JPH0557105B2 - - Google Patents

Info

Publication number
JPH0557105B2
JPH0557105B2 JP58014892A JP1489283A JPH0557105B2 JP H0557105 B2 JPH0557105 B2 JP H0557105B2 JP 58014892 A JP58014892 A JP 58014892A JP 1489283 A JP1489283 A JP 1489283A JP H0557105 B2 JPH0557105 B2 JP H0557105B2
Authority
JP
Japan
Prior art keywords
heat
vacuum
filled
heat insulating
density polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58014892A
Other languages
Japanese (ja)
Other versions
JPS59140046A (en
Inventor
Hiroshi Komeno
Shoichi Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58014892A priority Critical patent/JPS59140046A/en
Publication of JPS59140046A publication Critical patent/JPS59140046A/en
Publication of JPH0557105B2 publication Critical patent/JPH0557105B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は断熱板、特に真空充填断熱板と発泡ポ
リウレタンとの複合断熱構造体に関するものであ
る。 従来例の構成とその問題点 従来、断熱板としてガラス繊維、石綿、珪酸カ
ルシウムなどの無機材料や、発泡ポリウレタン、
発泡ポリスチレンなどの有機材料が知られてい
る。ガラス繊維や珪酸カルシウムなどの無機材料
は耐熱性や機械的強度は良好であるが、しかし熱
伝導率は0.03〜0.05kcal/mh℃で、断熱効果は余
り良くない。低温用保温断熱材としては硬質発泡
ポリウレタンが一般に使用され、0.015kcal/mh
℃の熱伝導率が達成されているが、これ以上の断
熱性能を向上することは容易でない状況にある。
また、液化窒素容器や冷凍庫などの極低温用保冷
材として、二重壁構成の容器の間〓に発泡パーラ
イト等を充填し、0.01Torr以下の高真空に排気
した粉末真空断熱法が知られているが、高真空に
耐える強固な容器を必要とすることが粉末真空断
熱法利用の1つの問題点となつていた。 この対策として、真空容器としてラミネートフ
イルム容器を用いることが提案されている。すな
わち、ラミネートフイルム容器内に断熱材を充填
し、真空に排気して後、熱融着密封を行なつてな
る真空充填断熱板は0.01kcal/mh℃以下の熱伝
導率を持ち優れた断熱特性を示す。一般に、この
ラミネートフイルムは内層に低密度ポリエチレン
(比重0.91〜0.92)などの熱融着層、中間層にポ
リビニルアルコール、ポリ塩化ビニリデン、アル
ミ箔などの気体遮断層、外層にポリエチレンテレ
フタレート、ポリアミドなどの機械的保護層など
によつて構成されるが、このラミネートフイルム
だけでは長期寿命保証が十分でなく、徐々に空気
が侵入し、ラミネートフイルム容器内の圧力が上
昇する結果、断熱特性は時間とともに劣化する。
また、ラミネートフイルム容器は非常に破損しや
すい欠点がある。これらの欠点を改良するため、
真空充填断熱板の周囲を発泡ポリウレタンで被覆
する方法がある。この場合、発泡ポリウレタンの
断熱特性を良くするために、40〜50℃に加熱して
発泡硬化が行なわれるが、このとき硬化発熱が生
じ、発熱温度が100℃に達する。そのため、ラミ
ネートフイルム容器の熱融着層として一般に用い
られている低密度ポリエチレン(比重0.91〜
0.92)が軟化し、熱融着密封が破れ、フイルム容
器内の圧力が上昇して熱伝導率が悪化するという
欠点がある。さらに、中間層に耐気体透過性の優
れたフイルムを構成したとしても、内層の熱融着
層を通つて気体がフイルム容器内に侵入し、圧力
を上昇させる傾向がある。特に低密度ポリエチレ
ンは発泡ポリウレタンの発泡剤であるフロン−11
ガスの透過性が大きく、熱融着層を通じてフロン
−11ガスが内部に侵入し、熱伝導率が悪化すると
いう欠点がある。 発明の目的 本発明は上記問題点を改良するものであり、熱
融着が可能なラミネートフイルム容器内に断熱材
が充填され、真空に排気された真空充填断熱板の
周囲にポリウレタンを注入・発泡・硬化し、被覆
してなる断熱構造体において、断熱特性が優れ、
真空充填断熱板の断熱特性が劣化しない断熱構造
体を提供することを目的とする。 発明の構成 本発明は、熱融着が可能なラミネートフイルム
容器内に断熱材が充填され、真空に排気された真
空充填断熱板の周囲にポリウレタンを注入・発
泡・硬化してなる断熱構造体において、ラミネー
トフイルム容器の熱融着密封層フイルムが高密度
ポリエチレンまたはポリプロピレンであることを
特徴とする断熱構造体である。 本発明によれば、高密度ポリエチレンおよびポ
リプロピレンのフロン−11ガス透過率が小さいた
め、発泡ポリウレタン中に含まれているフロン−
11ガスが真空充填断熱板の内部に侵入することを
抑え、断熱特性の劣化を防ぐことができる。 また、耐熱性が高いため、ポリウレタンの発
泡・硬化時に生じる熱に対して、熱融着部が硬化
することなく、真空漏れによる熱伝導率の劣化が
生じない。 実施例の説明 以下に本発明を図面を参照しながら説明する。 図は本発明の断熱構造体の一実施例を示す基本
構成の断面図である。 図において、1は熱融着層に高密度ポリエチレ
ンまたはポリプロピレンを有するラミネートフイ
ルム容器で、2は熱融着密封部であり、内部に断
熱材3が充填され、断熱材内の空間とラミネート
フイルム容器1の内部は真空に保持された真空充
填断熱板である。4は硬質発泡ポリウレタンであ
り、真空充填断熱板のラミネートフイルム容器1
の外側にポリウレタンが注入・発泡・硬化されて
完全に被覆されている。 断熱材3は、材質に特に制限はないが、シリ
カ、珪藻土、パーライトなどの粉末、ガラス繊
維、セラミツク繊維、ポリエステル繊維などの繊
維集合体、珪酸カルシウム板、発泡プラスチツク
板などの連続気孔成形体、発泡パーライト、シリ
カマイクロバルーンなどの中空球殻状粉末などが
使用され、使用する断熱材の種類によつて真空充
填断熱板の熱伝導率が異なつてくる。 硬質発泡ポリウレタン4は、フロン−11
(CFCl3)が発泡剤として含有されている。 断熱材を収納するラミネートフイルム容器1は
変形可能なフイルム状であり、厚い板状のプラス
チツク容器や金属製の容器では真空封止方法が困
難である。その点、フイルム状のラミネートフイ
ルム容器を使用すると熱融着シール法により容器
の完全密封が容易に行なうことができ、また容器
が真空に排気されたときに、内部に充填されてい
る断熱材の形状にしたがつて容器が充填断熱材に
密着し、真空圧力に耐える利点がある。 本発明の特徴は、このラミネートフイルム容器
の内層の熱融着層として高密度ポリエチレンまた
はポリプロピレンを使用することにある。これは
高密度ポリエチレンおよびポリプロピレンは低密
度ポリエチレンと比べて、フロン−11ガスの透過
性が小さいことを見出したことに起因する。フロ
ン−11ガス透過性が少なくなると、被覆された発
泡ポリウレタン中のフロン−11が熱融着部を通じ
て真空充填断熱板の内部に侵入することが抑えら
れ、熱伝導率の劣化が小さくなる利点を有する。
さらに、これらの高密度ポリエチレンおよびポリ
プロピレンは低密度ポリエチレンと比べて、一般
に軟化温度が高く、ウレタンの発泡硬化時に生じ
る発熱に対して安定で、熱融着層が軟化せず、断
熱特性が劣化しない利点がある。 高密度ポリエチレンとしては、比重が0.94より
大きいものが望ましく、一般に125℃以上の軟化
温度を持つている。比重が0.93よりも小さいもの
は一般に低密度ポリエチレンと言われ、軟化温度
は120℃よりも低い。ポリプロピレンとしては通
常のものが使用可能で、一般に140℃以上の軟化
温度を持つている。 ラミネートフイルムの中間層および外層の材質
としては特に制限はないが、中間層としては、ポ
リビニルアルコール、アルミ箔、ポリ塩化ビニリ
デンなどのガス透過性の小さいフイルムが、外層
としては、ポリエチレンテレフタレート、ポリア
ミド、紙などの機械的強度の強いフイルムなどが
使用される。 以下に具体的な実施例によつてさらに詳しく説
明する。なお本実施例において、熱伝導率の測定
はダイナテツク社のK−マチツク熱伝導率測定装
置を用いて、ASTM−C518に準拠した方法で、
13℃と35℃との温度差における熱伝導率を測定し
た。 実施例 1 発泡パーライト粉砕粉末(平均粒径3μm)を
クラフト紙製袋に充填し、それを熱融着層・高密
度ポリエチレン(比重0.95、軟化温度130℃、厚
さ60μm)、中間層・延伸ポリビニールアルコー
ル(厚さ14μm)保護層ポリエチレンテレフタレ
ート(厚さ25μm)のラミネートフイルム容器に
入れ、これを熱融着密封装置を具備した真空用容
器内に置いて、0.5Torrの真空度に排気した状態
で、フイルム容器の開放部を加熱融着密封を行な
つた後、真空用容器内に外気を導入して大気圧に
戻し、厚さ20mm、横幅250mm、縦幅250mmの真空充
填断熱板を得た。得られた真空充填断熱板を40℃
に保つた成形金型内に置き、フロン−11を含むポ
リウレタン(旭硝子製オートフロス)を注入・発
泡・硬化を行ない、真空充填断熱板の全表面が発
泡ポリウレタンで被覆された厚さ30mm、横幅300
mm、縦幅300mmの断熱構造体を得た。得られた断
熱構造体の性能を第1表に示した。 発泡ウレタンの硬化時に発泡ポリウレタンの表
面温度は110℃に上昇した。得られた断熱構体の
熱伝導率は0.0080kcal/mh℃であつた。また60
日経過後の熱伝導率は0.0082kcal/mh℃であり、
変化量は少ない。 比較例 1 これに対し、低密度ポリエチレン(比重0.91、
軟化温度105℃)、延伸ポリビニルアルコール、ポ
リエチレンテレフタレートの多層ラミネートフイ
ルムを使用して実施例1と同じ方法で得た断熱構
造体の熱伝導率は0.019kcal/mh℃であり、発泡
ポリウレタン単体の熱伝導率である0.015kcal/
mh℃より劣り、内部の真空充填断熱板の熱伝導
率が悪化していることが明らかであつた。 比較例 2 金型温度を15℃に保つて、比較例1と同じ方法
で断熱構造体を作成した。この場合、発泡ポリウ
レタンの被覆時における発熱温度は95℃であつ
た。初期の熱伝導率は0.0088kcal/mh℃である
が、60日経過後には0.0099kcal/mh℃に変化し、
かなりの劣化が認められた。 実施例 2 ガラス繊維板を熱融着層・ポリプロピレン(軟
化温度150℃、厚さ60μm)、中間層・アルミ箔
(厚さ9μm)、保護層・ポリアミド(厚さ25μm)
よりなるラミネート容器に入れ、実施例1と同じ
方法で真空密封および発泡ポリウレタン被覆を行
ない、厚さ30mm、横幅30mm、縦幅300mmの断熱構
造体を得た。 得られた断熱構造体の初期の熱伝導率は
0.0084kcal/mh℃であり、また、60日経過後の
熱伝導率は0.0084kcal/mh℃であり、全く変化
が認められなかつた。 実施例 3 シリカ微粉末をクラフト紙袋に充填し、それを
熱融着層・高密度ポリエチレン(比重0.96、軟化
温度140℃、厚さ60μm)、中間層・アルミ蒸着延
伸ポリビニルアルコール(厚さ23μm)、保護
層・ポリエチレンテレフタレート(厚さ15μm)
よりなるラミネートフイルム容器に入れ、実施例
1と同じ方法で真空密封および発泡ポリウレタン
被覆を行ない、厚さ30mm、横幅300mm、縦幅300mm
の断熱構造体を得た。 得られた断熱構造体の初期の熱伝導率は
0.0071kcal/mh℃であつた。また、60日経過後
の熱伝導率は0.0072kcal/mh℃であり、変化量
は非常に小さい。 参考例 低密度ポリエチレン(比重0.91、厚さ60μm)
高密度ポリエチレン(比重0.96、厚さ60μm)お
よびポリプロピレン(厚さ60μm)のそれぞれの
フイルムのフロン−11ガス透過率をASTM−
D1434に準拠した方法で測定した結果、低密度ポ
リエチレンは450c.c./m2.24h.atm、高密度ポリ
エチレンは45c.c./m2.24h.atm、ポリプロピレン
は8c.c./m2.24h.atmであり、高密度ポリエチレ
ンおよびポリプロピレンのフロン−11ガス透過率
は、低密度ポリエチレンと比べて、小さい値を示
した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a heat insulating board, particularly to a composite heat insulating structure of a vacuum-filled heat insulating board and polyurethane foam. Conventional configurations and their problems Traditionally, inorganic materials such as glass fiber, asbestos, and calcium silicate, foamed polyurethane,
Organic materials such as expanded polystyrene are known. Inorganic materials such as glass fiber and calcium silicate have good heat resistance and mechanical strength, but their thermal conductivity is 0.03 to 0.05 kcal/mh°C, and their insulation effect is not very good. Rigid polyurethane foam is generally used as a heat-retaining insulation material for low temperatures, and has a heat resistance of 0.015kcal/mh.
℃ has been achieved, but it is difficult to further improve the thermal insulation performance.
In addition, as a cold insulator for cryogenic temperatures such as liquefied nitrogen containers and freezers, a powder vacuum insulation method is known in which foamed perlite is filled between containers with a double wall structure and evacuated to a high vacuum of 0.01 Torr or less. However, one problem with using the powder vacuum insulation method is that it requires a strong container that can withstand high vacuum. As a countermeasure to this problem, it has been proposed to use a laminate film container as the vacuum container. In other words, the vacuum-filled insulation board, which is made by filling a laminate film container with insulation material, evacuating it to a vacuum, and then heat-sealing it, has a thermal conductivity of 0.01kcal/mh℃ or less and has excellent insulation properties. shows. Generally, this laminate film has an inner layer made of a heat-adhesive layer such as low-density polyethylene (specific gravity 0.91 to 0.92), an intermediate layer made of a gas barrier layer such as polyvinyl alcohol, polyvinylidene chloride, or aluminum foil, and an outer layer made of polyethylene terephthalate or polyamide. It consists of a mechanical protective layer, etc., but this laminate film alone is not sufficient to guarantee long-term life, and the insulation properties deteriorate over time as air gradually enters and the pressure inside the laminate film container increases. do.
Additionally, laminate film containers have the disadvantage that they are very easily damaged. In order to improve these shortcomings,
There is a method of covering the periphery of a vacuum-filled insulation board with foamed polyurethane. In this case, in order to improve the heat insulation properties of foamed polyurethane, foaming and curing is performed by heating to 40 to 50°C, but at this time curing heat is generated, and the exothermic temperature reaches 100°C. Therefore, low-density polyethylene (specific gravity 0.91~
0.92) becomes soft, the thermal seal is broken, the pressure inside the film container increases, and the thermal conductivity deteriorates. Furthermore, even if the intermediate layer is made of a film with excellent gas permeation resistance, gas tends to enter the film container through the inner heat-sealing layer and increase the pressure. In particular, low-density polyethylene uses Freon-1, a foaming agent for foamed polyurethane.
It has a disadvantage in that it has high gas permeability, allowing Freon-11 gas to enter the interior through the heat-sealing layer, resulting in poor thermal conductivity. Purpose of the Invention The present invention aims to improve the above-mentioned problems by injecting and foaming polyurethane around a vacuum-filled heat-insulating board in which a heat-sealable laminate film container is filled with a heat-insulating material and evacuated to a vacuum.・The heat insulating structure formed by hardening and coating has excellent heat insulating properties,
It is an object of the present invention to provide a heat insulating structure in which the heat insulating properties of a vacuum-filled heat insulating board do not deteriorate. Structure of the Invention The present invention provides a heat insulating structure in which a heat-sealable laminate film container is filled with a heat insulating material, and polyurethane is injected, foamed, and cured around a vacuum-filled heat insulating board that is evacuated. , a heat-insulating structure characterized in that the heat-sealing sealing layer film of the laminate film container is made of high-density polyethylene or polypropylene. According to the present invention, since the Freon-11 gas permeability of high-density polyethylene and polypropylene is low, the Freon-11 gas contained in polyurethane foam is
11 It is possible to suppress gas from entering the inside of the vacuum-filled insulation board and prevent deterioration of the insulation properties. In addition, since it has high heat resistance, the heat-sealed part does not harden against the heat generated when polyurethane foams and hardens, and the thermal conductivity does not deteriorate due to vacuum leakage. DESCRIPTION OF EMBODIMENTS The present invention will be described below with reference to the drawings. The figure is a sectional view of the basic configuration of an embodiment of the heat insulating structure of the present invention. In the figure, 1 is a laminate film container having a heat-sealing layer made of high-density polyethylene or polypropylene, 2 is a heat-sealing sealing part, and the inside is filled with a heat insulating material 3, which connects the space inside the heat insulating material and the laminate film container. The inside of 1 is a vacuum-filled heat insulating board that is kept in a vacuum. 4 is a laminate film container 1 made of rigid polyurethane foam and made of a vacuum-filled insulation board.
Polyurethane is injected, foamed, and cured on the outside to completely cover it. The material of the heat insulating material 3 is not particularly limited, but may include powders such as silica, diatomaceous earth, and perlite, fiber aggregates such as glass fibers, ceramic fibers, and polyester fibers, open-pore molded bodies such as calcium silicate plates, and foamed plastic plates. Hollow spherical powders such as expanded perlite and silica microballoons are used, and the thermal conductivity of vacuum-filled insulation boards varies depending on the type of insulation material used. Rigid polyurethane foam 4 is Freon-11
(CFCl 3 ) is contained as a blowing agent. The laminate film container 1 that houses the heat insulating material is in the form of a deformable film, and it is difficult to vacuum-seal a thick plate-like plastic container or metal container. On this point, if a laminated film container is used, it is easy to completely seal the container using a heat sealing method, and when the container is evacuated, the heat insulating material filled inside can be easily sealed. Depending on the shape, the container adheres closely to the filled insulation material, which has the advantage of being able to withstand vacuum pressure. A feature of the present invention is the use of high-density polyethylene or polypropylene as the inner heat-sealable layer of the laminate film container. This is due to the discovery that high-density polyethylene and polypropylene have lower Freon-11 gas permeability than low-density polyethylene. When the Freon-11 gas permeability decreases, the Freon-11 in the covered polyurethane foam is prevented from penetrating into the vacuum-filled insulation board through the heat-sealed parts, which has the advantage of reducing deterioration of thermal conductivity. have
Furthermore, these high-density polyethylenes and polypropylenes generally have a higher softening temperature than low-density polyethylenes, and are stable against the heat generated when urethane foam hardens, so the heat-adhesive layer does not soften and the insulation properties do not deteriorate. There are advantages. The high-density polyethylene preferably has a specific gravity greater than 0.94 and generally has a softening temperature of 125°C or higher. Polyethylene with a specific gravity lower than 0.93 is generally referred to as low-density polyethylene, and has a softening temperature lower than 120°C. Regular polypropylene can be used, and generally has a softening temperature of 140°C or higher. There are no particular restrictions on the materials for the intermediate and outer layers of the laminate film, but for the intermediate layer, films with low gas permeability such as polyvinyl alcohol, aluminum foil, and polyvinylidene chloride are used, and for the outer layer, polyethylene terephthalate, polyamide, A film with strong mechanical strength, such as paper, is used. A more detailed explanation will be given below using specific examples. In this example, the thermal conductivity was measured using a K-Matic thermal conductivity measuring device manufactured by Dynatek Co., Ltd. in accordance with ASTM-C518.
Thermal conductivity was measured at a temperature difference between 13℃ and 35℃. Example 1 A kraft paper bag was filled with foamed perlite crushed powder (average particle size 3 μm), and then a heat-sealable layer/high-density polyethylene (specific gravity 0.95, softening temperature 130°C, thickness 60 μm), intermediate layer/stretched It was placed in a laminate film container with polyvinyl alcohol (thickness 14 μm) and protective layer polyethylene terephthalate (thickness 25 μm), placed in a vacuum container equipped with a heat sealing device, and evacuated to a vacuum degree of 0.5 Torr. After heating and sealing the open part of the film container, outside air was introduced into the vacuum container to return it to atmospheric pressure, and a vacuum-filled insulation board with a thickness of 20 mm, a width of 250 mm, and a width of 250 mm was installed. Obtained. The resulting vacuum-filled insulation board was heated to 40°C.
Placed in a mold kept at a constant temperature, polyurethane containing Freon-11 (Asahi Glass Autofloss) was injected, foamed, and cured to form a vacuum-filled insulation board with a thickness of 30 mm and a width of 30 mm, with the entire surface covered with foamed polyurethane. 300
A heat insulating structure with a vertical width of 300 mm was obtained. The performance of the obtained heat insulating structure is shown in Table 1. When the polyurethane foam was cured, the surface temperature of the polyurethane foam rose to 110°C. The thermal conductivity of the resulting heat-insulating structure was 0.0080 kcal/mh°C. 60 again
The thermal conductivity after one day is 0.0082kcal/mh℃,
The amount of change is small. Comparative Example 1 On the other hand, low density polyethylene (specific gravity 0.91,
The thermal conductivity of a heat insulating structure obtained in the same manner as in Example 1 using a multilayer laminate film of stretched polyvinyl alcohol and polyethylene terephthalate (softening temperature: 105°C) was 0.019 kcal/mh°C, which was higher than that of foamed polyurethane alone. 0.015kcal/ conductivity
It was clear that the thermal conductivity of the internal vacuum-filled heat insulating board had deteriorated. Comparative Example 2 A heat insulating structure was created in the same manner as in Comparative Example 1, keeping the mold temperature at 15°C. In this case, the exothermic temperature during coating with polyurethane foam was 95°C. The initial thermal conductivity is 0.0088kcal/mh℃, but after 60 days it changes to 0.0099kcal/mh℃,
Considerable deterioration was observed. Example 2 Glass fiber board with heat-adhesive layer: polypropylene (softening temperature: 150°C, thickness: 60 μm), intermediate layer: aluminum foil (thickness: 9 μm), protective layer: polyamide (thickness: 25 μm)
The container was placed in a laminate container made of aluminum, and vacuum-sealed and covered with foamed polyurethane in the same manner as in Example 1 to obtain a heat-insulating structure having a thickness of 30 mm, a width of 30 mm, and a width of 300 mm. The initial thermal conductivity of the obtained insulation structure is
The thermal conductivity after 60 days was 0.0084 kcal/mh°C, with no change observed at all. Example 3 A kraft paper bag is filled with fine silica powder, which is then layered with a heat-adhesive layer: high-density polyethylene (specific gravity 0.96, softening temperature 140°C, thickness 60 μm), and an intermediate layer: aluminum-deposited stretched polyvinyl alcohol (thickness 23 μm). , protective layer/polyethylene terephthalate (thickness 15μm)
Place it in a laminated film container made of aluminum, vacuum seal it and cover it with foamed polyurethane in the same manner as in Example 1, and have a thickness of 30 mm, a width of 300 mm, and a length of 300 mm.
A thermally insulated structure was obtained. The initial thermal conductivity of the obtained insulation structure is
It was 0.0071kcal/mh℃. Furthermore, the thermal conductivity after 60 days was 0.0072 kcal/mh°C, and the amount of change was very small. Reference example Low density polyethylene (specific gravity 0.91, thickness 60μm)
ASTM
As a result of measurement according to D1434, low density polyethylene was 450 c.c./m 2 . 24h.atm, high density polyethylene 45c.c./m 2 . 24h.atm, polypropylene 8c.c./m 2 . 24h.atm, and the Freon-11 gas permeability of high-density polyethylene and polypropylene was smaller than that of low-density polyethylene.

【表】 発明の効果 以上のように本発明は、ラミネートフイルム容
器内に断熱材が充填され、真空に排気された真空
充填断熱板の周囲にポリウレタンが注入・発泡・
硬化され、被覆されてなる断熱構造体において、
内層の熱融着密封層が高密度ポリエチレンまたは
ポリプロピレンであるラミネートフイルム容器で
あることを特徴とする断熱構造体であり、ポリウ
レタンの発泡・硬化時に発熱する温度に対して、
真空充填断熱板の熱融着部が安定で、真空漏れに
よる熱伝導率の劣化が生じることなく、さらに、
熱融着部を通じて、発泡ポリウレタン中のフロン
−11ガスが真空充填断熱板の内部に侵入すること
を抑え、断熱特性の劣化を防ぐことができるな
ど、その実用的価値は極めて大きい。
[Table] Effects of the Invention As described above, the present invention is characterized in that a laminate film container is filled with a heat insulating material, and polyurethane is injected, foamed, and surrounded by a vacuum-filled heat insulating board that is evacuated.
In a heat insulating structure formed by hardening and coating,
It is a heat insulating structure characterized by being a laminate film container whose inner heat-sealing layer is made of high-density polyethylene or polypropylene.
The heat-sealed part of the vacuum-filled insulation board is stable, and there is no deterioration of thermal conductivity due to vacuum leakage.
Its practical value is extremely great, as it can suppress the Freon-11 gas in polyurethane foam from entering the interior of the vacuum-filled insulation board through the heat-sealed part, and prevent deterioration of the insulation properties.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の断熱構造体の基体構成を示す断
面図である。 1…ラミネートフイルム容器、2…熱融着密封
部、3…断熱材、4…硬質発泡ポリウレタン。
The drawing is a sectional view showing the base structure of the heat insulating structure of the present invention. 1... Laminated film container, 2... Heat sealing part, 3... Heat insulating material, 4... Rigid polyurethane foam.

Claims (1)

【特許請求の範囲】 1 熱融着密封が可能なラミネートフイルム容器
内に断熱材が充填され、真空に排気された真空充
填断熱板の周囲にポリウレタンを注入・発泡・硬
化し、かつ前記熱融着密封層フイルムが高密度ポ
リエチレンまたはポリプロピレンを含有するラミ
ネートフイルム容器である断熱構造体。 2 高密度ポリエチレンの密度が0.94g/c.c.以上
である特許請求の範囲第1項記載の断熱構造体。
[Scope of Claims] 1 A heat-sealable laminate film container is filled with a heat-insulating material, and polyurethane is injected, foamed, and cured around a vacuum-filled heat-insulating board that is evacuated, and A heat insulating structure which is a laminate film container in which the adhesive sealing layer film contains high density polyethylene or polypropylene. 2. The heat insulating structure according to claim 1, wherein the high density polyethylene has a density of 0.94 g/cc or more.
JP58014892A 1983-01-31 1983-01-31 Heat-insulating structure Granted JPS59140046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58014892A JPS59140046A (en) 1983-01-31 1983-01-31 Heat-insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58014892A JPS59140046A (en) 1983-01-31 1983-01-31 Heat-insulating structure

Publications (2)

Publication Number Publication Date
JPS59140046A JPS59140046A (en) 1984-08-11
JPH0557105B2 true JPH0557105B2 (en) 1993-08-23

Family

ID=11873650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58014892A Granted JPS59140046A (en) 1983-01-31 1983-01-31 Heat-insulating structure

Country Status (1)

Country Link
JP (1) JPS59140046A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101435A (en) * 1985-10-30 1987-05-11 藤森工業株式会社 Composite packaging material
DE102004028839A1 (en) * 2004-06-16 2005-12-29 Wipak Walsrode Gmbh & Co. Kg Film laminate having at least one diffusion barrier layer and its use in vacuum insulation panels
JP7365064B2 (en) * 2021-07-20 2023-10-19 株式会社トヨックス Multilayer tubular molded body

Also Published As

Publication number Publication date
JPS59140046A (en) 1984-08-11

Similar Documents

Publication Publication Date Title
JPS6117263B2 (en)
US4594279A (en) Heat insulator
US9849405B2 (en) Thermal insulation products and production of thermal insulation products
US20020114937A1 (en) Insulated barriers and methods for producing same
JP2004011705A (en) Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator
JP2008144929A (en) Heat insulating material for very low temperature and its manufacturing method
JPH0254479B2 (en)
JPH0557105B2 (en)
JPH08303685A (en) Vacuum heat insulating body
JPH0563715B2 (en)
WO2015186345A1 (en) Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same
JP3455251B2 (en) Vacuum insulation
JPS6060396A (en) Heat-insulating structure
JPS58136434A (en) Heat-insulating structure and its manufacture
JP2007093164A (en) Refrigerator
JPH06281089A (en) Vacuum heat-insulating material
JPS6410718B2 (en)
JPS58143041A (en) Heat insulating structure
JPH0625448B2 (en) Insulation structure
JPS6311143B2 (en)
JPS61144492A (en) Powder vacuum heat-insulating board
JPS5850393A (en) Composite heat insulating plate
JPS62266296A (en) Heat insulator and manufacture thereof
JPH0383637A (en) Heat insulating structure
JPS6210580A (en) Heat-insulating panel