JP2008202709A - Arranging method of vacuum heat insulating material - Google Patents
Arranging method of vacuum heat insulating material Download PDFInfo
- Publication number
- JP2008202709A JP2008202709A JP2007040229A JP2007040229A JP2008202709A JP 2008202709 A JP2008202709 A JP 2008202709A JP 2007040229 A JP2007040229 A JP 2007040229A JP 2007040229 A JP2007040229 A JP 2007040229A JP 2008202709 A JP2008202709 A JP 2008202709A
- Authority
- JP
- Japan
- Prior art keywords
- insulating material
- heat insulating
- vacuum heat
- net
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Building Environments (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
- Thermal Insulation (AREA)
Abstract
Description
本発明は、曲面を有する構造体の表面に真空断熱材を配設する方法に関するものである。 The present invention relates to a method of disposing a vacuum heat insulating material on the surface of a structure having a curved surface.
真空断熱材は、多孔質体からなる芯材をガスバリア性の外被材で覆い、内部を減圧して密封した断熱材であり、その形状はボード状の平板である。そのため、その適用方法は、被断熱体となる構造体表面の平面部分への貼り付け、或いは構造体の表面と平行に配置して硬質ウレタンフォームとの複層や発泡スチロール等の支持体を介して適用するのが一般的である。 The vacuum heat insulating material is a heat insulating material in which a core material made of a porous material is covered with a gas barrier outer covering material, and the inside is reduced in pressure and sealed, and the shape thereof is a board-like flat plate. Therefore, the application method is affixed to a planar portion of the surface of the structure to be heat-insulated, or disposed in parallel with the surface of the structure via a support such as a multilayer with rigid urethane foam or polystyrene foam. It is common to apply.
一方、真空断熱材に可撓性を付与し、身体採暖装置に用いる方法が報告されている(例えば、特許文献1参照)。 On the other hand, a method of imparting flexibility to a vacuum heat insulating material and using it for a body warming device has been reported (for example, see Patent Document 1).
図9により従来の真空断熱材を説明する。図9は従来の真空断熱材の外観図である。図9において、真空断熱材1は、プラスチックフィルムと金属箔または金属蒸着膜とをラミネートしたフィルムからなる外被材2に、芯材3を真空封入した構成となっている。芯材3は加圧または折り曲げ等により筋目4が形成されている。 A conventional vacuum heat insulating material will be described with reference to FIG. FIG. 9 is an external view of a conventional vacuum heat insulating material. In FIG. 9, the vacuum heat insulating material 1 has a configuration in which a core material 3 is vacuum-sealed in an outer cover material 2 made of a film obtained by laminating a plastic film and a metal foil or a metal vapor deposition film. The core material 3 is formed with lines 4 by pressurization or bending.
上記構成において、外力が真空断熱材1に加わると、真空断熱材1は芯材3の筋目4を中心として容易に変形することができる。すなわち外力に対して実質的な可撓性を有するという効果があるというものである。
しかしながら、上記従来の構成では、真空断熱材1に付与された筋目4が縦横2本ずつの合計4本と少なく、実質的には筋目4で折り曲げて形成される折曲線の方向は、筋目4が形成されている2方向のみであることから、可撓性の自由度が低くなる。よって、緩やかな曲面や複雑な曲面の被断熱体の場合に、その表面を覆うことは困難であった。 However, in the above-described conventional configuration, the number of lines 4 provided to the vacuum heat insulating material 1 is small, that is, a total of four lines each having two vertical and horizontal lines, and the direction of the folding line formed by bending the line 4 is substantially the line 4 Since there are only two directions in which are formed, flexibility of flexibility is lowered. Therefore, it has been difficult to cover the surface of a heat-insulated body having a gently curved surface or a complicated curved surface.
本発明は、真空断熱材を設置しようとする構造体の表面が様々な曲面を有するような場合でも、真空断熱材を直接その表面に密着して設置することを可能とする真空断熱材の配設方法を提供することを目的とする。 The present invention provides a vacuum heat insulating material arrangement that enables the vacuum heat insulating material to be installed in close contact with the surface even when the surface of the structure on which the vacuum heat insulating material is to be installed has various curved surfaces. The purpose is to provide an installation method.
上記目的を達成するために、本発明の真空断熱材の配設方法は、対向する2つの伝熱面を有する板状の芯材をガスバリア性の外被材で覆い、前記外被材の内部を減圧して密封した真空断熱材であって、前記真空断熱材は、前記外被材における前記芯材の少なくとも一方の前記伝熱面を覆っている部分に、3方向以上の複数の折曲線を形成して折り曲げられる網状の凹部を有し、被断熱体における前記真空断熱材を配設しようとする曲面の形状に沿うように、前記網状の凹部の複数箇所で折り曲げて前記真空断熱材を変形させて、被断熱体の曲がった表面に沿うように前記真空断熱材を配設するのである。 In order to achieve the above object, the vacuum heat insulating material disposing method of the present invention covers a plate-like core material having two opposing heat transfer surfaces with a gas barrier outer covering material, and the inside of the outer covering material. A vacuum heat insulating material sealed under reduced pressure, wherein the vacuum heat insulating material has a plurality of folding lines in three or more directions in a portion covering the heat transfer surface of at least one of the core materials in the jacket material. The vacuum heat insulating material is bent at a plurality of positions of the net-like concave portion so as to conform to the shape of the curved surface on which the vacuum heat insulating material is to be disposed in the body to be insulated. The said vacuum heat insulating material is arrange | positioned so that it may deform | transform and follow the curved surface of a to-be-insulated body.
これによって、被断熱体となる構造体の表面が様々な曲面の場合においても、3方向以上の複数の折曲線が形成できるように、真空断熱材には、外被材における芯材の少なくとも一方の伝熱面を覆っている部分に、3方向以上の複数の折曲線を形成して折り曲げられる網状の凹部が形成されているため、芯材は網状の凹部で3方向以上の折曲線を形成して折り曲がり、構造体表面に沿うように真空断熱材が変形可能であるため、構造体(被断熱体)における真空断熱材を配設しようとする曲面の形状に沿うように、網状の凹部の複数箇所で折り曲げて真空断熱材を変形させて、構造体(被断熱体)の曲がった表面に沿うように表面に直接密着して真空断熱材を配設することができる。 Thus, in the case where the surface of the structure to be heat-insulated has various curved surfaces, the vacuum heat-insulating material includes at least one of the core materials in the jacket material so that a plurality of folding lines in three or more directions can be formed. Since the net-like recesses that can be bent by forming a plurality of fold lines in three or more directions are formed in the portion covering the heat transfer surface, the core material forms fold curves in three or more directions by the net-like recesses. Since the vacuum heat insulating material can be deformed so as to be bent along the surface of the structure, the net-like recess is formed so as to follow the shape of the curved surface on which the vacuum heat insulating material is to be disposed in the structure (insulated body). It is possible to dispose the vacuum heat insulating material by bending it at a plurality of locations so that the vacuum heat insulating material is in close contact with the surface of the structure (insulated body) in a curved manner.
本発明で用いる真空断熱材は、外被材における前記芯材の少なくとも一方の伝熱面を覆っている部分に、3方向以上の複数の折曲線を形成して折り曲げられる網状の凹部を有するので、芯材は網状の凹部で3方向以上の折曲線を形成して折り曲がり、構造体表面に沿うように真空断熱材が変形可能であるため、構造体(被断熱体)における真空断熱材を配設しようとする曲面の形状に沿うように、網状の凹部の複数箇所で折り曲げて真空断熱材を変形させて、構造体(被断熱体)の曲がった表面に沿うように表面に直接密着して真空断熱材を配設することができる。 Since the vacuum heat insulating material used in the present invention has a net-like recess that is bent by forming a plurality of folding lines in three or more directions in a portion covering at least one heat transfer surface of the core material in the jacket material. Since the core material is bent by forming a fold line in three or more directions with a net-like recess, and the vacuum heat insulating material can be deformed along the surface of the structure, the vacuum heat insulating material in the structure (insulated body) The vacuum heat insulating material is deformed by bending at a plurality of locations in the net-like recesses so as to follow the shape of the curved surface to be disposed, and is directly adhered to the surface along the curved surface of the structure (insulated body). A vacuum heat insulating material can be provided.
そのため、真空断熱材の適用自由度が拡大し、これ迄に、適用の難しかった曲面を有する構造体への適用が可能となる。 Therefore, the degree of freedom of application of the vacuum heat insulating material is expanded, and application to a structure having a curved surface that has been difficult to apply until now becomes possible.
また、曲面に沿うように密着して配設することができることから、真空断熱材と被断熱体との隙間に存在する空気層の対流の影響が排除できるため、断熱効果が向上する。 Moreover, since it can arrange | position closely along a curved surface, since the influence of the convection of the air layer which exists in the clearance gap between a vacuum heat insulating material and a to-be-insulated body can be excluded, the heat insulation effect improves.
本発明の請求項1に記載の真空断熱材の配設方法の発明は、対向する2つの伝熱面を有する板状の芯材をガスバリア性の外被材で覆い、前記外被材の内部を減圧して密封した真空断熱材であって、前記真空断熱材は、前記外被材における前記芯材の少なくとも一方の前記伝熱面を覆っている部分に、3方向以上の複数の折曲線を形成して折り曲げられる網状の凹部を有し、被断熱体における前記真空断熱材を配設しようとする曲面の形状に沿うように、前記網状の凹部の複数箇所で折り曲げて前記真空断熱材を変形させて、被断熱体の曲がった表面に沿うように前記真空断熱材を配設するものである。 According to a first aspect of the present invention, there is provided a vacuum heat insulating material arranging method in which a plate-shaped core material having two opposing heat transfer surfaces is covered with a gas barrier outer covering material, and the interior of the outer covering material is covered. A vacuum heat insulating material sealed under reduced pressure, wherein the vacuum heat insulating material has a plurality of folding lines in three or more directions in a portion covering the heat transfer surface of at least one of the core materials in the jacket material. The vacuum heat insulating material is bent at a plurality of positions of the net-like concave portion so as to conform to the shape of the curved surface on which the vacuum heat insulating material is to be disposed in the body to be insulated. The said vacuum heat insulating material is arrange | positioned so that it may deform | transform and it may follow the curved surface of a to-be-insulated body.
そのため、被断熱体となる構造体の表面が様々な曲面の場合においても、3方向以上の複数の折曲線が形成できるように、真空断熱材には、外被材における芯材の少なくとも一方の伝熱面を覆っている部分に、3方向以上の複数の折曲線を形成して折り曲げられる網状の凹部が形成されているため、芯材は網状の凹部で3方向以上の折曲線を形成して折り曲がり、構造体表面に沿うように真空断熱材が変形可能であるため、構造体(被断熱体)における真空断熱材を配設しようとする曲面の形状に沿うように、網状の凹部の複数箇所で折り曲げて真空断熱材を変形させて、構造体(被断熱体)の曲がった表面に沿うように表面に直接密着して真空断熱材を配設することができる。 Therefore, in the case where the surface of the structure to be heat-insulated has various curved surfaces, the vacuum heat-insulating material includes at least one of the core materials in the outer-coating material so that a plurality of folding lines in three or more directions can be formed. Since a net-like concave portion that is bent by forming a plurality of folding lines in three or more directions is formed in a portion covering the heat transfer surface, the core material forms a folding curve in three or more directions by the net-like concave portions. Since the vacuum heat insulating material can be deformed so as to be bent along the surface of the structure, the net-like concave portion of the structure (heat-insulated body) is arranged along the curved surface to be provided with the vacuum heat insulating material. It is possible to dispose the vacuum heat insulating material by bending it at a plurality of locations, and to directly adhere to the surface along the curved surface of the structure (insulated body).
そのため、真空断熱材の適用自由度が拡大し、これ迄に、適用の難しかった曲面を有する構造体への適用が可能となる。 Therefore, the degree of freedom of application of the vacuum heat insulating material is expanded, and application to a structure having a curved surface that has been difficult to apply until now becomes possible.
また、曲面に沿うように密着して配設することができることから、真空断熱材と被断熱体との隙間に存在する空気層の対流の影響が排除できるため、断熱効果が向上する。 Moreover, since it can arrange | position closely along a curved surface, since the influence of the convection of the air layer which exists in the clearance gap between a vacuum heat insulating material and a to-be-insulated body can be excluded, the heat insulation effect improves.
請求項2に記載の真空断熱材の配設方法の発明は、請求項1記載の発明における前記網状の凹部が、略三角形、略四角形、略六角形のいずれかを基本形とする連続体であり、かつ真空断熱材作製後に、圧縮加工により成形されてなるものである。 According to a second aspect of the present invention, there is provided a vacuum heat insulating material disposing method, wherein the mesh-shaped recess in the first aspect of the invention is a continuous body having a basic shape of any one of a substantially triangular shape, a substantially square shape, and a substantially hexagonal shape. And after a vacuum heat insulating material preparation, it shape | molds by a compression process.
よって、外被材における芯材の少なくとも一方の伝熱面を覆っている部分(芯材部分)に有する網状の凹部が、工業的に汎用的に使用される三角形、四角形、六角形を基本形状するものであることから、既存の部材や金型等が使用できる。 Therefore, the net-like recesses in the part covering the at least one heat transfer surface of the core material (core material part) in the jacket material are the basic shapes of triangles, squares, and hexagons that are generally used industrially. Therefore, existing members and molds can be used.
また、略三角形、略四角形、略六角形を基本形状とする網状に施された凹型は、圧縮加工で成形できることから、生産性にも優れている。 In addition, a concave mold provided in a net shape having a basic shape of a substantially triangular shape, a substantially rectangular shape, or a substantially hexagonal shape is excellent in productivity because it can be formed by compression processing.
よって、ボード状の真空断熱材であっても、芯材部分に有する網状の凹部で、3方向以上の複数箇所で折り曲げることが可能となるため、曲面を有する被断熱体の表面に沿うように密着して配設することができる。 Therefore, even if it is a board-like vacuum heat insulating material, it becomes possible to bend at a plurality of locations in three or more directions with a net-like concave portion in the core material portion, so that it follows the surface of the heat-insulated body having a curved surface. It can arrange | position closely.
なお、折曲線とは、真空断熱材の網状の凹部で芯材部分が折れ曲がって形成される折り曲げの中心線のことで、必ずしも直線である必要はなく、谷折り、或いは山折りのいずれの場合でも問題ない。 Note that the folding line is a center line of bending formed by bending the core material portion in the net-like recesses of the vacuum heat insulating material, and does not necessarily need to be a straight line, and is a valley fold or a mountain fold. But no problem.
一方、真空断熱材とは、骨材となる気相比率の高い芯材を、ガスバリア性のフィルム、或いは容器等の外被材で覆い、内部を減圧して密封したものであり、内部を所定レベルの圧力迄、減圧して気体成分の熱伝導を低下させることで高い断熱性能を発現させる断熱材を指す。 On the other hand, a vacuum heat insulating material is a material in which a core material having a high gas phase ratio, which is an aggregate, is covered with a gas barrier film or a covering material such as a container, and the inside is decompressed and sealed. It refers to a heat insulating material that exhibits high heat insulating performance by reducing the heat conduction of gas components by reducing the pressure to a level pressure.
真空断熱材の構成材料を説明すると、芯材に使用する材料は、気相比率90%前後の多孔質体をシート状または板状に加工したものであり、工業的に利用できるものとして、発泡体、粉体、及び繊維体等がある。これらは、その使用用途や必要特性に応じて公知の材料を使用することができる。 Explaining the constituent material of the vacuum heat insulating material, the material used for the core material is a porous body having a gas phase ratio of about 90% processed into a sheet or plate shape, and is foamed as an industrially usable material. Body, powder, and fiber body. These can use a well-known material according to the use use and required characteristic.
このうち、発泡体としては、ウレタンフォーム、スチレンフォーム、フェノールフォーム等の連続気泡体が利用できる。粉体としては、無機系、有機系、及びこれらの混合物を利用できるが、工業的には、乾式シリカ、湿式シリカ、パーライト等を主成分とするものが望ましい。繊維体としては、無機系、有機系、及びこれらの混合物が利用できるが、コストと断熱性能の観点から無機繊維が有利である。無機繊維の一例としては、グラスウール、ロックウール、アルミナ繊維、シリカ繊維等、公知の材料を使用することができる。 Among these, as the foam, open-cell bodies such as urethane foam, styrene foam, and phenol foam can be used. As the powder, inorganic, organic, and mixtures thereof can be used, but industrially, those mainly composed of dry silica, wet silica, pearlite and the like are desirable. As the fibrous body, inorganic, organic, and mixtures thereof can be used, but inorganic fibers are advantageous from the viewpoint of cost and heat insulation performance. As an example of the inorganic fiber, a known material such as glass wool, rock wool, alumina fiber, or silica fiber can be used.
外被材として利用できるフィルムは、高ガスバリア性のラミネートフィルムが望ましく、金属箔や蒸着層を有するプラスチックラミネートフィルムを利用するのが、生産性やコストの面でより望ましい。 The film that can be used as the covering material is preferably a laminate film having a high gas barrier property, and it is more desirable in terms of productivity and cost to use a plastic laminate film having a metal foil or a vapor deposition layer.
以下、本発明による実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments.
(実施の形態1)
本発明の実施の形態1の真空断熱材を説明する。図1は本発明の実施の形態1における真空断熱材の配設方法に用いる真空断熱材の凹部形成前の状態を示す平面図、図2は図1のA−A’線断面図である。図3は、同実施の形態1における真空断熱材の配設方法に用いる真空断熱材の凹部形成後の状態を示す平面図である。
(Embodiment 1)
The vacuum heat insulating material of Embodiment 1 of this invention is demonstrated. FIG. 1 is a plan view showing a state of the vacuum heat insulating material used in the method for arranging the vacuum heat insulating material according to the first embodiment of the present invention before the recess is formed, and FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. FIG. 3 is a plan view showing a state after forming a recess in the vacuum heat insulating material used in the vacuum heat insulating material disposing method in the first embodiment.
図1と図2に示す真空断熱材11の構成は、平均繊維径3μmのグラスウールを熱成形によりボード化した厚さ4mmの芯材12をガスバリア性のプラスチックラミネートフィルムを熱溶着部14で溶着して袋状に成形した外被材13で覆い、外被材13の内部が10Pa以下となるように減圧して密閉して成形している。 The structure of the vacuum heat insulating material 11 shown in FIGS. 1 and 2 is such that a gas barrier plastic laminate film is welded to a core material 12 having a thickness of 4 mm made of glass wool having an average fiber diameter of 3 μm by thermoforming at a heat welding portion 14. Then, it is covered with a cover material 13 formed into a bag shape, and the cover material 13 is formed by being sealed under reduced pressure so that the inside of the cover material 13 becomes 10 Pa or less.
この時、プラスチックラミネートフィルムは、最外層から厚さ25μmのPETフィルム、15μmの6−ナイロンフィルム、6μmのアルミ箔、50μmのポリエチレンフィルムを積層したラミネートフィルムから成り、このラミネートフィルム2枚をポリエチレンフィルム同士で重ね合わせ、熱溶着部14で熱溶着して密封している。 At this time, the plastic laminate film is composed of a laminate film in which a PET film having a thickness of 25 μm, a 15 μm 6-nylon film, a 6 μm aluminum foil, and a 50 μm polyethylene film are laminated from the outermost layer. They are overlapped with each other and thermally welded at the heat welding portion 14 to be sealed.
このようにして作製した真空断熱材11の芯材12の平面部分(外被材13における芯材12の少なくとも一方の伝熱面を覆っている部分)に、圧縮加工により四角形を基本形とする網状の凹部32を成形して図3の真空断熱材31を作製した。 The flat surface portion of the core material 12 of the vacuum heat insulating material 11 thus manufactured (the portion covering at least one heat transfer surface of the core material 12 in the jacket material 13) is formed into a net-like shape having a quadrangular shape by compression processing. 3 was formed to produce the vacuum heat insulating material 31 shown in FIG.
なお、図3の真空断熱材31において、網状の凹部32は、深さが最大1.5mmとなるように圧縮加工により成形した。また、網状の凹部32を構成する四角形は、一辺の長さが30mmとなるように成形している。 In addition, in the vacuum heat insulating material 31 of FIG. 3, the mesh-shaped recessed part 32 was shape | molded by the compression process so that the depth might be a maximum of 1.5 mm. Further, the quadrangle constituting the net-like recess 32 is formed so that one side has a length of 30 mm.
また、図3において、矢印Aから矢印Dは、形成される折曲線の方向を示す。 Moreover, in FIG. 3, the arrow A to the arrow D show the direction of the folding line formed.
このようにして作製した真空断熱材31は、網状の凹部32で折れ曲がり、矢印Aから矢印Dの4方向の折曲線を形成してフレキシブルに変形可能となる。よって、緩やかな自由曲面を有する構造体の表面への貼り付けが可能となる。 The vacuum heat insulating material 31 produced in this way is bent at the net-like concave portion 32 to form a folding curve in four directions from arrow A to arrow D, and can be flexibly deformed. Therefore, it is possible to attach the structure having a gentle free-form surface to the surface.
なお、網状の凹部32を構成する四角形の大きさは、被断熱体の曲面の曲率に応じて変更することができる。 In addition, the magnitude | size of the square which comprises the net-shaped recessed part 32 can be changed according to the curvature of the curved surface of a to-be-insulated body.
また、ヒレ部15は、内部に芯材12が存在しておらず外被材13から形成される無効断熱部分であり、真空断熱材適用時は、必要に応じて折り曲げ等の処理を施すことができる。 Further, the fin portion 15 is an ineffective heat insulating portion formed from the outer covering material 13 without the core material 12 therein, and when applied with a vacuum heat insulating material, it is subjected to processing such as bending as necessary. Can do.
本実施の形態の真空断熱材の配設方法は、対向する2つの伝熱面を有する板状の芯材12をガスバリア性の外被材13で覆い、外被材13の内部を減圧して密封した真空断熱材31であって、真空断熱材31は、外被材13における芯材12の少なくとも一方の伝熱面を覆っている部分に、3方向以上の複数の折曲線を形成して折り曲げられる網状の凹部32を有し、被断熱体における真空断熱材31を配設しようとする曲面の形状に沿うように、網状の凹部32の複数箇所で折り曲げて真空断熱材31を変形させて、被断熱体の曲がった表面に沿うように真空断熱材31を配設するものである。 In the method of arranging the vacuum heat insulating material according to the present embodiment, the plate-like core material 12 having two opposing heat transfer surfaces is covered with a gas barrier outer covering material 13 and the inside of the outer covering material 13 is decompressed. It is the sealed vacuum heat insulating material 31, and the vacuum heat insulating material 31 forms a plurality of folding lines in three or more directions in a portion covering at least one heat transfer surface of the core material 12 in the jacket material 13. The vacuum heat insulating material 31 is deformed by being bent at a plurality of locations of the net-like concave portion 32 so as to follow the shape of the curved surface on which the vacuum heat insulating material 31 is to be disposed in the body to be insulated. The vacuum heat insulating material 31 is disposed along the curved surface of the heat insulating body.
そのため、被断熱体となる構造体の表面が様々な曲面の場合においても、3方向以上の複数の折曲線が形成できるように、真空断熱材31には、外被材13における芯材12の少なくとも一方の伝熱面を覆っている部分に、3方向以上の複数の折曲線を形成して折り曲げられる網状の凹部32が形成されているため、芯材12は網状の凹部32で3方向以上の折曲線を形成して折り曲がり、構造体表面に沿うように真空断熱材31が変形可能であるため、構造体(被断熱体)における真空断熱材31を配設しようとする曲面の形状に沿うように、網状の凹部の複数箇所で折り曲げて真空断熱材31を変形させて、構造体(被断熱体)の曲がった表面に沿うように表面に直接密着して真空断熱材31を配設することができる。 Therefore, even when the surface of the structure to be heat-insulated has various curved surfaces, the vacuum heat-insulating material 31 includes the core material 12 of the jacket material 13 so that a plurality of folding lines in three or more directions can be formed. Since a net-like recess 32 that is bent by forming a plurality of folding lines in three or more directions is formed in a portion that covers at least one heat transfer surface, the core 12 is a net-like recess 32 in three or more directions. Since the vacuum heat insulating material 31 can be deformed so as to be bent along the surface of the structure, the shape of the curved surface to be provided with the vacuum heat insulating material 31 in the structure (heat-insulated body) is formed. The vacuum heat insulating material 31 is deformed by being bent at a plurality of locations of the net-like recesses so as to be along, and the vacuum heat insulating material 31 is disposed in close contact with the curved surface of the structure (insulated body). can do.
そのため、真空断熱材31の適用自由度が拡大し、これ迄に、適用の難しかった曲面を有する構造体への適用が可能となる。 Therefore, the degree of freedom of application of the vacuum heat insulating material 31 is expanded, and application to a structure having a curved surface that has been difficult to apply until now becomes possible.
また、曲面に沿うように密着して配設することができることから、真空断熱材31と被断熱体との隙間に存在する空気層の対流の影響が排除できるため、断熱効果が向上する。 Moreover, since it can arrange | position closely along a curved surface, since the influence of the convection of the air layer which exists in the clearance gap between the vacuum heat insulating material 31 and a to-be-insulated body can be excluded, the heat insulation effect improves.
また、本実施の形態で用いた真空断熱材31は、網状の凹部32が、長方形(四角形)を基本形とする連続体であり、かつ真空断熱材11作製後に、圧縮加工により成形されてなるものである。 Further, the vacuum heat insulating material 31 used in the present embodiment is a continuous body in which the net-like concave portion 32 has a rectangular (quadrangle) basic shape, and is formed by compression processing after the vacuum heat insulating material 11 is manufactured. It is.
よって、外被材13における芯材12の少なくとも一方の伝熱面を覆っている部分(芯材部分)に有する網状の凹部32が、工業的に汎用的に使用される長方形(四角形)を基本形状するものであることから、既存の部材や金型等が使用できる。 Therefore, the net-like recessed part 32 which has in the part (core part part) which covers the at least one heat-transfer surface of the core material 12 in the jacket material 13 is based on the rectangle (square) used industrially generally. Since it is shaped, an existing member or mold can be used.
また、長方形(四角形)を基本形状とする網状に施された凹型は、圧縮加工で成形できることから、生産性にも優れている。 In addition, a concave mold formed in a net shape having a basic shape of a rectangle (quadrangle) can be molded by compression processing, and thus has excellent productivity.
よって、ボード状の真空断熱材31であっても、芯材12部分に有する網状の凹部32で、3方向以上の複数箇所で折り曲げることが可能となるため、曲面を有する被断熱体の表面に沿うように密着して配設することができる。 Therefore, even the board-like vacuum heat insulating material 31 can be bent at a plurality of locations in three or more directions by the net-like concave portion 32 provided in the core material 12 portion. It can arrange | position closely so that it may follow.
(実施の形態2)
本発明の実施の形態2の真空断熱材を説明する。図4から図8は、本発明の実施の形態2における真空断熱材の配設方法に用いる真空断熱材の網状の凹部のパターンを示す説明図である。
(Embodiment 2)
The vacuum heat insulating material of Embodiment 2 of this invention is demonstrated. 4-8 is explanatory drawing which shows the pattern of the mesh-shaped recessed part of the vacuum heat insulating material used for the arrangement | positioning method of the vacuum heat insulating material in Embodiment 2 of this invention.
これらの網状の凹部のパターンは、本実施の形態1における真空断熱材11に対して、圧縮加工により成形できる。 These net-like recess patterns can be formed by compressing the vacuum heat insulating material 11 in the first embodiment.
本実施の形態の真空断熱材31は、網状の凹部のパターンが異なる以外は、本実施の形態1と同様に成形した。 The vacuum heat insulating material 31 of the present embodiment was formed in the same manner as in the first embodiment except that the pattern of the net-like recesses was different.
なお、真空断熱材31の網状の凹部のパターンを構成する略三角形、略四角形、略六角形の基本形の大きさは、基本形の一辺が20から40mmになるように成形した。 The basic shape of the substantially triangular shape, the substantially rectangular shape, and the substantially hexagonal shape constituting the net-like recess pattern of the vacuum heat insulating material 31 was formed so that one side of the basic shape was 20 to 40 mm.
このようにして作製した真空断熱材31は、折曲線の方向は、それぞれ、3方向、或いは4方向形成され、網状の凹部で折れ曲げることが可能となり、緩やかな自由曲面を有する構造体の表面への貼り付けが容易に実現できる。 The vacuum heat insulating material 31 produced in this way is formed in three or four directions of folding lines, and can be bent at a net-like recess, and the surface of the structure having a gentle free-form surface Affixing to can be easily realized.
なお、本実施の形態では、自動車の天井用断熱材として、天井の内装材であるPETフェルトの内面に貼り付けて適用した(図示せず)。結果、図4から図8のいずれのパターンの場合においても、PETフェルトの内面に容易に配設することができた。 In the present embodiment, the heat insulating material for the ceiling of the automobile is applied by being attached to the inner surface of the PET felt that is the interior material of the ceiling (not shown). As a result, in any of the patterns shown in FIGS. 4 to 8, it could be easily disposed on the inner surface of the PET felt.
なお、図4から図8の真空断熱材に圧縮加工により成形する網状の凹部のパターンについて説明する。 In addition, the pattern of the net-shaped recessed part shape | molded by the compression process to the vacuum heat insulating material of FIGS. 4-8 is demonstrated.
図4は、四角形を基本形とする連続体からなる網状の凹部のパターン41を示しており、凹部で折れ曲がって形成される折曲線の方向は、矢印E、矢印F、矢印G、矢印Hの4方向ある。また、折曲線の数は、折曲線の方向数と基本形である四角形の数によって決まり、折曲線の方向数と四角形の数が多いほど多くなり、折曲線の数が多いほど被断熱体の曲面に沿い易くなる。 FIG. 4 shows a net-like recess pattern 41 made of a continuous body having a quadrangle as a basic shape, and the directions of the folding lines formed by bending at the recesses are 4 of arrow E, arrow F, arrow G, and arrow H. There is a direction. In addition, the number of folding lines is determined by the number of folding lines and the number of squares that are basic shapes. The larger the number of folding lines and the number of squares, the larger the number of folding lines, and the larger the number of folding lines, It becomes easy to follow.
図5は、三角形を基本形とする連続体からなる網状の凹部のパターン51を示しており、凹部で折れ曲がって形成される折曲線の方向は、矢印I、矢印J、矢印K、矢印Lの4方向ある。また、折曲線の数は、折曲線の方向数と基本形である三角形の数によって決まり、折曲線の方向数と三角形の数が多いほど多くなり、折曲線の数が多いほど被断熱体の曲面に沿い易くなる。 FIG. 5 shows a net-like recess pattern 51 formed of a continuous body having a triangular base shape. The directions of the folding lines formed by bending at the recesses are four of arrow I, arrow J, arrow K, and arrow L. There is a direction. The number of folding lines is determined by the number of directions of the folding curves and the number of triangles as the basic shape. The number of folding lines increases as the number of directions of the folding curves and the number of triangles increases, and the number of folding curves increases as the number of folding curves increases. It becomes easy to follow.
図6は、三角形を基本形とする連続体からなる網状の凹部のパターン61を示しており、凹部で折れ曲がって形成される折曲線の方向は、矢印M、矢印N、矢印O、矢印Pの4方向ある。また、折曲線の数は、折曲線の方向数と基本形である三角形の数によって決まり、折曲線の方向数と三角形の数が多いほど多くなり、折曲線の数が多いほど被断熱体の曲面に沿い易くなる。 FIG. 6 shows a net-like recess pattern 61 made of a continuous body having a triangular base shape, and the directions of the folding lines formed by bending at the recesses are four of arrow M, arrow N, arrow O, and arrow P. There is a direction. The number of folding lines is determined by the number of directions of the folding curves and the number of triangles as the basic shape. The number of folding lines increases as the number of directions of the folding curves and the number of triangles increases, and the number of folding curves increases as the number of folding curves increases. It becomes easy to follow.
図7は、三角形を基本形とする連続体からなる網状の凹部のパターン71を示しており、凹部で折れ曲がって形成される折曲線の方向は、矢印Q、矢印R、矢印S、矢印Tの4方向ある。また、折曲線の数は、折曲線の方向数と基本形である三角形の数によって決まり、折曲線の方向数と三角形の数が多いほど多くなり、折曲線の数が多いほど被断熱体の曲面に沿い易くなる。 FIG. 7 shows a net-like recess pattern 71 made of a continuous body having a triangular base shape, and the direction of the fold line formed by bending at the recess is four of arrow Q, arrow R, arrow S, and arrow T. There is a direction. The number of folding lines is determined by the number of directions of the folding curves and the number of triangles as the basic shape. The number of folding lines increases as the number of directions of the folding curves and the number of triangles increases, and the number of folding curves increases as the number of folding curves increases. It becomes easy to follow.
図8は、六角形を基本形とする連続体からなる網状の凹部のパターンを81示しており、凹部で折れ曲がって形成される折曲線の方向は、矢印U、矢印V、矢印Wの3方向ある。また、折曲線の数は、折曲線の方向数と基本形である六角形の数によって決まり、折曲線の方向数と六角形の数が多いほど多くなり、折曲線の数が多いほど被断熱体の曲面に沿い易くなる。 FIG. 8 shows 81 patterns of a net-like concave portion made of a continuous body having a hexagonal basic shape, and there are three directions of folding lines formed by bending at the concave portion: an arrow U, an arrow V, and an arrow W. . In addition, the number of folding lines is determined by the number of folding lines and the number of hexagons that are basic shapes. The larger the number of folding lines and the number of hexagons, the larger the number of folding lines and the greater the number of folding lines, It becomes easy to follow the curved surface.
なお、網状の凹部の基本形は前述の基本形状を組み合わせて適用しても何ら問題はないが、望ましくは、折曲線が直線となるようにパターンを決定することがより望ましい。 The basic shape of the net-like concave portion may be applied in combination with the basic shape described above, but it is more desirable to determine the pattern so that the folding line is a straight line.
また、被断熱体である構造体の曲面へ配設するには、前述のように、折曲線の数が多いほど被断熱体の曲面に沿い易くなり、曲面の曲率に応じて変更することができるが、網状の凹部を形成する基本形の大きさは、一辺の長さが20から50mmとすることが望ましい。基本形の一辺の長さが、これより大きすぎると曲面に沿い難くなり、これより小さい場合は、真空断熱材の外被材へのダメージが大きくなる。 In addition, as described above, the larger the number of folding lines, the easier it is to follow the curved surface of the body to be insulated, and it can be changed according to the curvature of the curved surface in order to dispose it on the curved surface of the structure that is the body to be insulated. However, the size of the basic shape for forming the net-like recess is preferably 20 to 50 mm on one side. If the length of one side of the basic shape is too large, it becomes difficult to follow the curved surface, and if it is smaller than this, the damage to the jacket material of the vacuum heat insulating material becomes large.
また、網状の凹部の深さは、真空断熱材11,31の厚みよって変更することが必要であるが、真空断熱材11,31は厚さが10mm以下のものを適用することが望ましく、網状の凹部の最大深さは、真空断熱材11,31の厚さに対して、20から50%の深さにすることが望ましい。 Further, the depth of the net-like recesses needs to be changed depending on the thickness of the vacuum heat insulating materials 11 and 31, but it is desirable to apply the vacuum heat insulating materials 11 and 31 having a thickness of 10 mm or less. The maximum depth of the recess is preferably 20 to 50% of the thickness of the vacuum heat insulating materials 11 and 31.
溝深さがこの範囲を超えると、曲面への貼り付けの低下や真空断熱材11,31の外被材13へのダメージによる品質への影響を及ぼす可能性がある。 If the groove depth exceeds this range, there is a possibility that the quality may be affected by a decrease in adhesion to the curved surface or damage to the jacket material 13 of the vacuum heat insulating materials 11 and 31.
本発明の真空断熱材の配設方法は、被断熱体となる構造体の表面が様々な曲面を有する場合にも、その曲面に沿うように密着して配設することができる。そのため、真空断熱材の適用自由度が拡大し、これ迄適用の難しかった構造体への適用が可能となる。 The arrangement method of the vacuum heat insulating material of the present invention can be arranged in close contact with the curved surface even when the surface of the structure to be insulated has various curved surfaces. Therefore, the degree of freedom of application of the vacuum heat insulating material is expanded, and application to a structure that has been difficult to apply until now becomes possible.
特に、緩やかな曲面を有する自動車の天井において、自動車天井を構成する鉄板等の外装材、或いはPETフェルト等からなる内装材の内面に直接配設できる。或いは、直接密着して貼り付けたり、フェルト等を介して配設する等、容易に適用することができる。 In particular, in an automobile ceiling having a gently curved surface, it can be directly disposed on the inner surface of an exterior material such as an iron plate or an interior material made of PET felt or the like constituting the automobile ceiling. Or it can apply easily, such as sticking directly, or arrange | positioning through felt etc.
11 真空断熱材
12 芯材
13 外被材
31 真空断熱材
32 網状の凹部
DESCRIPTION OF SYMBOLS 11 Vacuum heat insulating material 12 Core material 13 Cover material 31 Vacuum heat insulating material 32 Net-like recessed part
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007040229A JP2008202709A (en) | 2007-02-21 | 2007-02-21 | Arranging method of vacuum heat insulating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007040229A JP2008202709A (en) | 2007-02-21 | 2007-02-21 | Arranging method of vacuum heat insulating material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008202709A true JP2008202709A (en) | 2008-09-04 |
Family
ID=39780434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007040229A Pending JP2008202709A (en) | 2007-02-21 | 2007-02-21 | Arranging method of vacuum heat insulating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008202709A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020039147A1 (en) * | 2018-08-22 | 2020-02-27 | Hutchinson | 3d thermoformed element |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61173928A (en) * | 1985-01-29 | 1986-08-05 | 松下電器産業株式会社 | Vacuum heat-insulating material |
JPH06105152B2 (en) * | 1986-12-25 | 1994-12-21 | 株式会社東芝 | Vacuum insulation board manufacturing method |
JP2000097390A (en) * | 1998-09-22 | 2000-04-04 | Meisei Ind Co Ltd | Heat insulating panel and manufacture thereof |
JP2004211905A (en) * | 2002-12-05 | 2004-07-29 | Matsushita Refrig Co Ltd | Vacuum heat insulating material and outfit for protection against cold using it |
JP2005201458A (en) * | 2002-12-05 | 2005-07-28 | Matsushita Refrig Co Ltd | Vacuum heat insulation material |
JP2006064090A (en) * | 2004-08-27 | 2006-03-09 | Matsushita Electric Ind Co Ltd | Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, heat insulating member, and electrophotograpfhy device |
JP2006077791A (en) * | 2004-09-07 | 2006-03-23 | Matsushita Electric Ind Co Ltd | Vacuum insulating material, its manufacturing method, its application, interior material applied by the same vacuum insulating material, and insulating box |
JP2006090494A (en) * | 2004-09-27 | 2006-04-06 | Matsushita Electric Ind Co Ltd | Heat conduction insulation device |
JP2007205530A (en) * | 2006-02-06 | 2007-08-16 | Hitachi Appliances Inc | Vacuum heat-insulating material and its manufacturing method |
-
2007
- 2007-02-21 JP JP2007040229A patent/JP2008202709A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61173928A (en) * | 1985-01-29 | 1986-08-05 | 松下電器産業株式会社 | Vacuum heat-insulating material |
JPH06105152B2 (en) * | 1986-12-25 | 1994-12-21 | 株式会社東芝 | Vacuum insulation board manufacturing method |
JP2000097390A (en) * | 1998-09-22 | 2000-04-04 | Meisei Ind Co Ltd | Heat insulating panel and manufacture thereof |
JP2004211905A (en) * | 2002-12-05 | 2004-07-29 | Matsushita Refrig Co Ltd | Vacuum heat insulating material and outfit for protection against cold using it |
JP2005201458A (en) * | 2002-12-05 | 2005-07-28 | Matsushita Refrig Co Ltd | Vacuum heat insulation material |
JP2006064090A (en) * | 2004-08-27 | 2006-03-09 | Matsushita Electric Ind Co Ltd | Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, heat insulating member, and electrophotograpfhy device |
JP2006077791A (en) * | 2004-09-07 | 2006-03-23 | Matsushita Electric Ind Co Ltd | Vacuum insulating material, its manufacturing method, its application, interior material applied by the same vacuum insulating material, and insulating box |
JP2006090494A (en) * | 2004-09-27 | 2006-04-06 | Matsushita Electric Ind Co Ltd | Heat conduction insulation device |
JP2007205530A (en) * | 2006-02-06 | 2007-08-16 | Hitachi Appliances Inc | Vacuum heat-insulating material and its manufacturing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020039147A1 (en) * | 2018-08-22 | 2020-02-27 | Hutchinson | 3d thermoformed element |
WO2020039148A1 (en) * | 2018-08-22 | 2020-02-27 | Hutchinson | 3d thermoformed element |
US11858431B2 (en) | 2018-08-22 | 2024-01-02 | Hutchinson | 3D thermoformed element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2900802T3 (en) | Segmented gel composite materials and rigid panels made therefrom | |
JP3559035B2 (en) | Vacuum insulation material, method of manufacturing the same, and cold protection equipment and personal computer using vacuum insulation material | |
JP6300835B2 (en) | Lightweight heat shield | |
JP2006077792A (en) | Vacuum insulating material | |
AU740723B2 (en) | Panel-shaped, evacuated molded element, method of thermal insulation and use of the molded element | |
CN102792101A (en) | Ceiling or wall element with a heating or cooling register | |
JP6022037B2 (en) | Vacuum insulation | |
JP6959808B2 (en) | refrigerator | |
CN107806731A (en) | Hot box | |
JP2009299760A (en) | Thermal insulation device of heat apparatus | |
EP1458551B1 (en) | Method for producing thermo-insulating cylindrical vacuum panels and panels thereby obtained | |
KR101880167B1 (en) | Car heater protector | |
TW494207B (en) | Evacuated panel for thermal insulation of cylindrical bodies | |
JP2008202709A (en) | Arranging method of vacuum heat insulating material | |
JP2015038374A (en) | Vacuum insulation material, method of manufacturing the same, outer wrapping material for the same, and heat insulation article | |
EP2737138B1 (en) | Method of making an insulation panel and insulation panel obtainable with said method | |
JP2011111754A (en) | Heat insulating panel and method for manufacturing the same | |
ITMI981309A1 (en) | MULTI-LAYER METAL LAMIN SCREENS, WAVY, WAVABLE AND PROCEDURE REALIZED | |
JP5387085B2 (en) | Vehicle ceiling structure | |
JP6641243B2 (en) | Method for manufacturing composite heat insulator, method for manufacturing water heater, and composite heat insulator | |
JP2006292063A (en) | Vacuum heat insulating material constitution | |
JP2006169800A5 (en) | ||
RU63019U1 (en) | SHEET HEAT-INSULATING MATERIAL | |
EP3141370B1 (en) | Method for producing composite thermal insulator, method for producing water heater, and composite thermal insulator | |
JP2009138918A (en) | Thermal insulation member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091127 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110719 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110915 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111220 |