JPS61103090A - Vacuum heat-insulating structure - Google Patents
Vacuum heat-insulating structureInfo
- Publication number
- JPS61103090A JPS61103090A JP59223480A JP22348084A JPS61103090A JP S61103090 A JPS61103090 A JP S61103090A JP 59223480 A JP59223480 A JP 59223480A JP 22348084 A JP22348084 A JP 22348084A JP S61103090 A JPS61103090 A JP S61103090A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- container
- heat insulating
- insulation
- plastic container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermal Insulation (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔技術分野〕
本発明は家庭用冷蔵庫等の断熱壁に使用可能な真空断熱
構造体に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a vacuum insulation structure that can be used for insulation walls of household refrigerators and the like.
従来より家庭用冷蔵庫の断熱材として硬質発泡ポリウレ
タンが広く用いられている。その断熱性能は年々改善が
加えられ、熱伝導率で約0.015kcal/mh″C
とほぼ理論的限界値まで低減されている。しかしながら
省エネルギー・省スペース等の立場より、より断熱性能
の優れた断熱材が求められている。Rigid polyurethane foam has been widely used as a heat insulating material for household refrigerators. Its insulation performance has been improved year by year, with a thermal conductivity of approximately 0.015kcal/mh''C.
This has been reduced to almost the theoretical limit value. However, from the viewpoint of energy saving and space saving, there is a demand for a heat insulating material with even better heat insulating performance.
ところで、非常に浸れた断熱方法として真空断熱法が知
られており、液化ガスタンク等に用いられているが、こ
れは断熱スペーサー材を金属等の容器内に充填し、高真
空に排気、封止を行なっ九ものである。これは高真空に
排気することにより、断熱スペーサー材中の気体分子の
平均自由行程を長くし、気体分子相互間の衝突を防ぐ事
によ!7熱の伝導を妨げるもので、0.01 kcal
/mh″C以下の熱伝導率が得られる。しかし家庭用冷
蔵庫等にこの真空断熱材を用いる場合、その断熱面積が
液化ガスタンク等に比べて非常に小さいので容器の表面
熱伝導の影響が犬きくなり、真空断熱法の効果が発揮で
きな、くなる。By the way, the vacuum insulation method is known as a highly efficient insulation method and is used for liquefied gas tanks, etc., but this method involves filling a metal container with a heat insulating spacer material, evacuating it to a high vacuum, and sealing it. There are nine things you can do. This is done by evacuation to a high vacuum, which lengthens the mean free path of the gas molecules in the heat insulating spacer material and prevents collisions between gas molecules! 7 Something that impedes the conduction of heat, 0.01 kcal
/mh''C or less. However, when using this vacuum insulation material for household refrigerators, etc., the insulation area is very small compared to liquefied gas tanks, etc., so the influence of surface heat conduction of the container is small. This causes the vacuum insulation method to become less effective.
そこで上記真空容器を金属以外の熱伝導率の小さい材質
、例えばプラスチック等で形成する事が考えられるが、
プラスチックはガスの透過が大きく、容器外から透過し
てくる空気のために内部の真空度が劣化し、その断熱性
能が劣化してくるという欠点があった。又プラスチック
は強度的に弱く、たとえ小さな傷であってもひとたび真
空容器に穴がろくと内部の真空が破壊してしまい、断熱
材として役を果たさなくなってしまうという欠点もあっ
た。Therefore, it is conceivable to form the vacuum container with a material other than metal that has low thermal conductivity, such as plastic.
Plastics have the drawback that gas permeation is large, and the degree of vacuum inside the container deteriorates due to air permeating from outside the container, which deteriorates its insulation performance. Another drawback is that plastic is weak in strength, and once a vacuum container is punctured by even a small scratch, the vacuum inside the container will be destroyed and the container will no longer function as a heat insulator.
この空気の透過を抑え、真空容器の強度全増す方法とし
て上記真空容器を有機発泡断熱材中に埋設することが考
えられるが、この場合でも有機発泡断熱材のフオーム中
には発泡材の70ンガス、発泡助材の水と有機発泡断熱
材の原料でるるイノシアネートとの反応により生じた炭
酸ガス、並びに未反応の水が気化した水蒸気等が存在し
、これが長期にわたると有機発泡断熱材中を拡散し徐々
に真空容器内に透過してきて真空度を劣化させるという
問題が残っている。One possible way to suppress this air permeation and increase the strength of the vacuum container is to embed the vacuum container in an organic foam insulation material. There are carbon dioxide gas produced by the reaction between the foaming aid water and Ruru inocyanate, the raw material for the organic foam insulation material, as well as water vapor from unreacted water. The problem remains that it diffuses and gradually permeates into the vacuum container, degrading the degree of vacuum.
通常、真空断熱材が液化ガスタンク等に用いられる場合
、真空容器内に残存するガス分子上吸着(し真空容器内
の真空度を維持する、いわゆるゲッター材として活性炭
が用いられているが、この場合の活性炭は液化ガス等に
より極低温に冷却されてはじめてあらゆるガスを大量に
吸着することができるものであり、本発明のような家庭
用冷蔵庫等に用いる場合は常温で使用することになり、
活性炭の本来の吸着特性として有機ガスのフロンガスは
かなり吸着することはできて°も炭酸ガスや水蒸気のよ
うな極性をもった無機ガスは殆ど吸着することはできな
かった。Normally, when vacuum insulation materials are used in liquefied gas tanks, etc., activated carbon is used as a so-called getter material that adsorbs gas molecules remaining in the vacuum container and maintains the degree of vacuum in the vacuum container. Activated carbon can adsorb large amounts of all kinds of gases only after it is cooled to an extremely low temperature using liquefied gas, etc., and when used in household refrigerators, etc., as in the present invention, it must be used at room temperature.
Activated carbon's original adsorption properties are that it can adsorb a considerable amount of organic gases such as chlorofluorocarbons, but it is hardly able to adsorb polar inorganic gases such as carbon dioxide and water vapor.
本発明はプラスチック容器内に、断熱スペーサー材と共
にゲッター材としてシリカアルミナ系吸着材を充填する
事により、有機発泡断熱材中を拡散しプラスチック容器
を通って透過侵入してくるフロンガス、炭酸ガス、及び
水蒸気等を捕捉しプラスチック容器内の真空度の劣化を
防止し、長期にわたりその真空断熱材の断熱性能を維持
せしめんとしたものである。The present invention fills a plastic container with a silica-alumina adsorbent as a getter material together with a heat insulating spacer material, thereby preventing fluorocarbon gas, carbon dioxide gas, and The purpose is to trap water vapor, etc., prevent deterioration of the vacuum inside the plastic container, and maintain the insulation performance of the vacuum insulation material over a long period of time.
図面は本発明に係る真空断熱構造体の構成全示す断面図
でめる。図において、lはプラスチック容器であり、2
は前記プラスチック容器l内に充填された断熱スペーサ
ー材である。3は前記プラスチック容器Iを埋設してい
る有機発泡断熱材である。4は前記プラスチック容器l
内に前記断熱スペーサー材2と共に充填されたゲスター
材のシリカアルミナ系吸着材である。前記プラスチック
容器l内は高真空に排気されている。The drawings are sectional views showing the entire configuration of the vacuum heat insulating structure according to the present invention. In the figure, l is a plastic container and 2
is a heat insulating spacer material filled in the plastic container l. 3 is an organic foam heat insulating material in which the plastic container I is buried. 4 is the plastic container l
This is a silica-alumina-based adsorbent of Gestar material that is filled together with the heat insulating spacer material 2 inside. The inside of the plastic container 1 is evacuated to a high vacuum.
このプラスチック容器lは、真空断熱材内部を真空に保
つ為のものであり、材質的には種々の熱硬化性樹脂及び
熱可塑性樹脂が使用可能であるが、真空封止全容易なら
しめ、かつ真空容器のガスの透過を小さく抑えるために
金属箔あるいは金属蒸着膜等を有するプラスチックラミ
ネートフィルムが望ましい。This plastic container l is for keeping the inside of the vacuum insulation material in a vacuum, and various thermosetting resins and thermoplastic resins can be used for the material, but it is easy to vacuum seal, and In order to suppress gas permeation through the vacuum container, a plastic laminate film having a metal foil or a metal vapor-deposited film is preferable.
又、断熱スペーサー材2は、前記プラスチック容器1を
大気圧に抗して形状を保つため、及び断熱空間内を小さ
い空間に分割し比較的低い真空度でも真空断熱効果を得
るためのものでらり、材質的にはパーライト・珪酸カル
シウム・ケイソウ士・シリカ等の無機質粉末、あるいは
グラスウール・セラミックウール・ロックウール等の繊
維質、またあるいは発泡ポリウレタン・発泡エリア樹脂
等の有機発泡体が使用可能である。The heat insulating spacer material 2 is used to maintain the shape of the plastic container 1 against atmospheric pressure, and to divide the inside of the heat insulating space into smaller spaces to obtain a vacuum heat insulating effect even at a relatively low degree of vacuum. In terms of materials, inorganic powders such as perlite, calcium silicate, diatomite, and silica, fibers such as glass wool, ceramic wool, and rock wool, and organic foams such as foamed polyurethane and foamed area resin can be used. be.
更に有機発泡断熱材3I′i、前記プラスチック容器l
を透過してくる空気(窒素、酸素、及び水蒸気等)の量
を低減すると共に、真空断熱材の強度を増す動きがある
。この有機発泡断熱材3として、通常用いられている硬
質発泡ポリウレタン等が使 ゛用可能である。この
有機発泡断熱材3の発泡に用いられる発泡材は、フロン
ガスが単独で用いられる事もあるが、多くの場合発泡圧
を下げるため及び生成した7オームの強度を上げるため
に発泡助材として水も同時に添加して使用されている。Furthermore, the organic foam insulation material 3I'i, the plastic container l
There is a movement to reduce the amount of air (such as nitrogen, oxygen, and water vapor) that passes through the vacuum insulation, and to increase the strength of vacuum insulation. As this organic foam heat insulating material 3, commonly used rigid foam polyurethane or the like can be used. In the foaming material used for foaming this organic foam insulation material 3, chlorofluorocarbon gas may be used alone, but in most cases water is added as a foaming aid to lower the foaming pressure and increase the strength of the generated 7 ohm. It is also used by adding it at the same time.
この発泡助材の水は、有機発泡断熱材の原料であるイン
シアネートと反応して炭酸ガスを発生し、この炭酸ガス
と気化したフロンガスとによりフオームが形成され″る
ものである。This foaming aid water reacts with incyanate, which is a raw material for the organic foam insulation material, to generate carbon dioxide gas, and a foam is formed by this carbon dioxide gas and vaporized fluorocarbon gas.
前記シリカアルミナ系吸着材4は前記有機発泡断熱材3
中を拡散し前記プラスチック容器1t−通って徐々に侵
入透過してくるフロンガス、炭酸ガス、及び水蒸気等を
吸着するためのゲッター材であり、これにより前記プラ
スチック容器1を高真 ・空知保つことができるもの
である。The silica alumina adsorbent 4 is the organic foam heat insulating material 3
This is a getter material for adsorbing fluorocarbon gas, carbon dioxide gas, water vapor, etc. that diffuse through the plastic container 1 and gradually enter and permeate, thereby keeping the plastic container 1 at a high vacuum. It is possible.
シリカアルミナ系吸着材は活性炭と異なり、フロノガス
以外にも炭酸ガスや水蒸気のような極性を有した無機ガ
スを吸着することができる為、従来のような活性炭によ
るゲッター材では防げなかった炭酸ガスや水蒸気による
真空度の劣化を防ぐ事ができるものである。Unlike activated carbon, silica-alumina-based adsorbents can adsorb polar inorganic gases such as carbon dioxide and water vapor in addition to fluorogas, so they can absorb carbon dioxide and This can prevent the degree of vacuum from deteriorating due to water vapor.
尚、ゲッター材のシリカアルミナ系吸着材4の封入方法
は、本実施例のように断熱スペーサー材2と混合しても
良いし、シリカアルミナ系吸着材4のみを別製に包装し
て封入しても良いことは言うまでもない。The method for encapsulating the silica-alumina-based adsorbent 4 as a getter material may be by mixing it with the heat-insulating spacer material 2 as in this example, or by separately packaging and encapsulating only the silica-alumina-based adsorbent 4. Needless to say, it's a good thing.
以上のように本発明によると、プラスチック容器内lに
透過してくるフロンガス、炭酸ガス及び水蒸気をゲッタ
ー材のシリカルミナ系吸着材により取り除くことができ
るので、長期にわたり馬具″1 空を維持す
ることができ、長期にわたり品質の安定した高い断熱性
能を有した真空断熱構造体を得ることができるものであ
る。As described above, according to the present invention, since the fluorocarbon gas, carbon dioxide gas, and water vapor that permeate into the plastic container can be removed by the silicalumina-based adsorbent as the getter material, it is possible to maintain the horse harness empty for a long period of time. This makes it possible to obtain a vacuum insulation structure that has stable quality and high insulation performance over a long period of time.
図面は、本発明に係る真空断熱構造体の構成を示す断面
図である。
1・・・プラスチック容器、2・・・断熱スペーサー材
、3・・・有機発泡断熱材、4・・・シリカアルミナ系
吸着材0The drawing is a sectional view showing the configuration of a vacuum insulation structure according to the present invention. 1...Plastic container, 2...Insulating spacer material, 3...Organic foam insulation material, 4...Silica alumina-based adsorbent 0
Claims (1)
、ゲッター材としてシリカアルミナ系吸着材を充填し、
かつ上記プラスチック容器内を真空封止した真空断熱材
を、有機発泡断熱材中に埋設した事を特徴としてなる真
空断熱構造体。1. Fill a plastic container with a silica-alumina adsorbent as a getter material along with a heat insulating spacer material,
A vacuum insulation structure characterized in that a vacuum insulation material that vacuum-seals the inside of the plastic container is embedded in an organic foam insulation material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59223480A JPS61103090A (en) | 1984-10-23 | 1984-10-23 | Vacuum heat-insulating structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59223480A JPS61103090A (en) | 1984-10-23 | 1984-10-23 | Vacuum heat-insulating structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61103090A true JPS61103090A (en) | 1986-05-21 |
Family
ID=16798790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59223480A Pending JPS61103090A (en) | 1984-10-23 | 1984-10-23 | Vacuum heat-insulating structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61103090A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6414996U (en) * | 1987-07-17 | 1989-01-25 | ||
US7833327B2 (en) | 2005-01-28 | 2010-11-16 | Panasonic Corporation | Thermal insulator |
US7988770B2 (en) | 2005-09-26 | 2011-08-02 | Panasonic Corporation | Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator |
-
1984
- 1984-10-23 JP JP59223480A patent/JPS61103090A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6414996U (en) * | 1987-07-17 | 1989-01-25 | ||
US7833327B2 (en) | 2005-01-28 | 2010-11-16 | Panasonic Corporation | Thermal insulator |
US7988770B2 (en) | 2005-09-26 | 2011-08-02 | Panasonic Corporation | Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator |
US8147598B2 (en) | 2005-09-26 | 2012-04-03 | Panasonic Corporation | Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator |
US8152901B2 (en) | 2005-09-26 | 2012-04-10 | Panasonic Corporation | Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator |
US8282716B2 (en) | 2005-09-26 | 2012-10-09 | Panasonic Corporation | Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator |
US8308852B2 (en) | 2005-09-26 | 2012-11-13 | Panasonic Corporation | Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5885682A (en) | Vacuum heat insulation panel | |
US4668551A (en) | Evacuated heat insulation unit and method of manufacturing same | |
US4606196A (en) | Vacuum insulation system | |
JP2008144929A (en) | Heat insulating material for very low temperature and its manufacturing method | |
WO2015186345A1 (en) | Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same | |
JPH10122477A (en) | Vacuum heat insulating body | |
US5399397A (en) | Calcium silicate insulation structure | |
JP2544521B2 (en) | Vacuum insulation panel | |
JPS61103090A (en) | Vacuum heat-insulating structure | |
JPS59225275A (en) | Vacuum heat-insulating material | |
JP2644838B2 (en) | Manufacturing method of heat insulator | |
JPS61103089A (en) | Vacuum heat-insulating structure | |
JPS6124961A (en) | Heat-insulating wall of refrigerator, etc. | |
JPH0763469A (en) | Vacuum heat insulating member | |
JPS61144491A (en) | Vacuum heat-insulating structure | |
JPS59137777A (en) | Heat-insulator pack | |
JPH10160092A (en) | Vacuum heat insulating material | |
JPH08291965A (en) | Vacuum thermal insulating material | |
JPS6165996A (en) | Vacuum heat-insulating structure | |
JPS6165997A (en) | Vacuum heat-insulating structure | |
KR100329475B1 (en) | Vacuum adiabatic panel and manufacturing method thereof | |
JPS6356858B2 (en) | ||
WO2021241617A1 (en) | Vacuum insulation material, and thermally insulating container and thermally insulating wall using same | |
JP2005214341A (en) | Vacuum heat insulating material | |
JPS59140047A (en) | Heat-insulating structure |