JPS6335911B2 - - Google Patents

Info

Publication number
JPS6335911B2
JPS6335911B2 JP56063774A JP6377481A JPS6335911B2 JP S6335911 B2 JPS6335911 B2 JP S6335911B2 JP 56063774 A JP56063774 A JP 56063774A JP 6377481 A JP6377481 A JP 6377481A JP S6335911 B2 JPS6335911 B2 JP S6335911B2
Authority
JP
Japan
Prior art keywords
vacuum
film
powder
plastic bag
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56063774A
Other languages
Japanese (ja)
Other versions
JPS57184880A (en
Inventor
Hiroshi Komeno
Ryoichi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56063774A priority Critical patent/JPS57184880A/en
Publication of JPS57184880A publication Critical patent/JPS57184880A/en
Publication of JPS6335911B2 publication Critical patent/JPS6335911B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粉末真空断熱板の製造方法に関するも
のである。 従来、保温保冷用断熱材として、ガラス繊維や
発泡ウレタンなどが使用されている。ガラス繊維
などは耐熱性が良好であるが、その熱伝導率は
0.03〜0.05Kcal/mh℃であり、断熱効果があま
りよくない。また、冷蔵庫などの低温保冷材とし
て硬質ポリウレタンを壁間の間隙に注入して発泡
成形した断熱板が一般に使用されているが、この
硬質ポリウレタンの熱伝導率は0.015Kcal/mh℃
が達成されているが、これ以上断熱特性を向上す
ることは容易でない状況にある。 さらに、液化石油がスタンクや冷凍庫などの保
冷板として、タンク容器を2重壁構成にして、そ
の間隙に発泡パーライト粉末を充填し、真空封止
をする方法が知られ、粉末を密に充填するほど、
また、真空度をよくするほど、断熱効果が向上す
ると言われている。 このような従来より知られている粉末真空断熱
板の製造方法において、一般に知られているパー
ライト粉末は、嵩比重が小さく、0.08g/cm3程度
であり、この軽い粉末を2枚の壁間の間隙に充填
し、この間隙内を真空ポンプを使用して排気真空
を行なう場合、軽いパーライト粉末が真空ポンプ
に吸い寄せられて排出されたり、また、真空ポン
プの排気機能を低下させたりするなど、工業的に
製造する場合に非常に能率が悪いという欠点があ
る。また、粉末を充填する容器としては、高真空
の圧力に耐える機械的強度の強い材質が要求され
るため、一般に鉄などの金属容器が使用され、非
常に重いという欠点がある。さらに容器を高真空
に保つ必要があるが、容器構成材の接合部の気密
性を完全にするためには価格が高くなるなど、工
業的に非常に不利であるという欠点がある。 本発明はこのような従来の粉末真空断熱板の製
造方法にある欠点を除去するものであり、容器内
を真空に排気するときに、充填されている粉末が
真空ポンプ側に吸引されて排出されることがな
く、また真空ポンプの排気機能が低下することな
く、さらに粉末を充填する容器の完全密封が容易
に可能であり、非常に軽量であるなどの利点を有
し、工業的に有利な粉末真空断熱板の製造方法を
提供するものである。 本発明の方法の特徴は、微粉末状の断熱材が充
填されたフイルム状プラスチツク袋を真空用容器
内に置き、前記フイルム状プラスチツク袋内と真
空用容器内とをほぼ同じ真空度になるように排気
し、前記フイルム状プラスチツク袋の開放部を熱
融着密封し、次に真空用容器内を常圧に戻して、
前記フイルム状プラスチツク袋を前記軽量な微粉
末状断熱材に圧縮させて成形することにある。 本発明の方法に使用可能なフイルム状のプラス
チツク容器としては、特に材質についての制限は
ないが、気体透過率が小さくて真空漏れが少な
く、また破壊強度が強く、さらに熱融着密封の容
易なフイルムの袋体の使用が望ましい。たとえば
ポリスチレン、ポリビニルアルコール、ケン化ポ
リビニルアルコール、ナイロン、ポリエステル、
ポリプロピレン、配向性フイルム、アルミニウム
箔、アルミニウム蒸着フイルム、ポリ塩化ビニリ
デンなどの単層あるいは2種以上の積層ラミネー
トフイルムが有効であるが、特にラミネートフイ
ルムを容器に使用することによつて、より優れた
効果を得ることができる。 粉末材料としては、特に材質についての制限は
ないが、発泡パーライトやマイクロバルーンなど
の中空球殻体および比表面積の大きなシリカ、珪
酸カルシウム、珪藻土などの多孔質粉末あるいは
含水珪酸やメチル化含水珪酸などの単粒子径の小
さい微粉末などが望ましく、より優れた断熱効果
を得ることができる。 真空用容器としては、鉄、ステンレススチー
ル、鋳物、ガラスなど、高真空に耐える機械的強
度の強い材質製で、その容器内に熱融着密封装置
を具備しているものが必要である。 熱融着密封装置としては、互いに対向する熱板
を備え、その熱板の間にフイルムを挿入し、熱板
に圧力を加えてフイルムを両面から圧着しながら
熱板を加熱して、そのフイルムの内面を熱融着
し、冷却固化してフイルムを接着するような装置
が必要である。熱板の加熱源としては、抵抗線に
大電流を短時間印加して加熱するインパルス方式
あるいは抵抗線通電方式など通常の加熱方式が利
用することができる。 以下に、本発明を実施例により、さらに詳しく
説明する。なお、この実施例において、熱伝導率
については、ダイナテツク社のK―マチツク熱伝
導率測定装置を用いて、ASTM―C518に準拠し
た方法で、13℃と34℃との温度差における値を測
定した。 実施例 1 シリカ粉末(嵩比重0.11g/cm3、粉末径
0.02μm)446gをポリエチレン、ケン化ポリビニ
ルアルコール、ポリエステル、酸向ナイロンより
なる多層ラミネートフイルム(総フイルム厚
120μm)よりなり、内面がポリエチレン層である
フイルム袋に充填した。次にインパルス方式の熱
融着密封装置の具備した真空用容器(容積20)
内の2本の対向する加熱板の間にフイルム袋の開
放部が位置するように、その粉末の充填されたフ
イルム袋を置いた後、真空ポンプ(排気能力800
/分)を用いて、その真空用容器内を約1Torr
の真空度を排気した。このとき、粉末が充填され
たフイルム袋内も、フイルム袋の開放部を通じて
排気され、真空用容器内と同じ真空度になる。こ
のように、真空用容器内と粉末が充填されたフイ
ルム袋内とを真空に保つた状態で、熱融着密封装
置の互いに対向する2本の加熱板をフイルム袋の
開放部に圧着し、約1秒間大電流を印加した。こ
のとき、フイルム袋の内面のポリエチレンが溶融
して互いに接着される。次に電流を切断した後、
約3秒間、加熱板の加圧を続けて接着部を固化し
た後、対向する加熱板を開いて、充填された粉末
の完全密封を行なつた。次に真空用容器内に外気
を導入して大気圧(760Torr)に戻した後、粉末
が充填されたフイルム袋を取り出して横幅28cm、
縦幅28cm、厚さ3cmの粉末真空断熱板を得た。 上記のような粉末真空断熱板の製造方法におい
て、フイルム袋に充填された粉末が、フイルム袋
の外に排出されることは全く認められなかつた。
また、外観上、フイルム袋は内部充填粉末に強く
吸い寄せられ、粉末に密着し、真空密封が完全で
あることを確認できた。さらに、熱伝導率を測定
した結果、0.005Kcal/mh℃であり、また、10日
間放置後においても熱伝導率は0.005Kcal/mh℃
であり全く変動がなく、真空密封が完全であるこ
とを確認した。 得られた粉末真空断熱板の比重は0.19g/cm3
あり、非常に軽量であつた。 また、上記製造方法に要した時間は約15秒間で
あり、非常に短時間で粉末真空断熱板を製造する
ことができる。 実施例 2 含水珪酸、珪酸カルシウム、珪藻土、発泡パー
ライト、シリカマイクロバルーン、メチル化珪酸
などの粉末、および、ポリエチレン、ポリビニル
アルコール、ポリエステル、配向ポリプロピレ
ン、ポリ塩化ビニリデン、アルミニウム箔、アル
ミニウム蒸着などよりなる多層ラミネート袋を使
用して、実施例1と同じ方法で、横幅28cm、縦幅
28cm、厚さ3cmの形状のそれぞれの粉末真空断熱
板を試作した。 それぞれの場合について、製造過程の状況およ
び得られた粉末真空断熱板の特性を下表に示し
た。
The present invention relates to a method for manufacturing a powder vacuum insulation board. Traditionally, materials such as glass fiber and urethane foam have been used as insulation materials for keeping things warm and cold. Glass fibers have good heat resistance, but their thermal conductivity is
It is 0.03 to 0.05 Kcal/mh℃, and the insulation effect is not very good. In addition, heat insulating boards made by foaming hard polyurethane injected into the gaps between walls are commonly used as low-temperature cold insulation materials for refrigerators, etc., but the thermal conductivity of this hard polyurethane is 0.015 Kcal/mh°C.
has been achieved, but it is not easy to further improve the heat insulation properties. Furthermore, a method is known in which liquefied petroleum is used as a cold insulation board for tanks, freezers, etc. by constructing a double-walled tank container, filling the gap with foamed perlite powder, and vacuum sealing. Moderately,
It is also said that the better the degree of vacuum, the better the insulation effect. In this conventional method for manufacturing powder vacuum insulation boards, the commonly known pearlite powder has a small bulk specific gravity of about 0.08 g/ cm3 , and this light powder is spread between two walls. When filling a gap and evacuating the gap using a vacuum pump, light pearlite powder may be attracted to the vacuum pump and ejected, or the evacuation function of the vacuum pump may be degraded. It has the disadvantage of being extremely inefficient when manufactured industrially. Furthermore, since the container used to fill the powder is required to be made of a material with strong mechanical strength that can withstand high vacuum pressure, metal containers such as iron are generally used, which has the drawback of being extremely heavy. Furthermore, although it is necessary to maintain the container in a high vacuum, it is very disadvantageous from an industrial perspective, such as the high cost required to achieve perfect airtightness at the joints of the container components. The present invention eliminates the drawbacks of the conventional powder vacuum insulation board manufacturing method, and when the inside of the container is evacuated, the filled powder is sucked into the vacuum pump and discharged. It has the advantages of being extremely lightweight, without reducing the evacuation function of the vacuum pump, and making it possible to easily completely seal the container filled with powder, making it industrially advantageous. A method for manufacturing a powder vacuum insulation board is provided. A feature of the method of the present invention is that a film-like plastic bag filled with a finely powdered heat insulating material is placed in a vacuum container, and the inside of the film-like plastic bag and the vacuum container are made to have approximately the same degree of vacuum. The open part of the film-like plastic bag is sealed by heat sealing, and the inside of the vacuum container is returned to normal pressure.
The purpose of the present invention is to compress and mold the film-like plastic bag into the lightweight fine powder heat insulating material. There are no particular restrictions on the material of the film-like plastic container that can be used in the method of the present invention, but it should have low gas permeability, little vacuum leakage, high breaking strength, and easy thermal sealing. It is preferable to use a film bag. For example, polystyrene, polyvinyl alcohol, saponified polyvinyl alcohol, nylon, polyester,
Single-layer or laminated laminate films of two or more materials such as polypropylene, oriented film, aluminum foil, aluminum vapor-deposited film, and polyvinylidene chloride are effective, but in particular, by using laminate films for containers, even better results can be achieved. effect can be obtained. There are no particular restrictions on the material of the powder material, but hollow spherical shells such as foamed perlite and microballoons, porous powders with large specific surface areas such as silica, calcium silicate, and diatomaceous earth, or hydrated silicic acid and methylated hydrated silicic acid, etc. It is preferable to use fine powder with a small single particle size, as it can provide better heat insulation effects. The vacuum container must be made of a material with strong mechanical strength that can withstand high vacuum, such as iron, stainless steel, cast metal, or glass, and must be equipped with a heat sealing device inside the container. The heat sealing device is equipped with hot plates facing each other, a film is inserted between the hot plates, and the hot plate is heated while applying pressure to the hot plate to bond the film from both sides. A device is required to heat-seal the film, cool it and solidify it, and then bond the film. As a heating source for the hot plate, a normal heating method such as an impulse method or a resistance wire energization method, in which a large current is applied to a resistance wire for a short time to heat it, can be used. Hereinafter, the present invention will be explained in more detail with reference to Examples. In this example, thermal conductivity was measured at a temperature difference between 13°C and 34°C using a Dynatek K-Matic thermal conductivity measuring device in accordance with ASTM-C518. did. Example 1 Silica powder (bulk specific gravity 0.11g/cm 3 , powder diameter
0.02μm) 446g into a multilayer laminate film (total film thickness
120 μm) and filled into a film bag with a polyethylene layer on the inside. Next, a vacuum container (volume 20) equipped with an impulse type thermal sealing device
After placing the film bag filled with the powder so that the open part of the film bag is located between the two opposing heating plates in the bag, use a vacuum pump (evacuation capacity 800
/min) to reduce the inside of the vacuum container to approximately 1 Torr.
The vacuum level was evacuated. At this time, the inside of the film bag filled with powder is also evacuated through the open part of the film bag, and the vacuum level becomes the same as the inside of the vacuum container. In this way, while maintaining the vacuum inside the vacuum container and the inside of the film bag filled with powder, the two mutually opposing heating plates of the heat sealing device are pressed to the open part of the film bag, A large current was applied for about 1 second. At this time, the polyethylene on the inner surface of the film bag melts and adheres to each other. Then after cutting off the current,
After continuing to pressurize the hot plate for about 3 seconds to solidify the adhesive portion, the opposing hot plate was opened to completely seal the filled powder. Next, after introducing outside air into the vacuum container and returning it to atmospheric pressure (760 Torr), the film bag filled with powder was taken out and the width was 28 cm.
A powder vacuum insulation board with a vertical width of 28 cm and a thickness of 3 cm was obtained. In the method for manufacturing a powder vacuum insulation board as described above, it was never observed that the powder filled in the film bag was discharged to the outside of the film bag.
In addition, from the appearance, it was confirmed that the film bag was strongly attracted to the internally filled powder and adhered closely to the powder, and that the vacuum seal was complete. Furthermore, as a result of measuring the thermal conductivity, it was 0.005Kcal/mh℃, and even after being left for 10 days, the thermal conductivity was 0.005Kcal/mh℃.
There was no fluctuation at all, confirming that the vacuum seal was perfect. The specific gravity of the obtained powder vacuum insulation board was 0.19 g/cm 3 and was extremely lightweight. Further, the time required for the above manufacturing method is about 15 seconds, and the powder vacuum insulation board can be manufactured in a very short time. Example 2 Powders such as hydrated silicic acid, calcium silicate, diatomaceous earth, expanded perlite, silica microballoons, and methylated silicic acid, and multilayers made of polyethylene, polyvinyl alcohol, polyester, oriented polypropylene, polyvinylidene chloride, aluminum foil, aluminum vapor deposition, etc. Using a laminated bag, use the same method as in Example 1 to make a bag with a width of 28 cm and a height of 28 cm.
We prototyped each powder vacuum insulation board with a shape of 28 cm and a thickness of 3 cm. The following table shows the manufacturing process and the characteristics of the obtained powder vacuum insulation board for each case.

【表】 上表から明らかなように、いずれの試料に関し
ても、フイルム袋内に充填された粉末が外に排出
されることは全く認められなかつた。また外観
上、フイルム袋は内部充填粉末に強く吸い寄せら
れて粉末に密着し、真空密封が完全になされてい
た。さらに、試料作製直後と10日後の熱伝導率を
測定した結果、経時変化はほとんど認められず、
真空密封が完全であることが確認された。 得られた粉末真空断熱板の比重は、いずれも1
g/cm3以下であり、非常に軽量であつた。 また、それぞれの断熱板の真空密封に要した時
間は60秒以内であり、非常に短時間で製造するこ
とができた。 以上の説明から明らかなように、本発明は、前
記断熱材が充填されたフイルム状プラスチツク袋
を、真空用容器内に置き、前記フイルム状プラス
チツク袋内と真空用容器内とを同じ真空度になる
ように排気し、前記フイルム状プラスチツク袋の
開放部を熱融着密封し、次に真空用容器内を常圧
に戻して、前記フイルム状プラスチツク袋を前記
微粉末状断熱材に圧縮させて成形することを特徴
とする粉末真空断熱板の製造方法であり、 (1) 微粉末の使用により、粉末粒子間の接触面積
が小さくなるため、粒子間の接触による熱伝導
が小さくなり、熱伝導率の優れた断熱板を得る
ことができる。 (2) 粉末粒子間の接触部が少ないために、粉末間
の空隙の空気を所定の真空度まで短時間に排気
することができる。 (3) 一般に粉末を密に成形し、その強度を強くす
ることは難かしいが、変形可能なフイルム状プ
ラスチツク袋を使用するため、袋の内部と外側
との圧力差によつて袋が強く内部の粉末側に圧
縮されるために、容易に粉末を密に成形し、ま
た真空断熱板の外形を維持し、強度を得ること
ができる。 (4) 成形後の比重が成形前と比べて大きくなるこ
とから明らかなように、成形後に粉末が圧縮さ
れ、粉末間の空隙が小さくなるために、1Torr
程度の減圧真空度で、高い断熱性能を得ること
ができる。 (5) 真空排気時に、袋の内部と外側の真空度が同
じであるために、粉末が真空ポンプ側に排出さ
れることはなく、また、粉末の圧縮がないため
に空隙内の空気を短時間に排出することができ
る。 などの作用効果を有するものであり、工業的に非
常に有利な製造方法である。
[Table] As is clear from the above table, no powder filled in the film bag was observed to be discharged outside for any of the samples. Also, from the outside, the film bag was strongly attracted to the powder packed inside and adhered tightly to the powder, making it completely vacuum-sealed. Furthermore, as a result of measuring the thermal conductivity immediately after sample preparation and 10 days later, almost no change over time was observed.
It was confirmed that the vacuum seal was complete. The specific gravity of the obtained powder vacuum insulation board is 1
g/cm 3 or less, and was extremely lightweight. Additionally, it took less than 60 seconds to vacuum-seal each heat insulating plate, making it possible to manufacture it in an extremely short time. As is clear from the above description, the present invention provides for placing the film-like plastic bag filled with the heat insulating material in a vacuum container, and maintaining the same degree of vacuum in the film-like plastic bag and the vacuum container. The open part of the film plastic bag is sealed by heat sealing, and the inside of the vacuum container is then returned to normal pressure to compress the film plastic bag into the fine powder heat insulating material. This is a method for producing a powder vacuum insulation board characterized by molding. (1) The use of fine powder reduces the contact area between powder particles, which reduces heat conduction due to contact between particles, and It is possible to obtain a heat insulating board with excellent efficiency. (2) Since there are few contact areas between powder particles, the air in the gaps between the powder particles can be evacuated to a predetermined degree of vacuum in a short time. (3) Generally, it is difficult to mold powder tightly and increase its strength, but since a deformable film-like plastic bag is used, the pressure difference between the inside and outside of the bag makes the bag strong and strong. Because it is compressed into the powder side, it is easy to compact the powder, maintain the external shape of the vacuum insulation board, and obtain strength. (4) As is clear from the fact that the specific gravity after molding is larger than before molding, the powder is compressed after molding and the voids between the powders become smaller, so the 1Torr
High thermal insulation performance can be obtained with a reduced pressure level of about 100 degrees. (5) During evacuation, the degree of vacuum inside and outside the bag is the same, so the powder will not be discharged to the vacuum pump side, and since there is no compression of the powder, the air in the gap will be short-circuited. Can be drained in time. It has the following effects and is an industrially very advantageous manufacturing method.

Claims (1)

【特許請求の範囲】 1 平均粒子径が150μm以下のシリカ、含水珪
酸、珪藻土、パーライト、珪酸カルシウム、メチ
ル珪酸より選ばれる少なくとも1種以上の微粉末
状の断熱材が充填されたフイルム状プラスチツク
袋を真空用容器内に置き、前記フイルム状プラス
チツク袋内と真空用容器内とを同じ真空度になる
ように排気し、前記フイルム状プラスチツク袋の
開放部を熱融着密封し、次に真空用容器内を常圧
に戻して、前記フイルム状プラスチツク袋を前記
微粉末状断熱材に圧縮させて成形することを特徴
とする粉末真空断熱板の製造方法。 2 フイルム状プラスチツク袋が少なくともアル
ミ蒸着されたフイルムであることを特徴とする特
許請求の範囲第1項記載の粉末真空断熱板の製造
方法。
[Scope of Claims] 1. A film-like plastic bag filled with at least one kind of fine powder heat insulating material selected from silica, hydrated silicic acid, diatomaceous earth, perlite, calcium silicate, and methyl silicic acid with an average particle size of 150 μm or less. is placed in a vacuum container, the inside of the film plastic bag and the vacuum container are evacuated to the same degree of vacuum, the open part of the film plastic bag is sealed by heat sealing, and then the vacuum container is A method for manufacturing a powder vacuum insulation board, which comprises returning the inside of the container to normal pressure and compressing the film-like plastic bag into the fine powder insulation material to form the bag. 2. The method for manufacturing a powder vacuum insulation board according to claim 1, wherein the film-like plastic bag is a film coated with at least aluminum vapor.
JP56063774A 1981-04-27 1981-04-27 Manufacture of powder vacuum heat insulating board Granted JPS57184880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56063774A JPS57184880A (en) 1981-04-27 1981-04-27 Manufacture of powder vacuum heat insulating board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56063774A JPS57184880A (en) 1981-04-27 1981-04-27 Manufacture of powder vacuum heat insulating board

Publications (2)

Publication Number Publication Date
JPS57184880A JPS57184880A (en) 1982-11-13
JPS6335911B2 true JPS6335911B2 (en) 1988-07-18

Family

ID=13239048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56063774A Granted JPS57184880A (en) 1981-04-27 1981-04-27 Manufacture of powder vacuum heat insulating board

Country Status (1)

Country Link
JP (1) JPS57184880A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138875A (en) * 1983-01-31 1984-08-09 松下冷機株式会社 Heat-insulating material pack
JPS6071881A (en) * 1983-09-28 1985-04-23 松下電器産業株式会社 Heat-insulating structure
US4636415A (en) * 1985-02-08 1987-01-13 General Electric Company Precipitated silica insulation

Also Published As

Publication number Publication date
JPS57184880A (en) 1982-11-13

Similar Documents

Publication Publication Date Title
EP1344008B1 (en) An insulated unit
JPS6117263B2 (en)
US5076984A (en) Method for fabricating thermal insulation
US4594279A (en) Heat insulator
JPH11159693A (en) Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it
JP4912135B2 (en) Cryogenic insulation and method for producing the same
US6322869B1 (en) Combined polystyrene and polyurethane vacuum insulating panel and the use thereof for producing insulating elements
JPS6335911B2 (en)
JPH0254479B2 (en)
JP2004162914A (en) Vacuum insulation material and its manufacturing method
JPS61144492A (en) Powder vacuum heat-insulating board
JPH0563715B2 (en)
JP2003155651A (en) Vacuum heat insulation material and core material for vacuum heat insulation
JPS58136434A (en) Heat-insulating structure and its manufacture
JPH06159915A (en) Heat insulating door
JP2000283385A (en) Vacuum heat insulating material and manufacture thereof
JPH0625448B2 (en) Insulation structure
JPH0128310B2 (en)
JPS6356858B2 (en)
JPS58143041A (en) Heat insulating structure
JP2000018485A (en) Evacuated insulation panel
JPS608399B2 (en) insulation board
JPH0383637A (en) Heat insulating structure
JPH0755088A (en) Vacuum heat insulating panel
JPH08291965A (en) Vacuum thermal insulating material