JP4671895B2 - Insulation panel, insulation box and method for producing insulation panel - Google Patents

Insulation panel, insulation box and method for producing insulation panel Download PDF

Info

Publication number
JP4671895B2
JP4671895B2 JP2006086843A JP2006086843A JP4671895B2 JP 4671895 B2 JP4671895 B2 JP 4671895B2 JP 2006086843 A JP2006086843 A JP 2006086843A JP 2006086843 A JP2006086843 A JP 2006086843A JP 4671895 B2 JP4671895 B2 JP 4671895B2
Authority
JP
Japan
Prior art keywords
heat insulation
insulation panel
aggregate
shape
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006086843A
Other languages
Japanese (ja)
Other versions
JP2007263186A (en
Inventor
大五郎 嘉本
孝行 中川路
克美 福田
恒 越後屋
久男 横倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006086843A priority Critical patent/JP4671895B2/en
Publication of JP2007263186A publication Critical patent/JP2007263186A/en
Application granted granted Critical
Publication of JP4671895B2 publication Critical patent/JP4671895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷蔵庫等の断熱材に使用する断熱パネル、及びそれを用いた機器に関する。   The present invention relates to a heat insulating panel used for a heat insulating material such as a refrigerator, and an apparatus using the same.

近年、地球温暖化に対する観点から、家電品の消費電力量削減の必要性が望まれている。中でも冷蔵庫,エアコン等は特に消費電力量の多い製品であり、消費電力量削減が地球温暖化対策として必要な状況にある。冷蔵庫を例に挙げると、冷蔵庫の消費電力は、庫内の負荷量が一定であれば、庫内冷却用圧縮機の効率と、庫内からの熱漏洩量に関係する断熱材の断熱性能によってその大部分が決まるため、冷蔵庫の技術開発においては、圧縮機の効率と共に断熱材の性能向上が求められている。   In recent years, from the viewpoint of global warming, the necessity of reducing the power consumption of home appliances is desired. Among them, refrigerators, air conditioners, and the like are products that consume particularly large amounts of power, and it is necessary to reduce power consumption as a measure against global warming. Taking a refrigerator as an example, if the load in the refrigerator is constant, the power consumption of the refrigerator depends on the efficiency of the compressor for cooling in the refrigerator and the heat insulation performance of the heat insulating material related to the amount of heat leakage from the refrigerator. Since the majority of these are determined, in the technical development of the refrigerator, the performance of the heat insulating material is required to be improved together with the efficiency of the compressor.

このような課題を解決する断熱材の一つとして真空断熱材がある。真空断熱材はガスバリア性を有する外包材中に断熱性に優れた繊維形状を持つ物質を入れ、内部を高真空にすることで作製される。   One of the heat insulating materials for solving such problems is a vacuum heat insulating material. A vacuum heat insulating material is produced by putting a substance having a fiber shape excellent in heat insulating properties into an outer packaging material having gas barrier properties and making the inside a high vacuum.

これまで、真空断熱材は平面のみに用いられていたが、近年では、貼り付ける面が曲面形状(R形状)の場合にも対応可能で、且つ断熱性も優れる真空断熱材が求められており、曲げ可能な真空断熱材が提案されている。   Until now, vacuum heat insulating materials have been used only for flat surfaces, but in recent years, vacuum heat insulating materials that can be applied to curved surfaces (R-shaped) and have excellent heat insulating properties have been demanded. Bendable vacuum insulation has been proposed.

特開2002−310384号公報(特許文献1)は、無機繊維集合体の少なくとも一方の面に補強材を積層した芯材とガスバリア性を有する外包材とからなる真空断熱材であって、無機繊維繊維集合体が繊維材料を固形化するための結合材を含まない無機繊維と無機粉体の成形体や無機繊維シートが記載されている。特開2004−197954号公報(特許文献2)には、熱溶着層を有するガスバリア性の外包材と板状の芯材とを有し、芯材の周囲に芯材を間に含まず密着した外包材のみから構成される周辺部が形成された真空断熱材、特に複数の芯材を包含するものが記載されている。特開2004−251460号公報(特許文献3)には、ガスバリア性を有する外皮材に芯材がSiO2 を主成分とし、結合材として作用するものにより結着していない無機繊維のみで形成される真空断熱材であって、シート状への成型のみで形成された無機繊維のみを複数枚積層されているものが記載されている。 Japanese Patent Application Laid-Open No. 2002-310384 (Patent Document 1) is a vacuum heat insulating material comprising a core material in which a reinforcing material is laminated on at least one surface of an inorganic fiber aggregate and an outer packaging material having gas barrier properties. A molded body of inorganic fiber and inorganic powder and an inorganic fiber sheet that do not include a binder for solidifying the fiber material by the fiber assembly are described. Japanese Patent Application Laid-Open No. 2004-197954 (Patent Document 2) has a gas barrier outer packaging material having a heat-welded layer and a plate-shaped core material, and is in close contact with the core material without including a core material therebetween. A vacuum heat insulating material having a peripheral portion formed only of an outer packaging material, particularly including a plurality of core materials is described. In Japanese Patent Application Laid-Open No. 2004-251460 (Patent Document 3), the core material is formed only of inorganic fibers that are not bound by the core material of SiO 2 as a main component and acting as a binding material on the outer skin material having gas barrier properties. A vacuum heat insulating material, in which a plurality of inorganic fibers formed only by molding into a sheet is laminated.

特開2002−310384号公報JP 2002-310384 A 特開2004−197954号公報JP 2004-197954 A 特開2004−251460号公報JP 2004-251460 A

特許文献1に記載された真空断熱材は、少なくとも一方の面に補強材(粉体やシート)を入れ、補強材の間に芯材を入れると、表面性及び剛性を改善できるが、補強材の影響が大きく、曲げた場合にはガスバリア性フィルムへの傷つきや熱伝導率の低減が生じる場合がある。特に真空断熱材貼り付け部の曲面がきつい場合、貼り付けた真空断熱材が元にもどろうとする力によって剥がれたり、真空断熱材と貼り付けた部位の間に間隙ができたりすることから真空断熱材を貼り付ける直前に、真空断熱材の形状を加工しなければならない問題が生ずる。また、時間が経過するにしたがって折り曲げても形状が元にもどってしまう場合がある。さらに、価格の高い繊維分布のピークが1μm以下かつ0.1μm 以上の超極細無機繊維の集合体を重ねて厚みをもたせる必要がある。従って、生産性が低く、高価という課題がある。   The vacuum heat insulating material described in Patent Document 1 can improve surface properties and rigidity by inserting a reinforcing material (powder or sheet) on at least one surface and inserting a core material between the reinforcing materials. When bent, the gas barrier film may be damaged or the thermal conductivity may be reduced. In particular, when the curved surface of the vacuum insulation material is tight, the vacuum insulation is peeled off due to the force of the attached vacuum insulation, or there is a gap between the vacuum insulation and the attached part. Immediately before the material is applied, there arises a problem that the shape of the vacuum heat insulating material must be processed. Further, the shape may return to its original shape even if it is bent as time passes. Furthermore, it is necessary to give a thickness by superimposing aggregates of ultrafine inorganic fibers having a high fiber distribution peak of 1 μm or less and 0.1 μm or more. Therefore, there are problems of low productivity and high cost.

特許文献2に記載された真空断熱材は、形状折り曲げ性と形状保持性がよいものの、芯材と芯材の間の熱溶着部は芯材を間に含まない外包材のみから構成される部分が残るため、その部分の熱伝導率の低減が困難である。   Although the vacuum heat insulating material described in Patent Document 2 has good shape bendability and shape retainability, the heat welded portion between the core material and the core material is a portion composed only of an outer packaging material that does not include the core material. Therefore, it is difficult to reduce the thermal conductivity of the portion.

特許文献3に記載された真空断熱材は、熱伝導率の低減が可能であるものの、複数枚の芯材を用いており、半径の小さい曲面に沿わせて配置することは難しい。また、折り曲げた形状の保持が困難であって、時間が経過するにしたがって形状が元にもどる場合がある。   Although the vacuum heat insulating material described in Patent Document 3 can reduce the thermal conductivity, it uses a plurality of core materials and is difficult to arrange along a curved surface with a small radius. Moreover, it is difficult to hold the bent shape, and the shape may return to its original shape as time passes.

そこで本願発明の目的は、曲面形状に容易に貼り付けが可能であって、熱伝導率の維持も可能な断熱材を提供することにある。   Accordingly, an object of the present invention is to provide a heat insulating material that can be easily attached to a curved surface shape and can maintain heat conductivity.

上記従来の課題を解決するための本願発明の特徴は、芯材と、該芯材を内包するガスバリア性の外包材を有し、該外包材の内部を減圧して封止した断熱パネルであって、前記断熱パネルは、前記外包材に骨材を設け、骨材の少なくとも一部に波状部分を有し、前記断熱パネルの前記外包材に前記骨材由来の凹凸形状を有するものである。
Feature of the present invention for solving the above problems includes a core material having a gas barrier enveloping member for enclosing the core material, there the inside of the outer material in insulation panels sealed by vacuum Te, the insulating panel is provided with a aggregate on the outer material within, which have a corrugated portion to at least a portion of the aggregate, to have a concavo-convex shape from the aggregate to the outer material of the insulating panel It is.

前記骨材は全面が波板状の加工が施されていてもよいが、一部に波板状の加工を施した平面板であってもよい。また、一の断熱パネルに、複数枚の骨材を設けてもよい。   The aggregate may be corrugated like the entire surface, but may be a flat plate partially corrugated. Further, a plurality of aggregates may be provided on one heat insulating panel.

上記本発明によれば、折り曲げて使用した場合にも断熱特性を維持することが可能な断熱パネルを提供可能である。その結果、断熱パネルを貼り付ける面が曲面形状、曲面と平面の組み合わせであっても、優れた断熱特性を有する機器を提供することができる。   According to the present invention, it is possible to provide a heat insulating panel capable of maintaining heat insulating characteristics even when bent and used. As a result, it is possible to provide a device having excellent heat insulating properties even when the surface on which the heat insulating panel is pasted is a curved surface shape or a combination of a curved surface and a flat surface.

以下、本願発明の内容について詳細を説明する。   Details of the present invention will be described below.

上記課題を解決する本発明の特徴は、無機繊維,外包材を有し、外包材を減圧封止されている断熱パネルにおいて、無機繊維の表層または無機繊維内部に波板状の骨材を配したことにある。その結果、波板状の骨材部分を曲げ、全体として曲線形状とした場合にも、外包材の一部に応力を集中させず、ガスバリア性を高めることが可能である。また、表面部に凹凸形状を作製することにより、外包材の余裕部分を形成できる。その結果、断熱パネルを変形させて使用した場合の外包材の断裂等を防止し、断熱特性の長期維持が可能となる。   A feature of the present invention that solves the above problems is that in a heat insulating panel having inorganic fibers and an outer packaging material, and the outer packaging material is sealed under reduced pressure, corrugated aggregates are arranged on the surface layer of the inorganic fibers or inside the inorganic fibers. It is to have done. As a result, even when the corrugated aggregate portion is bent into a curved shape as a whole, it is possible to enhance the gas barrier property without concentrating stress on a part of the outer packaging material. Moreover, the margin part of an outer packaging material can be formed by producing uneven | corrugated shape in the surface part. As a result, it is possible to prevent tearing of the outer packaging material when the heat insulating panel is deformed and used, and to maintain the heat insulating characteristics for a long time.

上記の断熱パネルは、無機繊維と、波板形状を有する骨材とを、外包材の中に入れ、減圧封止し、波板形状を表面部に反映させた凹凸形状を有する断熱パネルとしている。その結果、これらの凹凸部で断熱パネルを曲げることが容易であり、かつ外包材に係る応力を低減できるために断裂や薄膜化を防止し、真空度を維持することが可能である。   The above-mentioned heat insulation panel is a heat insulation panel having an uneven shape in which inorganic fibers and corrugated aggregates are put in an outer packaging material, sealed under reduced pressure, and the corrugated plate shape is reflected on the surface portion. . As a result, it is easy to bend the heat-insulating panel with these uneven portions, and the stress relating to the outer packaging material can be reduced, so that tearing and thinning can be prevented and the degree of vacuum can be maintained.

断熱パネルの形状は、特に限定されず、適用される個所と作業性に応じて各種形状及び厚さのものが提供可能である。   The shape of a heat insulation panel is not specifically limited, The thing of various shapes and thickness can be provided according to the applied location and workability | operativity.

波板状の骨材は、曲線の繰り返し形状のほか、折れ部が線上のプリーツ形状や、矩形形状が連なったものでもよく、蛇腹状がよい。断熱材を使用する装置に応じて、上記の波板状の骨材を、波板状,平板状の組合せや、大小の波形状等からなる骨材に変更してもよい。また、減圧封止後に、立体成形をするとよい。また、外包材中にゲッター剤を入れて、減圧封止することにより断熱性が向上し好ましい。   The corrugated aggregate may have a pleated shape on a line or a rectangular shape in addition to a repetitive shape of a curve, or a bellows shape. Depending on the device using the heat insulating material, the corrugated aggregate may be changed to an aggregate composed of a combination of corrugated and flat shapes, large and small corrugated shapes, and the like. In addition, three-dimensional molding may be performed after sealing under reduced pressure. Further, it is preferable to put a getter agent in the outer packaging material and seal it under reduced pressure to improve heat insulation.

また、波板状骨材は塑性変形性を有する材質とすることが好ましい。骨材としては、アルミ,鉄,銅,SUSのうちいずれか一種又は複合したものを用いることができ、また、有機樹脂を主体とする塑性変形性を有するものを用いることができる。ただし、有機樹脂等のうち、骨材自身よりガスを発生するようなものは真空度の低下に繋がるため好ましくない。   The corrugated aggregate is preferably made of a material having plastic deformability. As the aggregate, any one or a combination of aluminum, iron, copper, and SUS can be used, and an aggregate mainly composed of an organic resin and having plastic deformability can be used. However, organic resins and the like that generate gas from the aggregate itself are not preferable because the degree of vacuum is reduced.

前記波板状骨材の波板形状は、波板の厚さが0.1〜0.2mmで、波板を構成する辺のなす角度が90〜120°であるものが望ましい。角度がより小さくなると、減圧封止の際に外包材に加わる力が大きくガスバリア性が低下する可能性があり、角度がより大きくなると、波板状骨材が外部圧力により変形しやすく、外包材のガスバリア性が低下する場合があるからである。   As for the corrugated shape of the corrugated aggregate, it is desirable that the corrugated sheet has a thickness of 0.1 to 0.2 mm and an angle between sides constituting the corrugated sheet is 90 to 120 °. If the angle is smaller, the force applied to the outer packaging material during decompression sealing may be larger and the gas barrier property may be reduced. If the angle is larger, the corrugated aggregate is easily deformed by external pressure, and the outer packaging material This is because the gas barrier property may be lowered.

無機繊維材はグラスウール,グラスファイバー,アルミナ,シリカアルミナ,シリカ,ロックウール,炭化ケイ素等の結合剤を含まない繊維各種の物を使用できる。ただし、平均繊維径により熱伝導率特性やコストが異なる。   As the inorganic fiber material, various kinds of fibers containing no binder such as glass wool, glass fiber, alumina, silica alumina, silica, rock wool and silicon carbide can be used. However, thermal conductivity characteristics and costs vary depending on the average fiber diameter.

平均繊維径が5μm以上の繊維は、熱伝導率が多少劣るものの安価であり、コストの点で実用化しやすい。繊維径が大きいと、繊維が同一方向に配列して繊維の接触が線に近く、このため接触熱抵抗が小さくなり熱伝導率が高くなると考えられる。   Fibers having an average fiber diameter of 5 μm or more are inexpensive although they have somewhat poor thermal conductivity, and are easy to put into practical use in terms of cost. When the fiber diameter is large, it is considered that the fibers are arranged in the same direction and the contact of the fibers is close to a line.

平均繊維径が3〜5μmの無機繊維は、接触抵抗の他に熱流路がジグザクとなり、熱抵抗が増大して熱伝導率が低くなり、コストも適当で好ましい。   Inorganic fibers having an average fiber diameter of 3 to 5 μm are preferable because the heat flow path is zigzag in addition to the contact resistance, the heat resistance is increased and the thermal conductivity is lowered, and the cost is also appropriate.

平均繊維径が2μm未満の繊維は、熱伝導率が低く好ましい。真空断熱に使用する場合は、繊維集合体を重ねて厚みを得る必要がある。ただし生産性が低く高価である。   Fibers having an average fiber diameter of less than 2 μm are preferable because of low thermal conductivity. When used for vacuum insulation, it is necessary to overlap the fiber assembly to obtain a thickness. However, productivity is low and expensive.

特に、特性及びコストの面より、平均繊維径が3〜5μmの結合剤を含まないグラスウールを用いるとよい。   In particular, glass wool not containing a binder having an average fiber diameter of 3 to 5 μm is preferably used from the viewpoint of characteristics and cost.

芯材の脱水,脱ガスを目的として、ガスバリア性フィルムの挿入前に芯材等にエージング処理を施すことも有効である。この時の加熱処理温度は、最低限脱水が可能であることから110℃以上であることが望ましく、180℃以上がより好ましい。   For the purpose of dehydration and degassing of the core material, it is also effective to subject the core material or the like to aging treatment before inserting the gas barrier film. The heat treatment temperature at this time is preferably 110 ° C. or higher, and more preferably 180 ° C. or higher, since the minimum dehydration is possible.

外包材としては、内部に気密部を設けるために芯材を覆うものであり、材料構成としては特に限定されるものではないが、減圧封止した際に、骨材の形状を反映可能な材質とする必要がある。外包材が剛性を有するものを用いると、折り曲げが困難であり、折り曲げた際の断裂等の原因となる。   The outer packaging material covers the core material in order to provide an airtight part inside, and the material structure is not particularly limited. However, the material can reflect the shape of the aggregate when sealed under reduced pressure. It is necessary to. If the outer packaging material has rigidity, it is difficult to bend, which causes tearing or the like at the time of bending.

外包材としては、ラミネートフィルムを袋状とするものがよく用いられている。衝撃などに対応できる最外層と、ガスバリア性を確保する中間層と、熱融着によって密閉できる最内層を有するものが望ましい。なお、最外層にポリアミド樹脂等を付与することで耐突き刺し性を向上させたり、中間層にアルミニウム蒸着層を有するエチレンービニルアルコール共重合体樹脂を2層設けたりしてもよい。最内層としては、高密度ポリエチレン樹脂,ポリプロピレン樹脂やポリアクリルニトリル樹脂等が挙げられ、シール性やケミカルアタック性等から高密度ポリエチレン樹脂が好ましい。   As the outer packaging material, a laminate film having a bag shape is often used. It is desirable to have an outermost layer that can cope with impacts, an intermediate layer that ensures gas barrier properties, and an innermost layer that can be sealed by thermal fusion. In addition, puncture resistance may be improved by applying a polyamide resin or the like to the outermost layer, or two layers of an ethylene-vinyl alcohol copolymer resin having an aluminum vapor deposition layer may be provided as an intermediate layer. Examples of the innermost layer include high-density polyethylene resin, polypropylene resin, polyacrylonitrile resin, and the like, and high-density polyethylene resin is preferable from the viewpoint of sealing properties and chemical attack properties.

例えば、具体的構成としては、最外層にポリエチレンテレフタレート樹脂,中間層にアルミニウム箔,最内層に高密度ポリエチレン樹脂からなるプラスチックラミネートフィルムや、最外層にポリエチレンテレフタレ−ト樹脂,中間層にアルミニウム蒸着層を有するエチレンービニルアルコール共重合体樹脂,最内層に高密度ポリエチレン樹脂からなるプラスチックラミネートフィルムである。ガスバリア性を向上させ、例えば、最外層にポリアミド,第2層目にポリエチレンテレフタレ−ト樹脂の二層構造とし、中間層にアルミ箔,最内層に高密度ポリエチレン樹脂からなるアルミラミネートフィルムとすることができる。   For example, specific configurations include polyethylene terephthalate resin for the outermost layer, aluminum foil for the intermediate layer, plastic laminate film made of high-density polyethylene resin for the innermost layer, polyethylene terephthalate resin for the outermost layer, and aluminum vapor deposition for the intermediate layer. It is a plastic laminate film made of an ethylene-vinyl alcohol copolymer resin having a layer and a high-density polyethylene resin in the innermost layer. Improve gas barrier properties, for example, a two-layer structure of polyamide for the outermost layer, polyethylene terephthalate resin for the second layer, aluminum foil for the intermediate layer, and an aluminum laminate film made of high-density polyethylene resin for the innermost layer be able to.

真空断熱材の信頼性を更に向上させるために、ゲッター剤を用いることができる。ゲッター剤は、二酸化炭素,酸素,窒素等のガス,水蒸気を吸収するものであればよい。必要に応じてドーソナイト,ハイドロタルサイト,金属水酸化物等のゲッター剤、あるいはモレキュラーシーブス,シリカゲル,酸化カルシウム,ゼオライト,活性炭,水酸化カリウム,水酸化ナトリウム、水酸化リチウム等の水分吸着剤を使用できる。   In order to further improve the reliability of the vacuum heat insulating material, a getter agent can be used. The getter agent only needs to absorb gas such as carbon dioxide, oxygen, nitrogen, and water vapor. Use gettering agent such as dosonite, hydrotalcite, metal hydroxide, etc. or moisture adsorbent such as molecular sieves, silica gel, calcium oxide, zeolite, activated carbon, potassium hydroxide, sodium hydroxide, lithium hydroxide as required. it can.

上記の断熱パネルは、断熱箱体、または断熱板に使用できる。   Said heat insulation panel can be used for a heat insulation box or a heat insulation board.

断熱箱体は、外箱と、内箱とで空間を作製し、その空間内に硬質樹脂フォームを充填されているものであって、硬質樹脂フォームを充填する空間に、上記の断熱パネルを挿入できる。断熱パネルと硬質樹脂フォームを挿入する方法としては、あらかじめ内箱と外箱とで形成した空間に断熱パネルを配設しておき、その後硬質樹脂フォームを注入して一体成型する方法、あるいは断熱パネルと硬質樹脂フォームをあらかじめ一体成型した断熱ボードを作製しておき、その断熱ボードを内箱あるいは外箱に貼り付け又は両者で挟持する等、様々な方法がある。断熱板は、断熱パネルと硬質樹脂フォームとからなる板状物品であって、断熱性能を必要とする物品に適宜使用されるものである。   The heat insulation box is a space made up of an outer box and an inner box, and the space is filled with a hard resin foam, and the above heat insulation panel is inserted into the space filled with the hard resin foam. it can. As a method of inserting the heat insulation panel and the hard resin foam, a method of arranging the heat insulation panel in a space formed in advance by the inner box and the outer box and then injecting the hard resin foam into an integral molding, or the heat insulation panel There are various methods such as preparing a heat insulating board integrally molded with a hard resin foam in advance and attaching the heat insulating board to the inner box or the outer box, or sandwiching them between the two. The heat insulating plate is a plate-shaped article composed of a heat insulating panel and a hard resin foam, and is appropriately used for an article that requires heat insulating performance.

上記の断熱パネルは保温・保冷の必要な各製品に適用できる。例示すれば、冷蔵庫,エアコン,給湯器,電子レンジ,建築物建材,鉄道車両,自動車,医療用検査機器,高温装置等である。特に熱交換部を含み断熱が必要な製品全般に有効である。   The above insulation panel can be applied to each product that needs to be kept warm. Examples include refrigerators, air conditioners, water heaters, microwave ovens, building materials, railway vehicles, automobiles, medical inspection equipment, high-temperature devices, and the like. This is especially effective for products that include heat exchange parts and require heat insulation.

冷蔵庫へ本発明の断熱パネルを適用することにより保温・保冷機能を向上させ、熱漏洩量の低減及び省エネルギー化が期待できる。冷蔵庫には、家庭用及び業務用の冷蔵・冷凍庫の他に、自動販売機,商品陳列棚,商品陳列ケース,保冷庫,クーラーボックス等が含まれる。   By applying the heat insulating panel of the present invention to the refrigerator, the heat insulation / cooling function can be improved, and a reduction in heat leakage and energy saving can be expected. The refrigerator includes a vending machine, a product display shelf, a product display case, a cool box, a cooler box, and the like, in addition to a refrigerator and freezer for home use and commercial use.

また、鉄道車両に適用することにより、車内空間を確保しながら十分な断熱効果を持たせ、結露等の問題解決が期待できる。   Moreover, by applying it to a railway vehicle, it is possible to provide a sufficient heat insulation effect while securing a vehicle interior space and to solve problems such as condensation.

給湯器に用いることで湯温の低下を抑制し、省エネルギー効果が期待できる。
〔実施例〕
以下、本発明の断熱パネル及び該断熱パネルを挿入した冷蔵庫の構造と作製について、図面を参照して説明する。
By using it in a water heater, a decrease in hot water temperature is suppressed, and an energy saving effect can be expected.
〔Example〕
Hereinafter, the structure and production of a heat insulating panel of the present invention and a refrigerator in which the heat insulating panel is inserted will be described with reference to the drawings.

図1(a)に、本発明の断熱パネル1の断面模式図を示す。結合剤を含まない無機繊維材3中に波板状骨材4を挟みこみ、ゲッター剤5と共に外包材2で減圧封止される構成の断熱パネルである。変形させた場合には、図1(b)のように曲げた山・谷部分の角度が変化し、外包材のゆがみが少ない。また、凹部には、減圧封止時に形成される外包材の余裕が存在しているため、変形の影響が吸収できる。   FIG. 1A shows a schematic cross-sectional view of the heat insulation panel 1 of the present invention. It is a heat insulating panel having a configuration in which a corrugated aggregate 4 is sandwiched in an inorganic fiber material 3 that does not contain a binder, and is sealed together with a getter agent 5 under reduced pressure by an outer packaging material 2. When it is deformed, the angle of the peak / valley portion bent as shown in FIG. 1 (b) changes, and the outer packaging material is less distorted. In addition, since there is a margin of the outer packaging material formed at the time of pressure reduction sealing in the concave portion, the influence of deformation can be absorbed.

一方、図2(a)に比較例である従来の断熱パネル6の断面模式図を示す。結合剤を含まない無機繊維材3をゲッター剤5とともに外包材2で減圧封止される構成の断熱パネルである。図2(b)は、従来の断熱パネルを変形させた場合の模式図である。変形困難であると同時に、変形により形状のゆがみ、特に外包材の外側部分に余裕がなくなり、外包材に影響を与える。   On the other hand, the cross-sectional schematic diagram of the conventional heat insulation panel 6 which is a comparative example is shown to Fig.2 (a). It is a heat insulating panel having a configuration in which an inorganic fiber material 3 that does not contain a binder is sealed together with a getter agent 5 under reduced pressure by an outer packaging material 2. FIG.2 (b) is a schematic diagram at the time of deform | transforming the conventional heat insulation panel. It is difficult to deform, and at the same time, the deformation causes deformation of the shape, and in particular, the outer portion of the outer packaging material has no margin and affects the outer packaging material.

図3に本発明で用いた波板状骨材の断面模式図を示す。波板を構成する辺の長さをL
(mm),辺の間の角度をθ(°),板の厚さをd(mm)とする波板状骨材である。波状部分は自由度があり、断熱材を変形することが可能である。中断の平面形状にしてから下段のように湾曲させたり、はじめから湾曲させた骨材を用いて下段の形状とすることもできる。
FIG. 3 shows a schematic cross-sectional view of the corrugated aggregate used in the present invention. Let L be the length of the sides forming the corrugated plate
This corrugated aggregate is (mm), the angle between sides is θ (°), and the thickness of the plate is d (mm). The wavy portion has a degree of freedom and can deform the heat insulating material. It can be curved like the lower stage after making the suspended planar shape, or it can be made the lower stage shape using aggregates curved from the beginning.

図4(a)に、本発明断熱パネル1を挿入した断熱箱体8の斜視模式図を示す。鉄板をプレス成形した箱体9の内面側に、一部に波状形状を有する骨材を入れた断熱パネル1を挿入し、空隙部分には硬質ポリウレタンフォーム7を発泡充填する構成の断熱箱体である。断熱パネルは作製する際に、波板状骨材と平板状骨材とを組み合わせた骨材を使用し、(b)のように一部を折り曲げて立体成形したものを用いている。   The perspective schematic diagram of the heat insulation box 8 which inserted this invention heat insulation panel 1 in Fig.4 (a) is shown. A heat insulating panel 1 in which a heat insulating panel 1 in which an aggregate having a wavy shape is inserted is inserted into an inner surface side of a box 9 formed by press forming an iron plate, and a hard polyurethane foam 7 is foam-filled in a gap portion. is there. When the heat insulation panel is manufactured, an aggregate obtained by combining corrugated aggregates and flat aggregates is used, and a part formed by three-dimensionally bending a part as shown in (b) is used.

本発明の断熱パネルを、骨材形状等を変化させて作製し、形状折り曲げ性,形状保持性,熱伝導率及び熱伝導率の径時劣化を確認した。結果を表1に示す。   The heat insulation panel of the present invention was produced by changing the aggregate shape and the like, and the shape bending property, shape retention property, thermal conductivity, and thermal deterioration of the thermal conductivity were confirmed. The results are shown in Table 1.

Figure 0004671895
以下、実施例及び比較例を詳細に説明する。
Figure 0004671895
Hereinafter, examples and comparative examples will be described in detail.

実施例1の断熱パネル11は以下のように作製した。   The heat insulation panel 11 of Example 1 was produced as follows.

平均繊維径が3μmのグラスウール(大きさ:200mm×200mm×10mm)中に波板状骨材(骨材形状:L=5mm,θ=90°,板の厚さ=0.1mm)を挟み、恒温層を用いて180℃で1時間のエージング処理を行った後、ガスバリア性フィルムからなる外包材2の中に入れ、更にガスを吸着するゲッター剤4(モレキュラーシーブス13X/活性炭)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、断熱パネルの内部圧力が1.3Paになるまで排気した後、端部をヒートシールで封止した。   A corrugated aggregate (aggregate shape: L = 5 mm, θ = 90 °, plate thickness = 0.1 mm) is sandwiched between glass wool having an average fiber diameter of 3 μm (size: 200 mm × 200 mm × 10 mm), After aging treatment at 180 ° C. for 1 hour using a thermostatic layer, it is placed in an outer packaging material 2 made of a gas barrier film, and further filled with a getter agent 4 (molecular sieves 13X / activated carbon) that adsorbs gas. After exhausting until the internal pressure of the heat insulation panel became 1.3 Pa for 10 minutes with the rotary pump of the packaging machine and 10 minutes with the diffusion pump, the ends were sealed with heat seal.

このようにして得られた断熱パネル11(厚み:約10mm)の熱伝導率について、英弘精機(株)製のAUTO−Λを用いて10℃で測定した。初期熱伝導率は2.0mW/m・Kを示した。   The heat conductivity of the heat insulating panel 11 (thickness: about 10 mm) obtained in this way was measured at 10 ° C. using AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. The initial thermal conductivity was 2.0 mW / m · K.

形状折り曲げ性は、曲げ試験機を用いて、試験条件(速度:10mm/min ,支点間距離:100mm(支持台及び圧子はΦ20mmの丸棒),変位量:40mm)での最大曲げ荷重
(N)を測定し評価した。その結果、形状折り曲げ性は70.9Nであった。
The shape bendability can be determined by using a bending tester with the maximum bending load (N) under the test conditions (speed: 10 mm / min, distance between fulcrums: 100 mm (support and indenter are round bars of Φ20 mm), displacement: 40 mm). ) Was measured and evaluated. As a result, the shape bendability was 70.9N.

形状保持性は4h経過後の曲げ部分の保持状態を見た。保持前の形状から変化しておらず、形状保持性は良好であった。   As for shape retention, the bent state was observed after 4 hours. The shape was not changed from the shape before holding, and the shape holding property was good.

作製した断熱パネルを折り曲げた状態で恒温槽中に入れ、断熱性の耐久試験を行った。70℃の温度で30日間放置した後、熱伝導率を測定した。その結果、3.0mW/m・Kを示した。   The manufactured heat insulation panel was folded and placed in a thermostatic bath, and a heat insulation durability test was performed. After leaving at 70 ° C. for 30 days, the thermal conductivity was measured. As a result, it was 3.0 mW / m · K.

一方、比較例1として、上記の骨材をいれずに実施例1と同様の断熱パネルを作製した。その結果、形状折り曲げ性は124Nで曲げにくかった。また、曲げた後の形状は保持されず、形状保持性は不良であった。また、初期熱伝導率は2.0mW/m・K を示した。耐久試験後の断熱性は7.8mW/m・Kであった。   On the other hand, as Comparative Example 1, a heat insulating panel similar to that of Example 1 was produced without using the above-mentioned aggregate. As a result, the shape bendability was difficult to bend at 124N. Moreover, the shape after bending was not hold | maintained and shape retention property was unsatisfactory. The initial thermal conductivity was 2.0 mW / m · K. The heat insulation after the durability test was 7.8 mW / m · K.

波板状骨材を用いない場合、折り曲げ加工を施した際の応力により、外包材が薄くなったり、微小な亀裂等が発生したりして、ガスバリア性が低下し、断熱パネル内の真空度が低下することにより、熱伝導率の径時劣化を引き起こすと思われる。   When corrugated aggregate is not used, the outer packaging material becomes thin or micro cracks occur due to the stress at the time of bending, and the gas barrier property is lowered, and the degree of vacuum in the heat insulation panel It is thought that the deterioration of the thermal conductivity over time is caused by the decrease of.

上記のとおり、骨材を入れた断熱パネルにより、折り曲げ部分にも断熱効果があり、かつ熱伝導率の劣化が抑制される。断熱パネル作製の際、外包材が波板状骨材の形状を反映することで、折り曲げ加工を施した際も外包材に過度の応力が加わっておらず、熱伝導率の経時劣化が抑制されていることが明らかとなった。また、形状折り曲げ性と形状保持性が改善できた。従って、折り曲げた形状を維持することが容易で、取り扱いやすい断熱パネルを提供できる。   As described above, the heat-insulating panel containing the aggregate has a heat-insulating effect at the bent portion, and the deterioration of the thermal conductivity is suppressed. When making insulation panels, the outer packaging material reflects the shape of the corrugated aggregate, so that excessive stress is not applied to the outer packaging material even when it is bent, and deterioration of thermal conductivity over time is suppressed. It became clear that. In addition, shape bendability and shape retention were improved. Therefore, it is easy to maintain the bent shape, and an easy-to-handle heat insulation panel can be provided.

実施例1のθを120°に変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.2mW/m・Kを示し、形状折り曲げ性は82.9Nであった。形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は3.2mW/m・K であり、経時劣化は抑制されていた。   The same heat insulation panel was produced by changing θ in Example 1 to 120 °. As a result, the initial thermal conductivity was 2.2 mW / m · K, and the shape bendability was 82.9N. The shape retention was good. The thermal conductivity after the same durability test as in Example 1 was 3.2 mW / m · K, and the deterioration with time was suppressed.

実施例1の骨材のLの大きさを10mmに変更し、同様の実験を行った。その結果、初期熱伝導率は2.1mW/m・Kを示し、形状折り曲げ性は46.3Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は3.2mW/m・K であり、経時劣化は抑制されていた。   The same experiment was performed by changing the size of L of the aggregate of Example 1 to 10 mm. As a result, the initial thermal conductivity was 2.1 mW / m · K, the shape bendability was 46.3 N, and the shape retention was good. The thermal conductivity after the same durability test as in Example 1 was 3.2 mW / m · K, and the deterioration with time was suppressed.

実施例1の骨材の、L=10mm,θ=120°に変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.1mW/m・Kを示し、形状折り曲げ性は61.1Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は3.2mW/m・Kを示し経時劣化は抑制されていた。   The aggregate of Example 1 was changed to L = 10 mm and θ = 120 °, and a similar heat insulation panel was produced. As a result, the initial thermal conductivity was 2.1 mW / m · K, the shape bendability was 61.1 N, and the shape retention was good. The thermal conductivity after the durability test similar to that in Example 1 was 3.2 mW / m · K, and the deterioration with time was suppressed.

実施例1の骨材形状のL=20mmに変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.2mW/m・Kを示し、形状折り曲げ性は74.5N で、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は2.9mW/m・K を示し、経時劣化は抑制されていた。   The aggregate shape of Example 1 was changed to L = 20 mm, and a similar heat insulation panel was produced. As a result, the initial thermal conductivity was 2.2 mW / m · K, the shape bendability was 74.5 N, and the shape retention was good. The thermal conductivity after the durability test as in Example 1 was 2.9 mW / m · K, and the deterioration with time was suppressed.

実施例1の骨材形状をL=20mm,θ=120°に変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.2mW/m・Kを示し、形状折り曲げ性は95.4Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は3.1mW/m・Kを示し、経時劣化は抑制されていた。   The aggregate shape of Example 1 was changed to L = 20 mm and θ = 120 °, and a similar heat insulation panel was produced. As a result, the initial thermal conductivity was 2.2 mW / m · K, the shape bendability was 95.4 N, and the shape retention was good. The thermal conductivity after the durability test as in Example 1 was 3.1 mW / m · K, and the deterioration with time was suppressed.

実施例1の骨材形状を板の厚さ=0.2mm に変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.2mW/m・Kを示し、形状折り曲げ性は113.6Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は3.0mW/m・Kを示し、経時劣化は抑制されていた。   The aggregate shape of Example 1 was changed to plate thickness = 0.2 mm, and a similar heat insulating panel was produced. As a result, the initial thermal conductivity was 2.2 mW / m · K, the shape bendability was 113.6 N, and the shape retention was good. The thermal conductivity after the durability test similar to that of Example 1 was 3.0 mW / m · K, and the deterioration with time was suppressed.

実施例1の骨材形状をθ=120°,板の厚さ=0.2mmに変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.2mW/m・Kを示し、形状折り曲げ性は
106.9N で、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は3.2mW/m・Kを示し、経時劣化は抑制されていた。
The aggregate shape of Example 1 was changed to θ = 120 ° and the plate thickness = 0.2 mm, and a similar heat insulation panel was produced. As a result, the initial thermal conductivity was 2.2 mW / m · K, the shape bendability was 106.9 N, and the shape retention was good. The thermal conductivity after the durability test similar to that of Example 1 was 3.2 mW / m · K, and the deterioration with time was suppressed.

実施例1の骨材形状をL=10mm,板の厚さ=0.2mm に変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.1mW/m・K を示し、形状折り曲げ性は81.6Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は.2mW/m・Kを示し、経時劣化は抑制されていた。   The aggregate shape of Example 1 was changed to L = 10 mm and the plate thickness = 0.2 mm, and a similar heat insulation panel was produced. As a result, the initial thermal conductivity was 2.1 mW / m · K, the shape bendability was 81.6 N, and the shape retention was good. The thermal conductivity after the durability test similar to that of Example 1 was .2 mW / m · K, and the deterioration with time was suppressed.

実施例1の骨材形状をL=10mm,θ=120°,板の厚さ=0.2mmに変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.1mW/m・Kを示し、形状折り曲げ性は89.3Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は3.0mW/m・Kを示し、経時劣化は抑制されていた。   The aggregate shape of Example 1 was changed to L = 10 mm, θ = 120 °, and plate thickness = 0.2 mm, and a similar heat insulating panel was produced. As a result, the initial thermal conductivity was 2.1 mW / m · K, the shape bendability was 89.3 N, and the shape retention was good. The thermal conductivity after the durability test similar to that of Example 1 was 3.0 mW / m · K, and the deterioration with time was suppressed.

実施例1の骨材形状をL=20mm,板の厚さ=0.2mm に変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.2mW/m・Kを示し、形状折り曲げ性は74.5Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は3.1mW/m・Kを示し、経時劣化は抑制されていた。   The aggregate shape of Example 1 was changed to L = 20 mm and the plate thickness = 0.2 mm, and a similar heat insulation panel was produced. As a result, the initial thermal conductivity was 2.2 mW / m · K, the shape bendability was 74.5 N, and the shape retention was good. The thermal conductivity after the durability test as in Example 1 was 3.1 mW / m · K, and the deterioration with time was suppressed.

実施例1の骨材形状をL=20mm,θ=120°,板の厚さ=0.2mm に変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.3mW/m・K を示し、形状折り曲げ性は116Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は3.1mW/m・Kを示し、経時劣化は抑制されていた。   The aggregate shape of Example 1 was changed to L = 20 mm, θ = 120 °, and plate thickness = 0.2 mm to produce a similar heat insulating panel. As a result, the initial thermal conductivity was 2.3 mW / m · K, the shape bendability was 116 N, and the shape retention was good. The thermal conductivity after the durability test as in Example 1 was 3.1 mW / m · K, and the deterioration with time was suppressed.

実施例3の断熱パネルのグラスウールを平均繊維径5.5μm のグラスウールに変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は4.2mW/m・K を示し、形状折り曲げ性は84.5Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は5.3mW/m・Kを示した。   The glass wool of the heat insulation panel of Example 3 was changed to glass wool having an average fiber diameter of 5.5 μm to produce a similar heat insulation panel. As a result, the initial thermal conductivity was 4.2 mW / m · K, the shape bendability was 84.5 N, and the shape retention was good. The thermal conductivity after the same durability test as in Example 1 was 5.3 mW / m · K.

このことから、平均繊維径の大きなグラスウールを用いた場合、グラスウールの特性変動に伴い初期熱伝導率が大きな値となるが、形状の保持は可能であった。   From this, when glass wool having a large average fiber diameter is used, the initial thermal conductivity becomes a large value along with the characteristic fluctuation of the glass wool, but the shape can be maintained.

実施例3の断熱パネルの骨材形状を板の厚さ=0.3mm に変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.2mW/m・Kを示し、形状折り曲げ性は139.8Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は3.0mW/m・Kを示し経時劣化は抑制されていた。   The aggregate shape of the heat insulation panel of Example 3 was changed to a plate thickness = 0.3 mm, and a similar heat insulation panel was produced. As a result, the initial thermal conductivity was 2.2 mW / m · K, the shape bendability was 139.8 N, and the shape retention was good. The thermal conductivity after the durability test similar to that in Example 1 was 3.0 mW / m · K, and the deterioration with time was suppressed.

このことから、骨材の厚さを0.3(mm) とした場合、曲げ加工時の最大荷重が波板状骨材を用いない場合と比較して大きな値となり曲げ加工性が低下するものの、形状保持性は良好である。   Therefore, when the aggregate thickness is 0.3 (mm), the maximum load during bending is larger than when no corrugated aggregate is used, but bending workability is reduced. The shape retention is good.

実施例3の断熱パネルの骨材形状をθ=130°に変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は3.3mW/m・Kを示し、形状折り曲げ性は97.6Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は9.0mW/m・Kを示した。   The aggregate shape of the heat insulation panel of Example 3 was changed to θ = 130 °, and a similar heat insulation panel was produced. As a result, the initial thermal conductivity was 3.3 mW / m · K, the shape bendability was 97.6 N, and the shape retention was good. The thermal conductivity after the durability test similar to that in Example 1 was 9.0 mW / m · K.

このことから、波板状骨材の辺をなす角度を130°とした場合は、減圧封止後に外部からの圧力により波板状骨材が変形し、平らな状態となってしまうため外包材が波板状骨材の形状を反映しても折り曲げ加工時を施した際に外包材に過度の応力が加わり、外包材のガスバリア性が低下し、断熱パネル内の真空度が低下することにより、熱伝導率の径時劣化を引き起こすことが明らかとなった。   Therefore, when the angle forming the side of the corrugated aggregate is 130 °, the corrugated aggregate is deformed and flattened by external pressure after sealing under reduced pressure. Even if it reflects the shape of corrugated aggregate, excessive stress is applied to the outer packaging material when bending is performed, the gas barrier property of the outer packaging material decreases, and the degree of vacuum in the heat insulation panel decreases. It has been clarified that the thermal conductivity causes deterioration over time.

実施例3の断熱パネルの骨材形状を板の厚さ=0.05mmに変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.4mW/m・Kを示し、形状折り曲げ性は
108Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は9.2mW/m・Kを示した。
The aggregate shape of the heat insulation panel of Example 3 was changed to the plate thickness = 0.05 mm, and a similar heat insulation panel was produced. As a result, the initial thermal conductivity was 2.4 mW / m · K, the shape bendability was 108 N, and the shape retention was good. The thermal conductivity after the durability test as in Example 1 was 9.2 mW / m · K.

このことから、波板状骨材の厚さを0.05(mm)とした場合は、減圧封止後に外部からの圧力により波板状骨材が変形し、平らな状態となってしまうため外包材が波板状骨材の形状を反映しても折り曲げ加工時を施した際に外包材に過度の応力が加わり、外包材のガスバリア性が低下し、断熱パネル内の真空度が低下することにより、熱伝導率の径時劣化を引き起こすことが明らかとなった。   For this reason, when the thickness of the corrugated aggregate is 0.05 (mm), the corrugated aggregate is deformed and flattened by external pressure after sealing under reduced pressure. Even if the outer packaging material reflects the shape of the corrugated aggregate, excessive stress is applied to the outer packaging material when bending is performed, the gas barrier property of the outer packaging material decreases, and the degree of vacuum in the heat insulation panel decreases. As a result, it was revealed that the thermal conductivity was deteriorated with time.

実施例3の断熱パネルの骨材形状をθ=80°に変更し、同様の断熱パネルを作製した。その結果、初期熱伝導率は2.3mW/m・Kを示し、形状折り曲げ性は71.8Nで、形状保持性は良好であった。実施例1と同様の耐久試験後の熱伝導率は8.9mW/m・Kを示した。   The aggregate shape of the heat insulation panel of Example 3 was changed to θ = 80 °, and a similar heat insulation panel was produced. As a result, the initial thermal conductivity was 2.3 mW / m · K, the shape bendability was 71.8 N, and the shape retention was good. The thermal conductivity after the durability test as in Example 1 was 8.9 mW / m · K.

このことから、波板状骨材の辺をなす角度を80°とした場合は、骨材の辺をなす角度が小さいため減圧封止の際に外包材に過度の応力が加わり、外包材のガスバリア性が低下し、断熱パネル内の真空度が低下することにより、熱伝導率の径時劣化を引き起こすことが明らかとなった。   Therefore, when the angle forming the side of the corrugated aggregate is set to 80 °, the angle forming the side of the aggregate is small, so excessive stress is applied to the outer packaging material at the time of decompression sealing, and the outer packaging material It has been clarified that the gas barrier property is lowered and the degree of vacuum in the heat insulating panel is lowered, thereby causing deterioration of the thermal conductivity with time.

本発明の断熱パネル1を冷蔵庫の箱体や扉部分に用いる例を示す。   The example which uses the heat insulation panel 1 of this invention for the box or door part of a refrigerator is shown.

冷蔵庫は、断熱パネル及びその他の断熱材により断熱されている。冷蔵庫と、外気温との温度差が特に大きいのは、コンプレッサー周辺部と、冷蔵庫背面の内箱10の外面側である。この部位に本発明の断熱パネルを使用することが有効である。   The refrigerator is insulated by a heat insulating panel and other heat insulating materials. The temperature difference between the refrigerator and the outside air temperature is particularly large between the compressor peripheral part and the outer surface side of the inner box 10 on the back of the refrigerator. It is effective to use the heat insulation panel of the present invention at this site.

断熱パネルは波板状骨材単独又は波板状骨材と平板状骨材を組み合わせて作製したもの、及び従来の平面状のものを用いた。   The heat insulation panel used was a corrugated aggregate alone or a combination of corrugated aggregate and flat aggregate, and a conventional flat panel.

箱体9にポリオールとイソシアネートを、高圧発泡機を用いて注入充填して冷蔵庫の断熱材を作製した。発泡断熱材の硬質ポリウレタンフォーム7は、ポリオールとして、平均水酸基価が450のm−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを40重量部、平均水酸基価が470のo−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを30重量部、平均水酸基価が380のo−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを30重量部の混合ポリオール成分100重量部に、シクロペンタン15重量部に水1.5 部及び反応触媒としてテトラメチルヘキサメチレンジアミン1.2 重量部とトリメチルアミノエチルピペラジン2部、整泡剤として有機シリコーン化合物X−20−1614を2重量部、イソシアネート成分としてミリオネートMRのジフェニルメタンイソシアネート多核体を125部用いて発泡充填した。   The box 9 was filled with polyol and isocyanate using a high-pressure foaming machine to produce a heat insulating material for the refrigerator. Rigid polyurethane foam 7 of foam insulation is 40 parts by weight of polyether polyol obtained by adding propylene oxide to m-tolylenediamine having an average hydroxyl value of 450 as an polyol, and o-tolylenediamine having an average hydroxyl value of 470. 30 parts by weight of polyether polyol added with propylene oxide, 30 parts by weight of polyether polyol added with propylene oxide to o-tolylenediamine having an average hydroxyl value of 380, 100 parts by weight of mixed polyol component, 15 parts by weight of cyclopentane 1.5 parts of water and 1.2 parts by weight of tetramethylhexamethylenediamine as a reaction catalyst and 2 parts of trimethylaminoethylpiperazine as a reaction catalyst, 2 parts by weight of an organic silicone compound X-20-1614 as a foam stabilizer, and a millionate as an isocyanate component MR 125 parts of diphenylmethane isocyanate polynuclear body was used for foam filling.

上記の断熱後の冷蔵庫の熱漏洩量及び消費電力量を測定した。冷蔵庫の熱漏洩量は、冷蔵庫の動作状態と反対の温度条件を設定し庫内からの熱漏洩量として測定を行った。具体的には、−10℃の恒温室内に冷蔵庫を設置し、庫内温度を所定の測定条件(温度差)になるようヒータにそれぞれ通電し冷蔵庫の消費電力と冷却性能を比較する温度条件下で測定した。冷蔵庫の消費電力量はJIS C9801測定基準により測定を行った。その結果、断熱パネル1を挿入しなかった冷蔵庫と比べて、熱漏洩量で12%、消費電力量で
25%低減できる冷蔵庫を提供できた。
The amount of heat leakage and power consumption of the refrigerator after the heat insulation was measured. The amount of heat leakage of the refrigerator was measured as the amount of heat leakage from the interior by setting the temperature condition opposite to the operation state of the refrigerator. Specifically, a refrigerator is installed in a temperature-controlled room at −10 ° C., and the temperature conditions for comparing the power consumption and the cooling performance of the refrigerator by energizing the heaters so that the inside temperature becomes a predetermined measurement condition (temperature difference). Measured with The power consumption of the refrigerator was measured according to the JIS C9801 measurement standard. As a result, it was possible to provide a refrigerator capable of reducing heat leakage by 12% and power consumption by 25% compared to a refrigerator without the insulation panel 1 inserted.

なお、上記のポリウレタンフォームは、本発明の断熱材とともに、冷蔵庫等をはじめとし、断熱箱体又は断熱板に使用することが可能である。   In addition, said polyurethane foam can be used for a heat insulation box or a heat insulation board including a refrigerator etc. with the heat insulating material of this invention.

ここで、硬質樹脂フォームとは、例えば硬質ウレタンフォーム,フェノールフォームやスチレンフォーム等が例示される。この中で、シクロペンタン及び水を混合発泡剤とする硬質ポリウレタンフォームが好ましい。   Here, examples of the hard resin foam include hard urethane foam, phenol foam, and styrene foam. Among these, a rigid polyurethane foam using cyclopentane and water as a mixed foaming agent is preferable.

硬質ポリウレタンフォームは、ポリオールを基本原料として、発泡剤,整泡剤,反応触媒の存在下でイソシアネートを反応させて得られるものである。ポリオールとしては、m−トリレンジアミン(2,4−トリレンジアミン、2,6−トリレンジアミン)及びo−トリレンジアミン(2,3−トリレンジアミン、3,4−トリレンジアミン)から成る開始剤のプロピレンオキサイド付加物を主に用いた。他の開始剤は、2価アルコールのプロピレングリコール,ジプロピレングリコール,3価アルコールのグリセリン,トリメチロールプロパン,多価アルコールのジグリセリン,メチルグルコシド,ソルビトール,シュークローズ,アルキレンポリアミンのエチレンジアミン,ジエチレントリアミン,アルカノールアミンのモノエタノールアミン,ジエタノールアミン,イソプロパノールアミンその他のジアミノジフェニルメタン,ビスフェノールA,ポリメチレンポリフェニルポリアミンを種々のアルキレンオキサイドで付加物としたポリオールを用いた。イソシアネートは、ジフェニルメタンジイソシアネート多核体を主に使用する。ジフェニルメタンジイソシアネート多核体を用いたイソシアネートは、ポリエーテルポリオール溶液と粘度差が小さいので、ポリエ−テルポリオールとの相溶性が向上する。ジフェニルメタンジイソシアネート多核体を用いることによって、初期反応は比較的速くなりゲル化や硬化が遅くなるので、脱形時のフォーム膨れ量を小さくなる。少量であればトリレンジイソシアネート異性体混合物、2,4−体100部、2,4−体/2,6−体=80/20,65/35 (重量比)はもちろん、商品名三井コスモネートTRC,武田薬品のタケネート4040プレポリマーのウレタン変性トリレンジイソシアネート,アロファネート変性トリレンジイソシアネート,ビウレット変性トリレンジイソシアネート,イソシアヌレ−ト変性トリレンジイソシアネート等も使用できる。4,4′−ジフェニルメタンジイソシアネートとしては、主成分とする純品の他3核体以上の多核体を含有する商品名三井コスモネートM−200,武田薬品製のミリオネートMRのジフェニルメタンイソシアネート多核体を使用できる。また、発泡剤としては、炭化水素系発泡剤のシクロペンタン及び水を用いる。ポリオール混合物100重量部に対し、12〜18重量部のシクロペンタン及び1.8 重量部未満の水を組み合わせる。一般にシクロペンタンと水を多く用いれば容易に低密度化できるが、水が多いと気泡セル内の炭酸ガスの分圧が増加して膨れ量が大きくなり、シクロペンタンが多いと圧縮強度や寸法安定性が劣ってくる。反応触媒としては、テトラメチルヘキサメチレンジアミン,ペンタメチルジエチレントリアミン,3量化触媒を併用して高速反応化とキュア−性を高められる。反応触媒の配合量は、ポリオール成分100重量部に対し、2〜5重量部が好ましい。それ以外に、第3級アミンのトリメチルアミノエチルピペラジン,トリエチレンジアミン,テトラメチルエチレンジアミン,3量化触媒のトリス(3−ジメチルアミノプロピル)ヘキサヒドロ−S−トリアジン,遅効性触媒のジプロピレングリコール,酢酸カリジエチレングリコール等、反応性が合致すれば使用することができる。整泡剤としては、低表面張力の方が気泡セルの大きさがそろうので、フォームは一様に膨れ、一様な強度を有する。整泡剤の配合量は、ポリオール成分が100重量部あたり1.5 〜4重量部である。例えばゴールドシュミット製のB−8461,B−
8462,信越化学製のX−20−1614,X−20−1634,日本ユニカ製のSZ−1127,SZ−1671を用いる。上記材料を用いて、硬質ポリウレタンフォームを発泡する。発泡機は、例えばプロマート社製PU−30型発泡機が用いられる。発泡条件は、発泡機の種類によって多少異なるが通常は液温18〜30℃,吐出圧力80〜150
kg/cm2,吐出量15〜30kg/min,型箱の温度は35〜45℃が好ましい条件である。
The rigid polyurethane foam is obtained by reacting an isocyanate with a polyol as a basic raw material in the presence of a foaming agent, a foam stabilizer, and a reaction catalyst. As the polyol, from m-tolylenediamine (2,4-tolylenediamine, 2,6-tolylenediamine) and o-tolylenediamine (2,3-tolylenediamine, 3,4-tolylenediamine) The propylene oxide adduct of the initiator was mainly used. Other initiators are dihydric alcohol propylene glycol, dipropylene glycol, trihydric alcohol glycerin, trimethylolpropane, polyhydric alcohol diglycerin, methyl glucoside, sorbitol, sucrose, alkylene polyamine ethylenediamine, diethylenetriamine, alkanol. Polyols in which amines such as monoethanolamine, diethanolamine, isopropanolamine and other diaminodiphenylmethane, bisphenol A, and polymethylene polyphenylpolyamine were added with various alkylene oxides were used. Diisocyanate diisocyanate polynuclear is mainly used as the isocyanate. Since the isocyanate using the diphenylmethane diisocyanate polynuclear body has a small difference in viscosity from the polyether polyol solution, the compatibility with the polyether polyol is improved. By using diphenylmethane diisocyanate polynuclear bodies, the initial reaction is relatively fast and the gelation and curing are slowed down, so that the amount of foam expansion at the time of demolding is reduced. Tolylene diisocyanate isomer mixture, 100 parts of 2,4-form, 2,4-form / 2,6-form = 80/20, 65/35 (weight ratio) as well as trade name Mitsui Cosmonate TRC, Takeda's Takenate 4040 prepolymer urethane-modified tolylene diisocyanate, allophanate-modified tolylene diisocyanate, biuret-modified tolylene diisocyanate, isocyanurate-modified tolylene diisocyanate and the like can also be used. As the 4,4'-diphenylmethane diisocyanate, the product name Mitsui Cosmonate M-200 containing a polynuclear compound of 3 or more nuclei in addition to a pure product as a main component, diphenylmethane isocyanate polynuclear product of Millionate MR manufactured by Takeda Pharmaceutical is used. it can. Further, as the foaming agent, hydrocarbon-based foaming agent cyclopentane and water are used. 12 to 18 parts by weight of cyclopentane and less than 1.8 parts by weight of water are combined per 100 parts by weight of the polyol mixture. In general, if a large amount of cyclopentane and water is used, the density can be easily reduced. However, if there is a large amount of water, the partial pressure of carbon dioxide in the bubble cell increases and the amount of swelling increases. Inferiority. As a reaction catalyst, tetramethylhexamethylenediamine, pentamethyldiethylenetriamine, and a trimerization catalyst can be used in combination to increase the high-speed reaction and cure properties. The blending amount of the reaction catalyst is preferably 2 to 5 parts by weight with respect to 100 parts by weight of the polyol component. Other than that, tertiary amines such as trimethylaminoethylpiperazine, triethylenediamine, tetramethylethylenediamine, trimerization catalyst tris (3-dimethylaminopropyl) hexahydro-S-triazine, slow-acting catalyst dipropylene glycol, and potassium chloride acetate It can be used if the reactivity matches. As the foam stabilizer, the foam is uniformly expanded and has a uniform strength because the size of the bubble cell is aligned with the lower surface tension. The blending amount of the foam stabilizer is 1.5 to 4 parts by weight per 100 parts by weight of the polyol component. For example, B-8461, B- from Goldschmidt
8462, X-20-1614, X-20-1634, manufactured by Shin-Etsu Chemical Co., Ltd., SZ-1127, SZ-1671, manufactured by Nippon Unica, are used. A rigid polyurethane foam is foamed using the above materials. For example, a PU-30 type foaming machine manufactured by Promart Co., Ltd. is used as the foaming machine. Foaming conditions vary somewhat depending on the type of foaming machine, but usually the liquid temperature is 18-30 ° C. and the discharge pressure is 80-150.
The preferred conditions are kg / cm 2 , discharge rate of 15-30 kg / min, and mold box temperature of 35-45 ° C.

本実施例は、本発明の断熱パネル1をダブルスキン構造材鉄道車両の断熱材として使用する例である。ダブルスキン構造を有する鉄道車両においては、軽量化と耐圧性向上を図るため、その側および屋根構造体が曲面を有する構造となっており、従来の断熱パネル6では貼り付けが困難である。また、貼り付けると、外包材に歪が生じ、内部の真空度が低下し結果として断熱特性の悪化が問題となる。   A present Example is an example which uses the heat insulation panel 1 of this invention as a heat insulating material of a double skin structure material rail vehicle. In a railway vehicle having a double skin structure, in order to reduce weight and improve pressure resistance, the side and the roof structure have a curved surface structure, and the conventional heat insulating panel 6 is difficult to attach. Moreover, when it sticks, a distortion will arise in an outer packaging material, an internal vacuum degree will fall, and the deterioration of a heat insulation characteristic will pose a problem as a result.

本実施例においては、断熱パネルは波板状骨材単独又は波板状骨材と平板状骨材を組み合わせて作製したものを用いた。本発明の断熱パネル1を用いた場合は構造体の曲面に添って貼り付けることが可能になる。車体の断熱効果も十分なものとなっており、車両内の結露等の問題も発生しなかった。真空度の低下が生じにくいことから、断熱特性に優れ、断熱材厚さを1/2〜1/3にすることができる。その結果、車両の室内空間をより広くすることが可能となる。   In the present example, the heat insulating panel used was a corrugated aggregate alone or a combination of corrugated aggregate and flat aggregate. When the heat insulation panel 1 of the present invention is used, it can be attached along the curved surface of the structure. The heat insulation effect of the vehicle body was sufficient, and problems such as condensation in the vehicle did not occur. Since the degree of vacuum is unlikely to decrease, the heat insulating properties are excellent, and the heat insulating material thickness can be reduced to 1/2 to 1/3. As a result, the vehicle interior space can be made wider.

また、断熱パネル自体が形状保持性を有していることから、車両への取り付け性が良好である。上記のとおり、本発明の断熱パネルは鉄道車両用断熱材として有効である。   Moreover, since the heat insulation panel itself has a shape-retaining property, the attachment property to the vehicle is good. As above-mentioned, the heat insulation panel of this invention is effective as a heat insulating material for rail vehicles.

本実施例は、本発明の断熱パネル1を給湯器用貯湯タンクの断熱材として用い給湯器を作製する例である。貯湯タンクは円筒形、または曲線部を有する形状となっており、従来の断熱パネル6は貼り付けが困難である。また、従来の断熱パネルを無理に貼り付けると外包材に歪が生じ、内部の真空度が低下するのに伴い断熱特性も低下してしまう。   The present embodiment is an example in which a water heater is manufactured using the heat insulating panel 1 of the present invention as a heat insulating material for a hot water storage tank. The hot water storage tank has a cylindrical shape or a shape having a curved portion, and the conventional heat insulating panel 6 is difficult to be attached. Moreover, when a conventional heat insulation panel is forcibly applied, the outer packaging material is distorted, and the heat insulation characteristics are lowered as the internal vacuum is lowered.

本発明の断熱パネル1を用いた場合は貯湯タンクの曲面に添って貼り付けることができ、曲面に貼り付けても外包材に歪が生じにくいため、断熱特性も損なわれにくい。   When the heat insulation panel 1 of the present invention is used, the heat insulation panel 1 can be attached along the curved surface of the hot water storage tank.

作製した貯湯タンクにお湯(90℃)を入れ、湯温の変化を測定したところ10時間経過後の湯温は75℃となった。比較例として断熱材を貼り付けない貯湯タンクを作製し同様にお湯を入れ湯温の変化を測定したところ2時間経過後の湯温は55℃となった。このことより、給湯器用貯湯タンクに本発明の断熱材1を用いることで、断熱材を用いない場合と比較して、湯温の低下を大幅に抑えることができ、保温に必要な熱量が必要なくなることから省エネの観点から非常に有効である。   Hot water (90 ° C.) was put into the produced hot water storage tank, and the change in the hot water temperature was measured. As a result, the hot water temperature after 75 hours was 75 ° C. As a comparative example, a hot water storage tank without a heat insulating material was prepared, hot water was similarly added, and the change in the hot water temperature was measured. As a result, the hot water temperature after 2 hours was 55 ° C. From this, by using the heat insulating material 1 of the present invention for the hot water storage tank for a water heater, compared to the case where no heat insulating material is used, a decrease in hot water temperature can be greatly suppressed, and the amount of heat necessary for heat insulation is required. This is very effective from the viewpoint of energy saving.

本発明によれば、形状折り曲げ性と形状保持性及び断熱特性を両立することが可能な断熱パネルが得られる。特に、該断熱パネルを貼り付ける面が曲面形状、曲面と平面の組み合わせ、立体形状の場合にも、機器に合わせて成形配置可能な断熱パネルが得られる。更に、本発明の断熱パネルを備えた機器を得られる。また、本発明の断熱パネルを冷蔵庫箱及び扉体中に挿入し、特にシクロペンタンと水混合発泡剤からなる硬質ポリウレタンフォームを発泡充填することにより、熱漏洩量低減及び消費電力量も低減できる冷蔵庫が得られる。さらに、鉄道車両,給湯器用断熱材として有効である。   ADVANTAGE OF THE INVENTION According to this invention, the heat insulation panel which can make shape bendability, shape maintenance property, and heat insulation characteristic compatible is obtained. In particular, when the surface to which the heat insulation panel is attached is a curved surface shape, a combination of a curved surface and a flat surface, or a three-dimensional shape, a heat insulating panel that can be molded and arranged in accordance with the device is obtained. Furthermore, the apparatus provided with the heat insulation panel of this invention can be obtained. Further, by inserting the heat-insulating panel of the present invention into a refrigerator box and a door and foaming and filling a rigid polyurethane foam composed of cyclopentane and a water-mixed foaming agent, the refrigerator can reduce heat leakage and power consumption. Is obtained. Furthermore, it is effective as a heat insulating material for railway vehicles and water heaters.

本発明の断熱パネルの断面模式図である。It is a cross-sectional schematic diagram of the heat insulation panel of this invention. 従来の断熱パネルの断面模式図である。It is a cross-sectional schematic diagram of the conventional heat insulation panel. 本発明の波板状骨材の断面模式図である。It is a cross-sectional schematic diagram of the corrugated aggregate of this invention. 本発明の断熱パネル挿入細部の断熱箱体一部の断面模式図である。It is a cross-sectional schematic diagram of a part of the heat insulation box of the heat insulation panel insertion details of the present invention. 本発明の断熱パネルを挿入した冷蔵庫断熱箱体の斜視模式図である。It is a perspective schematic diagram of the refrigerator heat insulation box which inserted the heat insulation panel of this invention.

符号の説明Explanation of symbols

1…本発明の断熱パネル、2…外包材、3…無機繊維材、4…波板状骨材、5…ゲッター剤、6…従来の断熱パネル、7…硬質ポリウレタンフォーム、8…断熱箱体、9…箱体、10…冷蔵庫内箱。   DESCRIPTION OF SYMBOLS 1 ... Heat insulation panel of this invention, 2 ... Outer packaging material, 3 ... Inorganic fiber material, 4 ... Corrugated aggregate, 5 ... Getter agent, 6 ... Conventional heat insulation panel, 7 ... Hard polyurethane foam, 8 ... Heat insulation box , 9 ... box body, 10 ... box in the refrigerator.

Claims (12)

芯材と、該芯材を内包するガスバリア性の外包材を有し、該外包材の内部を減圧して封止した断熱パネルであって、
前記断熱パネルは、前記外包材内に骨材を設け、該骨材の少なくとも一部に波状部分を有し、前記断熱パネルの前記外包材に前記骨材由来の凹凸形状を有することを特徴とする断熱パネル。
A heat insulating panel having a core material and a gas barrier outer packaging material that encloses the core material, wherein the inside of the outer packaging material is decompressed and sealed;
The insulation panels, the aggregate formed in the outer material inside, characterized in that have a wavy portion on at least a portion of the bone material to have the uneven shape from the aggregate to the outer material of the insulating panel Insulation panel.
請求項1に記載された断熱パネルであって、
前記骨材は、波状部分を構成する辺のなす角度が90〜120°であることを特徴とする断熱パネル。
The heat insulation panel according to claim 1,
The said aggregate is the heat insulation panel characterized by the angle which the side which comprises a wavelike part makes is 90-120 degrees.
請求項1に記載された断熱パネルであって、
前記骨材は、骨材の厚さが0.1〜0.2mmであることを特徴とする断熱パネル。
The heat insulation panel according to claim 1,
The heat insulation panel, wherein the aggregate has an aggregate thickness of 0.1 to 0.2 mm.
請求項1に記載された断熱パネルであって、
前記骨材は、平面形状部分と、波板状部分を有していることを特徴とする断熱パネル。
The heat insulation panel according to claim 1,
The said aggregate has a planar shape part and a corrugated sheet-like part, The heat insulation panel characterized by the above-mentioned.
請求項1に記載された断熱パネルであって、
前記骨材は、複数の前記芯材に挟まれて配置され、または前記芯材の表層に配置されていることを特徴とする断熱パネル。
The heat insulation panel according to claim 1,
The said aggregate is arrange | positioned between the said some core materials, or is arrange | positioned in the surface layer of the said core material, The heat insulation panel characterized by the above-mentioned.
請求項1に記載された断熱パネルであって、
前記骨材は、塑性変形性を有することを特徴とする断熱パネル。
The heat insulation panel according to claim 1,
The heat insulation panel characterized in that the aggregate has plastic deformability.
請求項1に記載された断熱パネルであって、
前記芯材は無機繊維であることを特徴とする断熱パネル。
The heat insulation panel according to claim 1,
The heat insulating panel, wherein the core material is an inorganic fiber.
請求項7に記載された断熱パネルであって、
前記無機繊維が、平均繊維径3〜5μmのグラスウールであり、結合剤を含まないことを特徴とする断熱パネル。
The heat insulation panel according to claim 7,
The heat insulation panel characterized by the said inorganic fiber being glass wool with an average fiber diameter of 3-5 micrometers, and a binder not being included.
請求項1に記載された断熱パネルであって、
前記外包材中にゲッター剤を有することを特徴とする断熱パネル。
The heat insulation panel according to claim 1,
A heat insulating panel comprising a getter agent in the outer packaging material.
請求項1に記載された断熱パネルであって、
前記断熱パネルが、立体成形されていることを特徴とする断熱パネル。
The heat insulation panel according to claim 1,
The heat insulation panel, wherein the heat insulation panel is three-dimensionally molded.
外箱部材と内箱部材を有し、前記外箱及び内箱で形成される空間に硬質樹脂を充填されている断熱箱体であって、前記空間に断熱パネルが挿入されており、前記断熱パネルは、芯材と、少なくとも一部に波状部分を有する骨材と、該芯材及び骨材を内包し、内部を減圧して封止したガスバリア性の外包材とを有し、前記外包材に前記骨材由来の凹凸形状を有することを特徴とする断熱箱体。An insulating box having an outer box member and an inner box member, and a space formed by the outer box and the inner box is filled with a hard resin, and a heat insulating panel is inserted in the space, The panel includes a core material, an aggregate having a wavy portion at least in part, and a gas barrier outer packaging material that encloses the core material and the aggregate and seals the interior by decompressing the outer packaging material. A heat insulating box having an uneven shape derived from the aggregate. シート形状を有する無機繊維集合体と、少なくとも一部に波状部分を有する骨材とを積層し、ガスバリア性を有する外包材に収納し、該外包材を減圧して封止し、前記外包材に前記骨材由来の凹凸形状を形成することを特徴とする断熱パネルの製造方法。Laminate an inorganic fiber aggregate having a sheet shape and an aggregate having a wavy part at least in part, and store in an outer packaging material having a gas barrier property, and the outer packaging material is decompressed and sealed. The manufacturing method of the heat insulation panel characterized by forming the uneven | corrugated shape derived from the said aggregate.
JP2006086843A 2006-03-28 2006-03-28 Insulation panel, insulation box and method for producing insulation panel Expired - Fee Related JP4671895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086843A JP4671895B2 (en) 2006-03-28 2006-03-28 Insulation panel, insulation box and method for producing insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086843A JP4671895B2 (en) 2006-03-28 2006-03-28 Insulation panel, insulation box and method for producing insulation panel

Publications (2)

Publication Number Publication Date
JP2007263186A JP2007263186A (en) 2007-10-11
JP4671895B2 true JP4671895B2 (en) 2011-04-20

Family

ID=38636387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086843A Expired - Fee Related JP4671895B2 (en) 2006-03-28 2006-03-28 Insulation panel, insulation box and method for producing insulation panel

Country Status (1)

Country Link
JP (1) JP4671895B2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153719A (en) * 2010-01-26 2011-08-11 Hitachi Appliances Inc Refrigerator-freezer
JP5398604B2 (en) * 2010-03-17 2014-01-29 三菱電機株式会社 Vacuum insulation material and manufacturing method thereof
JP2012202666A (en) * 2011-03-28 2012-10-22 Mitsubishi Electric Corp Hot water storage type water heater
JP5968004B2 (en) * 2012-03-29 2016-08-10 三菱電機株式会社 Refrigerator using vacuum heat insulating material and vacuum heat insulating material
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9140481B2 (en) 2012-04-02 2015-09-22 Whirlpool Corporation Folded vacuum insulated structure
EP2778580B1 (en) * 2013-03-15 2019-06-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
JP5907204B2 (en) * 2013-07-19 2016-04-26 大日本印刷株式会社 Manufacturing method of vacuum insulation
JP6184841B2 (en) * 2013-11-13 2017-08-23 日立アプライアンス株式会社 Vacuum insulation material and equipment using the same
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
WO2016143781A1 (en) * 2015-03-10 2016-09-15 株式会社 東芝 Vacuum insulated panel, core material, and refrigerator
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
EP3443284B1 (en) 2016-04-15 2020-11-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
WO2018022007A1 (en) 2016-07-26 2018-02-01 Whirlpool Corporation Vacuum insulated structure trim breaker
WO2018034665A1 (en) 2016-08-18 2018-02-22 Whirlpool Corporation Machine compartment for a vacuum insulated structure
EP3548813B1 (en) 2016-12-02 2023-05-31 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850940U (en) * 1971-10-12 1973-07-03
JPS5413059A (en) * 1977-07-01 1979-01-31 Yasuhiko Tsunemi Wall construction of cold reserving*heat insulating vessel
JPS61241594A (en) * 1985-04-19 1986-10-27 松下電器産業株式会社 Vacuum heat-insulating material
JP2000097390A (en) * 1998-09-22 2000-04-04 Meisei Ind Co Ltd Heat insulating panel and manufacture thereof
JP2002310384A (en) * 2001-04-11 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
JP2004011709A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, its manufacturing method
JP2005351438A (en) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd Glass wool board, vacuum thermal insulation material, and equipment using glass wool board and vacuum thermal insulation material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850940U (en) * 1971-10-12 1973-07-03
JPS5413059A (en) * 1977-07-01 1979-01-31 Yasuhiko Tsunemi Wall construction of cold reserving*heat insulating vessel
JPS61241594A (en) * 1985-04-19 1986-10-27 松下電器産業株式会社 Vacuum heat-insulating material
JP2000097390A (en) * 1998-09-22 2000-04-04 Meisei Ind Co Ltd Heat insulating panel and manufacture thereof
JP2002310384A (en) * 2001-04-11 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
JP2004011709A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, its manufacturing method
JP2005351438A (en) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd Glass wool board, vacuum thermal insulation material, and equipment using glass wool board and vacuum thermal insulation material

Also Published As

Publication number Publication date
JP2007263186A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4671895B2 (en) Insulation panel, insulation box and method for producing insulation panel
JP4580844B2 (en) Vacuum heat insulating material and refrigerator using the same
CN100441932C (en) Vacuum thermal insulating material and refrigerator using the same
US6651444B2 (en) Method of deforming vacuum heat insulation material, method of fixing vacuum heat insulation material, refrigeration, cold storage vessel, and heat insulation box body
US5575871A (en) Heat insulating material and method for producing same
US20200009770A1 (en) Heat-insulating wall, and heat-insulating housing and method for producing the same
JP2008540955A (en) Manufacturing method of vacuum insulation panel
ES2913842T3 (en) Composite material elements made from thermal insulation material, adhesive and coating layer
JP2011241988A (en) Heat insulation box and refrigerator
AU2011304551B2 (en) Fixing of vacuum insulation panels in cooling apparatuses
US20080280120A1 (en) Thermally Insulating Molded Element
KR100623101B1 (en) Refrigerator, vacuum insulation panel and method manufacturing thereof
ES2842179T3 (en) Sandwich-type structure containing a vip and procedure for its manufacture
KR100790662B1 (en) Vacuum Heat Insulator and Refrigerator Using The Same
KR101444530B1 (en) Insulation door and insulation box structure
JP2012013114A (en) Heat insulating member and building member using the same
US20190169842A1 (en) Aerogel containing foam board
JP2000018486A (en) Thermally insulated casing and manufacture thereof
JPH07110097A (en) Heat insulation material
JPH11201375A (en) Vacuum heat insulating panel insertion type box body for refrigerator/freezer
JP2004084847A (en) Vacuum heat insulating panel and refrigerator using this panel
JP6411077B2 (en) Method for manufacturing ceiling interior material for vehicle
JP5889707B2 (en) Premix polyol composition for rigid urethane foam, method for producing rigid urethane foam using the same, and insulated door body
JP2000171148A (en) Cold reserving device
JP5878423B2 (en) Rigid polyurethane foam and premix polyol for manufacturing rigid polyurethane foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4671895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees