JP2013002484A - Vacuum thermal insulation material and refrigerator using the same - Google Patents

Vacuum thermal insulation material and refrigerator using the same Download PDF

Info

Publication number
JP2013002484A
JP2013002484A JP2011131790A JP2011131790A JP2013002484A JP 2013002484 A JP2013002484 A JP 2013002484A JP 2011131790 A JP2011131790 A JP 2011131790A JP 2011131790 A JP2011131790 A JP 2011131790A JP 2013002484 A JP2013002484 A JP 2013002484A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
inner packaging
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011131790A
Other languages
Japanese (ja)
Inventor
Yushi Arai
祐志 新井
Kuninari Araki
邦成 荒木
Hisashi Echigoya
恒 越後屋
Takashi Izeki
崇 井関
Yasuto Terauchi
康人 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011131790A priority Critical patent/JP2013002484A/en
Publication of JP2013002484A publication Critical patent/JP2013002484A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a three-dimensional vacuum thermal insulation material that prevents performance deterioration and has excellent appearance design, and a refrigerator using the same.SOLUTION: The vacuum thermal insulation material 50 has: a core material 51 made of inorganic fibers; an inner packing material 52 for housing the core material 51 therein; and an outer cover material for housing the inner packing material 52 therein. The inner packing material 52 is composed of a heat-sealed resin fiber layer. The resin fiber layer maintains the thickness of the core material 51. The ends of the resin fiber layer of the inner packing material 52 are contracted by heat sealing. Further, the surface of the resin fiber layer of the inner packing material 52 is formed into a concavo-convex shape or a planar shape by heat sealing.

Description

本発明は真空断熱材及び真空断熱材を適用した冷蔵庫に関するものである。   The present invention relates to a vacuum heat insulating material and a refrigerator to which the vacuum heat insulating material is applied.

地球温暖化防止に対する社会の取り組みとして、CO2の排出抑制を図るため、様々な分野で省エネ化が推進されている。近年の電気製品、特に冷熱関連の家電製品においては消費電力量低減の観点から、真空断熱材を採用して断熱性能を強化したものが主流になっている。また、各種原材料から製品の製造工程に至るまでのあらゆるエネルギー消費量を抑制するため、原材料についてはリサイクル化の推進,製造工程においては燃料代や電気代の抑制等、省エネ化が推進されている。そのため、より断熱性能の高い断熱材や、使用する用途に沿った形状の断熱材を用いることでより、断熱面積を大きくすることができる優れた真空断熱材が求められている。 As a social effort to prevent global warming, energy conservation is being promoted in various fields in order to control CO 2 emissions. In recent years, electric appliances, particularly household appliances related to cooling and heating, mainly use vacuum heat insulating materials to enhance heat insulating performance from the viewpoint of reducing power consumption. In addition, in order to reduce energy consumption from various raw materials to the manufacturing process of products, energy saving is promoted by promoting recycling of raw materials and reducing fuel and electricity costs in the manufacturing process. . Therefore, there is a demand for an excellent vacuum heat insulating material that can increase the heat insulating area by using a heat insulating material with higher heat insulating performance and a heat insulating material having a shape according to the application to be used.

一般に用いられる真空断熱材の芯材は無機繊維であり、大気圧の状態では嵩が大きくそのまま真空断熱材の芯材として使用するには、外被材を芯材の嵩を考慮した大きいものを使用するか、芯材にバインダを付着させ、圧縮プレス等によりボード化しなければならない。しかし、外被材を大きくすることにより、外被材からが熱の回りが大きくなり断熱性能が低下することや、製造費においても高くなってしまう。そのため、特許文献1に示された真空断熱材では、芯材となるガラス繊維の集合体を熱圧縮することで、ガラス繊維が塑性変形して形状を保持するものである。これによりガラス繊維の集合体の嵩を小さい芯材とすることで、断熱ボードが得られるものである。   The core material of the vacuum heat insulating material generally used is an inorganic fiber. In order to use the core material of the vacuum heat insulating material as it is because the bulk is large at atmospheric pressure, the outer material is large considering the bulk of the core material. It must be used, or a binder must be attached to the core and made into a board by a compression press or the like. However, by enlarging the jacket material, the heat around the jacket material increases and the heat insulation performance decreases, and the manufacturing cost also increases. Therefore, in the vacuum heat insulating material shown in Patent Document 1, the glass fiber is plastically deformed to retain its shape by thermally compressing the aggregate of glass fibers serving as the core material. Thereby, the heat insulation board is obtained by making the bulk of the aggregate of glass fibers into a small core material.

特許文献2に示された真空断熱材では、芯材であるガラス繊維を不織布で挟みニードルパンチ加工により、ガラス繊維を不織布で固定することで、ガラス繊維の嵩を小さい芯材が得られるものである。   In the vacuum heat insulating material shown in Patent Document 2, a core material with a small glass fiber volume can be obtained by sandwiching glass fiber as a core material with a nonwoven fabric and fixing the glass fiber with the nonwoven fabric by needle punching. is there.

特許文献3に示された真空断熱材では、グラスウール等の繊維質材の芯材を圧縮し内包材で収納することで、芯材の嵩を内包材で保持することにより小さくすることができる。これにより、外袋材の大きさを最小限にすることができ、また、内包材を外袋材に収納することで、挿入時の接触抵抗が繊維質材よりも少ないことから容易に外袋材に挿入することができる。   In the vacuum heat insulating material disclosed in Patent Document 3, a core material made of a fibrous material such as glass wool is compressed and stored in an inner packaging material, whereby the bulk of the core material can be reduced by holding the inner packaging material. As a result, the size of the outer bag material can be minimized, and the inner bag material can be stored in the outer bag material, so that the contact resistance at the time of insertion is less than that of the fibrous material, so that the outer bag material can be easily Can be inserted into the material.

特開2005−220954号公報Japanese Patent Laid-Open No. 2005-220954 特開2010−60048号公報JP 2010-60048 A 特開平4−337195号公報JP-A-4-337195

特許文献1では、芯材であるガラス繊維を加熱プレスすることにより、ガラス繊維を塑性変形することで嵩の小さい芯材としているが、芯材に用いられるガラス繊維は耐熱性が高く、塑性変形温度以上で熱プレスするには膨大な熱量が必要となる。また、ガラス繊維の塑性変形温度以下で形状を保持するには、結合材を用いる必要があるが、結合材を用いることで、芯材となるガラス繊維同士が結合材により結合するため、熱の伝達が大きくなり真空断熱材としたときに断熱性能が悪化する虞がある。   In Patent Document 1, a glass fiber that is a core material is heated and pressed to plastically deform the glass fiber to form a core material with a small bulk. However, the glass fiber used for the core material has high heat resistance and plastic deformation. Enormous amount of heat is required to hot press above the temperature. In addition, in order to maintain the shape below the plastic deformation temperature of the glass fiber, it is necessary to use a binder, but by using the binder, the glass fibers serving as the core material are bonded together by the binder, There is a possibility that the heat insulation performance deteriorates when the transmission becomes large and the vacuum heat insulating material is used.

特許文献2では、芯材であるガラス繊維を不織布で挟み、ニードルパンチ加工をすることでガラス繊維の嵩を小さくしているが、ニードルパンチ加工では繊維が縦方向になることから、熱伝導が大きくなり真空断熱材としたときに断熱性能が悪化する虞がある。   In patent document 2, the glass fiber which is a core material is sandwiched between non-woven fabrics, and the volume of the glass fiber is reduced by needle punching. When it becomes large and it is set as a vacuum heat insulating material, there exists a possibility that heat insulation performance may deteriorate.

特許文献3では、芯材を内包材で収納して圧縮することで、外袋材に収納することができるが、真空包装前に内包材内部から空気を出す開口部を設ける必要がある。しかし、この開口部により内包材に空気が入ることでグラスウール等の繊維質材が大気中での体積へと戻ってしまう。これにより外袋材の最終シール部にシワの発生、又はシワを発生させないために外袋材を大きくしなければならない。   In Patent Document 3, the core material can be stored in the outer bag material by storing and compressing the core material with the inner packaging material. However, it is necessary to provide an opening for discharging air from the inner packaging material before vacuum packaging. However, when air enters the inner packaging material through this opening, the fibrous material such as glass wool returns to the volume in the atmosphere. As a result, the outer bag material must be enlarged in order to prevent wrinkles from being generated or wrinkled at the final seal portion of the outer bag material.

そこで本発明は、性能低下を抑制した外観意匠性が良好な立体形状の真空断熱材及びそれを用いた冷蔵庫を得ることを目的とする。   Then, an object of this invention is to obtain the three-dimensional vacuum heat insulating material with the favorable external appearance design property which suppressed the performance fall, and the refrigerator using the same.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、無機繊維の芯材と、該芯材を収納する内包材と、該内包材を収納する外被材と、を有する真空断熱材において、前記内包材は熱溶着した樹脂繊維層で構成されて、該樹脂繊維層が前記芯材の厚みを保持する。   In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. To give an example, an inorganic fiber core material, an inner packaging material that houses the core material, and an outer jacket material that houses the inner packaging material, In the vacuum heat insulating material having the above, the inner packaging material is composed of a thermally welded resin fiber layer, and the resin fiber layer maintains the thickness of the core material.

本発明によれば、性能低下を抑制した外観意匠性が良好な立体形状の真空断熱材及びそれを用いた冷蔵庫を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the solid-state vacuum heat insulating material with the favorable external appearance design property which suppressed the performance fall, and a refrigerator using the same can be obtained.

本発明の実施例における冷蔵庫の正面図。The front view of the refrigerator in the Example of this invention. 本発明の実施例1を示す冷蔵庫の縦断面図(図1のA−A断面図)。The longitudinal cross-sectional view (AA sectional drawing of FIG. 1) of the refrigerator which shows Example 1 of this invention. 本発明に用いた真空断熱材の概略断面図。The schematic sectional drawing of the vacuum heat insulating material used for this invention. 本発明の実施例1を示す真空断熱材の樹脂繊維内包材の構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure explanatory drawing of the resin fiber inclusion material of the vacuum heat insulating material which shows Example 1 of this invention. 本発明の実施例2を示す真空断熱材の樹脂繊維内包材凹部形状の構成説明図。Structure explanatory drawing of the resin fiber inclusion material recessed part shape of the vacuum heat insulating material which shows Example 2 of this invention.

以下、本発明の実施形態について、図1〜図3を用いて説明する。図1は本実施形態を示す冷蔵庫の正面図であり、図2は図1のA−A断面図を示している。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view of a refrigerator showing the present embodiment, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

図1に示す本実施形態を備えた冷蔵庫1は、図2に示すように、上から冷蔵室2,貯氷室3(及び切替え室),冷凍室4,野菜室5を有している。図1の符号は、上記各室の前面開口部を閉塞する扉であり、上から冷蔵室扉6a,6b,貯氷室扉7aと上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9を配置する。これらの引き出し式扉6〜9は扉を引き出すと、各室を構成する容器が扉と共に引き出されてくる。   The refrigerator 1 provided with this embodiment shown in FIG. 1 has the refrigerator compartment 2, the ice storage compartment 3 (and switching room), the freezer compartment 4, and the vegetable compartment 5 from the top, as shown in FIG. The code | symbol of FIG. 1 is a door which obstruct | occludes the front-surface opening part of each said chamber, refrigeration room doors 6a and 6b, ice storage room door 7a and upper stage freezer compartment door 7b, lower stage freezer compartment door 8, vegetable compartment door 9 from the top. Place. When these drawer-type doors 6 to 9 are pulled out, the containers constituting each chamber are pulled out together with the doors.

冷蔵室扉6a,6bは、ヒンジ10等を中心に回動する回転式扉であり、貯氷室扉7a,上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9は、引き出し式の扉である。   The refrigerator compartment doors 6a and 6b are rotary doors that rotate around a hinge 10 and the like. The ice storage compartment door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are drawer-type doors. It is.

各扉6〜9には、冷蔵庫1と密閉するためのパッキン11を備え、各扉6〜9の室内側外周縁に取り付けられている。また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために仕切断熱壁12を配置している。この仕切断熱壁12は厚さ30〜50mm程度の断熱壁で、スチロフォーム,発泡断熱材(硬質ウレタンフォーム),真空断熱材等、それぞれを単独使用又は複数の断熱材を組み合わせて作られている。   Each door 6-9 is provided with packing 11 for sealing with the refrigerator 1, and is attached to the indoor side outer periphery of each door 6-9. Moreover, the partition heat insulation wall 12 is arrange | positioned in order to carry out the partition heat insulation between the refrigerator compartment 2, the ice-making room 3a, and the upper stage freezer compartment 3b. The partition heat insulating wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is made of a single material or a combination of a plurality of heat insulating materials such as styrofoam, foam heat insulating material (hard urethane foam), vacuum heat insulating material, and the like. .

製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、温度帯が同じであるため区画断熱する仕切り断熱壁ではなく、パッキン11受面を形成した仕切り部材13を設けている。下段冷凍室4と野菜室5の間には区画断熱するための仕切断熱壁14を設けており、仕切断熱壁12と同様に30〜50mm程度の断熱壁で、スチロフォーム、或いは発泡断熱材(硬質ウレタンフォーム)、真空断熱材等で作られている。基本的に冷蔵,冷凍等の貯蔵温度帯の異なる部屋の仕切りには仕切断熱壁を設置している。尚、箱体20内には上から冷蔵室2,製氷室3a及び上段冷凍室3b,下段冷凍室4,野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a,6b,製氷室扉7a,上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9に関しても回転による開閉,引き出しによる開閉及び扉の分割数等、特に限定するものではない。   Since the temperature zone is the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 having a packing 11 receiving surface is provided instead of a partition heat insulating wall for partition heat insulation. A partition heat insulation wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 to insulate the partition. Like the partition heat insulation wall 12, the heat insulation wall is about 30 to 50 mm, and is made of styrofoam or foam insulation ( Hard urethane foam), vacuum insulation, etc. Basically, partition insulation walls are installed in the partitions of rooms with different storage temperature zones such as refrigeration and freezing. In addition, although the storage room of the refrigerator compartment 2, the ice-making room 3a, the upper stage freezer compartment 3b, the lower stage freezer compartment 4, and the vegetable compartment 5 is each dividedly formed in the box 20, the arrangement | positioning of each storage room is carried out. The invention is not particularly limited to this. Further, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are particularly limited in terms of opening and closing by rotation, opening and closing by drawers, and the number of divided doors. is not.

箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。この外箱21と内箱22の間の空間に真空断熱材50を配置し、真空断熱材50以外の空間には硬質ウレタンフォーム等の発泡断熱材23を充填してある。真空断熱材50については図3で説明するが、後述する固定部材70,支持部材80等で固定支持されている。   The box 20 includes an outer box 21 and an inner box 22, and a heat insulating part is provided in a space formed by the outer box 21 and the inner box 22 to insulate each storage chamber in the box 20 from the outside. Yes. A vacuum heat insulating material 50 is disposed in a space between the outer box 21 and the inner box 22, and a space other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as rigid urethane foam. Although the vacuum heat insulating material 50 is demonstrated in FIG. 3, it is fixedly supported by the fixing member 70, the supporting member 80, etc. which are mentioned later.

また、冷蔵庫の冷蔵室2,冷凍室3a,4,野菜室5等の各室を所定の温度に冷却するために冷凍室3a,4の背側には冷却器28が備えられており、この冷却器28と圧縮機30と凝縮機30a、図示しないキャピラリーチューブとを接続し、冷凍サイクルを構成している。冷却器28の上方にはこの冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設されている。   In addition, a refrigerator 28 is provided on the back side of the freezer compartments 3a, 4 in order to cool the refrigerator compartment 2, the freezer compartments 3a, 4 and the vegetable compartment 5 to a predetermined temperature. The refrigeration cycle is configured by connecting the cooler 28, the compressor 30, the condenser 30a, and a capillary tube (not shown). Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed.

また、冷蔵庫の冷蔵室2と製氷室3a及び上段冷凍室3b、冷凍室4と野菜室5を区画する断熱材として、それぞれ断熱仕切り12,14を配置し、発泡ポリスチレン33と真空断熱材50cで構成されている。この断熱仕切り12,14については硬質ウレタンフォーム等の発泡断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50cに限定するものではない。   Moreover, as the heat insulating material which divides the refrigerator compartment 2, the ice making room 3a, the upper freezer compartment 3b, the freezer compartment 4 and the vegetable compartment 5 of the refrigerator, the heat insulating partitions 12 and 14 are arranged respectively, and the expanded polystyrene 33 and the vacuum heat insulating material 50c are used. It is configured. The heat insulating partitions 12 and 14 may be filled with a foam heat insulating material 23 such as rigid urethane foam, and are not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50c.

また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されており、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。これに伴って、凹部40は断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するため必然的に内容積が犠牲になってしまう。内容積をより大きくとると凹部40と内箱22間の断熱材23の厚さが薄くなってしまう。このため、凹部40の断熱材23中に真空断熱材50aを配置して断熱性能を確保、強化している。本実施例では、真空断熱材50aを前述の庫内灯45のケース45aと電気部品41に跨るように略Z形状に成形した1枚の真空断熱材50aとしている。尚、前記カバー42は外部からのもらい火や何らかの原因で発火した場合等を考慮し鋼板製としている。   In addition, a concave portion 40 for accommodating an electrical component 41 such as a substrate for controlling the operation of the refrigerator 1 or a power supply substrate is formed in the rear portion of the top surface of the box 20, and a cover 42 that covers the electrical component 41. Is provided. The height of the cover 42 is arranged so as to be substantially the same height as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. Although it does not specifically limit, when the height of the cover 42 protrudes from the top | upper surface of an outer box, it is desirable to keep in the range within 10 mm. Along with this, the recess 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the heat insulating material 23 side, so that the internal volume is inevitably sacrificed in order to ensure the heat insulating thickness. If the internal volume is increased, the thickness of the heat insulating material 23 between the recess 40 and the inner box 22 will be reduced. For this reason, the vacuum heat insulating material 50a is arrange | positioned in the heat insulating material 23 of the recessed part 40, and the heat insulation performance is ensured and strengthened. In the present embodiment, the vacuum heat insulating material 50a is a single vacuum heat insulating material 50a formed in a substantially Z shape so as to straddle the case 45a and the electrical component 41 of the interior lamp 45 described above. The cover 42 is made of a steel plate in consideration of a fire from the outside or a case where it is ignited for some reason.

また、箱体20の背面下部に配置された圧縮機30や凝縮機31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材50dを配置している。   In addition, since the compressor 30 and the condenser 31 arranged at the lower back of the box 20 are components that generate a large amount of heat, in order to prevent heat from entering the inside of the box, a vacuum insulation is provided on the projection surface toward the inner box 22 side. The material 50d is arranged.

ここで、真空断熱材50について、図3を用いてその構成を説明する。真空断熱材50は、芯材51と該芯材51を圧縮状態に保持するための内包材52、内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53から構成してある。該外被材53は真空断熱材50の両面に配置され、同じ大きさのラミネートフィルムの稜線から一定の幅の部分を熱溶着により貼り合わせた袋状で構成されている。なお、本実施例において、芯材51についてはバインダ等で接着や結着していない無機繊維の積層体として平均繊維径4μmのグラスウールを用いた。   Here, the configuration of the vacuum heat insulating material 50 will be described with reference to FIG. The vacuum heat insulating material 50 includes a core material 51, an inner packaging material 52 for holding the core material 51 in a compressed state, and an outer jacket material 53 having a gas barrier layer covering the core material 51 held in a compressed state by the inner packaging material 52. It is configured. The covering material 53 is disposed on both surfaces of the vacuum heat insulating material 50, and is configured in a bag shape in which portions of a certain width are bonded together by thermal welding from the ridge line of the laminate film having the same size. In the present embodiment, as the core material 51, glass wool having an average fiber diameter of 4 μm was used as a laminate of inorganic fibers not bonded or bound with a binder or the like.

芯材51については、無機系繊維材料の積層体を使用することによりアウトガスが少なくなるため、断熱性能的に有利であるが、特にこれに限定するものではなく、例えばセラミック繊維やロックウール,グラスウール以外のガラス繊維等の無機繊維等でもよい。   The core material 51 is advantageous in terms of heat insulation performance because the outgas is reduced by using a laminate of inorganic fiber materials. However, the core material 51 is not limited to this. For example, ceramic fibers, rock wool, glass wool, etc. Other inorganic fibers such as glass fibers may be used.

外被材53のラミネート構成についてはガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面保護層,ガスバリヤ層1,ガスバリヤ層2,熱溶着層の4層構成からなるラミネートフィルムとし、表面層は保護材の役割を持つ樹脂フィルムとし、ガスバリヤ層1は樹脂フィルムに金属蒸着層を設け、ガスバリヤ層2は酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、ガスバリヤ層1とガスバリヤ層2は金属蒸着層同士が向かい合うように貼り合わせている。熱溶着層については表面層と同様に吸湿性の低いフィルムを用いた。   The laminate structure of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In this embodiment, the surface protective layer, the gas barrier layer 1, the gas barrier layer 2, and the heat welded layer are used. The laminate film is composed of the following four layers, the surface layer is a resin film serving as a protective material, the gas barrier layer 1 is provided with a metal vapor deposition layer on the resin film, and the gas barrier layer 2 is metal vapor deposited on a resin film having a high oxygen barrier property. The gas barrier layer 1 and the gas barrier layer 2 are bonded so that the metal vapor deposition layers face each other. For the heat-welded layer, a film having low hygroscopicity was used as in the surface layer.

具体的には、表面層を二軸延伸タイプのポリプロピレン,ポリアミド,ポリエチレンテレフタレート等の各フィルム,ガスバリヤ層1をアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルム,ガスバリヤ層2をアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン,ポリプロピレン等の各フィルムとした。この4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。例えばガスバリヤ層1や2として、金属箔、或いは樹脂系のフィルムに無機層状化合物,ポリアクリル酸等の樹脂系ガスバリヤコート材,DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。   Specifically, the surface layer is a biaxially stretched film of polypropylene, polyamide, polyethylene terephthalate, the gas barrier layer 1 is a biaxially stretched polyethylene terephthalate film with aluminum vapor deposition, and the gas barrier layer 2 is biaxially stretched with aluminum vapor deposition. An ethylene vinyl alcohol copolymer resin film, a biaxially stretched polyvinyl alcohol resin film with aluminum vapor deposition, or an aluminum foil was used, and the heat-welded layer was an unstretched polyethylene, polypropylene, or other film. The layer structure and material of the four-layer laminate film are not particularly limited to these. For example, as a gas barrier layer 1 or 2, a metal foil or a resin film provided with a gas barrier film made of an inorganic layered compound, a resin gas barrier coating material such as polyacrylic acid, DLC (diamond-like carbon), or the like, or heat-sealed For example, a polybutylene terephthalate film having a high oxygen barrier property may be used for the layer.

また、ガスバリヤ層2に使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。これにより、先に述べた真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながっている。尚、各フィルムのラミネート(貼り合わせ)は、二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法には特にこれに限定するものではなく、ウェットラミネート法,サーマルラミネート法等の他の方法によるものでも何ら構わない。   In addition, since the resin-based film other than the metal foil used for the gas barrier layer 2 deteriorates the gas barrier property due to moisture absorption, the gas barrier property can be reduced by disposing a resin having a low hygroscopic property for the heat welding layer. While suppressing deterioration, the moisture absorption amount of the whole laminate film is suppressed. As a result, even in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought into the jacket material 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved, leading to higher performance of heat insulation performance. . In addition, the lamination (bonding) of each film is generally performed by a dry lamination method through a two-component curable urethane adhesive, but the type of the adhesive and the bonding method are particularly limited to this. However, it may be any other method such as a wet laminating method or a thermal laminating method.

また、吸着剤は図示していないが、本実施例には物理吸着タイプの合成ゼオライトを用いている。しかし、いずれもこれらの材料に限定するものではない。   Although the adsorbent is not shown, a physical adsorption type synthetic zeolite is used in this embodiment. However, neither is limited to these materials.

(実施例1)
本発明の実施の形態1について図4を参照しながら説明する。図4は本発明の実施形態の冷蔵庫1の外箱21に設けた真空断熱材50の断面図である。真空断熱材50の構成は、芯材51を形成する無機繊維のグラスウール繊維と、内包材52である有機繊維のポリスチレン繊維から成っている。本実施例においては無機繊維グラスウールの目付量2800g/m2、寸法300mm×300mmを用いており、内包材52においては、有機繊維のポリスチレン繊維の繊維径4〜15μmの目付量50g/m2を用いている。
Example 1
Embodiment 1 of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view of the vacuum heat insulating material 50 provided in the outer box 21 of the refrigerator 1 according to the embodiment of the present invention. The configuration of the vacuum heat insulating material 50 is made up of glass wool fibers, which are inorganic fibers that form the core material 51, and polystyrene fibers, which are organic fibers that are the inclusion material 52. Basis weight 2800 g / m 2 inorganic fibers glass wool in this embodiment, it is used the dimensions 300 mm × 300 mm, the inner wrapper 52, the basis weight of 50 g / m 2 of fiber diameter 4~15μm polystyrene fibers of the organic fiber Used.

真空断熱材50の芯材51の無機繊維のグラスウール繊維集合体を、有機繊維の内包材52で包み込み、内包材52の周囲4辺をヒートシールする。ヒートシール後に荷重0.02kg/cm2をかけながら、100℃の炉で30分間加熱する。加熱することで、有機繊維のポリスチレン繊維の繊維同士が溶着し、収縮することで形状を保持することができる。また、加熱することでポリスチレン繊維の繊維同士が溶着し収縮することから、内包材52の周囲4辺をヒートシール部が収縮し耳部も溶着して収縮するため、耳部を少なくすることができる。これにより、真空断熱材50の完成寸法が芯材51の寸法に近くすることかでき、真空断熱材50の完成寸法の誤差を少なくすることができる。 The glass wool fiber aggregate of inorganic fibers of the core material 51 of the vacuum heat insulating material 50 is wrapped with an organic fiber packing material 52, and the four sides around the packing material 52 are heat sealed. Heating is performed in a furnace at 100 ° C. for 30 minutes while applying a load of 0.02 kg / cm 2 after heat sealing. By heating, the fibers of the organic fiber polystyrene fibers are welded together, and the shape can be maintained by shrinking. Moreover, since the fibers of polystyrene fibers are welded and contracted by heating, the heat seal part contracts and the ear part also welds and contracts around the four sides around the inner packaging material 52, so that the ear part can be reduced. it can. Thereby, the completed dimension of the vacuum heat insulating material 50 can be close to the dimension of the core material 51, and the error of the completed dimension of the vacuum heat insulating material 50 can be reduced.

芯材51を挿入した内包材52を外被材53に挿入し、真空包装を行うことができる。従来の芯材を内包材52に入れた場合においては、真空包装を行う直前に開口部を設ける必要があるが、本実施例の内包材52は有機繊維の繊維間から芯材内部のガスを脱気することができる。これにより、内包材全体から芯材51内部のガスを脱気できることから、開口部を設けることなく真空を引くことができる。また、内包材52全体で芯材51内部のガスを脱気し、開口部を設ける必要がないことから、袋状の内包材52を用いて開口部を設けたときに外気流入してしまい、芯材51が大気圧の嵩まで復元してしまうことなく真空包装することができる。また、より芯材51内部の真空を速くするために、内包材52に開口部を設けることも可能である。開口部を設けた場合においても、荷重をかけながら加熱し、ポリスチレン繊維の繊維同士が溶着していることから、開口部から空気が流入しても、ポリスチレン繊維の繊維同士が溶着し芯材51を保持していることから、芯材51が大気圧の嵩まで復元してしまうことなく真空包装することができる。   The inner packaging material 52 into which the core material 51 is inserted can be inserted into the outer jacket material 53 to perform vacuum packaging. In the case where the conventional core material is put in the inner packaging material 52, it is necessary to provide an opening immediately before performing vacuum packaging. However, the inner packaging material 52 of the present embodiment allows gas inside the core material to flow between the fibers of the organic fiber. Can be degassed. Thereby, since the gas inside the core material 51 can be deaerated from the entire inner packaging material, a vacuum can be drawn without providing an opening. Further, since the gas inside the core material 51 is degassed by the entire inner packaging material 52 and there is no need to provide an opening, the outside air flows in when the opening is provided using the bag-shaped inner packaging material 52, The core material 51 can be vacuum-packed without being restored to the atmospheric pressure. Further, it is possible to provide an opening in the inner packaging material 52 in order to make the vacuum inside the core material 51 faster. Even in the case where the opening is provided, heating is performed while a load is applied, and the fibers of the polystyrene fibers are welded to each other. Therefore, even if air flows in from the openings, the fibers of the polystyrene fibers are welded to each other to form the core material 51. Therefore, the core material 51 can be vacuum-packed without being restored to the atmospheric pressure.

(実施例2)
本発明の実施の形態2について図5を参照しながら説明する。図5は真空断熱材50の芯材51の無機繊維のグラスウール繊維集合体を、有機繊維の内包材52で包み込み、内包材52の周囲4辺をヒートシールしたものを加熱し、加熱時の荷重に温度をかけたものを、真空包装したものである。加熱工程では、荷重0.02kg/cm2をかけながら100℃の炉で10分間加熱したものである。
(Example 2)
A second embodiment of the present invention will be described with reference to FIG. FIG. 5 shows an assembly of inorganic fiber glass wool fibers of a core material 51 of a vacuum heat insulating material 50 wrapped with an organic fiber packing material 52, and heat-sealed four sides of the packing material 52, and the load during heating. What was subjected to temperature was vacuum packaged. In the heating step, the sample was heated in a furnace at 100 ° C. for 10 minutes while applying a load of 0.02 kg / cm 2 .

また、荷重においては110℃の熱板を用いて加熱することで、熱板と接触している内包材52の有機繊維のポリスチレン繊維が、100℃の溶着部よりもより溶着することで、荷重の熱板との接触面である表面に内包材溶着部54を設けることができる。内包材溶着部54は繊維同士が溶着していることから、無機繊維のグラスウール繊維集合体よりも真空包装後に厚み方向の圧縮は少なく、目付差による凹凸の影響も少ない。これにより、真空包装後の真空断熱材50の表面凹凸を抑制することができる。熱板との接触面のみを固形化することで、表面の一面のみを硬化させることで多面からの芯材内部のガスを脱気し、開口部を設けることなく真空を引くことができる。   Moreover, in the load, by heating using a 110 degreeC hotplate, the polystyrene fiber of the organic fiber of the inner packaging material 52 which is contacting with the hotplate welds more than a 100 degreeC weld part, load The inner packaging material welded portion 54 can be provided on the surface which is a contact surface with the hot plate. Since the fibers are welded to each other, the inner packaging material welded portion 54 is less compressed in the thickness direction after vacuum packaging than the glass wool fiber aggregate of inorganic fibers, and is less affected by unevenness due to the difference in basis weight. Thereby, the surface unevenness | corrugation of the vacuum heat insulating material 50 after vacuum packaging can be suppressed. By solidifying only the contact surface with the hot plate, it is possible to degas the gas inside the core material from multiple surfaces by curing only one surface, and to draw a vacuum without providing an opening.

また、熱板との接触面のみが固形化することから、芯材51の無機繊維のグラスウール繊維集合体と同じ寸法とすることができ、芯材51の無機繊維のグラスウール繊維集合体との層ずれが発生することなく、真空断熱材50としたときに寸法誤差の少ない真空断熱材を得ることができる。   Further, since only the contact surface with the hot plate is solidified, it can have the same dimensions as the glass wool fiber aggregate of the inorganic fibers of the core material 51, and the layer with the glass wool fiber aggregate of the inorganic fibers of the core material 51. Without the occurrence of deviation, a vacuum heat insulating material with little dimensional error can be obtained when the vacuum heat insulating material 50 is used.

(実施例3)
本実施例の真空断熱材50においては、加熱工程で熱板に凸を設けて荷重をかけて内包材52の有機繊維のポリスチレン繊維に凹を設けたものである。加熱工程での荷重の熱板に凸を設けることで、内包材52の有機繊維のポリスチレン繊維が熱板に凹凸形状に沿って溶着することから、内包材包装後に凹形状55を設けることができる。
(Example 3)
In the vacuum heat insulating material 50 of the present embodiment, a convex is provided on the hot plate in the heating step and a load is applied to provide a concave on the polystyrene fiber of the organic fiber of the inner packaging material 52. By providing a convex on the hot plate of the load in the heating process, the polystyrene fibers of the organic fibers of the inner packaging material 52 are welded to the hot plate along the concave and convex shape, so that the concave shape 55 can be provided after packaging the inner packaging material. .

これにより、芯材51の無機繊維のグラスウール繊維集合体が真空包装後においても、内包材52の凹形状55に保持されていて、真空断熱材50の表面に凹部を設けることができる。   Thereby, the glass wool fiber aggregate of inorganic fibers of the core material 51 is held in the concave shape 55 of the inner packaging material 52 even after vacuum packaging, and a concave portion can be provided on the surface of the vacuum heat insulating material 50.

以上の各実施例によれば、無機繊維の芯材と、該芯材を収納する内包材と、該内包材を収納する外被材と、を有する真空断熱材において、前記内包材は熱溶着した樹脂繊維層で構成されて、該樹脂繊維層が前記芯材の厚みを保持する。   According to each of the above embodiments, in the vacuum heat insulating material having the core material of the inorganic fiber, the inner packaging material that accommodates the core material, and the outer jacket material that accommodates the inner packaging material, the inner packaging material is thermally welded. The resin fiber layer maintains the thickness of the core material.

また、前記内包材の前記樹脂繊維層の端部は、熱溶着により収縮する。   Moreover, the edge part of the said resin fiber layer of the said inner packaging material shrink | contracts by heat welding.

また、前記内包材の前記樹脂繊維層の表面は、熱溶着により凹凸形状又は平面形状とした。   Moreover, the surface of the resin fiber layer of the inner packaging material was formed into an uneven shape or a planar shape by heat welding.

また、前記内包材の片側面を熱溶着して前記凹凸形状又は前記平面形状とした。   Moreover, the one side surface of the inner packaging material was heat-welded to form the uneven shape or the planar shape.

また、前記外被材内を大気開放した後、前記内包材は前記凹凸形状又は前記平面形状を保持する。   Further, after the inside of the jacket material is opened to the atmosphere, the inner packaging material retains the uneven shape or the planar shape.

また、外箱面又は内箱面に真空断熱材を配置した冷蔵庫において、前記真空断熱材は、無機繊維の芯材と、該芯材を収納する内包材と、該内包材を収納する外被材と、を有する真空断熱材であって、前記内包材は熱溶着した樹脂繊維層で構成されて、該樹脂繊維層が前記芯材の厚みを保持して、前記外箱面又は前記内箱面に接するように配置した。   Further, in the refrigerator in which a vacuum heat insulating material is disposed on the outer box surface or the inner box surface, the vacuum heat insulating material includes an inorganic fiber core material, an inner packaging material that stores the core material, and an outer jacket that stores the inner packaging material. The inner packaging material is composed of a thermally welded resin fiber layer, and the resin fiber layer maintains the thickness of the core material, and the outer box surface or the inner box Arranged to contact the surface.

このように、真空断熱材の無機繊維の芯材を内包材である樹脂繊維に内包し、樹脂繊維を熱溶着することで芯材の嵩を小さくすることができる。これにより、無機繊維に結合材や縦方向への繊維をなくすことで、性能の低下を抑制することができる。また、樹脂繊維に凹凸形状を設けることで、芯材に凹部を形成した真空断熱材を提供することができる。   Thus, the bulk of the core material can be reduced by encapsulating the inorganic fiber core material of the vacuum heat insulating material in the resin fiber as the encapsulating material and thermally welding the resin fiber. Thereby, a performance fall can be suppressed by eliminating a binder and the fiber to a vertical direction in an inorganic fiber. Moreover, the vacuum heat insulating material which formed the recessed part in the core material can be provided by providing uneven | corrugated shape in the resin fiber.

1 冷蔵庫
50 真空断熱材
51 芯材
52 内包材
53 外被材
54 内包材溶着部
55 凹形状
DESCRIPTION OF SYMBOLS 1 Refrigerator 50 Vacuum heat insulating material 51 Core material 52 Inner material 53 Outer material 54 Inner material welding part 55 Concave shape

Claims (6)

無機繊維の芯材と、該芯材を収納する内包材と、該内包材を収納する外被材と、を有する真空断熱材において、前記内包材は熱溶着した樹脂繊維層で構成されて、該樹脂繊維層が前記芯材の厚みを保持することを特徴とする真空断熱材。   In a vacuum heat insulating material having an inorganic fiber core material, an inner packaging material that houses the core material, and an outer jacket material that houses the inner packaging material, the inner packaging material is composed of a thermally welded resin fiber layer, The vacuum heat insulating material, wherein the resin fiber layer maintains the thickness of the core material. 請求項1記載の真空断熱材において、前記内包材の前記樹脂繊維層の端部は、熱溶着により収縮したことを特徴とする真空断熱材。   2. The vacuum heat insulating material according to claim 1, wherein an end portion of the resin fiber layer of the inner packaging material is contracted by heat welding. 請求項1又は2記載の真空断熱材において、前記内包材の前記樹脂繊維層の表面は、熱溶着により凹凸形状又は平面形状としたことを特徴とする真空断熱材。   3. The vacuum heat insulating material according to claim 1, wherein the surface of the resin fiber layer of the inner packaging material has an uneven shape or a planar shape by heat welding. 請求項3記載の真空断熱材において、前記内包材の片側面を熱溶着することで前記凹凸形状又は前記平面形状としたことを特徴とする真空断熱材。   The vacuum heat insulating material according to claim 3, wherein the uneven shape or the planar shape is formed by thermally welding one side surface of the inner packaging material. 請求項1乃至4のいずれかに記載の真空断熱材において、前記外被材内を大気開放した後、前記内包材は前記凹凸形状又は前記平面形状を保持することを特徴とする真空断熱材。   5. The vacuum heat insulating material according to claim 1, wherein the inner packaging material retains the concavo-convex shape or the planar shape after the inside of the jacket material is opened to the atmosphere. 外箱面又は内箱面に真空断熱材を配置した冷蔵庫において、
前記真空断熱材は、無機繊維の芯材と、該芯材を収納する内包材と、該内包材を収納する外被材と、を有する真空断熱材であって、前記内包材は熱溶着した樹脂繊維層で構成されて、該樹脂繊維層が前記芯材の厚みを保持して、前記外箱面又は前記内箱面に接するように配置したことを特徴とする冷蔵庫。
In the refrigerator in which the vacuum heat insulating material is arranged on the outer box surface or the inner box surface,
The vacuum heat insulating material is a vacuum heat insulating material having an inorganic fiber core material, an inner packaging material for housing the core material, and an outer jacket material for housing the inner packaging material, and the inner packaging material is heat-welded. A refrigerator comprising a resin fiber layer, the resin fiber layer being disposed so as to contact the outer box surface or the inner box surface while maintaining the thickness of the core material.
JP2011131790A 2011-06-14 2011-06-14 Vacuum thermal insulation material and refrigerator using the same Withdrawn JP2013002484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131790A JP2013002484A (en) 2011-06-14 2011-06-14 Vacuum thermal insulation material and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131790A JP2013002484A (en) 2011-06-14 2011-06-14 Vacuum thermal insulation material and refrigerator using the same

Publications (1)

Publication Number Publication Date
JP2013002484A true JP2013002484A (en) 2013-01-07

Family

ID=47671289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131790A Withdrawn JP2013002484A (en) 2011-06-14 2011-06-14 Vacuum thermal insulation material and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP2013002484A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9463917B2 (en) 2012-04-11 2016-10-11 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9874394B2 (en) 2012-04-02 2018-01-23 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9885516B2 (en) 2012-04-02 2018-02-06 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9463917B2 (en) 2012-04-11 2016-10-11 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Similar Documents

Publication Publication Date Title
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5337681B2 (en) refrigerator
JP2012063029A (en) Vacuum heat insulating material and refrigerator using the same
JP2009228917A (en) Refrigerator
JP2012026493A (en) Vacuum heat insulating material, and refrigerator using the same
JP2009024922A (en) Refrigerator
JP5455673B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2011153721A (en) Refrigerator
JP5401258B2 (en) refrigerator
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP2013024440A (en) Refrigerator
JP2015055368A (en) Vacuum heat insulation material and refrigerator using the same
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2012026583A (en) Refrigerator
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP6535202B2 (en) Vacuum insulation material and insulation box using the same
JP2013002485A (en) Vacuum thermal insulation material, and refrigerator using the same
JP5982276B2 (en) Refrigerator using vacuum heat insulating material and vacuum heat insulating material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902