JP2004211905A - Vacuum heat insulating material and outfit for protection against cold using it - Google Patents

Vacuum heat insulating material and outfit for protection against cold using it Download PDF

Info

Publication number
JP2004211905A
JP2004211905A JP2004109802A JP2004109802A JP2004211905A JP 2004211905 A JP2004211905 A JP 2004211905A JP 2004109802 A JP2004109802 A JP 2004109802A JP 2004109802 A JP2004109802 A JP 2004109802A JP 2004211905 A JP2004211905 A JP 2004211905A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
film
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004109802A
Other languages
Japanese (ja)
Inventor
Takeo Fujimoto
剛生 藤元
Tomonao Amayoshi
智尚 天良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2004109802A priority Critical patent/JP2004211905A/en
Publication of JP2004211905A publication Critical patent/JP2004211905A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02B80/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material removing restriction on the shape of an applying object and being wide in application. <P>SOLUTION: The vacuum heat insulating material 10 is formed in such a manner that a plurality of cores 11 formed of glass fibers with a thickness of approximately 5 mm and approximately formed into a regular octagon are covered with a gas barrier film 12, and an internal part is decreased in pressure. The cores 11 are arranged in a grid-like state that at a part positioned between the adjoining cores 11, folding lines 10a, 10b, 10c, and 10d extending in four directions of a vertical direction, a lateral direction, and directions extending obliquely at an angle of 45° in parallel to the respective sides of the octagonal shape of the core 11, and so that the cores 11 adjacent in a vertical (a horizontal) direction are opposed to a horizontal (a vertical) side and the grids are situated at intervals of given intervals longer than at a distance that a length quadruple as long as the thickness of the film 12 to cover the cores 11 is added to the length of one side of the core 11 approximately in an octagonal shape. A thermal deposition section 13 of the film 12 is situated at the periphery of the core 11 so that each of a plurality of the cores 11 is positioned in an independent space. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、折り曲げ可能な真空断熱材と、その真空断熱材を用いた防寒具に関するものである。   The present invention relates to a foldable vacuum heat insulating material and a cold protection device using the vacuum heat insulating material.

従来の折り曲げ可能な真空断熱材としては、図16に示すように、3つの長方形の芯材1をガスバリア性のフィルム2で覆いフィルム2の内部を減圧して成り、3つの芯材1は一方向に互いに所定間隔離れて略同一面上に配置されており、3つの芯材1のそれぞれが独立した空間内に位置するように隣接する芯材1の間に位置するフィルムが熱溶着されており、隣接する芯材1の間に位置する熱溶着部3を折曲線4aとして折り曲げ可能な真空断熱材4があった(例えば、特許文献1参照)。   As a conventional foldable vacuum heat insulating material, as shown in FIG. 16, three rectangular cores 1 are covered with a gas barrier film 2 and the inside of the film 2 is depressurized. The films located between the adjacent cores 1 are heat-welded so that each of the three cores 1 is located in an independent space. In addition, there has been a vacuum heat insulating material 4 that can be bent with the heat-welded portion 3 located between the adjacent core materials 1 as a bending curve 4a (for example, see Patent Document 1).

この真空断熱材4は、図17に示すように、冷蔵庫などの断熱箱体の外箱5の内側に設けられるものである。外箱5は金属板6をコ字状に折り曲げたものであるが、真空断熱材4は、コ字状に折り曲げる前の状態の金属板6に、金属板6の折曲線に真空断熱材4の折曲線4aが対応するように接着固定されており、外箱5の内面となる面に真空断熱材4が接着固定された金属板6をコ字状に折り曲げることにより、図17に示す、内面に真空断熱材4を備えた外箱5が造られる。
特開平7−98090号公報
As shown in FIG. 17, this vacuum heat insulating material 4 is provided inside the outer case 5 of a heat insulating box such as a refrigerator. The outer box 5 is obtained by bending a metal plate 6 into a U-shape. The vacuum heat insulating material 4 is formed by adding the vacuum heat insulating material 4 to the metal plate 6 before being bent into the U shape. 17 is formed by bending a metal plate 6 on which the vacuum heat insulating material 4 is bonded and fixed to the inner surface of the outer box 5 so as to correspond to the folding curve 4a of FIG. The outer box 5 provided with the vacuum heat insulating material 4 on the inner surface is manufactured.
JP-A-7-98090

しかしながら、上記従来の真空断熱材4は、複数の長方形の芯材1が一方向に互いに所定間隔離れて略同一面上に配置されており、隣接する芯材1の間に位置する熱溶着部3に形成される各折曲線は、互いに略平行であるため、従来の真空断熱材4を適用(接着または貼付)することのできる対象物は、平面と、横断面の形状および大きさが長手方向で変わらない物体の側面(例えば、横断面が三つ以上の角をもつ多角形の多角柱形状の物体の側面、横断面が三つ以上の角をもつ多角形の筒状の物体の内側の側面または外側の側面)に限られており、例えば、防寒具の中の羽毛や綿の代わりに、上記従来の真空断熱材を使うことは困難であった。   However, in the conventional vacuum heat insulating material 4, the plurality of rectangular cores 1 are disposed on substantially the same plane at a predetermined distance from each other in one direction, and a heat-welded portion located between the adjacent cores 1 is provided. 3 are substantially parallel to each other, the object to which the conventional vacuum heat insulating material 4 can be applied (adhered or affixed) has a flat surface, a cross-sectional shape and a longitudinal shape. The side of an object that does not change direction (eg, the side of a polygonal prism-shaped object with a cross section of three or more corners, the inside of a polygonal cylindrical object with a cross section of three or more corners) Side or outer side), for example, it has been difficult to use the above-mentioned conventional vacuum insulation material instead of feathers and cotton in the cold protection equipment.

本発明は、適用する対象物の形状に制限が少なく、そのため用途の広い真空断熱材を提供することを第1の目的とする。   It is a first object of the present invention to provide a vacuum heat insulating material which has few restrictions on the shape of an object to be applied and is therefore versatile.

また、本発明は、真空断熱材を用いた防寒具を提供することを第2の目的とする。   A second object of the present invention is to provide a cold protection device using a vacuum heat insulating material.

上記第1の目的を達成するために、本発明の真空断熱材は、六角形の複数の芯材をガスバリア性のフィルムで覆い前記フィルムの内部を減圧して成り、前記複数の芯材は、隣接する前記芯材の間に位置する部分で3方向の折曲線を形成できるように千鳥状に互いに所定間隔離して配置されているのである。   In order to achieve the first object, the vacuum heat insulating material of the present invention is formed by covering a plurality of hexagonal core materials with a gas barrier film and depressurizing the inside of the film, and the plurality of core materials are: The portions located between the adjacent core members are arranged in a staggered manner and separated from each other by a predetermined distance so that a bent curve in three directions can be formed.

これにより、3方向に真空断熱材を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なくなる。よって、用途の広い真空断熱材を提供できる。また、3方向に折り曲げ可能な真空断熱材としては、芯材の占める面積の割合が大きいため、比較的断熱性能が高い。したがって、柔軟性と断熱性能のバランスが良いという効果がある。   Thereby, the vacuum heat insulating material can be bent in three directions, and therefore, the shape of the object to be applied is less restricted than the conventional vacuum heat insulating material. Therefore, a versatile vacuum heat insulating material can be provided. Further, the vacuum heat insulating material that can be bent in three directions has a relatively high heat insulating performance because the ratio of the area occupied by the core material is large. Therefore, there is an effect that the balance between flexibility and heat insulation performance is good.

また、上記第1の目的を達成するために、別の本発明の真空断熱材は、八角形の複数の芯材をガスバリア性のフィルムで覆い前記フィルムの内部を減圧して成り、前記複数の芯材は、隣接する前記芯材の間に位置する部分で4方向の折曲線を形成できるように格子状または千鳥状に互いに所定間隔離して配置されているのである。   Further, in order to achieve the first object, another vacuum heat insulating material of the present invention is formed by covering a plurality of octagonal core materials with a gas barrier film and depressurizing the inside of the film, and The core members are arranged in a lattice or staggered manner so as to be separated from each other by a predetermined distance so that a bent line in four directions can be formed at a portion located between the adjacent core members.

これにより、4方向に真空断熱材を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なくなる。よって、用途の広い真空断熱材を提供できる。また、4方向に折り曲げ可能な真空断熱材としては、芯材の占める面積の割合が大きいため、比較的断熱性能が高い。したがって、柔軟性と断熱性能のバランスが良いという効果がある。   Thereby, the vacuum heat insulating material can be bent in four directions, so that the shape of the object to be applied is less restricted than the conventional vacuum heat insulating material. Therefore, a versatile vacuum heat insulating material can be provided. Further, the vacuum heat insulating material that can be bent in four directions has a relatively high heat insulating performance because the ratio of the area occupied by the core material is large. Therefore, there is an effect that the balance between flexibility and heat insulation performance is good.

また、上記第2の目的を達成するために、本発明の防寒具は、衣料に、上記本発明の真空断熱材を設けたものであり、本発明の真空断熱材は、3方向または4方向に折り曲げ可能であるため、芯材の大きさを適切に選択することにより、防寒具用に適した柔軟性を確保できるので、真空断熱材の高い断熱性能を活かした薄くて断熱性能の高い防寒具を提供できる。   In order to achieve the second object, the present invention provides a cold weather protector, wherein the vacuum heat insulating material of the present invention is provided on clothing, and the vacuum heat insulating material of the present invention has three or four directions. It is possible to secure the flexibility suitable for cold weather protection by selecting the size of the core material properly, so that it is thin and has high heat insulation performance utilizing the high heat insulation performance of vacuum heat insulation material. Tools can be provided.

本発明の真空断熱材は、3方向または4方向に真空断熱材を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なく、用途が広いという効果がある。また、3方向または4方向に折り曲げ可能な真空断熱材としては、芯材の占める面積の割合が大きいため、比較的断熱性能が高く、柔軟性と断熱性能のバランスが良いという効果がある。   The vacuum heat insulating material of the present invention can bend the heat insulating material in three or four directions. Therefore, the shape of the object to be applied is smaller than that of the conventional vacuum heat insulating material, so that the vacuum heat insulating material can be used widely. . Further, the vacuum heat insulating material that can be bent in three or four directions has an effect that the heat insulating performance is relatively high and the balance between the flexibility and the heat insulating performance is good because the ratio of the area occupied by the core material is large.

また、本発明の防寒具は、芯材の大きさを適切に選択することにより、防寒具用に適した柔軟性を確保できるので、真空断熱材の高い断熱性能を活かした薄くて断熱性能の高い防寒具を提供できる。   In addition, since the cold protection device of the present invention can secure flexibility suitable for the cold protection device by appropriately selecting the size of the core material, the thin and heat insulating performance utilizing the high heat insulating performance of the vacuum heat insulating material can be secured. Can provide high cold protection.

本発明の請求項1記載の真空断熱材の発明は、六角形の複数の芯材をガスバリア性のフィルムで覆い前記フィルムの内部を減圧して成り、前記複数の芯材は、隣接する前記芯材の間に位置する部分で3方向の折曲線を形成できるように千鳥状に互いに所定間隔離して配置されているのである。   The invention of a vacuum heat insulating material according to claim 1 of the present invention is constituted by covering a plurality of hexagonal core materials with a gas barrier film and depressurizing the inside of the film, wherein the plurality of core materials are adjacent to the core. They are arranged in a zigzag pattern and are separated from each other by a predetermined distance so that a fold curve in three directions can be formed at a portion located between the members.

これにより、3方向に真空断熱材を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なくなる。よって、用途の広い真空断熱材を提供できる。また、3方向に折り曲げ可能な真空断熱材としては、芯材の占める面積の割合が大きいため、比較的断熱性能が高い。したがって、柔軟性と断熱性能のバランスが良いという効果がある。   Thereby, the vacuum heat insulating material can be bent in three directions, and therefore, the shape of the object to be applied is less restricted than the conventional vacuum heat insulating material. Therefore, a versatile vacuum heat insulating material can be provided. Further, the vacuum heat insulating material that can be bent in three directions has a relatively high heat insulating performance because the ratio of the area occupied by the core material is large. Therefore, there is an effect that the balance between flexibility and heat insulation performance is good.

また、請求項2記載の真空断熱材の発明は、八角形の複数の芯材をガスバリア性のフィルムで覆い前記フィルムの内部を減圧して成り、前記複数の芯材は、隣接する前記芯材の間に位置する部分で4方向の折曲線を形成できるように格子状または千鳥状に互いに所定間隔離して配置されているのである。   Further, the invention of a vacuum heat insulating material according to claim 2 is configured by covering a plurality of octagonal cores with a gas barrier film and depressurizing the inside of the film, and the plurality of cores are adjacent to the cores. They are arranged at a predetermined distance from each other in a lattice or staggered pattern so that a bent line in four directions can be formed at a portion located between them.

これにより、4方向に真空断熱材を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なくなる。よって、用途の広い真空断熱材を提供できる。また、4方向に折り曲げ可能な真空断熱材としては、芯材の占める面積の割合が大きいため、比較的断熱性能が高い。したがって、柔軟性と断熱性能のバランスが良いという効果がある。   Thereby, the vacuum heat insulating material can be bent in four directions, so that the shape of the object to be applied is less restricted than the conventional vacuum heat insulating material. Therefore, a versatile vacuum heat insulating material can be provided. Further, the vacuum heat insulating material that can be bent in four directions has a relatively high heat insulating performance because the ratio of the area occupied by the core material is large. Therefore, there is an effect that the balance between flexibility and heat insulation performance is good.

また、請求項3記載の真空断熱材の発明は、請求項1または2記載の発明における複数の芯材のそれぞれが独立した空間内に位置するように前記芯材の周囲にフィルムの熱溶着部が設けられているものである。   Further, the invention of a vacuum heat insulating material according to claim 3 is a heat-sealing portion of a film around the core material so that each of the plurality of core materials in the invention according to claim 1 or 2 is located in an independent space. Is provided.

これにより、請求項1または2記載の発明の作用効果に加えて、複数の芯材のそれぞれが独立した空間内に位置するように前記芯材の周囲に前記フィルムの熱溶着部が設けられているので、特定の芯材が入った空間の真空度が低下することが起きても、他の芯材が入った空間の真空度まで低下することはなく、断熱性能の低下を最小限に抑えることができる。   Thereby, in addition to the function and effect of the invention of claim 1 or 2, a heat-welded portion of the film is provided around the core so that each of the plurality of cores is located in an independent space. Therefore, even if the degree of vacuum in the space containing the specific core material decreases, it does not decrease to the degree of vacuum in the space containing the other core material, minimizing the decrease in insulation performance be able to.

また、請求項4記載の真空断熱材の発明は、請求項3記載の発明において、隣接する芯材との間に所定幅の熱溶着部が残るように、フィルムに孔を設けたものであり、請求項3に記載の発明の作用効果に加えて、真空断熱材における断熱性能の低下の影響が少ない部分に孔があいているので、真空断熱材の一方の面から他方の面に、空気や水を排出する必要がある用途や、適用箇所の都合上、物(例えば、管などの部品)を通す必要がある用途や、真空断熱材と発泡断熱材と組み合わせた複合断熱材において、製造の都合上、真空断熱材の一方の面から他方の面に、発泡断熱材を流す必要がある所にも適用できる。例えば、この真空断熱材を衣類に設けて防寒具とした場合は、この孔から、汗の蒸気を外部に放出することができ、防寒具の内側が蒸れず快適である。   According to a fourth aspect of the present invention, there is provided a vacuum heat insulating material according to the third aspect, wherein a hole is provided in the film so that a heat-welded portion having a predetermined width is left between adjacent core members. In addition to the functions and effects of the invention according to claim 3, since a hole is formed in a portion of the vacuum heat insulating material that is less affected by a decrease in heat insulating performance, air is provided from one surface of the vacuum heat insulating material to the other surface. For applications that require drainage of water or water, applications that require the passage of objects (for example, pipes and other parts) due to the location of application, and composite insulation that combines vacuum insulation and foam insulation Therefore, the present invention can be applied to a place where it is necessary to flow a foamed heat insulating material from one surface of the vacuum heat insulating material to the other surface. For example, when this vacuum heat insulating material is provided on clothing to provide a cold protection device, sweat vapor can be released to the outside from this hole, and the inside of the cold protection device is comfortable without stuffiness.

また、請求項5記載の防寒具の発明は、衣料に、請求項1から4のいずれか一項記載の真空断熱材を設けたものであり、請求項1から4のいずれか一項記載の真空断熱材は、3方向または4方向に折り曲げ可能であるため、芯材の大きさを適切に選択することにより、防寒具用に適した柔軟性を確保できるので、真空断熱材の高い断熱性能を活かした薄くて断熱性能の高い防寒具を提供できる。   According to a fifth aspect of the present invention, there is provided the cold protection equipment according to any one of the first to fourth aspects, wherein the clothing is provided with the vacuum heat insulating material according to any one of the first to fourth aspects. Since the vacuum heat insulating material can be bent in three or four directions, by appropriately selecting the size of the core material, it is possible to secure flexibility suitable for cold weather protection. This makes it possible to provide a thin, high-heat-insulation winterizer that takes advantage of the above.

また、請求項6記載の真空断熱材の発明は、請求項5記載の発明における真空断熱材が、衣料に着脱可能に取り付けられるものであり、温暖な気候になって高い断熱性が不要な時や、クリーニング時に、防寒具から真空断熱材を取り外せるという効果を有する。   Further, the invention of a vacuum heat insulating material according to claim 6 is the one in which the vacuum heat insulating material according to the invention of claim 5 is removably attached to clothing, so that it is not necessary to have a high heat insulating property due to a warm climate. Also, there is an effect that the vacuum heat insulating material can be removed from the cold protection equipment at the time of cleaning.

以下、本発明の真空断熱材と、その真空断熱材を用いた防寒具の実施の形態にについて説明する。   Hereinafter, an embodiment of a vacuum heat insulating material of the present invention and a cold protector using the vacuum heat insulating material will be described.

(実施の形態1)
図1は本発明の真空断熱材の実施の形態1を示す平面図、図2は図1のA−A線断面図である。
(Embodiment 1)
FIG. 1 is a plan view showing Embodiment 1 of the vacuum heat insulating material of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG.

本実施の形態の真空断熱材10は、16個の略正八角形に成型されたガラス繊維からなる厚さ5mm前後の芯材11をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、この16個の芯材11は、隣接する芯材11の間に位置する部分で、芯材11の八角形の各辺に平行に、縦、横、斜めの4方向の折曲線10a,10b,10c,10dを形成できるように、格子状に、縦(横)方向に隣接する芯材11と横(縦)の辺が対向するように、且つ、互いに、略八角形の芯材11の一辺の長さに芯材11を覆うフィルム12の厚みの4倍の大きさを加えた大きさより若干大きい所定間隔離して配置されており、この16個の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲にフィルム12の熱溶着部13が設けられているものである。   The vacuum heat insulating material 10 of the present embodiment is formed by covering a core material 11 made of 16 substantially regular octagonal glass fibers having a thickness of about 5 mm with a gas barrier film 12 and depressurizing the inside of the film 12. The sixteen core materials 11 are located between the adjacent core materials 11, and are parallel to the respective sides of the octagon of the core material 11, and have four vertical, horizontal, and oblique folding curves 10 a and 10 b. , 10c, and 10d, the core material 11 adjacent in the vertical (horizontal) direction and the horizontal (vertical) side face each other in a lattice shape, and the core material 11 having a substantially octagonal shape. The 16 core members 11 are arranged at predetermined intervals slightly larger than the length obtained by adding four times the thickness of the film 12 covering the core member 11 to the length of one side. The heat-welded portion of the film 12 around the core 11 so as to be located at 3 in which is provided.

フィルム12としては、アルミ蒸着層またはアルミ箔層を中間層に有するラミネートフィルムを使用できる。また、芯材11は、シート状のガラス繊維を重ねて多層化したものでもよい。   As the film 12, a laminated film having an aluminum vapor-deposited layer or an aluminum foil layer as an intermediate layer can be used. Further, the core material 11 may be formed by stacking sheet-like glass fibers to form a multilayer.

本実施の形態の真空断熱材10は、隣接する芯材11の間に位置するフィルム12の熱溶着部13で、縦方向、横方向、縦または横に対して45度の斜め方向の4方向に曲げることができるが、縦と横方向は、斜め方向より曲げやすい。   The vacuum heat insulating material 10 of the present embodiment is a heat-welded portion 13 of the film 12 located between the adjacent core materials 11, in four directions of a vertical direction, a horizontal direction, and an oblique direction of 45 degrees with respect to the vertical or horizontal direction. It can be bent in the vertical and horizontal directions more easily than in the diagonal direction.

以上のように本実施の形態の真空断熱材10は、複数の略正八角形の芯材11をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、複数の芯材11は、隣接する芯材の間に位置する部分で4方向の折曲線10a,10b,10c,10dを形成できるように格子状に互いに所定間隔離して配置されており、複数の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲にフィルム12の熱溶着部13が設けられているので、4方向に真空断熱材10を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なく、用途が広い。   As described above, the vacuum heat insulating material 10 of the present embodiment is formed by covering a plurality of substantially regular octagonal core materials 11 with the gas barrier film 12 and depressurizing the inside of the film 12. Are arranged at predetermined intervals in the form of a lattice so that bent lines 10a, 10b, 10c, and 10d in four directions can be formed at portions located between the core materials. Since the heat-welded portion 13 of the film 12 is provided around the core material 11 so as to be located in the space, the vacuum heat insulating material 10 can be bent in four directions, so that it is more applicable than the conventional vacuum heat insulating material. There are few restrictions on the shape of the object to be processed, and the application is wide.

また、特定の芯材11が入った空間の真空度が低下することが起きても、他の芯材11が入った空間の真空度まで低下することはなく、断熱性能の低下を最小限に抑えることができる。   Further, even if the degree of vacuum in the space containing the specific core material 11 is reduced, the degree of vacuum is not reduced to the degree of vacuum in the space containing the other core material 11, and the reduction in heat insulation performance is minimized. Can be suppressed.

本実施の形態では、真空断熱材10の外周部に位置するフィルム12と隣接する芯材11の間に位置する部分のフィルム12がすべて熱溶着されているので、熱溶着部13の幅が広く、そのため熱溶着部13を通して各芯材11が入った空間の真空度が低下する可能性をかなり低くできる。   In the present embodiment, since the film 12 located on the outer peripheral portion of the vacuum heat insulating material 10 and the film 12 located between the adjacent core materials 11 are all heat-welded, the width of the heat-welded portion 13 is wide. Therefore, it is possible to considerably reduce the possibility that the degree of vacuum in the space in which each core material 11 enters through the heat welding portion 13 is reduced.

また、芯材11の形状を、略正八角形にしたので、4方向に折り曲げ可能な真空断熱材としては、芯材11の占める面積の割合が大きいため、比較的断熱性能が高い。したがって、柔軟性と断熱性能のバランスが良い。   Further, since the shape of the core material 11 is substantially a regular octagon, as a vacuum heat insulating material that can be bent in four directions, the ratio of the area occupied by the core material 11 is large, so that the heat insulating performance is relatively high. Therefore, the balance between flexibility and heat insulation performance is good.

なお、本実施の形態の真空断熱材10は、縦横方向にそれぞれ4つの芯材11が並ぶものであったが、これに限定するものではない。   Although the vacuum heat insulating material 10 of the present embodiment has four core materials 11 arranged in each of the vertical and horizontal directions, the present invention is not limited to this.

また、真空断熱材10の適用時は、必要な大きさ、形に切断して使用することができるが、切断時は、断熱性能の低下を最小限に止めるために、フィルム12の熱溶着部13の部分を切断することが好ましい。   Further, when the vacuum heat insulating material 10 is applied, it can be used after being cut into a required size and shape. Preferably, part 13 is cut.

(実施の形態2)
以下、本発明の実施の形態2の真空断熱材について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
(Embodiment 2)
Hereinafter, a vacuum heat insulating material according to a second embodiment of the present invention will be described. However, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

図3は本発明の真空断熱材の実施の形態2を示す平面図である。   FIG. 3 is a plan view showing Embodiment 2 of the vacuum heat insulating material of the present invention.

本実施の形態の真空断熱材20は、13個の略正八角形に成型されたガラス繊維からなる厚さ5mm前後の芯材11をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、この13個の芯材11は、隣接する芯材11の間に位置する部分で、芯材11の八角形の各辺に平行に、縦、横、斜めの4方向の折曲線20a,20b,20c,20dを形成できるように、千鳥状に、斜め45度方向に隣接する芯材11と斜めの辺が対向するように、且つ、互いに、略八角形の芯材11の一辺の長さに芯材11を覆うフィルム12の厚みの4倍の大きさを加えた大きさより若干大きい所定間隔離して配置されており、この13個の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲にフィルム12の熱溶着部13が設けられているものである。   The vacuum heat insulating material 20 of the present embodiment is formed by covering a core material 11 made of 13 approximately regular octagonal glass fibers having a thickness of about 5 mm with a gas barrier film 12 and depressurizing the inside of the film 12. The 13 core members 11 are located between the adjacent core members 11, and are parallel to the respective sides of the octagon of the core member 11, and are bent in the vertical, horizontal and oblique directions 20 a and 20 b. , 20c, and 20d, the core material 11 adjacent to the core material 11 in a 45 ° staggered direction and the oblique sides thereof are opposed to each other, and the length of one side of the substantially octagonal core material 11 is set to each other. Are separated by a predetermined distance slightly larger than the sum of the thickness of the film 12 covering the core material 11 and four times the thickness of the film 12, so that each of the 13 core materials 11 is located in an independent space. Heat-welded portion 1 of film 12 around core 11 In which is provided.

本実施の形態の真空断熱材20は、隣接する芯材11の間に位置するフィルム12の熱溶着部13で、縦方向、横方向、縦または横に対して45度の斜め方向の4方向に曲げることができるが、斜め方向は、縦または横方向より曲げやすい。   The vacuum heat insulating material 20 of the present embodiment is a heat-welded portion 13 of the film 12 located between the adjacent core materials 11, in four directions of a vertical direction, a horizontal direction, and an oblique direction of 45 degrees with respect to the vertical or horizontal direction. Although it can be bent in an oblique direction, it is easier to bend than a vertical or horizontal direction.

以上のように本実施の形態の真空断熱材20は、複数の略正八角形の芯材11をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、複数の芯材11は、隣接する芯材の間に位置する部分で4方向の折曲線20a,20b,20c,20dを形成できるように千鳥状に互いに所定間隔離して配置されており、複数の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲にフィルム12の熱溶着部13が設けられているので、4方向に真空断熱材20を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なく、用途が広い。   As described above, the vacuum heat insulating material 20 of the present embodiment is formed by covering a plurality of substantially regular octagonal core materials 11 with the gas barrier film 12 and depressurizing the inside of the film 12, and the plurality of core materials 11 Are arranged in a staggered manner so as to form fold curves 20a, 20b, 20c, and 20d in four directions at portions located between the core materials to be formed, and each of the plurality of core materials 11 is independent. Since the heat-welded portion 13 of the film 12 is provided around the core material 11 so as to be located in the space, the vacuum heat insulating material 20 can be bent in four directions, so that it is more applicable than the conventional vacuum heat insulating material. There are few restrictions on the shape of the object to be processed, and the application is wide.

また、特定の芯材11が入った空間の真空度が低下することが起きても、他の芯材11が入った空間の真空度まで低下することはなく、断熱性能の低下を最小限に抑えることができる。   Further, even if the degree of vacuum in the space containing the specific core material 11 is reduced, the degree of vacuum is not reduced to the degree of vacuum in the space containing the other core material 11, and the reduction in heat insulation performance is minimized. Can be suppressed.

本実施の形態では、真空断熱材10の外周部に位置するフィルム12と隣接する芯材11の間に位置する部分のフィルム12がすべて熱溶着されているので、熱溶着部13の幅が広く、そのため熱溶着部13を通して各芯材11が入った空間の真空度が低下する可能性をかなり低くできる。   In the present embodiment, since the film 12 located on the outer peripheral portion of the vacuum heat insulating material 10 and the film 12 located between the adjacent core materials 11 are all heat-welded, the width of the heat-welded portion 13 is wide. Therefore, it is possible to considerably reduce the possibility that the degree of vacuum in the space in which each core material 11 enters through the heat welding portion 13 is reduced.

また、芯材11の形状を、略正八角形にしたので、4方向に折り曲げ可能な真空断熱材としては、芯材11の占める面積の割合が大きいため、比較的断熱性能が高い。したがって、柔軟性と断熱性能のバランスが良い。   Further, since the shape of the core material 11 is substantially a regular octagon, as a vacuum heat insulating material that can be bent in four directions, the ratio of the area occupied by the core material 11 is large, so that the heat insulating performance is relatively high. Therefore, the balance between flexibility and heat insulation performance is good.

なお、本実施の形態の真空断熱材20は、13個の芯材11が千鳥状に並ぶものであったが、これに限定するものではない。   Although the vacuum heat insulating material 20 of the present embodiment has the thirteen core materials 11 arranged in a staggered manner, the present invention is not limited to this.

また、真空断熱材20の適用時は、必要な大きさ、形に切断して使用することができるが、切断時は、断熱性能の低下を最小限に止めるために、フィルム12の熱溶着部13の部分を切断することが好ましい。   Further, when the vacuum heat insulating material 20 is applied, it can be cut into a required size and shape, but at the time of cutting, the heat welding portion of the film 12 is used in order to minimize a decrease in heat insulating performance. Preferably, part 13 is cut.

(実施の形態3)
以下、本発明の実施の形態3の真空断熱材について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
(Embodiment 3)
Hereinafter, a vacuum heat insulating material according to a third embodiment of the present invention will be described. However, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

図4は本発明の真空断熱材の実施の形態3を示す平面図、図5は図4のB−B線断面図である。   FIG. 4 is a plan view showing Embodiment 3 of the vacuum heat insulating material of the present invention, and FIG. 5 is a sectional view taken along line BB of FIG.

本実施の形態の真空断熱材30は、16個の略正八角形に成型されたガラス繊維からなる厚さ5mm前後の芯材11をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、この16個の芯材11は、隣接する芯材11の間に位置する部分で、芯材11の八角形の各辺に平行に、縦、横、斜めの4方向の折曲線を形成できるように、格子状に、縦(横)方向に隣接する芯材11と横(縦)の辺が対向するように、且つ、互いに、略八角形の芯材11の一辺の長さに芯材11を覆うフィルム12の厚みの4倍の大きさを加えた大きさより若干大きい所定間隔離して配置されており、この16個の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲にフィルム12の熱溶着部33が設けられ、隣接する芯材11の間で、且つ、熱溶着部33を間に挟んで芯材11の外周側に、フィルム12が熱溶着されていない非熱溶着部34を有するものである。   The vacuum heat insulating material 30 of the present embodiment is formed by covering the core material 11 made of 16 approximately regular octagonal glass fibers having a thickness of about 5 mm with a gas barrier film 12 and depressurizing the inside of the film 12. The sixteen core members 11 are formed between the adjacent core members 11 and can form four vertical, horizontal, and diagonal folding curves in parallel with each octagonal side of the core member 11. As described above, the core material 11 adjacent to the core material 11 in the vertical (horizontal) direction and the horizontal (vertical) side are opposed to each other, and the length of the core material 11 is set to one side of the substantially octagonal core material 11. Are separated by a predetermined distance slightly larger than the sum of the thickness of the film 12 covering the film 11 and four times the thickness of the film 12, and the cores 11 are positioned so that each of the 16 cores 11 is located in an independent space. A heat-welded portion 33 of the film 12 is provided around the periphery of the core material 11. Between, and, on the outer peripheral side of the core material 11 sandwiched between the heat seal parts 33, and has a non-heat seal parts 34 where the film 12 is not thermally welded.

本実施の形態の真空断熱材30は、隣接する芯材11の間に位置するフィルム12の部分で、縦方向、横方向、縦または横に対して45度の斜め方向の4方向に曲げることができるが、縦と横方向は、斜め方向より曲げやすい。   The vacuum heat insulating material 30 of the present embodiment bends in four directions of a vertical direction, a horizontal direction, and a diagonal direction of 45 degrees with respect to the vertical or horizontal direction at a portion of the film 12 located between the adjacent core materials 11. However, it is easier to bend in the vertical and horizontal directions than in the diagonal directions.

以上のように本実施の形態の真空断熱材30は、複数の略正八角形の芯材11をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、複数の芯材11は、隣接する芯材の間に位置する部分で4方向の折曲線を形成できるように格子状に互いに所定間隔離して配置されており、複数の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲にフィルム12の熱溶着部33が設けられているので、4方向に真空断熱材30を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なく、用途が広い。   As described above, the vacuum heat insulating material 30 of the present embodiment is formed by covering a plurality of substantially regular octagonal core materials 11 with the gas barrier film 12 and depressurizing the inside of the film 12, and the plurality of core materials 11 Are arranged in a lattice so as to be separated from each other by a predetermined distance so as to form a bent line in four directions at a portion located between the core materials to be formed, so that each of the plurality of core materials 11 is located in an independent space. Since the heat-welded portion 33 of the film 12 is provided around the core material 11, the vacuum heat insulating material 30 can be bent in four directions, so that the shape of the object to be applied is more limited than the conventional vacuum heat insulating material. There are few and wide use.

また、特定の芯材11が入った空間の真空度が低下することが起きても、他の芯材11が入った空間の真空度まで低下することはなく、断熱性能の低下を最小限に抑えることができる。   Further, even if the degree of vacuum in the space containing the specific core material 11 is reduced, the degree of vacuum is not reduced to the degree of vacuum in the space containing the other core material 11, and the reduction in heat insulation performance is minimized. Can be suppressed.

また、隣接する芯材11の間で、且つ、熱溶着部33を間に挟んで芯材11の外周側に、フィルム12が熱溶着されていない非熱溶着部34を有するので、熱溶着部33をパターン化しやすいので、溶着装置の小型化、簡略化が可能になり、溶着作業が容易に行える。   In addition, since the non-heat-welded portion 34 to which the film 12 is not heat-welded is provided between the adjacent core materials 11 and on the outer peripheral side of the core material 11 with the heat-welded portion 33 interposed therebetween, Since the pattern 33 is easy to be patterned, the welding apparatus can be reduced in size and simplified, and the welding operation can be easily performed.

また、芯材11の形状を、略正八角形にしたので、4方向に折り曲げ可能な真空断熱材としては、芯材11の占める面積の割合が大きいため、比較的断熱性能が高い。したがって、柔軟性と断熱性能のバランスが良い。   Further, since the shape of the core material 11 is substantially a regular octagon, as a vacuum heat insulating material that can be bent in four directions, the ratio of the area occupied by the core material 11 is large, so that the heat insulating performance is relatively high. Therefore, the balance between flexibility and heat insulation performance is good.

なお、本実施の形態の真空断熱材30は、縦横方向にそれぞれ4つの芯材11が並ぶものであったが、これに限定するものではない。   Although the vacuum heat insulating material 30 of the present embodiment has four core materials 11 arranged in each of the vertical and horizontal directions, the present invention is not limited to this.

なお、図6に示す本実施の形態の変形例の真空断熱材30aのように、芯材11の周囲に設けられるフィルム12の熱溶着部33aは、芯材11のそれぞれに対して独立して設けられる、芯材11を囲む略正八角形のドーナツ形とし、熱溶着部33a以外の部分のフィルム12を非熱溶着部34aとしても構わない。   In addition, like the vacuum heat insulating material 30a of the modification of the present embodiment shown in FIG. 6, the heat-welded portions 33a of the film 12 provided around the core material 11 are independently provided for each of the core materials 11. The dough-shaped portion may be provided as a substantially regular octagonal donut surrounding the core material 11 and the non-heat-welded portion 34a may be used as the portion of the film 12 other than the heat-welded portion 33a.

また、真空断熱材30の適用時は、必要な大きさ、形に切断して使用することができるが、切断時は、断熱性能の低下を最小限に止めるために、フィルム12の熱溶着部33または非熱溶着部34の部分を切断することが好ましい。   Further, when the vacuum heat insulating material 30 is applied, it can be cut into a required size and shape, but at the time of cutting, in order to minimize a decrease in heat insulating performance, a heat-welded portion of the film 12 is used. It is preferable to cut the part of the non-thermally welded part 33 or 33.

なお、図6に示す本実施の形態の変形例の真空断熱材30aの切断時は、断熱性能の低下を最小限に止めるために、フィルム12の非熱溶着部34aの部分を切断することが好ましい。   When cutting the vacuum heat insulating material 30a according to the modification of the present embodiment shown in FIG. 6, the non-heat-welded portion 34a of the film 12 may be cut in order to minimize a decrease in heat insulating performance. preferable.

(実施の形態4)
以下、本発明の実施の形態4の真空断熱材について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
(Embodiment 4)
Hereinafter, a vacuum heat insulating material according to a fourth embodiment of the present invention will be described. However, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

図7は本発明の真空断熱材の実施の形態4を示す平面図、図8は図7のC−C線断面図である。   FIG. 7 is a plan view showing Embodiment 4 of the vacuum heat insulating material of the present invention, and FIG. 8 is a sectional view taken along line CC of FIG.

本実施の形態の真空断熱材40は、16個の略正八角形に成型されたガラス繊維からなる厚さ5mm前後の芯材11をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、この16個の芯材11は、隣接する芯材11の間に位置する部分で、芯材11の八角形の各辺に平行に、縦、横、斜めの4方向の折曲線を形成できるように、格子状に、縦(横)方向に隣接する芯材11と横(縦)の辺が対向するように、且つ、互いに、略八角形の芯材11の一辺の長さに芯材11を覆うフィルム12の厚みの4倍の大きさを加えた大きさより若干大きい所定間隔離して配置されており、この16個の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲にフィルム12の熱溶着部43が設けられ、さらに、隣接する芯材11との間に所定幅の熱溶着部43が残るように、フィルム12に円形の孔44を設けたものである。   The vacuum heat insulating material 40 of the present embodiment is formed by covering a core material 11 of about 5 mm thick made of glass fibers molded into approximately regular octagons with a gas barrier film 12 and depressurizing the inside of the film 12. The sixteen core members 11 are formed between the adjacent core members 11 and can form four vertical, horizontal, and diagonal folding curves in parallel with each octagonal side of the core member 11. As described above, the core material 11 adjacent to the core material 11 in the vertical (horizontal) direction and the horizontal (vertical) side are opposed to each other, and the length of the core material 11 is set to one side of the substantially octagonal core material 11. Are separated by a predetermined distance slightly larger than the sum of the thickness of the film 12 covering the film 11 and four times the thickness of the film 12, and the cores 11 are positioned so that each of the 16 cores 11 is located in an independent space. 11, a heat-welded portion 43 of the film 12 is provided. As the heat seal parts 43 of specified width remains between the core 11, is provided with a circular hole 44 in the film 12.

本実施の形態の真空断熱材40は、隣接する芯材11の間に位置するフィルム12の熱溶着部43で、縦方向、横方向、縦または横に対して45度の斜め方向の4方向に曲げることができるが、縦と横方向は、斜め方向より曲げやすい。   The vacuum heat insulating material 40 of the present embodiment is a heat-sealed portion 43 of the film 12 located between the adjacent core materials 11 and is formed in four directions, that is, a vertical direction, a horizontal direction, and a diagonal direction of 45 degrees with respect to the vertical or horizontal direction. It can be bent in the vertical and horizontal directions more easily than in the diagonal direction.

以上のように本実施の形態の真空断熱材40は、複数の略正八角形の芯材11をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、複数の芯材11は、隣接する芯材の間に位置する部分で4方向の折曲線を形成できるように格子状に互いに所定間隔離して配置されており、複数の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲にフィルム12の熱溶着部43が設けられているので、4方向に真空断熱材40を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なく、用途が広い。   As described above, the vacuum heat insulating material 40 of the present embodiment is formed by covering a plurality of substantially regular octagonal core materials 11 with the gas barrier film 12 and depressurizing the inside of the film 12, and the plurality of core materials 11 are adjacent to each other. Are arranged in a lattice so as to be separated from each other by a predetermined distance so as to form a bent line in four directions at a portion located between the core materials to be formed, so that each of the plurality of core materials 11 is located in an independent space. Since the heat-welded portion 43 of the film 12 is provided around the core material 11, the vacuum heat insulating material 40 can be bent in four directions, so that the shape of the object to be applied is more limited than the conventional vacuum heat insulating material. There are few and wide use.

また、特定の芯材11が入った空間の真空度が低下することが起きても、他の芯材11が入った空間の真空度まで低下することはなく、断熱性能の低下を最小限に抑えることができる。   Further, even if the degree of vacuum in the space containing the specific core material 11 is reduced, the degree of vacuum is not reduced to the degree of vacuum in the space containing the other core material 11, and the reduction in heat insulation performance is minimized. Can be suppressed.

本実施の形態では、真空断熱材40の外周部に位置するフィルム12と隣接する芯材11の間に位置する部分のフィルム12がすべて熱溶着されているので、熱溶着部43の幅が広く、そのため熱溶着部43を通して各芯材11が入った空間の真空度が低下する可能性をかなり低くできる。   In the present embodiment, since the film 12 located on the outer peripheral portion of the vacuum heat insulating material 40 and the portion of the film 12 located between the adjacent core materials 11 are all heat-welded, the width of the heat-welded portion 43 is wide. Therefore, it is possible to considerably reduce the possibility that the degree of vacuum in the space in which each core material 11 enters through the heat welding portion 43 is reduced.

また、芯材11の形状を、略正八角形にしたので、4方向に折り曲げ可能な真空断熱材としては、芯材11の占める面積の割合が大きいため、比較的断熱性能が高い。したがって、柔軟性と断熱性能のバランスが良い。   Further, since the shape of the core material 11 is substantially a regular octagon, as a vacuum heat insulating material that can be bent in four directions, the ratio of the area occupied by the core material 11 is large, so that the heat insulating performance is relatively high. Therefore, the balance between flexibility and heat insulation performance is good.

また、本実施の形態の真空断熱材40は、隣接する芯材11との間に所定幅の熱溶着部43が残るように、フィルム12に孔44を設けたものであり、真空断熱材40における断熱性能の低下の影響が少ない部分に孔44があいているので、真空断熱材40の一方の面から他方の面に、空気や水を排出する必要がある用途や、適用箇所の都合上、物(例えば、管などの部品)を通す必要がある用途や、真空断熱材40と発泡断熱材と組み合わせた複合断熱材において、製造の都合上、真空断熱材の一方の面から他方の面に、発泡断熱材を流す必要がある所にも適用できる。例えば、この真空断熱材40を衣類に設けて防寒具とした場合は、この孔44から、汗の蒸気を外部に放出することができ、防寒具の内側が蒸れず快適である。   In addition, the vacuum heat insulating material 40 of the present embodiment is provided with a hole 44 in the film 12 such that a heat-welded portion 43 having a predetermined width remains between the vacuum heat insulating material 40 and the adjacent core material 11. Since the hole 44 is formed in a portion where the influence of the deterioration of the heat insulation performance is small, there is a need to discharge air and water from one surface of the vacuum heat insulating material 40 to the other surface, In applications where it is necessary to pass an object (for example, a part such as a pipe), or in a composite heat insulating material combining a vacuum heat insulating material 40 and a foam heat insulating material, for convenience of manufacture, one side of the vacuum heat insulating material to the other side thereof. In addition, the present invention can be applied to a place where it is necessary to flow foam insulation. For example, when the vacuum heat insulating material 40 is provided on clothing to provide a cold protection, sweat vapor can be released to the outside through the holes 44, and the inside of the cold protection is comfortable without being stuffy.

なお、本実施の形態の真空断熱材40は、縦横方向にそれぞれ4つの芯材11が並ぶものであったが、これに限定するものではない。   In addition, although the vacuum heat insulating material 40 of the present embodiment has four core materials 11 arranged in the vertical and horizontal directions, the present invention is not limited to this.

また、真空断熱材40の適用時は、必要な大きさ、形に切断して使用することができるが、切断時は、断熱性能の低下を最小限に止めるために、フィルム12の熱溶着部43の部分を切断することが好ましい。   Further, when the vacuum heat insulating material 40 is applied, it can be cut into a required size and shape, but when cutting, the heat-welded portion of the film 12 is used in order to minimize a decrease in heat insulating performance. It is preferable to cut the portion 43.

(実施の形態5)
以下、本発明の実施の形態5の真空断熱材について説明するが、実施の形態1または3と同一構成については、同一符号を付してその詳細な説明は省略する。
(Embodiment 5)
Hereinafter, a vacuum heat insulating material according to a fifth embodiment of the present invention will be described. However, the same components as those in the first or third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図9は本発明の真空断熱材の実施の形態5を示す平面図、図10は図9のD−D線断面図である。   FIG. 9 is a plan view showing Embodiment 5 of the vacuum heat insulating material of the present invention, and FIG. 10 is a cross-sectional view taken along line DD of FIG.

本実施の形態の真空断熱材50は、16個の略正八角形に成型されたガラス繊維からなる厚さ5mm前後の芯材11をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、この16個の芯材11は、隣接する芯材11の間に位置する部分で、芯材11の八角形の各辺に平行に、縦、横、斜めの4方向の折曲線を形成できるように、格子状に、縦(横)方向に隣接する芯材11と横(縦)の辺が対向するように、且つ、互いに、略八角形の芯材11の一辺の長さに芯材11を覆うフィルム12の厚みの4倍の大きさを加えた大きさより若干大きい所定間隔離して配置されており、この16個の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲にフィルム12の熱溶着部53が設けられ、且つ、隣接する芯材11の間で、且つ、熱溶着部53を間に挟んで芯材11の外周側に、フィルム12が熱溶着されていない非熱溶着部55を有し、隣接する芯材11との間に所定幅の熱溶着部53が残るように、フィルム12の非熱溶着部55に孔54を設けたものである。   The vacuum heat insulating material 50 of the present embodiment is formed by covering a core material 11 made of glass fibers molded into approximately 16 regular octagons and having a thickness of about 5 mm with a gas barrier film 12 and depressurizing the inside of the film 12. The sixteen core members 11 are formed between the adjacent core members 11 and can form four vertical, horizontal, and diagonal folding curves in parallel with each octagonal side of the core member 11. As described above, the core material 11 adjacent to the core material 11 in the vertical (horizontal) direction and the horizontal (vertical) side are opposed to each other, and the length of the core material 11 is set to one side of the substantially octagonal core material 11. Are separated by a predetermined distance slightly larger than the sum of the thickness of the film 12 covering the film 11 and four times the thickness of the film 12, and the cores 11 are positioned so that each of the 16 cores 11 is located in an independent space. 11 is provided with a heat-welded portion 53 of the film 12 and is adjacent thereto. A non-heat-welded portion 55 where the film 12 is not heat-welded is provided between the materials 11 and on the outer peripheral side of the core material 11 with the heat-welded portion 53 interposed therebetween, and is provided between the adjacent core materials 11. A hole 54 is provided in a non-heat-welded portion 55 of the film 12 so that a heat-welded portion 53 having a predetermined width remains.

本実施の形態の真空断熱材50は、隣接する芯材11の間に位置するフィルム12の部分で、縦方向、横方向、縦または横に対して45度の斜め方向の4方向に曲げることができるが、縦と横方向は、斜め方向より曲げやすい。   The vacuum heat insulating material 50 of the present embodiment is bent in four directions of a vertical direction, a horizontal direction, and a diagonal direction of 45 degrees with respect to the vertical or horizontal direction at a portion of the film 12 located between the adjacent core materials 11. However, it is easier to bend in the vertical and horizontal directions than in the diagonal directions.

以上のように本実施の形態の真空断熱材50は、複数の略正八角形の芯材11をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、複数の芯材11は、隣接する芯材の間に位置する部分で4方向の折曲線を形成できるように格子状に互いに所定間隔離して配置されており、複数の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲にフィルム12の熱溶着部53が設けられているので、4方向に真空断熱材50を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なく、用途が広い。   As described above, the vacuum heat insulating material 50 of the present embodiment is formed by covering the plurality of substantially regular octagonal core materials 11 with the gas barrier film 12 and depressurizing the inside of the film 12, and the plurality of core materials 11 Are arranged in a lattice so as to be separated from each other by a predetermined distance so as to form a bent line in four directions at a portion located between the core materials to be formed, so that each of the plurality of core materials 11 is located in an independent space. Since the heat-welded portion 53 of the film 12 is provided around the core material 11, the vacuum heat insulating material 50 can be bent in four directions, so that the shape of the object to be applied is more limited than the conventional vacuum heat insulating material. There are few and wide use.

また、特定の芯材11が入った空間の真空度が低下することが起きても、他の芯材11が入った空間の真空度まで低下することはなく、断熱性能の低下を最小限に抑えることができる。   Further, even if the degree of vacuum in the space containing the specific core material 11 is reduced, the degree of vacuum is not reduced to the degree of vacuum in the space containing the other core material 11, and the reduction in heat insulation performance is minimized. Can be suppressed.

また、隣接する芯材11の間で、且つ、熱溶着部53を間に挟んで芯材11の外周側に、フィルム12が熱溶着されていない非熱溶着部55を有するので、熱溶着部53をパターン化しやすいので、溶着装置の小型化、簡略化が可能になり、溶着作業が容易に行える。   Further, since the non-heat-welded portion 55 where the film 12 is not heat-welded is provided between the adjacent core materials 11 and on the outer peripheral side of the core material 11 with the heat-welding portion 53 interposed therebetween, Since the pattern 53 is easy to be patterned, the welding apparatus can be reduced in size and simplified, and the welding operation can be easily performed.

また、芯材11の形状を、略正八角形にしたので、4方向に折り曲げ可能な真空断熱材としては、芯材11の占める面積の割合が大きいため、比較的断熱性能が高い。したがって、柔軟性と断熱性能のバランスが良い。   Further, since the shape of the core material 11 is substantially a regular octagon, as a vacuum heat insulating material that can be bent in four directions, the ratio of the area occupied by the core material 11 is large, so that the heat insulating performance is relatively high. Therefore, the balance between flexibility and heat insulation performance is good.

また、本実施の形態の真空断熱材50は、隣接する芯材11との間に所定幅の熱溶着部53が残るように、フィルム12に孔54を設けたものであり、真空断熱材50における断熱性能の低下の影響が少ない部分に孔54があいているので、真空断熱材50の一方の面から他方の面に、空気や水を排出する必要がある用途や、適用箇所の都合上、物(例えば、管などの部品)を通す必要がある用途や、真空断熱材50と発泡断熱材と組み合わせた複合断熱材において、製造の都合上、真空断熱材の一方の面から他方の面に、発泡断熱材を流す必要がある所にも適用できる。例えば、この真空断熱材50を衣類に設けて防寒具とした場合は、この孔54から、汗の蒸気を外部に放出することができ、防寒具の内側が蒸れず快適である。   Further, the vacuum heat insulating material 50 of the present embodiment is provided with a hole 54 in the film 12 so that the heat-welded portion 53 having a predetermined width remains between the vacuum heat insulating material 50 and the adjacent core material 11. Because the hole 54 is formed in a portion where the influence of the deterioration of the heat insulating performance is small, the air or water needs to be discharged from one surface of the vacuum heat insulating material 50 to the other surface. In applications where it is necessary to pass an object (for example, a part such as a tube), or in a composite heat insulating material combining a vacuum heat insulating material 50 and a foam heat insulating material, for convenience of manufacture, one side of the vacuum heat insulating material to the other side. In addition, the present invention can be applied to a place where it is necessary to flow foam insulation. For example, when the vacuum heat insulating material 50 is provided on clothing to provide a cold protection, sweat vapor can be released to the outside from the holes 54, and the inside of the cold protection is comfortable without stuffiness.

なお、本実施の形態の真空断熱材50は、縦横方向にそれぞれ4つの芯材11が並ぶものであったが、これに限定するものではない。   Although the vacuum heat insulating material 50 of the present embodiment has four core materials 11 arranged in each of the vertical and horizontal directions, the present invention is not limited to this.

また、芯材11の周囲に設けられるフィルム12の熱溶着部53は、芯材11のそれぞれに対して独立して設けられる、芯材11を囲む略正八角形のドーナツ形であっても構わない。   Further, the heat-welded portion 53 of the film 12 provided around the core 11 may be a substantially regular octagonal donut that surrounds the core 11 and is provided independently for each of the cores 11. .

また、孔54の縁は、フィルム12の密封性向上のため、熱溶着されていることが好ましく、孔54を取付け等に利用する場合は、孔54の縁からフィルム12が破損しないように、孔54の縁を補強することが好ましい。   Further, the edge of the hole 54 is preferably heat-sealed to improve the sealing property of the film 12. When the hole 54 is used for mounting or the like, the film 12 is not damaged from the edge of the hole 54. Preferably, the edge of the hole 54 is reinforced.

また、真空断熱材50の適用時は、必要な大きさ、形に切断して使用することができるが、切断時は、断熱性能の低下を最小限に止めるために、フィルム12の熱溶着部53または非熱溶着部55の部分を切断することが好ましい。   Further, when the vacuum heat insulating material 50 is applied, it can be cut into a required size and shape, but at the time of cutting, the heat welding portion of the film 12 is used in order to minimize a decrease in heat insulating performance. It is preferable to cut off the portion 53 or the non-heat-welded portion 55.

(実施の形態6)
以下、本発明の実施の形態6の真空断熱材について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
(Embodiment 6)
Hereinafter, a vacuum heat insulating material according to a sixth embodiment of the present invention will be described. However, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

図11は本発明の真空断熱材の実施の形態6を示す平面図である。   FIG. 11 is a plan view showing Embodiment 6 of the vacuum heat insulating material of the present invention.

本実施の形態の真空断熱材100は、16個の略正六角形に成型されたガラス繊維からなる厚さ5mm前後の芯材101をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、この16個の芯材101は、2つの辺が横方向に平行になるように配置され、隣接する芯材101の間に位置する部分で、芯材101の六角形の各辺に垂直に、縦と、縦に対して左右60度の斜めの3方向の折曲線100a,100b,100cを形成できるように、千鳥状(蜂の巣状)に、隣接する芯材101と辺が対向するように、且つ、互いに、略六角形の芯材101の一辺の長さの約0.87倍に芯材101を覆うフィルム12の厚みの4倍の大きさを加えた大きさより若干大きい所定間隔離して配置されており、この16個の芯材101のそれぞれが独立した空間内に位置するように芯材101の周囲に略正六角形のドーナツ状のフィルム12の熱溶着部103が設けられているものである。   The vacuum heat insulating material 100 of the present embodiment is formed by covering a core material 101 having a thickness of about 5 mm made of glass fibers molded into approximately regular hexagons with a gas barrier film 12 and depressurizing the inside of the film 12. The sixteen core members 101 are arranged so that two sides thereof are parallel to each other in the horizontal direction, and are located between the adjacent core members 101, and are perpendicular to each of the hexagonal sides of the core member 101. The adjacent core material 101 faces in a staggered manner (honeycomb shape) so as to form bent curves 100a, 100b, and 100c in three directions, which are oblique and left and right at 60 degrees with respect to the vertical direction. And, they are separated from each other by a predetermined distance slightly larger than a size obtained by adding about four times the thickness of the film 12 covering the core material 101 to about 0.87 times the length of one side of the substantially hexagonal core material 101. These 16 core materials 10 are arranged. The one in which the heat seal parts 103 of substantially regular hexagonal donut-shaped film 12 is provided around the core members 101 so as to be positioned in a separate space, respectively.

本実施の形態の真空断熱材100は、隣接する芯材101の間に位置するフィルム12の熱溶着部103で、縦方向と、縦に対して左右60度の斜め方向の3方向に曲げることができる。   The vacuum heat insulating material 100 of the present embodiment is bent in three directions of a vertical direction and an oblique direction of 60 degrees left and right with respect to the vertical direction at the heat-welded portion 103 of the film 12 located between the adjacent core materials 101. Can be.

以上のように本実施の形態の真空断熱材100は、複数の略正六角形の芯材101をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、複数の芯材101は、隣接する芯材101の間に位置する部分で3方向の折曲線100a,100b,100cを形成できるように千鳥状に互いに所定間隔離して配置されており、複数の芯材101のそれぞれが独立した空間内に位置するように芯材101の周囲に略正六角形のドーナツ状のフィルム12の熱溶着部103が設けられているので、3方向に真空断熱材100を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なく、用途が広い。   As described above, the vacuum heat insulating material 100 of the present embodiment is formed by covering a plurality of substantially regular hexagonal core materials 101 with the gas barrier film 12 and depressurizing the inside of the film 12, and the plurality of core materials 101 are adjacent to each other. Are arranged in a staggered manner and separated from each other by a predetermined distance so as to form fold curves 100a, 100b, and 100c in three directions at portions located between the core materials 101 to be formed. Since the heat-welded portion 103 of the substantially regular hexagonal donut-shaped film 12 is provided around the core material 101 so as to be located inside, the vacuum heat insulating material 100 can be bent in three directions. The shape of the object to be applied is less restricted than the vacuum heat insulating material, and the application is wide.

また、特定の芯材101が入った空間の真空度が低下することが起きても、他の芯材101が入った空間の真空度まで低下することはなく、断熱性能の低下を最小限に抑えることができる。   Further, even if the degree of vacuum in the space containing the specific core material 101 is reduced, the degree of vacuum is not reduced to the degree of vacuum in the space containing the other core material 101, and the deterioration of the heat insulation performance is minimized. Can be suppressed.

本実施の形態では、真空断熱材100の外周部に位置するフィルム12と隣接する芯材101の間に位置する部分のフィルム12がすべて熱溶着されているので、熱溶着部103の幅が広く、そのため熱溶着部103を通して各芯材101が入った空間の真空度が低下する可能性をかなり低くできる。   In the present embodiment, since the film 12 located on the outer peripheral portion of the vacuum heat insulating material 100 and the portion of the film 12 located between the adjacent core members 101 are all heat-welded, the width of the heat-welded portion 103 is wide. Therefore, the possibility that the degree of vacuum in the space in which each core material 101 enters through the heat welding portion 103 can be considerably reduced.

また、熱溶着部103を、略正六角形のドーナツ状パターンの繰り返し、または蜂の巣状にパターン化しやすいので、溶着装置の小型化、簡略化が可能になり、溶着作業が容易に行える。   In addition, since the heat-welded portion 103 is easy to repeat a substantially regular hexagonal donut-shaped pattern or to be patterned into a honeycomb shape, the welding device can be reduced in size and simplified, and the welding operation can be easily performed.

また、真空断熱材100の適用時は、必要な大きさ、形に切断して使用することができるが、切断時は、断熱性能の低下を最小限に止めるために、フィルム12の熱溶着部103の部分を切断することが好ましい。   Further, when the vacuum heat insulating material 100 is applied, it can be cut into a required size and shape, and at the time of cutting, in order to minimize a decrease in heat insulating performance, a heat-welded portion of the film 12 is used. Preferably, the portion 103 is cut.

(実施の形態7)
以下、本発明の実施の形態7の真空断熱材について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
(Embodiment 7)
Hereinafter, a vacuum heat insulating material according to a seventh embodiment of the present invention will be described. However, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

図12は本発明の真空断熱材の実施の形態7を示す平面図である。   FIG. 12 is a plan view showing Embodiment 7 of the vacuum heat insulating material of the present invention.

本実施の形態の真空断熱材110は、16個の略正六角形に成型されたガラス繊維からなる厚さ5mm前後の芯材111をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、この16個の芯材111は、2つの辺が縦方向に平行になるように配置され、隣接する芯材111の間に位置する部分で、芯材111の六角形の各辺に平行に、縦と、縦に対して左右60度の斜めの3方向の折曲線110a,110b,110cを形成できるように、千鳥状に、隣接する芯材111と角が対向するように、所定間隔離して配置されており、この16個の芯材111のそれぞれが独立した空間内に位置するように芯材111の周囲にフィルム12の熱溶着部113が設けられ、さらに、隣接する芯材111との間に所定幅の熱溶着部113が残るように、隣接する3つの芯材111の間に位置するフィルム12の熱溶着部113に円形の孔114を有するものである。   The vacuum heat insulating material 110 of the present embodiment is formed by covering a core material 111 made of 16 glass fibers molded into approximately regular hexagons having a thickness of about 5 mm with a gas barrier film 12 and depressurizing the inside of the film 12. The sixteen core members 111 are arranged so that two sides thereof are parallel to each other in the vertical direction, and are located between the adjacent core members 111, and are parallel to the hexagonal sides of the core member 111. In order to form fold curves 110a, 110b and 110c in three directions of 60 degrees left and right with respect to the vertical direction, the adjacent core members 111 are staggered and separated by a predetermined distance so that the corners face each other. A heat-welded portion 113 of the film 12 is provided around the core 111 so that each of the 16 cores 111 is located in an independent space. Heat welding of specified width between 113 As remains, the heat seal parts 113 of the film 12 positioned between the three adjacent core members 111 and has a circular hole 114.

本実施の形態の真空断熱材110は、隣接する芯材111の間に位置するフィルム12の熱溶着部113で、縦方向と、縦に対して左右60度の斜め方向の3方向に曲げることができる。   The vacuum heat insulating material 110 according to the present embodiment is bent in three directions of a vertical direction and an oblique direction of 60 degrees left and right with respect to the vertical at the heat-welded portion 113 of the film 12 located between the adjacent core materials 111. Can be.

以上のように本実施の形態の真空断熱材110は、複数の略正六角形の芯材111をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、複数の芯材111は、隣接する芯材111の間に位置する部分で3方向の折曲線110a,110b,110cを形成できるように千鳥状に互いに所定間隔離して配置されており、複数の芯材111のそれぞれが独立した空間内に位置するように芯材111の周囲にフィルム12の熱溶着部113が設けられているので、3方向に真空断熱材110を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なく、用途が広い。   As described above, the vacuum heat insulating material 110 of the present embodiment is formed by covering a plurality of substantially regular hexagonal core materials 111 with the gas barrier film 12 and depressurizing the inside of the film 12, and the plurality of core materials 111 are adjacent to each other. Are arranged in a staggered manner and separated from each other by a predetermined distance so as to form fold curves 110a, 110b, and 110c in three directions at portions located between the core materials 111, and each of the plurality of core materials 111 is an independent space. Since the heat-welded portion 113 of the film 12 is provided around the core material 111 so as to be located inside, the vacuum heat insulating material 110 can be bent in three directions, so that it is more applicable than the conventional vacuum heat insulating material. There are few restrictions on the shape of the object, and it is widely used.

また、特定の芯材111が入った空間の真空度が低下することが起きても、他の芯材111が入った空間の真空度まで低下することはなく、断熱性能の低下を最小限に抑えることができる。   Further, even if the degree of vacuum in the space containing the specific core material 111 decreases, the degree of vacuum does not decrease to the degree of vacuum in the space containing the other core material 111, and the decrease in the heat insulation performance is minimized. Can be suppressed.

本実施の形態では、真空断熱材110の外周部に位置するフィルム12と隣接する芯材111の間に位置する部分のフィルム12がすべて熱溶着されているので、熱溶着部113の幅が広く、そのため熱溶着部113を通して各芯材111が入った空間の真空度が低下する可能性をかなり低くできる。   In the present embodiment, since the film 12 located on the outer peripheral portion of the vacuum heat insulating material 110 and the portion of the film 12 located between the adjacent core members 111 are all heat-welded, the width of the heat-welded portion 113 is wide. Therefore, it is possible to considerably reduce the possibility that the degree of vacuum in the space in which each core material 111 enters through the heat welding portion 113 is reduced.

本実施の形態は、16個の芯材111を、2つの辺が縦方向に平行になるように配置し、隣接する芯材111の間に位置する部分で、芯材111の六角形の各辺に平行に、縦と、縦に対して左右60度の斜めの3方向の折曲線110a,110b,110cを形成できるように、千鳥状に、隣接する芯材111と角が対向するように、所定間隔離して配置したので、実施の形態6の配置(2つの辺が横方向に平行になるように配置し、隣接する芯材の間に位置する部分で、芯材の六角形の各辺に垂直に、縦と、縦に対して左右60度の斜めの3方向以上の折曲線を形成できるように、千鳥状に、隣接する芯材と辺が対向するように、所定間隔離して配置)よりも、芯材111の間隔を狭くして、芯材111の占める面積の割合を大きくできるため、比較的断熱性能を高くできる。   In the present embodiment, sixteen core materials 111 are arranged so that two sides thereof are parallel in the vertical direction, and the hexagonal shape of each core material 111 is located between adjacent core materials 111. In order to form bent curves 110a, 110b, and 110c in three directions parallel to the sides and in the vertical direction and at an angle of 60 degrees left and right with respect to the vertical, the adjacent core material 111 faces in a staggered manner so that the corners face each other. , Arranged at predetermined intervals, the arrangement of the sixth embodiment (where the two sides are arranged so as to be parallel in the horizontal direction, and at the portion located between the adjacent core materials, each hexagonal shape of the core material) In order to form a fold curve in three directions or more diagonally at 60 degrees left and right with respect to the vertical, vertical and vertical sides, the adjacent core material and the sides are separated by a predetermined distance so as to face the adjacent core material. Arrangement), the interval between the core materials 111 can be narrowed, and the ratio of the area occupied by the core materials 111 can be increased. Because, it can be increased relatively insulation performance.

また、本実施の形態の真空断熱材110は、隣接する芯材111との間に所定幅の熱溶着部113が残るように、フィルム12に孔114を設けたものであり、真空断熱材110における断熱性能の低下の影響が少ない部分に孔114があいているので、真空断熱材110の一方の面から他方の面に、空気や水を排出する必要がある用途や、適用箇所の都合上、物(例えば、管などの部品)を通す必要がある用途や、真空断熱材110と発泡断熱材と組み合わせた複合断熱材において、製造の都合上、真空断熱材の一方の面から他方の面に、発泡断熱材を流す必要がある所にも適用できる。例えば、この真空断熱材110を衣類に設けて防寒具とした場合は、この孔114から、汗の蒸気を外部に放出することができ、防寒具の内側が蒸れず快適である。   Further, the vacuum heat insulating material 110 of the present embodiment has a hole 114 provided in the film 12 so that a heat-welded portion 113 having a predetermined width remains between the core material 111 and the adjacent core material 111. The hole 114 is formed in a portion where the influence of the decrease in the heat insulation performance is small, so that the air or water needs to be discharged from one surface of the vacuum heat insulating material 110 to the other surface, In applications where it is necessary to pass an object (for example, a part such as a pipe) or in a composite insulation material in which the vacuum insulation material 110 and the foam insulation material are combined, for convenience of manufacture, one side of the vacuum insulation material to the other side. In addition, the present invention can be applied to a place where it is necessary to flow foam insulation. For example, when the vacuum heat insulating material 110 is provided on clothing to provide a cold protection, sweat vapor can be released to the outside from the holes 114, and the inside of the cold protection can be comfortable without stuffiness.

また、本実施の形態は、実施の形態4のように、複数の略正八角形の芯材を格子状に配置し隣接する4つの芯材の間に位置するフィルム12の熱溶着部に孔を設ける場合よりも、孔114の数を多くできる。   Further, in the present embodiment, as in Embodiment 4, a plurality of substantially regular octagonal cores are arranged in a lattice and holes are formed in the heat-welded portions of the film 12 located between four adjacent cores. The number of holes 114 can be increased as compared with the case of providing.

また、真空断熱材110の適用時は、必要な大きさ、形に切断して使用することができるが、切断時は、断熱性能の低下を最小限に止めるために、フィルム12の熱溶着部113の部分を切断することが好ましい。   Further, when the vacuum heat insulating material 110 is applied, it can be cut into a required size and shape, but at the time of cutting, the heat welding portion of the film 12 is used in order to minimize a decrease in heat insulating performance. It is preferable to cut the portion 113.

(実施の形態8)
以下、本発明の実施の形態8の真空断熱材について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
(Embodiment 8)
Hereinafter, a vacuum heat insulating material according to an eighth embodiment of the present invention will be described. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

図13は本発明の真空断熱材の実施の形態8を示す平面図である。   FIG. 13 is a plan view showing Embodiment 8 of the vacuum heat insulating material of the present invention.

本実施の形態の真空断熱材120は、28個の略正六角形に成型されたガラス繊維からなる厚さ5mm前後の芯材121をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、この28個の芯材121は、2つの辺が縦方向に平行になるように配置され、隣接する芯材121の間に位置する部分で、芯材121の六角形の各辺に平行に、縦と、縦に対して左右60度の斜めの3方向の折曲線120a,120b,120cを形成できるように、所定間隔離れて隣接する芯材121の辺同士が対向するように略正六角形の芯材121を6つ環状に並べたものを1組として、各組を千鳥状に、所定間隔離して配置されており、この28個の芯材121のそれぞれが独立した空間内に位置するように芯材121の周囲にフィルム12の熱溶着部123が設けられ、さらに、隣接する芯材121との間に所定幅の熱溶着部123が残るように、各組の環状に配置された6つの芯材121の間に位置するフィルム12の熱溶着部123に円形の孔124を有するものである。   The vacuum heat insulating material 120 of the present embodiment is formed by covering a core material 121 made of 28 glass fibers molded into a substantially regular hexagon and having a thickness of about 5 mm with a gas barrier film 12 and depressurizing the inside of the film 12. The 28 core members 121 are arranged so that two sides thereof are parallel to each other in the vertical direction, and are located between the adjacent core members 121 and are parallel to each side of the hexagon of the core member 121. And a substantially regular hexagon such that sides of adjacent core members 121 at predetermined intervals are opposed to each other so as to form bent curves 120a, 120b, and 120c in three directions that are oblique to the vertical and 60 degrees left and right with respect to the vertical. Are arranged in a staggered manner and separated by a predetermined distance, and each of the 28 core materials 121 is located in an independent space. So that the film around the core material 121 The two heat-welded portions 123 are provided, and furthermore, the heat-welded portions 123 having a predetermined width are left between the adjacent heat-welded portions 121 and the positions between the six cores 121 arranged in the annular shape in each set. The heat sealing portion 123 of the film 12 to be formed has a circular hole 124.

本実施の形態の真空断熱材120は、隣接する芯材の間に位置するフィルム12の熱溶着部123で、縦方向と、縦に対して左右60度の斜め方向の3方向に曲げることができる。   The vacuum heat insulating material 120 of the present embodiment can be bent in three directions of a vertical direction and an oblique direction of 60 degrees left and right with respect to the vertical at the heat-welded portion 123 of the film 12 located between the adjacent core materials. it can.

以上のように本実施の形態の真空断熱材120は、複数の略正六角形の芯材121をガスバリア性のフィルム12で覆いフィルム12の内部を減圧して成り、複数の芯材121は、隣接する芯材121の間に位置する部分で3方向の折曲線120a,120b,120cを形成できるように環状に配置された6つ一組の芯材121(辺同士が対向するように所定間隔離れて横に並ぶ2つ一組の芯材121)を千鳥状に互いに所定間隔離して配置されており、複数の芯材121のそれぞれが独立した空間内に位置するように芯材121の周囲にフィルム12の熱溶着部123が設けられているので、3方向に真空断熱材120を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なく、用途が広い。   As described above, the vacuum heat insulating material 120 of the present embodiment is formed by covering a plurality of substantially regular hexagonal core materials 121 with the gas barrier film 12 and depressurizing the inside of the film 12, and the plurality of core materials 121 are adjacent to each other. Six cores 121 (a predetermined distance apart such that the sides are opposed to each other) are arranged in a ring so as to form fold curves 120a, 120b, 120c in three directions at a portion located between the cores 121 to be formed. A pair of cores 121) arranged side by side are arranged in a staggered manner and separated from each other by a predetermined distance, and a plurality of cores 121 are arranged around the cores 121 so as to be located in independent spaces. Since the heat-welded portion 123 of the film 12 is provided, the vacuum heat insulating material 120 can be bent in three directions, so that the shape of the object to be applied is less restricted than the conventional vacuum heat insulating material, and the application is wide. .

また、特定の芯材121が入った空間の真空度が低下することが起きても、他の芯材121が入った空間の真空度まで低下することはなく、断熱性能の低下を最小限に抑えることができる。   In addition, even if the degree of vacuum in the space containing the specific core material 121 is reduced, the degree of vacuum is not reduced to the degree of vacuum in the space containing the other core material 121. Can be suppressed.

本実施の形態では、真空断熱材120の外周部に位置するフィルム12と隣接する芯材121の間に位置する部分のフィルム12がすべて熱溶着されているので、熱溶着部123の幅が広く、そのため熱溶着部123を通して各芯材121が入った空間の真空度が低下する可能性をかなり低くできる。   In this embodiment, since the film 12 located on the outer peripheral portion of the vacuum heat insulating material 120 and the film 12 located between the adjacent core material 121 are all heat-welded, the width of the heat-welded portion 123 is wide. Therefore, the possibility that the degree of vacuum in the space in which each core material 121 enters through the heat welding portion 123 can be significantly reduced.

本実施の形態では、複数の芯材121を、2つの辺が縦方向に平行になる向きで配置し、隣接する芯材121の間に位置する部分で、芯材121の六角形の各辺に平行に、縦と、縦に対して左右60度の斜めの3方向の折曲線120a,120b,120cを形成できるように、所定間隔離れて隣接する芯材121の辺同士が対向するように略正六角形の芯材121を6つ環状に並べたものを1組として、各組を千鳥状に、所定間隔離して配置したので、芯材121の占める面積の割合を大きくでき、比較的断熱性能を高くできる。   In the present embodiment, a plurality of core materials 121 are arranged in a direction in which two sides are parallel to each other in the vertical direction, and each of the hexagonal sides of the core material 121 is located between adjacent core materials 121. In order to form bent curves 120a, 120b, and 120c in three directions in parallel with the vertical direction and the left and right at 60 degrees with respect to the vertical direction, the sides of the core materials 121 adjacent to each other at a predetermined interval are opposed to each other. Six sets of substantially regular hexagonal cores 121 arranged in a ring form a set, and the sets are arranged in a staggered manner and separated by a predetermined distance, so that the area occupied by the cores 121 can be increased and relatively insulated. Performance can be improved.

また、本実施の形態の真空断熱材120は、隣接する芯材121との間に所定幅の熱溶着部123が残るように、フィルム12に孔124を設けたものであり、真空断熱材120における断熱性能の低下の影響が少ない部分に孔124があいているので、真空断熱材120の一方の面から他方の面に、空気や水を排出する必要がある用途や、適用箇所の都合上、物(例えば、管などの部品)を通す必要がある用途や、真空断熱材120と発泡断熱材と組み合わせた複合断熱材において、製造の都合上、真空断熱材の一方の面から他方の面に、発泡断熱材を流す必要がある所にも適用できる。例えば、この真空断熱材120を衣類に設けて防寒具とした場合は、この孔124から、汗の蒸気を外部に放出することができ、防寒具の内側が蒸れず快適である。   Further, the vacuum heat insulating material 120 according to the present embodiment is provided with a hole 124 in the film 12 so that a heat-welded portion 123 having a predetermined width remains between the core material 121 and the adjacent core material 121. Since the hole 124 is formed in a portion where the influence of the deterioration of the heat insulating performance is small, the air or water needs to be discharged from one surface of the vacuum heat insulating material 120 to the other surface, or due to the application location. In applications where it is necessary to pass an object (for example, a part such as a pipe), or in a composite insulation material in which the vacuum insulation material 120 and the foam insulation material are combined, for convenience of manufacture, one surface of the vacuum insulation material to the other surface is used. In addition, the present invention can be applied to a place where it is necessary to flow foam insulation. For example, when the vacuum heat insulating material 120 is provided on clothing to provide a cold protection, sweat vapor can be released to the outside through the holes 124, so that the inside of the cold protection can be comfortable without stuffiness.

本実施の形態では、孔124の大きさを、実施の形態7よりも大きく、芯材121の略正六角形に内接する円の大きさまで大きくすることができるが、実施の形態7とは逆に、孔124をあけることのできる位置が少なくなる。   In the present embodiment, the size of the hole 124 can be larger than that of the seventh embodiment, and can be increased to the size of a circle inscribed in a substantially regular hexagon of the core material 121, but contrary to the seventh embodiment. , Holes 124 can be drilled.

また、真空断熱材120の適用時は、必要な大きさ、形に切断して使用することができるが、切断時は、断熱性能の低下を最小限に止めるために、フィルム12の熱溶着部123の部分を切断することが好ましい。   Further, when the vacuum heat insulating material 120 is applied, it can be used after being cut into a required size and shape, but at the time of cutting, in order to minimize a decrease in heat insulating performance, a heat-welded portion of the film 12 is used. It is preferable to cut the portion 123.

(実施の形態9)
以下、本発明の実施の形態9の真空断熱材を用いた防寒具について説明するが、実施の形態1と同一構成については、同一符号を付してその詳細な説明は省略する。
(Embodiment 9)
Hereinafter, a cold protector using a vacuum heat insulating material according to a ninth embodiment of the present invention will be described. However, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

図14は本発明の真空断熱材を用いた防寒具の実施の形態9を示す正面図、図15は同実施の形態の真空断熱材を用いた防寒具の背面図である。   FIG. 14 is a front view showing a ninth embodiment of the cold protection equipment using the vacuum heat insulating material of the present invention, and FIG. 15 is a rear view of the cold protection equipment using the vacuum heat insulation material of the same embodiment.

本実施の形態の防寒具200は、衣料としてのジャケット201の中に、芯材の数と大きさとフィルムの形状をジャケット201用に調整した実施の形態1の真空断熱材10を設けたものである。   The cold protection equipment 200 of the present embodiment is provided with the vacuum heat insulating material 10 of the first embodiment in which the number and size of the core material and the shape of the film are adjusted for the jacket 201 in a jacket 201 as clothing. is there.

真空断熱材10は、所定の大きさの長方形の真空断熱材を製造した後に、ジャケット201に合わせて切断したものでも構わない。その場合、切断されて役に立たない部分の芯材を最初からフィルム内に配置しないようにして真空断熱材10を製造しても構わない。   The vacuum heat insulating material 10 may be manufactured by manufacturing a rectangular vacuum heat insulating material of a predetermined size and then cutting the vacuum heat insulating material according to the jacket 201. In this case, the vacuum heat insulating material 10 may be manufactured such that the cut and useless portion of the core material is not arranged in the film from the beginning.

ここで、真空断熱材10は、4方向に折り曲げ可能であるため、芯材の大きさを適切に選択することにより、動きやすい防寒具用に適した柔軟性を確保できるので、真空断熱材の高い断熱性能を活かした薄くて断熱性能の高い防寒具を提供できる。   Here, since the vacuum heat insulating material 10 can be bent in four directions, by appropriately selecting the size of the core material, it is possible to secure the flexibility suitable for the easy-to-move cold protection material. It is possible to provide a thin, high-heat-insulation cold protector utilizing high heat-insulating performance.

なお、真空断熱材10が、ジャケット201に形成された袋部に挿入されるようにすると、真空断熱材10を見えないようにでき、ジャケット201に形成された袋部に真空断熱材10を挿入するだけで、真空断熱材10に損傷を与える心配なく、ジャケット201と真空断熱材10を容易に一体化でき、真空断熱材10の取り外し、取り替えが比較的簡単にできる。   When the vacuum heat insulating material 10 is inserted into the bag portion formed on the jacket 201, the vacuum heat insulating material 10 can be made invisible, and the vacuum heat insulating material 10 is inserted into the bag portion formed on the jacket 201. Just by doing so, the jacket 201 and the vacuum heat insulating material 10 can be easily integrated without fear of damaging the vacuum heat insulating material 10, and the removal and replacement of the vacuum heat insulating material 10 can be relatively easily performed.

また、真空断熱材10が、マジックテープ(登録商標)、ファスナー、ボタン、フォックその他の係止具により、ジャケット201に着脱可能に取り付けられるようにすると、温暖な気候になって高い断熱性が不要な時や、クリーニング時に、防寒具から真空断熱材を取り外せて便利である。   In addition, if the vacuum heat insulating material 10 is detachably attached to the jacket 201 by a magic tape (registered trademark), a fastener, a button, a hook, or other fasteners, a high temperature insulation is not required due to a warm climate. At the time of cleaning and cleaning, it is convenient to remove the vacuum insulation from the cold protection equipment.

本実施の形態の防寒具は、実施の形態1の真空断熱材10を用いたが、実施の形態2から8のいずれかの真空断熱材を用いても良く、通気性が必要であれば、実施の形態4、5、7、8のような孔のあいた真空断熱材を用いることができる。孔のあいた真空断熱材を用いた場合は、この孔から、汗の蒸気を外部に放出することができ、防寒具の内側が蒸れず快適である。   Although the cold protection device of the present embodiment uses the vacuum heat insulating material 10 of the first embodiment, any of the vacuum heat insulating materials of the second to eighth embodiments may be used. A vacuum heat insulating material having holes as in Embodiments 4, 5, 7, and 8 can be used. In the case where a perforated vacuum heat insulating material is used, sweat vapor can be discharged to the outside from the perforated hole, and the inside of the cold protection equipment is comfortable without being stuffy.

なお、本実施の形態では、ジャケットで説明したが、他の衣類にも適用可能である。   In the present embodiment, the description has been made of the jacket, but the present invention can be applied to other clothing.

本発明の真空断熱材は、3方向または4方向に真空断熱材を折り曲げることができ、そのため、従来の真空断熱材よりも適用する対象物の形状に制限が少なく、用途が広い。例えば、芯材の大きさを適切に選択することにより、防寒具用に適した柔軟性を確保できるので、真空断熱材の高い断熱性能を活かした薄くて断熱性能の高い防寒具にも適用できる。また、さらに断熱性能の低下の影響が少ない部分に孔をあけた真空断熱材は、真空断熱材の一方の面から他方の面に、空気や水を排出する必要がある用途や、適用箇所の都合上、物(例えば、管などの部品)を通す必要がある用途や、真空断熱材と発泡断熱材と組み合わせた複合断熱材において、製造の都合上、真空断熱材の一方の面から他方の面に、発泡断熱材を流す必要がある所にも適用できる。   The vacuum heat insulating material of the present invention can bend the vacuum heat insulating material in three or four directions. Therefore, the shape of the object to which the vacuum heat insulating material is applied is smaller than that of the conventional vacuum heat insulating material, so that the vacuum heat insulating material is widely used. For example, by appropriately selecting the size of the core material, it is possible to secure flexibility suitable for cold protection, so that it can be applied to a thin and high heat insulation performance utilizing the high insulation performance of the vacuum insulation material. . In addition, vacuum insulation materials that have holes in areas where the effect of heat insulation performance is less likely to be reduced can be used for applications that require air or water to be discharged from one side of the vacuum insulation material to the other, In applications where it is necessary to pass an object (for example, a part such as a pipe) for convenience, or in a composite insulation material in which vacuum insulation material and foam insulation material are combined, for convenience of manufacture, one side of the vacuum insulation material and It can also be applied to places where foam insulation needs to flow over the surface.

本発明の真空断熱材の実施の形態1を示す平面図FIG. 2 is a plan view showing Embodiment 1 of the vacuum heat insulating material of the present invention. 図1のA−A線断面図1 is a sectional view taken along line AA of FIG. 本発明の真空断熱材の実施の形態2を示す平面図FIG. 4 is a plan view showing a second embodiment of the vacuum heat insulating material of the present invention. 本発明の真空断熱材の実施の形態3を示す平面図FIG. 4 is a plan view showing Embodiment 3 of the vacuum heat insulating material of the present invention. 図4のB−B線断面図BB sectional drawing of FIG. 実施の形態3の変形例の真空断熱材を示す平面図Plan view showing a vacuum heat insulating material according to a modification of the third embodiment. 本発明の真空断熱材の実施の形態4を示す平面図FIG. 4 is a plan view showing a vacuum heat insulating material according to a fourth embodiment of the present invention. 図7のC−C線断面図FIG. 7 is a sectional view taken along line CC of FIG. 7. 本発明の真空断熱材の実施の形態5を示す平面図5 is a plan view showing a fifth embodiment of the vacuum heat insulating material of the present invention. 図9のD−D線断面図FIG. 9 is a sectional view taken along line DD of FIG. 9. 本発明の真空断熱材の実施の形態6を示す平面図FIG. 7 is a plan view showing Embodiment 6 of the vacuum heat insulating material of the present invention. 本発明の真空断熱材の実施の形態7を示す平面図FIG. 14 is a plan view showing a vacuum heat insulating material according to a seventh embodiment of the present invention. 本発明の真空断熱材の実施の形態8を示す平面図FIG. 14 is a plan view showing a vacuum heat insulating material according to an eighth embodiment of the present invention. 本発明の真空断熱材を用いた防寒具の実施の形態9を示す正面図A front view showing a ninth embodiment of a cold protector using the vacuum heat insulating material of the present invention. 同実施の形態の真空断熱材を用いた防寒具の背面図Rear view of cold protection equipment using vacuum insulation material of the same embodiment 従来の真空断熱材の平面図Plan view of conventional vacuum insulation 同従来の真空断熱材を断熱箱体の外箱に設けた状態の断面図Sectional view of a state where the conventional vacuum heat insulating material is provided on an outer box of a heat insulating box.

符号の説明Explanation of reference numerals

10,20,30,40,50 真空断熱材
10a,10b,10c,10d 折曲線
11,101,111,121 芯材
12 フィルム
13,33,43,53,103,113,123 熱溶着部
20a,20b,20c,20d 折曲線
34,34a,55 非熱溶着部
44,54,114,124 孔
100,110,120 真空断熱材
100a,100b,100c 折曲線
110a,110b,110c 折曲線
120a,120b,120c 折曲線
200 防寒具
201 衣類(ジャケット)
10, 20, 30, 40, 50 Vacuum heat insulating material 10a, 10b, 10c, 10d Fold curve 11, 101, 111, 121 Core material 12 Film 13, 33, 43, 53, 103, 113, 123 Heat welding part 20a, 20b, 20c, 20d Fold curves 34, 34a, 55 Non-heat-welded portions 44, 54, 114, 124 Holes 100, 110, 120 Vacuum insulation materials 100a, 100b, 100c Fold curves 110a, 110b, 110c Fold curves 120a, 120b, 120c Folded curve 200 Cold protection 201 Clothing (jacket)

Claims (6)

六角形の複数の芯材をガスバリア性のフィルムで覆い前記フィルムの内部を減圧して成り、前記複数の芯材は、隣接する前記芯材の間に位置する部分で3方向の折曲線を形成できるように千鳥状に互いに所定間隔離して配置されている真空断熱材。   A plurality of hexagonal cores are covered with a gas-barrier film, and the inside of the film is decompressed. The plurality of cores form three-fold folds at portions located between adjacent cores. Vacuum insulation materials that are arranged in a staggered manner and separated from each other by a predetermined distance so that they can be formed. 八角形の複数の芯材をガスバリア性のフィルムで覆い前記フィルムの内部を減圧して成り、前記複数の芯材は、隣接する前記芯材の間に位置する部分で4方向の折曲線を形成できるように格子状または千鳥状に互いに所定間隔離して配置されている真空断熱材。   A plurality of octagonal cores are covered with a gas barrier film, and the inside of the film is decompressed. The plurality of cores form four-fold folds at portions located between adjacent cores. Vacuum insulation material that is arranged in a grid or staggered form so as to be separated from each other by a predetermined distance. 複数の芯材のそれぞれが独立した空間内に位置するように前記芯材の周囲にフィルムの熱溶着部が設けられている請求項1または2記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein a heat-welded portion of a film is provided around the core material such that each of the plurality of core materials is located in an independent space. 隣接する芯材との間に所定幅の熱溶着部が残るように、フィルムに孔を設けた請求項3記載の真空断熱材。   4. The vacuum heat insulating material according to claim 3, wherein a hole is provided in the film so that a heat-welded portion having a predetermined width remains between adjacent core materials. 衣料に、請求項1から4のいずれか一項記載の真空断熱材を設けた防寒具。   A cold protection device comprising clothing provided with the vacuum heat insulating material according to any one of claims 1 to 4. 真空断熱材は、衣料に着脱可能に取り付けられる請求項5記載の防寒具。   The cold protection device according to claim 5, wherein the vacuum heat insulating material is detachably attached to the clothing.
JP2004109802A 2002-12-05 2004-04-02 Vacuum heat insulating material and outfit for protection against cold using it Pending JP2004211905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004109802A JP2004211905A (en) 2002-12-05 2004-04-02 Vacuum heat insulating material and outfit for protection against cold using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002354105 2002-12-05
JP2004109802A JP2004211905A (en) 2002-12-05 2004-04-02 Vacuum heat insulating material and outfit for protection against cold using it

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003356298A Division JP3559035B2 (en) 2002-12-05 2003-10-16 Vacuum insulation material, method of manufacturing the same, and cold protection equipment and personal computer using vacuum insulation material

Publications (1)

Publication Number Publication Date
JP2004211905A true JP2004211905A (en) 2004-07-29

Family

ID=32828489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109802A Pending JP2004211905A (en) 2002-12-05 2004-04-02 Vacuum heat insulating material and outfit for protection against cold using it

Country Status (1)

Country Link
JP (1) JP2004211905A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202709A (en) * 2007-02-21 2008-09-04 Matsushita Electric Ind Co Ltd Arranging method of vacuum heat insulating material
KR20190135529A (en) * 2017-05-17 2019-12-06 나이키 이노베이트 씨.브이. Breathable apparel
US11606992B2 (en) 2012-04-18 2023-03-21 Nike, Inc. Vented garment
US11737503B2 (en) 2016-10-06 2023-08-29 Nike, Inc. Insulated garment
US11771156B2 (en) 2016-10-06 2023-10-03 Nike, Inc. Insulated vented garment formed using non-woven polymer sheets

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202709A (en) * 2007-02-21 2008-09-04 Matsushita Electric Ind Co Ltd Arranging method of vacuum heat insulating material
US11606992B2 (en) 2012-04-18 2023-03-21 Nike, Inc. Vented garment
US11737503B2 (en) 2016-10-06 2023-08-29 Nike, Inc. Insulated garment
US11771156B2 (en) 2016-10-06 2023-10-03 Nike, Inc. Insulated vented garment formed using non-woven polymer sheets
KR20190135529A (en) * 2017-05-17 2019-12-06 나이키 이노베이트 씨.브이. Breathable apparel
KR102476955B1 (en) 2017-05-17 2022-12-12 나이키 이노베이트 씨.브이. breathable clothing

Similar Documents

Publication Publication Date Title
JP3559035B2 (en) Vacuum insulation material, method of manufacturing the same, and cold protection equipment and personal computer using vacuum insulation material
JP2006077792A (en) Vacuum insulating material
JP4701882B2 (en) Vacuum insulation
JP2008511768A5 (en)
US9010053B1 (en) High strength thermal barrier panel for an H.V.A.C. unit housing
JP3234649U (en) Vacuum insulated panel with improved sealing joint
JP2004211905A (en) Vacuum heat insulating material and outfit for protection against cold using it
JP2010047902A (en) Heat insulating wall and building and house having heat insulating wall
WO2018090739A1 (en) Gas film
JP2007239288A (en) Member for construction using vacuum insulating material
JP2004197954A (en) Vacuum heat insulating material
JP2006118634A (en) Vacuum heat insulating material
JP4556746B2 (en) Manufacturing method of vacuum insulation
JP2007057081A (en) Vacuum heat insulating board
JP2007211921A (en) Vacuum heat insulating body
JP5663321B2 (en) Vacuum insulation
CN106638966A (en) Gas film
JP2009041648A (en) Vacuum heat insulating material and construction member applying the same
CN107816601B (en) Vacuum heat insulation piece
JP2004170073A (en) Sound-absorption thermal insulation hose
JP2002188894A (en) Heat pipe type heat exchanger and its manufacturing method
JP2007032066A (en) Heat insulating structure and heat insulating panel
JP2011137573A (en) Heat exchange element and heat exchange unit
JP4741320B2 (en) Insulation board
US20170335563A1 (en) Insulation devices including vacuum-insulated capsules