylindrical shape, a spherical shape, a box shape, and the like are possible. It is.

本発明に係る断熱用ブロックの一実施形態における一部を破断して内部及び外部の概略構造を示す斜視図The perspective view which fractures | ruptures part in one Embodiment of the block for heat insulation which concerns on this invention, and shows schematic structure inside and outside 本発明に係る断熱用ブロックの別実施形態における概略の構造を示す斜視図The perspective view which shows the general | schematic structure in another embodiment of the block for heat insulation which concerns on this invention. 図2に示す本発明に係る断熱用ブロックを複数組み合わせた状態を示す平面図The top view which shows the state which combined the block for heat insulation which concerns on this invention shown in FIG. 本発明に係る低温貯蔵庫の一実施形態における概略の断面構造を示す断面図Sectional drawing which shows the general | schematic cross-section in one Embodiment of the low-temperature storage which concerns on this invention

符号の説明Explanation of symbols

1: 本発明に係る断熱用ブロック
2: 袋体
3: 粒状断熱材
4: 端縁部
5: 接合部
6: 本発明に係る低温貯蔵庫
7: 低温貯蔵物
8: 外壁
9: 内槽
10: 低温貯蔵物の入出口
1: Block for heat insulation according to the present invention 2: Bag body 3: Granular heat insulating material 4: Edge edge portion 5: Joint portion 6: Low temperature storage according to the present invention 7: Low temperature storage 8: Outer wall 9: Inner tank 10: Low temperature Store entry / exit

Claims (6)

気密性を有する合成樹脂フィルムを用いて形成された袋体の内部に、逆ミセル法を用いて合成した粒径が略均一な多孔質球状粒子からなる粉粒体を充填し、前記袋体の内部を減圧して成型体としたことを特徴とする断熱用ブロック。   The inside of a bag formed using a synthetic resin film having airtightness is filled with a granular material composed of porous spherical particles having a substantially uniform particle size synthesized using a reverse micelle method, A heat insulating block characterized in that the inside is reduced in pressure to form a molded body. 前記成型体が所定の厚みを有する板状体で、且つ、前記板状体の端縁部の一部または全部に、他の前記板状体の端縁部と嵌合または重合して接合する接合部が形成されていることを特徴とする請求項1に記載の断熱用ブロック。   The molded body is a plate-like body having a predetermined thickness, and a part or all of the edge portion of the plate-like body is fitted to or joined to the edge portion of the other plate-like body. The heat insulating block according to claim 1, wherein a joint portion is formed. 前記多孔質球状粒子が、ガラス質であることを特徴とする請求項1または2に記載の断熱用ブロック。   The heat insulating block according to claim 1, wherein the porous spherical particles are glassy. 前記多孔質球状粒子が、石英ガラス粒子であることを特徴とする請求項2に記載の断熱用ブロック。   The heat insulating block according to claim 2, wherein the porous spherical particles are quartz glass particles. 前記多孔質球状粒子の直径が、3〜30μmであることを特徴とする請求項1〜4の何れか1項に記載の断熱用ブロック。   The diameter of the said porous spherical particle is 3-30 micrometers, The block for heat insulation of any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5の何れか1項に記載の断熱用ブロックを外壁の内側に積み重ね、
積み重ねた前記断熱用ブロックの内側に、気密性を有する膜質材料で内槽を形成してなることを特徴とする低温貯蔵庫。
The heat insulation blocks according to any one of claims 1 to 5 are stacked inside the outer wall,
A low-temperature storage, wherein an inner tank is formed of an airtight film-like material inside the stacked heat insulation blocks.
JP2004349566A 2004-12-02 2004-12-02 Insulation block and cold storage Expired - Fee Related JP4303674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349566A JP4303674B2 (en) 2004-12-02 2004-12-02 Insulation block and cold storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349566A JP4303674B2 (en) 2004-12-02 2004-12-02 Insulation block and cold storage

Publications (2)

Publication Number Publication Date
JP2006161834A true JP2006161834A (en) 2006-06-22
JP4303674B2 JP4303674B2 (en) 2009-07-29

Family

ID=36664089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349566A Expired - Fee Related JP4303674B2 (en) 2004-12-02 2004-12-02 Insulation block and cold storage

Country Status (1)

Country Link
JP (1) JP4303674B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013036109A1 (en) 2011-09-08 2013-03-14 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Container comprising at least one double wall and method of insulating a double wall of a container
JP2013525705A (en) * 2010-04-30 2013-06-20 ヴァ−クー−テック アーゲー Vacuum sheet material for heat insulation
EP2615042A1 (en) * 2012-01-10 2013-07-17 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Container comprising at least one double wall and method of insulating a double wall of a container
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11175090B2 (en) 2016-12-05 2021-11-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3526510A4 (en) 2016-10-17 2020-06-03 Whirlpool Corporation Insulating core material having coated insulated spheres and a process for making the insulating core material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769770A (en) * 1969-01-23 1973-11-06 Sanders Nuclear Corp Thermal super insulation
JPH05240A (en) * 1991-06-25 1993-01-08 Osaka Gas Co Ltd Production inorganic uniform microsphere
JPH082589A (en) * 1994-06-20 1996-01-09 Mitsubishi Heavy Ind Ltd Heat insulation and shield structure for low temperature cargo tank
JPH0821595A (en) * 1994-07-11 1996-01-23 Gamakatsu Co Ltd Heat insulating material
JPH09126393A (en) * 1995-10-05 1997-05-13 Gaztransport & Technigaz Disembarkation field tank for storing low-temperature liquid
JPH11116211A (en) * 1997-10-06 1999-04-27 Toyota Central Res & Dev Lab Inc Production of hollow oxide powder
JP2000097390A (en) * 1998-09-22 2000-04-04 Meisei Ind Co Ltd Heat insulating panel and manufacture thereof
JP2000097391A (en) * 1998-09-22 2000-04-04 Sanyo Electric Co Ltd Core material for vacuum heat insulating material
JP2000161588A (en) * 1998-11-20 2000-06-16 Matsushita Electric Ind Co Ltd Composite heat insulating material
JP2000291881A (en) * 1999-04-02 2000-10-20 Matsushita Refrig Co Ltd Decompressed heat insulating body and manufacture thereof
JP2001349499A (en) * 2000-06-02 2001-12-21 Ishikawajima Harima Heavy Ind Co Ltd Low-temperature tank
JP2004019920A (en) * 2002-06-20 2004-01-22 Shimizu Corp Liquidtight/airtight structure of prestressed concrete ground tank

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769770A (en) * 1969-01-23 1973-11-06 Sanders Nuclear Corp Thermal super insulation
JPH05240A (en) * 1991-06-25 1993-01-08 Osaka Gas Co Ltd Production inorganic uniform microsphere
JPH082589A (en) * 1994-06-20 1996-01-09 Mitsubishi Heavy Ind Ltd Heat insulation and shield structure for low temperature cargo tank
JPH0821595A (en) * 1994-07-11 1996-01-23 Gamakatsu Co Ltd Heat insulating material
JPH09126393A (en) * 1995-10-05 1997-05-13 Gaztransport & Technigaz Disembarkation field tank for storing low-temperature liquid
JPH11116211A (en) * 1997-10-06 1999-04-27 Toyota Central Res & Dev Lab Inc Production of hollow oxide powder
JP2000097390A (en) * 1998-09-22 2000-04-04 Meisei Ind Co Ltd Heat insulating panel and manufacture thereof
JP2000097391A (en) * 1998-09-22 2000-04-04 Sanyo Electric Co Ltd Core material for vacuum heat insulating material
JP2000161588A (en) * 1998-11-20 2000-06-16 Matsushita Electric Ind Co Ltd Composite heat insulating material
JP2000291881A (en) * 1999-04-02 2000-10-20 Matsushita Refrig Co Ltd Decompressed heat insulating body and manufacture thereof
JP2001349499A (en) * 2000-06-02 2001-12-21 Ishikawajima Harima Heavy Ind Co Ltd Low-temperature tank
JP2004019920A (en) * 2002-06-20 2004-01-22 Shimizu Corp Liquidtight/airtight structure of prestressed concrete ground tank

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525705A (en) * 2010-04-30 2013-06-20 ヴァ−クー−テック アーゲー Vacuum sheet material for heat insulation
WO2013036109A1 (en) 2011-09-08 2013-03-14 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Container comprising at least one double wall and method of insulating a double wall of a container
EP2615042A1 (en) * 2012-01-10 2013-07-17 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Container comprising at least one double wall and method of insulating a double wall of a container
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10828844B2 (en) 2014-02-24 2020-11-10 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10907886B2 (en) 2015-12-08 2021-02-02 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10605519B2 (en) 2015-12-08 2020-03-31 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US11555643B2 (en) 2015-12-09 2023-01-17 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US11175090B2 (en) 2016-12-05 2021-11-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US11867452B2 (en) 2016-12-05 2024-01-09 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Also Published As

Publication number Publication date
JP4303674B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4303674B2 (en) Insulation block and cold storage
US7562534B2 (en) Cryogenic aerogel insulation system
US10139035B2 (en) Thermal insulation products for use with non-planar objects
CN104302561B (en) The wallboard of climate controlling cargo container
US20020114937A1 (en) Insulated barriers and methods for producing same
US20210010742A1 (en) Vacuum insulation structures with multiple insulators
JP4912135B2 (en) Cryogenic insulation and method for producing the same
KR20010024854A (en) Self-evacuating vacuum insulation panels
WO2017100034A1 (en) Vacuum insulation structures with a filler insulator
JP2004502117A (en) Vacuum panel for thermal insulation of cylindrical objects
KR100750488B1 (en) Heat insulating structure with Aerogel of insulated cargo tanks of LNG carrier
JPH07148752A (en) Heat insulating box body
JP2006161832A (en) Double shell low temperature storage tank
JP5002364B2 (en) Vacuum heat insulating material and refrigerator equipped with the same
JP4119420B2 (en) Double shell cryogenic storage tank
JPS6335911B2 (en)
JP2004250596A (en) Communicated foam, production process therefor, and heat insulated structure using the foam and production process therefor
JPS61103090A (en) Vacuum heat-insulating structure
JPH0557105B2 (en)
JPH0492193A (en) Vacuum heat insulating structure for extremely low temperature
CN101637713A (en) Aerogel getter used in vacuum insulation board
JPS63190999A (en) Heat-insulating panel including heat-insulating powder and heat-insulating gas
JPH07239088A (en) Vacuum heat insulating body and heat insulating box body
JP2005273431A (en) Hollow ball-shaped heat insulating material
JPS59138875A (en) Heat-insulating material pack

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees