JPH08178176A - Vacuum heat insulating material - Google Patents

Vacuum heat insulating material

Info

Publication number
JPH08178176A
JPH08178176A JP6327071A JP32707194A JPH08178176A JP H08178176 A JPH08178176 A JP H08178176A JP 6327071 A JP6327071 A JP 6327071A JP 32707194 A JP32707194 A JP 32707194A JP H08178176 A JPH08178176 A JP H08178176A
Authority
JP
Japan
Prior art keywords
aggregate
outer bag
heat insulating
insulating material
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6327071A
Other languages
Japanese (ja)
Inventor
Yasukazu Ishikawa
泰計 石川
Masatomo Sasaki
正朋 佐々木
Shinpei Nakayama
新平 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP6327071A priority Critical patent/JPH08178176A/en
Publication of JPH08178176A publication Critical patent/JPH08178176A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a vacuum heat insulation material high in strength and preventing the fluctuation of size and a shape even when the vacuum heat insulation material is left standing under an atmospheric pressure for a long period. CONSTITUTION: The upper and under surfaces of an aggregate 1 formed in such a manner that a breathable middle bag 1b is filled with fine powder 1a of an organic or an inorganic material are nipped between aggregate molding reinforcing plates 3a and 3b. After, with this state, the aggregate 1 and the aggregate molding reinforcing plates 3a and 3b are contained in a breathable outer bag 2, after a vacuum at the interior of the outer bag 2 is drawn and deaerated through the opening part of the outer bag 2, the opening part of the outer bag 2 is sealed through thermal fusion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は真空断熱材に関し、特
に、形状及び寸法安定性に優れた真空断熱材に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulating material, and more particularly to a vacuum heat insulating material having excellent shape and dimensional stability.

【0002】[0002]

【従来の技術】従来より、冷蔵や保温のために使用する
断熱箱体の断熱材として、硅酸カルシウム,パーライト
等の熱伝導率が低く軽量の微粉末を通気性の中袋に充填
し、この中袋の開口部をシールして得られたものを、非
通気性の外袋に収容し、そして、この外袋の内部を真空
脱気するとともにその開口部をシールして得られた真空
断熱材が使用されている。
2. Description of the Related Art Conventionally, as a heat insulating material for a heat insulating box used for refrigeration and heat retention, calcium silicate, perlite, etc. are filled in a breathable inner bag with a fine powder having a low thermal conductivity and a low weight, The product obtained by sealing the opening of this inner bag is housed in an air-impermeable outer bag, and the inside of this outer bag is vacuum deaerated and the opening obtained is sealed to obtain a vacuum. Insulation is used.

【0003】図6はこの従来の真空断熱材の構造を示す
断面図であり、図において、10は真空断熱材で、これ
は、硅酸カルシウム,パーライト等の熱伝導率が低く軽
量の微細粉末1a,及びこの微細粉末1aがその内部に
充填された通気性の中袋11bとからなる骨材1と、該
骨材1を収容し、その内部が真空脱気により真空状態と
され、この状態でその開口部がシールされた非通気性の
外袋2とから構成されている。ここで、通気性の中袋1
bとしては、クラフト紙,不織布等が使用され、また、
非通気性の外袋2としては、気密性のあるプラスチック
フィルム,このプラスチックフィルムに金属を蒸着した
ラミネートフィルム等が使用される。
FIG. 6 is a cross-sectional view showing the structure of this conventional vacuum heat insulating material. In the figure, 10 is a vacuum heat insulating material, which is a fine powder of calcium silicate, pearlite, etc. having a low thermal conductivity and a light weight. 1a, and an aggregate 1 made of a breathable inner bag 11b filled with the fine powder 1a, and the aggregate 1 housed therein, and the inside thereof is brought into a vacuum state by vacuum deaeration. And an air-impermeable outer bag 2 whose opening is sealed. Here, breathable inner bag 1
Kraft paper, non-woven fabric, etc. are used as b.
As the non-breathable outer bag 2, an airtight plastic film, a laminated film in which a metal is vapor-deposited on the plastic film, or the like is used.

【0004】以下、上記従来の真空断熱材の製造方法を
図に基づいて説明する。図7は上記真空断熱材10を製
造する装置の構成を示す概略断面図であり、図におい
て、図6と同一符号は同一または相当する部分を示し、
11は真空引き炉,12a,12bは発熱ヒータ、13
は真空ポンプである。
The conventional method for manufacturing the vacuum heat insulating material will be described below with reference to the drawings. FIG. 7 is a schematic cross-sectional view showing the configuration of an apparatus for manufacturing the vacuum heat insulating material 10. In the figure, the same reference numerals as those in FIG. 6 denote the same or corresponding parts,
11 is a vacuum evacuation furnace, 12a and 12b are exothermic heaters, 13
Is a vacuum pump.

【0005】まず、その3辺がシールされている中袋1
bに、残りの一辺の開口部から微細粉末1aを充填し、
残りの一辺(開口部)をシールして骨材1を得る。次
に、その3辺がシールされている外袋2に、残りの一辺
の開口部2aから上記骨材1を収容した後、図4に示す
ように、真空引き炉11内に、この骨材1を収容した外
袋2を配置し、当該真空引き炉11の内気圧を真空ポン
プ13で真空(0.1 〜1Torr)にし、この状態で残りの
一辺の開口部2aを発熱ヒータ12a,12bで挟持す
ることにより、熱融着(シール)すると、真空断熱材1
0が完成する。ここで、真空引き炉11の内気圧が真空
になると、外袋2の内部も真空になる。
First, the inner bag 1 whose three sides are sealed
b is filled with the fine powder 1a from the opening on the other side,
The remaining one side (opening) is sealed to obtain the aggregate 1. Next, after accommodating the aggregate 1 through the opening 2a on the remaining one side in the outer bag 2 whose three sides are sealed, as shown in FIG. 1 is placed in the outer bag 2, and the internal pressure of the vacuum evacuation furnace 11 is evacuated (0.1 to 1 Torr) by the vacuum pump 13. In this state, the opening 2a on the remaining side is sandwiched by the heaters 12a and 12b. By heat-sealing (sealing) by doing so, the vacuum heat insulating material 1
0 is completed. Here, when the internal pressure of the evacuation furnace 11 becomes a vacuum, the inside of the outer bag 2 also becomes a vacuum.

【0006】[0006]

【発明が解決しようとする課題】従来の真空断熱材の製
造は以上のようにして行われるが、かかる製造方法では
以下に記すような問題点を生ずる。すなわち、真空引き
炉11内に、その内部に骨材1を収容した外袋2を配置
し、真空引き炉11内を真空ポンプ13で脱気した時、
外袋2の内部の開口部2aの近傍付近は強力に脱気され
てその真空度は高くなるが、開口部2aから遠く離れた
付近は脱気が弱くその真空度は上記開口部2aの近傍付
近のそれに比して低くなるため、外袋2の内部において
真空度の分布を生ずる。また、この真空度の分布によっ
て中袋1b内に充填されている微粉末1aが流動し、そ
の密度に不規則な濃淡が生ずることとなる。従って、こ
の後、開口部2aをシールすることにより得られた真空
断熱材10を、大気圧下(1.1kg/cm2)に放置する
と、真空断熱材10は弓状に変形し、所望とする形状,
及び寸法を得ることができなくなってしまう。図8はこ
の弓状に変形した真空断熱材の断面図を示している。な
お、この問題点は、真空断熱材のサイズ(面積)を大き
くするに従って、上記真空度の分布,及び密度の濃淡の
度合いが大きくなるために、より顕著に発生する。
The conventional vacuum heat insulating material is manufactured as described above, but such a manufacturing method causes the following problems. That is, when the outer bag 2 accommodating the aggregate 1 is placed inside the vacuum evacuation furnace 11 and the inside of the vacuum evacuation furnace 11 is degassed by the vacuum pump 13,
The vicinity of the opening 2a inside the outer bag 2 is strongly degassed and its vacuum degree becomes high, but the area far from the opening 2a is weakly degassed and its vacuum degree is near the opening 2a. Since it is lower than that in the vicinity, a vacuum degree distribution occurs inside the outer bag 2. Further, due to the distribution of the degree of vacuum, the fine powder 1a filled in the inner bag 1b flows, and the density thereof becomes irregular. Therefore, after that, if the vacuum heat insulating material 10 obtained by sealing the opening 2a is left under atmospheric pressure (1.1 kg / cm 2 ), the vacuum heat insulating material 10 is deformed into an arc shape, and the desired shape is obtained. Shape,
And it becomes impossible to obtain the dimensions. FIG. 8 shows a cross-sectional view of the vacuum heat insulating material deformed in the shape of an arc. This problem is more remarkable as the size (area) of the vacuum heat insulating material is increased and the degree of vacuum distribution and density are increased.

【0007】また、外袋2の内部を真空にすると,中袋
1b内に充填された微細粉末1aの表面に中袋1bと外
袋2が密着することとなるため、図9に示すように、微
細粉末1aの集積状態に応じて、外袋2に皺2bが発生
し、その結果、外袋2にかかる引っ張り力が不均一にな
って、得られる真空断熱材10が予期せぬ形状に変形
し、所望とする形状,及び寸法が得られなくなってしま
う。
Further, when the inside of the outer bag 2 is evacuated, the inner bag 1b and the outer bag 2 are brought into close contact with the surface of the fine powder 1a filled in the inner bag 1b, as shown in FIG. According to the accumulation state of the fine powder 1a, wrinkles 2b are generated in the outer bag 2, and as a result, the pulling force applied to the outer bag 2 becomes uneven, and the obtained vacuum heat insulating material 10 has an unexpected shape. It deforms, and it becomes impossible to obtain the desired shape and size.

【0008】また、上記従来の真空断熱材10は、外袋
2の内部が真空脱気されることにより、内袋1b内の微
細粉末1aが強固に凝集するため、ある程度の強度を有
するものとなる。しかしながら、かかる真空断熱材10
は、大気圧下(1.1kg/cm2)で常時使用されるため、
この大気圧(1.1kg/cm2)に耐えるだけの強度を有し
ていなければならないが、その構成材料(微細粉末1
a,中袋1b,外袋2)はいずれもそれ自体の強度が乏
しいものばかりであるので、長期間、大気圧下(1.1
kg/cm2)に放置されると、上記真空度の分布が影響して
変形してまうことがあり、強度的にも未だ満足できるレ
ベルに達していないという問題点がある。
Further, the conventional vacuum heat insulating material 10 has some strength because the fine powder 1a in the inner bag 1b is strongly aggregated when the inside of the outer bag 2 is vacuum deaerated. Become. However, such vacuum insulation 10
Is always used under atmospheric pressure (1.1 kg / cm 2 ),
It must have the strength to withstand this atmospheric pressure (1.1 kg / cm 2 ), but its constituent materials (fine powder 1
Since a, the inner bag 1b, and the outer bag 2) are all poor in strength themselves, they are kept at atmospheric pressure (1.1
If it is left at (kg / cm 2 ), it may be deformed due to the above-mentioned vacuum distribution, and there is a problem in that the strength has not yet reached a satisfactory level.

【0009】ところで、図10は特開昭60-256699 号公
報に提案された真空断熱材の構成を示す斜視図である。
この真空断熱材は、図に示すように、上記骨材1と同様
の骨材21を用い、外袋2に、この骨材21と、壁面に
小径孔が複数形成された中空パイプ22a,2bとを、
この中空パイプ22a,22bが骨材21の相対向する
一組の側面に沿って配置されるように収容し、この状態
で外袋2の内部を真空脱気することにより、製造され
る。かかる製造方法によれば、骨材(中袋)21内部の
微細粉末21aの凝集体中に存在する空気が、中空パイ
プ22a,22bの側壁に形成された小径孔22cを通
ってパイプ内部に侵入し、パイプ内部を通って、外袋2
の開口部に導かれるため、外袋2の開口部から遠い位置
にある微細粉末21aの凝集体中に存在する空気も、効
率よく脱気することができ、その結果、前述した外袋2
の内部に生ずる真空度の分布,及び微細粉末の密度の濃
淡がある程度軽減して、得られる真空断熱材の変形,及
び寸法の変動をある程度抑制することができる。しかし
ながら、かかる製造方法においても、パイプ22a(2
2b)の近傍とパイプ22a(22b)から遠く離れた
位置との間、すなわち、骨材21の終端付近と骨材21
の中央部分との間では、依然として、真空度の高低差,
及び微細粉末の密度の濃淡差が生じるため、得られる真
空断熱材は中空パイプ22の長手方向に対する直交方向
に撓んだ形状になることがあり、所望とする形状,及び
寸法を有する真空断熱材を再現性良く得ることはできな
い。また、かかる製造方法では、上述した微細粉末の表
面に中袋と外袋が密着し、外袋に皺が生ずることにより
発生する,真空断熱材の形状及び寸法の変動について
は、全くこれを防止することはできない。また、かかる
製造方法により得られる真空断熱材は、中空パイプ22
a,22bが芯材として機能するため、上記従来方法に
より得られる真空断熱材10よりも高い強度を有するも
のとなるが、長期間、大気圧下(1.1kg/cm2)に放置
した場合、中空パイプ22a,22bの長手方向に対す
る直交方向に撓んでしまうことがあるという問題点があ
る。
By the way, FIG. 10 is a perspective view showing the structure of a vacuum heat insulating material proposed in Japanese Patent Laid-Open No. 60-256699.
As shown in the figure, this vacuum heat insulating material uses the same aggregate 21 as the aggregate 1, and the outer bag 2 has this aggregate 21 and hollow pipes 22a, 2b in which a plurality of small diameter holes are formed in the wall surface. And
The hollow pipes 22a and 22b are housed so as to be arranged along a pair of side surfaces of the aggregate 21 that face each other, and in this state, the inside of the outer bag 2 is vacuum-degassed to manufacture. According to this manufacturing method, the air present in the aggregate of the fine powder 21a inside the aggregate (medium bag) 21 enters the inside of the pipe through the small diameter holes 22c formed in the side walls of the hollow pipes 22a and 22b. Then, through the inside of the pipe, the outer bag 2
Since it is guided to the opening of the outer bag 2, the air existing in the agglomerates of the fine powder 21a at a position far from the opening of the outer bag 2 can be efficiently degassed, and as a result, the above-mentioned outer bag 2
The distribution of the degree of vacuum and the density of the fine powder that occur inside the are reduced to some extent, so that the deformation and size variation of the resulting vacuum heat insulating material can be suppressed to some extent. However, even in this manufacturing method, the pipe 22a (2
2b) and a position far away from the pipe 22a (22b), that is, near the end of the aggregate 21 and the aggregate 21.
The difference in vacuum level between the center and
In addition, since the density difference of the density of the fine powder occurs, the obtained vacuum heat insulating material may have a shape bent in a direction orthogonal to the longitudinal direction of the hollow pipe 22, and the vacuum heat insulating material having a desired shape and size. Cannot be obtained with good reproducibility. Further, in such a manufacturing method, the variation of the shape and size of the vacuum heat insulating material, which is caused by the inner bag and the outer bag being in close contact with each other on the surface of the fine powder described above and wrinkles occurring in the outer bag, is completely prevented. You cannot do it. Further, the vacuum heat insulating material obtained by such a manufacturing method is a hollow pipe 22.
Since a and 22b function as core materials, they have higher strength than the vacuum heat insulating material 10 obtained by the above conventional method, but when left for a long time under atmospheric pressure (1.1 kg / cm 2 ). However, there is a problem that the hollow pipes 22a and 22b may bend in a direction orthogonal to the longitudinal direction.

【0010】この発明は上記のような問題点を解消する
ためになされたものであり、その製造時における寸法及
び形状の安定性を確保することができる真空断熱材を提
供することにある。
The present invention has been made to solve the above problems, and it is an object of the present invention to provide a vacuum heat insulating material which can secure the stability of the size and shape during its manufacture.

【0011】更に、この発明の他の目的は、高強度で、
長期間、大気圧下(1.1kg/cm2)に放置されても寸法
及び形状の変動を生ずることがない真空断熱材を提供す
ることにある。
Still another object of the present invention is high strength,
It is an object of the present invention to provide a vacuum heat insulating material which does not change in size and shape even if it is left under atmospheric pressure (1.1 kg / cm 2 ) for a long time.

【0012】更にまた、この発明の他の目的は、外袋に
皺が無く、フラットな外観面を有する真空断熱材を提供
することにある。
Still another object of the present invention is to provide a vacuum heat insulating material having a flat appearance surface without wrinkles on the outer bag.

【0013】更にまた、この発明の他の目的は、外袋が
外部からの衝撃によって破れることがない真空断熱材を
提供することにある。
Still another object of the present invention is to provide a vacuum heat insulating material in which the outer bag is not broken by an external impact.

【0014】[0014]

【課題を解決するための手段】この発明(請求項1)に
かかる真空断熱材は、無機または有機物質の微細粉末を
通気性の中袋に充填し、当該中袋の開口部をシールして
得られたもの、または、発泡プラスチックの板状成形物
からなる骨材と、上記骨材の上下面にそれぞれ配置され
た骨材成形補強板と、上記骨材及び骨材成形補強板をそ
の内部に収容する非通気性の外袋とを備え、上記外袋の
内部を真空脱気し、かつ、当該外袋の開口部をシールし
てなることを特徴とするものである。
A vacuum heat insulating material according to the present invention (Claim 1) fills a breathable inner bag with a fine powder of an inorganic or organic substance and seals the opening of the inner bag. The aggregate obtained, or an aggregate made of a plate-shaped molded product of foamed plastic, an aggregate-forming reinforcing plate disposed on the upper and lower surfaces of the aggregate, and the inside of the aggregate and the aggregate-forming reinforcing plate And a non-air-permeable outer bag to be housed in the outer bag, the inside of the outer bag is vacuum deaerated, and the opening of the outer bag is sealed.

【0015】更にこの発明(請求項2)は、上記真空断
熱材において、上記外袋の外側面をスチレン系発泡樹脂
からなる保護層で被覆したものである。
Further, according to the present invention (claim 2), in the vacuum heat insulating material, the outer surface of the outer bag is covered with a protective layer made of a styrene foam resin.

【0016】[0016]

【作用】この発明(請求項1)においては、上記構成と
したから、その製造時、上記外袋の内部を真空脱気する
際、上記骨材の周囲、すなわち、骨材の側面と外袋12
の内面との間に空間が形成されることとなり、骨材の,
上記真空脱気時の脱気用開口となる外袋の開口部の近傍
以外の部分においても、骨材内部に存在する空気(気
体)が上記空間に導出され、この空間を通って上記外袋
の開口部に導かれることとなるので、骨材内部の空気
(気体)をムラなく脱気することができる。
In the present invention (Claim 1), because of the above-mentioned structure, when the inside of the outer bag is vacuum degassed during manufacturing, the periphery of the aggregate, that is, the side surface of the aggregate and the outer bag is obtained. 12
A space is formed between the inner surface of the aggregate and the
Even in a portion other than the vicinity of the opening of the outer bag that serves as a deaeration opening during vacuum deaeration, air (gas) existing inside the aggregate is led to the space, and the outer bag passes through this space. Therefore, the air (gas) inside the aggregate can be degassed uniformly.

【0017】更にこの発明(請求項2)においては、上
記構成としたから、外袋がスチレン系発泡樹脂からなる
保護層に被覆されるので、外部から衝撃が加わっても、
外袋が破れることがなくなり、真空断熱材の信頼性を向
上することができる。
Further, in the present invention (Claim 2), since the outer bag is covered with the protective layer made of the styrenic foam resin because of the above-mentioned constitution, even if an impact is applied from the outside,
The outer bag will not be broken, and the reliability of the vacuum heat insulating material can be improved.

【0018】[0018]

【実施例】実施例1 .図1はこの発明の実施例1による真空断熱材
の構造を示す断面図であり、図において、図3と同一符
号は同一または相当する部分を示し、100は真空断熱
材、3a,3bは骨材成形補強板である。
EXAMPLES Example 1 1 is a sectional view showing the structure of a vacuum heat insulating material according to a first embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 3 denote the same or corresponding parts, and 100 is a vacuum heat insulating material, and 3a and 3b are bones. It is a material forming reinforcement plate.

【0019】本実施例の真空断熱材100は、骨材1の
上下面と外袋2の内側面との間に、それぞれ骨材成形補
強板3a,3bを挿設したもので、この骨材成形補強板
3a,3bを設けた点が、図3に示した従来の真空断熱
材と異なっている。ここで、この骨材成形補強板3a,
3bとしては、例えば厚み0.1mm〜2mm程度の板紙,
プラスチック板,金属板が使用され、そのサイズは、こ
れによって骨材1が完全に覆われるサイズ、すなわち、
骨材1の上下面の面積よりも大きな面積をもつものが使
用される。また、他の構成材料は、基本的に図6に示し
た従来の真空断熱材のそれと同じであり、骨材1を構成
する熱伝導率が低く軽量の微細粉末1aとしては、硅酸
カルシウム,パーライト,シリカ等の無機材料からなる
微細粉末や、PMMA(ポリメチルメタアクリレート)
等の有機樹脂微粉末が使用され、通気性の中袋11bと
しては、クラフト紙,不織布等が使用される。また、非
通気性の外袋2としては、例えばPET(ポリエチレン
テレフタレート)フィルム等の気密性のあるプラスチッ
クフィルム,このプラスチックフィルムに例えばアルミ
箔等の金属箔を蒸着したラミネートフィルム等が使用さ
れる。なお、以下に説明するように、この真空断熱材1
00の製造においては、従来と同様に外袋2の開口部2
aを熱融着によりシールするので、外袋2の内側面、す
なわち、プラスチックフィルムの内側面には熱溶融によ
り接着性を示すエチレン−酢酸ビニル共重合体等からな
る接着剤層が設けられている。
In the vacuum heat insulating material 100 of this embodiment, the aggregate forming reinforcing plates 3a and 3b are inserted between the upper and lower surfaces of the aggregate 1 and the inner side surface of the outer bag 2, respectively. The point that the molded reinforcing plates 3a and 3b are provided is different from the conventional vacuum heat insulating material shown in FIG. Here, the aggregate forming and reinforcing plate 3a,
As 3b, for example, paperboard having a thickness of about 0.1 mm to 2 mm,
A plastic plate or a metal plate is used, and its size is a size with which the aggregate 1 is completely covered, that is,
An aggregate having a larger area than the upper and lower surfaces of the aggregate 1 is used. Further, the other constituent materials are basically the same as those of the conventional vacuum heat insulating material shown in FIG. 6, and as the fine powder 1a of the aggregate 1 which has a low thermal conductivity and is lightweight, calcium silicate, Fine powder made of inorganic materials such as pearlite and silica, and PMMA (polymethylmethacrylate)
An organic resin fine powder such as is used, and kraft paper, non-woven fabric, or the like is used as the air-permeable inner bag 11b. As the air-impermeable outer bag 2, for example, an airtight plastic film such as a PET (polyethylene terephthalate) film, a laminated film obtained by vapor-depositing a metal foil such as an aluminum foil on the plastic film, or the like is used. As described below, this vacuum heat insulating material 1
In the production of 00, the opening 2 of the outer bag 2 is the same as the conventional one.
Since a is sealed by heat fusion, the inner surface of the outer bag 2, that is, the inner surface of the plastic film is provided with an adhesive layer made of ethylene-vinyl acetate copolymer or the like that exhibits adhesiveness by heat fusion. There is.

【0020】以下、本実施例の真空断熱材100の製造
方法を説明する。図2,図3は本実施例の真空断熱材の
製造工程の主要工程を示す斜視図と断面図であり、図に
おいて、図1,図6と同一符号は同一または相当する部
分を示し、4は空間である。まず、従来と同様にして、
その3辺がシールされている中袋1bに、残りの一辺の
開口部から微細粉末1aを充填し、当該残りの一辺の開
口部をシールして骨材1を得る。
The method for manufacturing the vacuum heat insulating material 100 of this embodiment will be described below. 2 and 3 are a perspective view and a cross-sectional view showing the main steps of the manufacturing process of the vacuum heat insulating material of the present embodiment, in which the same reference numerals as those in FIGS. 1 and 6 indicate the same or corresponding parts. Is a space. First, in the same way as before,
The inner bag 1b whose three sides are sealed is filled with the fine powder 1a through the opening on the remaining side, and the opening on the remaining side is sealed to obtain the aggregate 1.

【0021】次に、図2に示すように、骨材1の上面と
下面に骨材成形補強板3a,3bを配置する。ここで、
前述したように、骨材成形補強板3a,3bは骨材1の
上下面よりもそのサイズ(面積)が大きいものであり、
骨材1は骨材成形補強板3a,3bにより覆い隠される
こととなる。
Next, as shown in FIG. 2, the aggregate forming and reinforcing plates 3a and 3b are arranged on the upper surface and the lower surface of the aggregate 1, respectively. here,
As described above, the aggregate forming / reinforcing plates 3a and 3b are larger in size (area) than the upper and lower surfaces of the aggregate 1.
The aggregate 1 is covered and hidden by the aggregate forming and reinforcing plates 3a and 3b.

【0022】次に、図3に示すように、その3辺がシー
ルされている外袋2の内部に残りの一辺の開口部2aか
ら、骨材1と骨材成形補強板3a,3bを挿入して、こ
れを収容する。ここで、骨材1の側面と外袋2の内面と
の間には空間4が形成される。
Next, as shown in FIG. 3, the aggregate 1 and the aggregate forming and reinforcing plates 3a and 3b are inserted into the outer bag 2 whose three sides are sealed from the opening 2a on the remaining side. And store it. Here, a space 4 is formed between the side surface of the aggregate 1 and the inner surface of the outer bag 2.

【0023】次に、従来と同様にして(図7参照)、真
空引き炉11内に、上記骨材1,骨材成形補強板3a,
3bを収容した外袋2を配置し、真空引き炉の内気圧を
0.1〜1Torr程度にすることにより、外袋2の上記残
りの一辺の開口部2aから外袋2の内部を真空引きし
て、この状態で、この残りの一辺の開口部2aを、発熱
ヒータ12a,12bで挟持することにより、当該開口
部2aを熱融着する(シールする)と、図1に示す真空
断熱材100が得られる。ここで、骨材1の外袋2の開
口部2aの近傍では、当然、その内部の微細粉末1aの
凝集体中に存在する空気が、この開口部2aから効率よ
く脱気されるが、本実施例では、骨材1の周囲、すなわ
ち、骨材1の側面(開口部側以外の他の3つの側面)と
外袋2の内面との間には空間4が形成されるので、骨材
(中袋)1の外袋2の開口部2aの近傍以外の部分にお
いても、その内部の微細粉末1aの凝集体中に存在する
空気が空間4に導出され,この空間4を通って開口部2
aに導かれることとなり、効率よく脱気されることとな
る。
Next, in the same manner as in the prior art (see FIG. 7), the above-mentioned aggregate 1, aggregate-forming reinforcing plate 3a, and
The outer bag 2 accommodating 3b is arranged and the inner pressure of the vacuum evacuation furnace is set to about 0.1 to 1 Torr, so that the inside of the outer bag 2 is evacuated from the opening 2a on the remaining one side of the outer bag 2. Then, in this state, the remaining one side opening 2a is sandwiched by the heaters 12a and 12b to heat-seal (seal) the opening 2a. 100 is obtained. Here, in the vicinity of the opening 2a of the outer bag 2 of the aggregate 1, naturally, the air present in the agglomerates of the fine powder 1a therein is efficiently degassed from the opening 2a. In the embodiment, since the space 4 is formed around the aggregate 1, that is, between the side surfaces of the aggregate 1 (three side surfaces other than the opening side) and the inner surface of the outer bag 2, the aggregate 4 is formed. Air existing in the agglomerates of the fine powder 1a inside the outer bag 2 of the (middle bag) 1 other than the vicinity of the opening 2a is led to the space 4 and passes through the space 4 to open the opening. Two
Therefore, the gas is efficiently degassed.

【0024】従って、このようにして得られる本実施例
の真空断熱材100は、従来のような,外袋2の内部に
おける真空度の高低差や、骨材1中の微細粉末1a密度
の濃淡差は生ずることなく、図1に示すように、折れ曲
がりや撓みの無い,ストレートな板状構造物となる。ま
た、骨材成形補強板3a,3bはそれ自体高い強度を有
するものであるので、真空断熱材100は、長期間、大
気圧下(1.1kg/cm2)に放置されても、変形すること
がなく、上記ストレートな板状構造を維持することがで
きる。また、骨材成形補強板3a,3bのフラット面が
そのまま真空断熱材100の上下面として現れるので、
外袋2に皺や凹凸がない美麗な外観を有するものとな
る。
Therefore, the vacuum heat insulating material 100 of the present embodiment obtained in this way has a difference in the degree of vacuum inside the outer bag 2 and the density of the fine powder 1a in the aggregate 1 as in the conventional case. There is no difference, and as shown in FIG. 1, a straight plate-like structure having no bending or bending is obtained. Further, since the aggregate forming and reinforcing plates 3a and 3b have high strength themselves, the vacuum heat insulating material 100 is deformed even if left under atmospheric pressure (1.1 kg / cm 2 ) for a long period of time. It is possible to maintain the above straight plate-like structure without causing the above. Further, since the flat surfaces of the aggregate forming and reinforcing plates 3a and 3b appear as the upper and lower surfaces of the vacuum heat insulating material 100 as they are,
The outer bag 2 has a beautiful appearance without wrinkles or irregularities.

【0025】実施例2.図4は本発明の実施例2による
真空断熱材を構成する骨材と骨材成形補強板が一体的に
接合された板状物の構成を示す斜視図であり、図におい
て、図2と同一符号は同一または相当する部分を示し、
1cは複数のスチレン−無水マレイン酸共重合体の発泡
粒子,または複数のスチレン−無水マレイン酸共重合体
と他の熱可塑性樹脂(例えばポリブタジエン)のブレン
ド物の発泡粒子を用い、隣接する粒子間を互いに熱融着
して板状に成形された骨材である。
Example 2 FIG. 4 is a perspective view showing the structure of a plate-shaped article in which an aggregate and an aggregate-forming reinforcing plate constituting a vacuum heat insulating material according to Example 2 of the present invention are integrally joined, and in the figure, the same as FIG. Symbols indicate the same or corresponding parts,
1c uses expanded particles of a plurality of styrene-maleic anhydride copolymers or expanded particles of a blend of a plurality of styrene-maleic anhydride copolymers and another thermoplastic resin (for example, polybutadiene), and is used between adjacent particles. Is an aggregate formed by heat-sealing each other into a plate shape.

【0026】本実施例2の真空断熱材は、骨材1cとし
て、複数のスチレン−無水マレイン酸共重合体の発泡粒
子,または複数のスチレン−無水マレイン酸共重合体と
他の熱可塑性樹脂(例えばポリブタジエン)のブレンド
物の発泡粒子を用い、隣接する粒子間を互いに熱融着す
ることにより板状に成形してなるものを用いた点が、上
記実施例1の真空断熱材と異なっており、その製造方法
は、実施例1の真空断熱材の製造方法を基本的に同じで
ある。
In the vacuum heat insulating material of Example 2, as the aggregate 1c, foamed particles of a plurality of styrene-maleic anhydride copolymers, or a plurality of styrene-maleic anhydride copolymers and another thermoplastic resin ( For example, the vacuum heat insulating material of Example 1 is different in that foamed particles of a blend of polybutadiene) and foamed particles formed by heat-sealing adjacent particles are used. The manufacturing method thereof is basically the same as the manufacturing method of the vacuum heat insulating material of the first embodiment.

【0027】本実施例2では骨材成形補強板3a,3b
は、骨材1cの形成時、すなわち、複数の発泡粒子を熱
融着して板状成形物を形成する際に、この板状成形物
(骨材1c)の上下面に接合させる。この骨材1cの形
成方法としては、本出願人の特許第1403833 号(特公昭
62-10173号公報)に記載された積層板の製造方法が適用
される。すなわち、骨材成形補強板3a,3bの何れか
一方の上に複数のスチレン−無水マレイン酸共重合体の
発泡粒子,または複数のスチレン−無水マレイン酸共重
合体と他の熱可塑性樹脂(例えばポリブタジエン)のブ
レンド物の発泡粒子を所定厚みに敷設した後、この発泡
粒子の上に骨材成形補強板3a,3bの他方を載置し、
この後、複数の発泡粒子を骨材成形補強板3a,3bで
挟持した状態で、骨材成形補強板3a,3bを加熱し、
かつ、発泡粒子に対して加熱蒸気を噴きつけることによ
り、発泡粒子を加熱膨張させる(2次発泡させる)。こ
れにより、所定厚みに敷設された複数の発泡粒子の隣接
する粒子間が互いに熱融着するとともに、骨材成形補強
板3a,3bに接触する発泡粒子がこれらに熱融着し
て、複数の発泡粒子からなる板状成形物(骨材1c)が
骨材成形補強板3a,3bに接合した板状物が形成され
る。
In the second embodiment, the aggregate forming reinforcing plates 3a and 3b are used.
Is bonded to the upper and lower surfaces of the plate-shaped molded product (aggregate 1c) when the aggregate 1c is formed, that is, when a plurality of expanded particles are heat-sealed to form a plate-shaped molded product. As a method of forming the aggregate 1c, the applicant's patent No. 1403833 (Japanese Patent Publication No.
The method for manufacturing a laminated plate described in JP 62-10173 A) is applied. That is, a plurality of expanded particles of a styrene-maleic anhydride copolymer or a plurality of styrene-maleic anhydride copolymers and another thermoplastic resin on one of the aggregate forming reinforcing plates 3a and 3b (for example, After laying foamed particles of a blend of polybutadiene) to a predetermined thickness, the other of the aggregate forming reinforcing plates 3a, 3b is placed on the foamed particles,
Thereafter, the aggregate-forming reinforcing plates 3a and 3b are heated while sandwiching the plurality of foamed particles between the aggregate-forming reinforcing plates 3a and 3b,
Moreover, the expanded particles are heated and expanded (secondarily expanded) by spraying heated steam onto the expanded particles. As a result, the adjacent particles of the plurality of expanded particles laid in a predetermined thickness are heat-sealed to each other, and the expanded particles in contact with the aggregate forming reinforcing plates 3a and 3b are heat-sealed to these particles, thereby A plate-shaped molded product (aggregate 1c) made of foamed particles is joined to the aggregate-forming reinforcing plates 3a and 3b to form a plate-shaped product.

【0028】このような本実施例2においても、骨材1
cを構成する複数のスチレン−無水マレイン酸共重合体
の発泡粒子,または複数のスチレン−無水マレイン酸共
重合体と他の熱可塑性樹脂(例えばポリブタジエン)の
ブレンド物の発泡粒子の内部に存在する、当該発泡粒子
の製造時に導入された気体(例えばブタン)は、外袋の
内部を真空脱気する際に、骨材1c全体から一様に脱気
されるので、上記実施例1と同様の効果を得ることがで
きる。すなわち、折れ曲がりや撓みの無いストレートな
板状構造物からなり、かつ、長期間、大気圧下(1.1
kg/cm2)に放置されても、このストレートな板状構造を
維持することができ、しかも、表面に皺や凹凸がない美
麗な外観を有する真空断熱材を得ることができる。
In this second embodiment as well, the aggregate 1
It exists inside the expanded particles of a plurality of styrene-maleic anhydride copolymers constituting c, or the expanded particles of a blend of a plurality of styrene-maleic anhydride copolymers and another thermoplastic resin (for example, polybutadiene). Since the gas (for example, butane) introduced at the time of manufacturing the foamed particles is uniformly degassed from the entire aggregate 1c when the inside of the outer bag is degassed in vacuum, the same as in Example 1 above. The effect can be obtained. That is, it is composed of a straight plate-like structure that does not bend or bend, and is kept under atmospheric pressure (1.1
Even if it is allowed to stand at (kg / cm 2 ), this straight plate-like structure can be maintained, and a vacuum heat insulating material having a beautiful appearance without wrinkles or irregularities on the surface can be obtained.

【0029】なお、本実施例では、骨材1cを複数のス
チレン−無水マレイン酸共重合体の発泡粒子,または複
数のスチレン−無水マレイン酸共重合体と他の熱可塑性
樹脂(例えばポリブタジエン)のブレンド物の発泡粒子
を用いて形成する際に、骨材1cと骨材成形補強板3
a,3bとを接合し、この接合物を外袋2に収容するよ
うにしたが、骨材1cを骨材成形補強板3a,3bと接
合することなく、単体で形成し、得られた骨材1cを骨
材成形補強板3a,3bで挟持して、これら骨材1cと
骨材成形補強板3a,3bとを外袋2に収容するように
しても同様の効果を得ることができる。この場合、骨材
1cは、用意した金型にスチレン−無水マレイン酸共重
合体の発泡粒子,またはスチレン−無水マレイン酸共重
合体と他の熱可塑性樹脂(例えばポリブタジエン)との
ブレンド物の発泡粒子を所定厚み敷設し、金型を金属製
の蓋で閉じ(ここで、金型の底部と金属製の蓋により発
泡粒子が挟持される。)、この状態で、発泡粒子に加熱
蒸気を噴きつけることにより、発泡粒子を加熱膨張させ
(2次発泡させ)、隣接する発泡粒子を互い熱融着させ
ることより、複数の発泡粒子からなる板状成形物を得、
この後、金型及び金属製の蓋を冷却し、金型及び金属製
の蓋と板状成形物の離型を行うことにより得ることがで
きる。
In this embodiment, the aggregate 1c is formed of a plurality of expanded particles of styrene-maleic anhydride copolymer or a plurality of styrene-maleic anhydride copolymer and other thermoplastic resin (for example, polybutadiene). When the foamed particles of the blend are used for forming, the aggregate 1c and the aggregate-forming reinforcing plate 3
The joints a and 3b were joined together, and the jointed article was accommodated in the outer bag 2. However, the aggregate 1c was formed as a single body without joining with the aggregate forming reinforcing plates 3a and 3b, and the obtained bone was obtained. The same effect can be obtained by sandwiching the aggregate 1c between the aggregate forming and reinforcing plates 3a and 3b and accommodating the aggregate 1c and the aggregate forming and reinforcing plates 3a and 3b in the outer bag 2. In this case, as the aggregate 1c, foamed particles of a styrene-maleic anhydride copolymer or a blend of a styrene-maleic anhydride copolymer and another thermoplastic resin (for example, polybutadiene) is foamed in a prepared mold. The particles are laid down to a predetermined thickness, the mold is closed with a metal lid (where the foamed particles are sandwiched between the bottom of the mold and the metal lid), and heated steam is sprayed onto the foamed particles in this state. By applying heat to expand the expanded particles (secondary expansion) and heat-adhere adjacent expanded particles to each other, a plate-shaped molded article composed of a plurality of expanded particles is obtained,
After that, the mold and the metallic lid are cooled, and the metallic mold and the metallic lid and the plate-shaped molded product are released from the mold.

【0030】また、本実施例では、複数のスチレン−無
水マレイン酸共重合体の発泡粒子,または複数のスチレ
ン−無水マレイン酸共重合体と他の熱可塑性樹脂(例え
ばポリブタジエン)のブレンド物の発泡粒子を用い、こ
れを板状に成形した骨材を用いたが、本発明において
は、これらとは異なる他の樹脂の発泡体を板状に成形し
てなるものを用いても、同様の効果が得られることは言
うまでもない。
Further, in this embodiment, foamed particles of a plurality of styrene-maleic anhydride copolymers or a foamed product of a blend of a plurality of styrene-maleic anhydride copolymers and another thermoplastic resin (for example, polybutadiene). Although the particles were used and the aggregate formed by molding the same into a plate shape was used, in the present invention, the same effect can be obtained by using a foamed product of another resin different from these, which is formed into a plate shape. It goes without saying that you can get

【0031】実施例3.図5は本発明の実施例3による
真空断熱材の構成を示す断面図であり、図において、図
1と同一符号は同一または相当する部分を示し、15は
複数のスチレン−無水マレイン酸共重合体の発泡粒子,
または複数のスチレン−無水マレイン酸共重合体と他の
熱可塑性樹脂(例えばポリブタジエン)のブレンド物の
発泡粒子を用い,これを層状に成形してなる保護層であ
る。
Example 3 5 is a sectional view showing a structure of a vacuum heat insulating material according to a third embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same or corresponding portions, and 15 denotes a plurality of styrene-maleic anhydride copolymers. Coalesced foamed particles,
Alternatively, the protective layer is formed by using foamed particles of a blend of a plurality of styrene-maleic anhydride copolymers and another thermoplastic resin (for example, polybutadiene), and molding the foamed particles into a layer.

【0032】上記実施例1の真空断熱材100では外袋
2が外部にむき出された状態にあり、外部からの何らか
の衝撃により外袋2が破れ、真空断熱材としての機能が
損なわれてしまう危険性がある。本実施例3の真空断熱
材は、かかる危険性を解消するために、実施例1の真空
断熱材100を、複数のスチレン−無水マレイン酸共重
合体の発泡粒子,または複数のスチレン−無水マレイン
酸共重合体と他の熱可塑性樹脂(例えばポリブタジエ
ン)のブレンド物の発泡粒子を用い,これを層状に成形
してなる保護層15で被覆したものである。
In the vacuum heat insulating material 100 of the first embodiment, the outer bag 2 is exposed to the outside, and the outer bag 2 is broken by some impact from the outside, and the function as the vacuum heat insulating material is impaired. There is a risk. In order to eliminate such a risk, the vacuum heat insulating material of the present Example 3 is the same as the vacuum heat insulating material 100 of Example 1 except that a plurality of expanded particles of styrene-maleic anhydride copolymer or a plurality of styrene-maleic anhydride are used. A foamed particle of a blend of an acid copolymer and another thermoplastic resin (for example, polybutadiene) is used, and this is covered with a protective layer 15 formed into a layer.

【0033】ここで、保護層15の形成方法としては、
用意した金型にスチレン−無水マレイン酸共重合体の発
泡粒子,またはスチレン−無水マレイン酸共重合体と他
の熱可塑性樹脂(例えばポリブタジエン)とのブレンド
物の発泡粒子を所定厚み敷設し、上記実施例1の真空断
熱材100をこの発泡粒子の上に載置した後、更に真空
断熱材100が完全に隠れるように、これの上から上記
発泡粒子を敷設する。
Here, as a method of forming the protective layer 15,
Laminated foamed particles of styrene-maleic anhydride copolymer or foamed particles of a blend of styrene-maleic anhydride copolymer and other thermoplastic resin (for example, polybutadiene) to a prepared mold with a predetermined thickness, After placing the vacuum heat insulating material 100 of Example 1 on the foamed particles, the foamed particles are laid on the vacuum heat insulating material 100 so that the vacuum heat insulating material 100 is completely hidden.

【0034】そして、金型を金属製の蓋で閉じ(ここ
で、金型の底部と金属製の蓋により発泡粒子,及び真空
断熱材100が挟持される。)、この状態で、上記発泡
粒子に加熱蒸気を噴きつけることにより、発泡粒子を加
熱膨張させ(2次発泡させ)、隣接する発泡粒子を互い
に熱融着させ、保護層15を形成する。ここで、発泡粒
子は真空断熱材100の外袋2にも融着する。この後、
金型及び金属製の蓋を冷却し、金型及び金属製の蓋と保
護層15の離型を行う。
Then, the mold is closed with a metal lid (here, the foamed particles and the vacuum heat insulating material 100 are sandwiched between the bottom of the mold and the metal lid). By blowing heated steam onto the foamed particles, the expanded particles are thermally expanded (secondarily expanded), and the adjacent expanded particles are thermally fused to each other to form the protective layer 15. Here, the foamed particles are also fused to the outer bag 2 of the vacuum heat insulating material 100. After this,
The mold and the metal lid are cooled, and the mold and the metal lid are separated from the protective layer 15.

【0035】このような本実施例3の真空断熱材は、外
袋がスチレン系発泡樹脂からなる保護層15で被覆され
るので、外部から衝撃が加わっても、外袋が破れること
がなくなり、真空断熱材の信頼性を向上することができ
る。また、本実施例では、スチレン系発泡樹脂の2次発
泡により保護層15を形成したので、保護層を特公昭61
-17263号公報に記載されいるような発泡ポリウレタンに
より形成する場合に比して、製品コストも安くなり、ま
た、耐衝撃性も向上することができる。これは、発泡ポ
リウレタンを得る場合、ポリウレタンを発泡する時に外
枠材(金属,プラスチック)が必要になり、この外枠材
をそのまま真空断熱材の外壁材として使用するとコスト
高になり、また、この外枠材をポリウレタンの発泡後に
発泡ポリウレタンから離型すると、発泡ポリウレタンそ
のものは脆弱で、衝撃によってボロボロと欠けてしまう
ためである。
In the vacuum heat insulating material of Example 3 as described above, the outer bag is covered with the protective layer 15 made of styrenic foam resin, so that the outer bag is not broken even when an external impact is applied, The reliability of the vacuum heat insulating material can be improved. Further, in this example, since the protective layer 15 was formed by the secondary foaming of the styrene-based foamed resin, the protective layer was formed as the Japanese Patent Publication No.
-17263, the product cost can be reduced and the impact resistance can be improved as compared with the case where the foamed polyurethane is formed as described in JP-A-17263. This is because when foamed polyurethane is obtained, an outer frame material (metal, plastic) is required when foaming polyurethane, and if this outer frame material is used as it is as the outer wall material of the vacuum heat insulating material, the cost will increase. This is because if the outer frame material is released from the foamed polyurethane after foaming the polyurethane, the foamed polyurethane itself is fragile and is damaged by impact.

【0036】なお、本実施例では実施例1の真空断熱材
をスチレン系発泡樹脂からなる保護層で被覆したが、実
施例2の真空断熱材をスチレン系発泡樹脂からなる保護
層で被覆しても、同様の効果を得ることができる。
In this example, the vacuum heat insulating material of Example 1 was coated with a protective layer made of styrene foam resin, but the vacuum heat insulating material of Example 2 was coated with a protective layer made of styrene foam resin. Also, the same effect can be obtained.

【0037】[0037]

【発明の効果】以上のように、この発明(請求項1)に
かかる真空断熱材によれば、無機または有機物質の微細
粉末を通気性の中袋に充填し、当該中袋の開口部をシー
ルして得られたもの、または、発泡プラスチックの板状
成形物からなる骨材と、上記骨材の上下面にそれぞれ配
置された骨材成形補強板と、上記骨材及び骨材成形補強
板をその内部に収容する非通気性の外袋とを備え、上記
外袋の内部を真空脱気し、かつ、当該外袋の開口部をシ
ールしてなるものとしたので、その製造時、骨材の周
囲、すなわち、骨材の側面と外袋の内面との間に空間が
形成されることとなり、骨材の,真空脱気用の脱気開口
となる外袋の開口部の近傍以外の部分においても、骨材
内部に存在する空気(気体)が上記空間に導出され、こ
の空間を通って上記外袋の開口部に導かれることとなる
ので、骨材内部の空気(気体)をムラなく脱気すること
ができる。従って、従来のような、外袋の内部における
真空度の高低差や、骨材中の微細粉末密度の濃淡差を生
ずることなく、折れ曲がりや撓みの無い,ストレートな
板状構造物からなる真空断熱材を得ることができる効果
がある。
As described above, according to the vacuum heat insulating material of the present invention (Claim 1), the breathable inner bag is filled with the fine powder of the inorganic or organic substance, and the opening of the inner bag is closed. Aggregate obtained by sealing or formed of a plate-shaped molded product of foamed plastic, aggregate forming reinforcing plate disposed on the upper and lower surfaces of the aggregate, and the aggregate and aggregate forming reinforcing plate A non-air-permeable outer bag for accommodating the inside of the outer bag, the inside of the outer bag is vacuum deaerated, and the opening of the outer bag is sealed. A space is formed around the material, that is, between the side surface of the aggregate and the inner surface of the outer bag, and the space other than the vicinity of the opening of the outer bag that is the deaeration opening for vacuum deaeration of the aggregate is formed. Even in the part, the air (gas) existing inside the aggregate is led out to the space, and passes through this space to Since the can is guided to the opening of the bag, it can be degassed evenly the air (gas) inside the aggregate. Therefore, there is no difference in the degree of vacuum inside the outer bag and the difference in the density of the fine powder in the aggregate as in the conventional case, and there is no bending or bending, and the vacuum heat insulation is composed of a straight plate-like structure. There is an effect that the material can be obtained.

【0038】また、骨材成形補強板はそれ自体高い強度
を有するものであるので、長期間、大気圧下(1.1kg
/cm2)に放置されても、変形することがなく、上記スト
レートな板状構造を長期間維持できる効果がある。
Further, since the aggregate forming and reinforcing plate itself has high strength, it can be used under atmospheric pressure (1.1 kg) for a long period of time.
Even if it is left at / cm 2 ), it does not deform, and it has an effect of maintaining the straight plate-like structure for a long period of time.

【0039】また、骨材成形補強板のフラット面がその
まま真空断熱材の上下面として現れるので、外袋に皺や
凹凸がない美麗な外観を有する真空断熱材を得ることが
できる効果がある。
Further, since the flat surfaces of the aggregate forming and reinforcing plate appear as the upper and lower surfaces of the vacuum heat insulating material as they are, there is an effect that a vacuum heat insulating material having a beautiful appearance without wrinkles or irregularities on the outer bag can be obtained.

【0040】更にこの発明(請求項2)にかかる真空断
熱材によれば、上記真空断熱材において、上記外袋の外
側面をスチレン系発泡樹脂からなる保護層で被覆したも
のとしたので、外部から衝撃が加わっても、外袋が破れ
ることがなくなり、真空断熱材の信頼性を向上できる効
果がある。
Further, according to the vacuum heat insulating material of the present invention (Claim 2), in the vacuum heat insulating material, the outer surface of the outer bag is covered with a protective layer made of styrene foam resin. Even if a shock is applied to the outer bag, the outer bag will not be broken, and the reliability of the vacuum heat insulating material can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1による真空断熱材の構成を
示す断面図である。
FIG. 1 is a sectional view showing a structure of a vacuum heat insulating material according to a first embodiment of the present invention.

【図2】 図1の真空断熱材の製造工程の主要工程を示
す斜視図である。
FIG. 2 is a perspective view showing main steps of a manufacturing process of the vacuum heat insulating material of FIG.

【図3】 図1の真空断熱材の製造工程の主要工程を示
す断面図である。
FIG. 3 is a cross-sectional view showing main steps of a manufacturing process of the vacuum heat insulating material of FIG.

【図4】 本発明の実施例2による真空断熱材を構成す
る骨材と骨材成形補強板が一体的に接合された板状物の
構成を示す斜視図である。
FIG. 4 is a perspective view showing a configuration of a plate-shaped article in which an aggregate and an aggregate forming / reinforcing plate constituting a vacuum heat insulating material according to Example 2 of the present invention are integrally joined.

【図5】 本発明の実施例3による真空断熱材の構成を
示す断面図である。
FIG. 5 is a sectional view showing a structure of a vacuum heat insulating material according to a third embodiment of the present invention.

【図6】 従来の真空断熱材の構成を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing the structure of a conventional vacuum heat insulating material.

【図7】 本発明及び従来の真空断熱材を製造する装置
の構成を示す概略断面図である。
FIG. 7 is a schematic cross-sectional view showing a configuration of an apparatus for producing a vacuum heat insulating material according to the present invention and a conventional one.

【図8】 従来の真空断熱材で生ずる問題点を説明する
ための,当該真空断熱材の断面図である。
FIG. 8 is a cross-sectional view of a conventional vacuum heat insulating material for explaining problems that occur in the conventional vacuum heat insulating material.

【図9】 従来の真空断熱材で生ずる問題点を説明する
ための,当該真空断熱材の斜視図である。
FIG. 9 is a perspective view of a conventional vacuum heat insulating material for explaining the problems that occur in the conventional vacuum heat insulating material.

【図10】 従来の真空断熱材の構成を示す斜視図であ
る。
FIG. 10 is a perspective view showing a structure of a conventional vacuum heat insulating material.

【符号の説明】[Explanation of symbols]

1,1c,21 骨材、1a,21a 微細粒子、1b
中袋、2 外袋、2a 外袋の開口部、3a,3b
骨材補強板、4 空間、10,100 真空断熱材、1
1 真空引き炉、12a,12b 発熱ヒータ、13
真空ポンプ、2b 皺、、22a,22b 中空パイプ
1, 1c, 21 Aggregate, 1a, 21a Fine particles, 1b
Middle bag, 2 outer bag, 2a Opening of outer bag, 3a, 3b
Aggregate reinforcement plate, 4 spaces, 10,100 vacuum insulation, 1
1 vacuum evacuation furnace, 12a, 12b exothermic heater, 13
Vacuum pump, 2b Wrinkle, 22a, 22b Hollow pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無機または有機物質の微細粉末を通気性
の中袋に充填し、当該中袋の開口部をシールして得られ
たもの、または、発泡プラスチックの板状成形物からな
る骨材と、 上記骨材の上下面にそれぞれ配置された骨材成形補強板
と、 上記骨材及び骨材成形補強板をその内部に収容する非通
気性の外袋とを備え、 上記外袋の内部を真空脱気し、かつ、当該外袋の開口部
をシールしてなることを特徴とする真空断熱材。
1. An aggregate obtained by filling an air-permeable inner bag with a fine powder of an inorganic or organic substance and sealing the opening of the inner bag, or an aggregate made of a plate-shaped molded product of foamed plastic. And an aggregate-forming reinforcing plate disposed on the upper and lower surfaces of the aggregate, respectively, and an air-impermeable outer bag that accommodates the aggregate and the aggregate-forming reinforcing plate therein, and the inside of the outer bag Vacuum degassing and sealing the opening of the outer bag.
【請求項2】 請求項1に記載の真空断熱材において、 上記外袋の外側面がスチレン系発泡樹脂からなる保護層
で被覆されていることを特徴とする真空断熱材。
2. The vacuum heat insulating material according to claim 1, wherein the outer surface of the outer bag is covered with a protective layer made of styrene foam resin.
JP6327071A 1994-12-28 1994-12-28 Vacuum heat insulating material Pending JPH08178176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6327071A JPH08178176A (en) 1994-12-28 1994-12-28 Vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6327071A JPH08178176A (en) 1994-12-28 1994-12-28 Vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JPH08178176A true JPH08178176A (en) 1996-07-12

Family

ID=18194969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6327071A Pending JPH08178176A (en) 1994-12-28 1994-12-28 Vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JPH08178176A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283385A (en) * 1999-03-31 2000-10-13 Kurabo Ind Ltd Vacuum heat insulating material and manufacture thereof
JP2002310384A (en) * 2001-04-11 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
JP2006118635A (en) * 2004-10-22 2006-05-11 Matsushita Electric Ind Co Ltd Heat insulating material and floor heating system using heat insulating material
JP2008069913A (en) * 2006-09-15 2008-03-27 Sanden Corp Insulated board and its manufacturing method
JP2012207891A (en) * 2011-03-30 2012-10-25 Mitsubishi Electric Corp Refrigerator
JP2016533456A (en) * 2013-09-26 2016-10-27 ヴァ−クー−テック アーゲー Foil wrapped vacuum insulation
GB2534185B (en) * 2015-01-15 2017-03-29 Kingspan Holdings (Irl) Ltd Vacuum insulating panel
CN108266602A (en) * 2018-01-23 2018-07-10 长江师范学院 A kind of vacuum insulation plate body structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283385A (en) * 1999-03-31 2000-10-13 Kurabo Ind Ltd Vacuum heat insulating material and manufacture thereof
JP2002310384A (en) * 2001-04-11 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
JP2006118635A (en) * 2004-10-22 2006-05-11 Matsushita Electric Ind Co Ltd Heat insulating material and floor heating system using heat insulating material
JP4622450B2 (en) * 2004-10-22 2011-02-02 パナソニック株式会社 Insulation and floor heating system using insulation
JP2008069913A (en) * 2006-09-15 2008-03-27 Sanden Corp Insulated board and its manufacturing method
JP2012207891A (en) * 2011-03-30 2012-10-25 Mitsubishi Electric Corp Refrigerator
JP2016533456A (en) * 2013-09-26 2016-10-27 ヴァ−クー−テック アーゲー Foil wrapped vacuum insulation
GB2534185B (en) * 2015-01-15 2017-03-29 Kingspan Holdings (Irl) Ltd Vacuum insulating panel
US10173354B2 (en) 2015-01-15 2019-01-08 Kingspan Holdings (Irl) Limited Vacuum insulating panel
CN108266602A (en) * 2018-01-23 2018-07-10 长江师范学院 A kind of vacuum insulation plate body structure

Similar Documents

Publication Publication Date Title
JP6965410B2 (en) Vacuum insulation panel and its manufacturing method
CN102574355B (en) Honeycomb structure element
US20110120620A1 (en) Method for the Production of a Vacuum Insulation Element Wrapped in a Film, Filled with Powder
EP1344008A1 (en) An insulated unit
US20080014402A1 (en) Aerogel insulation systems for pipelines
JP2017510763A (en) Vacuum insulation panel and container having vacuum insulation panel
US4004727A (en) Laminate for the manufacture of liquid-tight packing containers and a blank for packing containers manufactured from the laminate
JPH08178176A (en) Vacuum heat insulating material
GB1575412A (en) Packaging containers and packaging material therefor
JP2008106532A (en) Vacuum heat insulation material
JP2997687B2 (en) Method of manufacturing film / foil panel and film / foil panel manufactured by the method
JP2008008431A (en) Composite heat insulating material comprising vacuum heat insulating material and expanded polystyrene, and its manufacturing method
JP2004502117A (en) Vacuum panel for thermal insulation of cylindrical objects
JP7324063B2 (en) Method for manufacturing vacuum insulator, and vacuum insulator
JP6742076B2 (en) Vacuum heat insulating material and method for manufacturing vacuum heat insulating material
JP3455252B2 (en) Vacuum insulation
JP4042004B2 (en) Vacuum insulation panel, method for manufacturing the same, and insulation box using the same
JP2000104889A (en) Manufacture of vacuum heat insulating material
JPH0755088A (en) Vacuum heat insulating panel
JP2004044813A (en) Manufacturing method for vacuum insulating material
JP3304117B2 (en) Manufacturing method of vacuum insulation pack
JPH09317044A (en) Heat insulating material
JPS5934945B2 (en) Heat exchanger manufacturing method
JP2006207713A (en) Vacuum heat insulating material including structure and its manufacturing method, and vacuum heat insulating material including bath lid
JP2011056882A (en) Method for manufacturing vacuum foam heat insulating body and core material using beads method polystyrene foam, and the vacuum foam heat insulating body by the method