JP2011153721A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2011153721A
JP2011153721A JP2010013732A JP2010013732A JP2011153721A JP 2011153721 A JP2011153721 A JP 2011153721A JP 2010013732 A JP2010013732 A JP 2010013732A JP 2010013732 A JP2010013732 A JP 2010013732A JP 2011153721 A JP2011153721 A JP 2011153721A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
refrigerator
vacuum heat
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2010013732A
Other languages
Japanese (ja)
Other versions
JP2011153721A5 (en
Inventor
Hisashi Echigoya
恒 越後屋
Kuninari Araki
邦成 荒木
Takashi Izeki
崇 井関
Yushi Arai
祐志 新井
Toshimitsu Tsuruga
俊光 鶴賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010013732A priority Critical patent/JP2011153721A/en
Publication of JP2011153721A publication Critical patent/JP2011153721A/en
Publication of JP2011153721A5 publication Critical patent/JP2011153721A5/ja
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of suppressing energy consumption in manufacturing, reducing environmental load, and having high heat insulating performance. <P>SOLUTION: In this refrigerator including a foam heat insulating material and a vacuum heat insulating material (50) between an outer box (21) and an inner box (22), the vacuum heat insulating material (50) has a core material (51) including organic fiber, and a jacketing material (53) covering the core material (51), and having a gas barrier property by being decompressed inside and sealed, and includes a heat insulating member (72) covering a surface of the jacketing material (53), and the vacuum heat insulating material (50) is disposed in a state of separating from the outer box (21) and the inner box (22) through the heat insulating member (72). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷蔵庫に関するものである。   The present invention relates to a refrigerator.

近年の電気製品、特に冷熱関連の家電製品においては、消費電力量低減及びCO2排出抑制の観点から、真空断熱材を採用して断熱性能を強化したものが主流になっている。また、各種原材料から製品の製造工程に至るまでのあらゆるエネルギー消費量を抑制するため、原材料についてはリサイクル化の推進,製造工程においては燃料代や電気代の抑制等、省エネルギー化が推進されている。 In recent years, electrical appliances, particularly household appliances related to cooling and heating, mainly use vacuum heat insulating materials to enhance heat insulating performance from the viewpoint of reducing power consumption and suppressing CO 2 emissions. In addition, in order to suppress all energy consumption from various raw materials to the manufacturing process of products, energy saving is promoted such as promotion of recycling of raw materials and reduction of fuel and electricity costs in the manufacturing process. .

市場に流通している省エネルギー製品に採用されている真空断熱材の従来例としては、特許文献1(特開2005−220954号公報)に開示されたものがある。この真空断熱材は、ガラス繊維であるグラスウールを芯材とし、ガスバリヤ性の外被材で覆って、内部を減圧状態としたものである。芯材であるグラスウールは一定の厚みになるように、ガラス繊維が熱変形し始める高温で加圧プレスを実施して成形するものであり、適用例としては、冷蔵庫等ウレタン発泡断熱材と共に使用される例が示されている。   As a conventional example of the vacuum heat insulating material employed in energy-saving products distributed in the market, there is one disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2005-220954). In this vacuum heat insulating material, glass wool, which is glass fiber, is used as a core material and covered with a gas barrier outer covering material so that the inside is in a reduced pressure state. Glass wool, which is the core material, is formed by pressurizing at a high temperature at which the glass fiber begins to be thermally deformed so as to have a constant thickness. As an application example, it is used with urethane foam insulation such as refrigerators. An example is shown.

また、リサイクル性を考慮した真空断熱材の従来例として、特許文献2(特開2006−29505号公報)に開示されたものがある。この真空断熱材は繊維太さ1〜6デニールのポリエステル繊維を50重量%以上含有するシート状繊維集合体を芯材としたものである。   Further, as a conventional example of a vacuum heat insulating material considering recyclability, there is one disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2006-29505). This vacuum heat insulating material uses a sheet-like fiber aggregate containing 50% by weight or more of a polyester fiber having a fiber thickness of 1 to 6 denier as a core material.

また、特許文献3(特開2006−57213号公報)に示される真空断熱材は、融点の異なる2種類のポリエステル繊維を含む繊維集合体をシート状に加工してなる芯材を用いたものである。   Moreover, the vacuum heat insulating material shown by patent document 3 (Unexamined-Japanese-Patent No. 2006-57213) uses the core material formed by processing the fiber assembly containing two types of polyester fibers from which melting | fusing point differs into a sheet form. is there.

特開2005−220954号公報Japanese Patent Laid-Open No. 2005-220954 特開2006−29505号公報JP 2006-29505 A 特開2006−57213号公報JP 2006-57213 A

しかしながら、特許文献1〜3の真空断熱材は次のような課題を有している。   However, the vacuum heat insulating materials of Patent Documents 1 to 3 have the following problems.

特許文献1の真空断熱材については、グラスウールを芯材としているため、ウレタン発泡時の反応熱温度に耐えられることは勿論、断熱性能も良好で機器の省エネルギーの一助となっている。しかし、真空断熱材の製造工程においては、ガラスを溶融して繊維化して得られるグラスウールの製造工程をはじめ、高温でプレス加工することで得られる芯材の製造工程において、熱エネルギーの消費量が膨大となるため、コストパフォーマンス及び環境配慮性に課題がある。   About the vacuum heat insulating material of patent document 1, since glass wool is used as a core material, it can endure the reaction heat temperature at the time of urethane foaming, and also has good heat insulating performance, which contributes to energy saving of equipment. However, in the vacuum heat insulating material manufacturing process, the heat energy consumption in the core material manufacturing process obtained by pressing at a high temperature, including the glass wool manufacturing process obtained by melting glass into fiber, is as follows. Since it becomes enormous, there are problems in cost performance and environmental considerations.

特許文献2の真空断熱材については、芯材製造時のエネルギー消費量の面では環境配慮性が高い。しかし、ニードルパンチ法によってシート状加工を施しているため、ポリエステル繊維が部分的に束ねられることにより固体の熱伝導がしやすくなり、断熱性能面では特許文献1等のグラスウールを芯材とした真空断熱材に対して大幅に劣る、という課題がある。   About the vacuum heat insulating material of patent document 2, environmental consideration is high in terms of the energy consumption at the time of core material manufacture. However, since the sheet-like processing is performed by the needle punch method, the polyester fibers are partially bundled so that solid heat conduction is facilitated, and in terms of heat insulation performance, vacuum using glass wool as a core material in Patent Document 1 or the like. There is a problem that it is significantly inferior to the heat insulating material.

特許文献3の真空断熱材については、低融点繊維がバインダーの役割を担うため、シート状に加工しやすい。しかし、低融点繊維が潰れて繊維同士の接触が大きくなり熱伝導しやすく、断熱性能面で特許文献1等のグラスウールを芯材とした真空断熱材に対して大幅に劣る、という課題がある。   About the vacuum heat insulating material of patent document 3, since the low melting fiber plays the role of a binder, it is easy to process it into a sheet form. However, there is a problem that the low-melting-point fibers are crushed and contact between the fibers is increased and heat conduction is easily performed, and the heat insulation performance is significantly inferior to the vacuum heat insulating material using glass wool as a core material in Patent Document 1 or the like.

加えて、従来の樹脂繊維を芯材とした真空断熱材は、例えば冷蔵庫等のウレタン発泡時の温度上昇によって、芯材からガス(有機)成分が揮発して、真空断熱材内部の真空度を低下させ、断熱性能が悪化する、という課題があった。また、樹脂の種類によっては熱による収縮や変形が起こる可能性があった。   In addition, the conventional vacuum heat insulating material with resin fiber as the core material causes the gas (organic) component to volatilize from the core material due to the temperature rise at the time of urethane foaming, for example, in refrigerators, etc. There existed the subject that it was made to reduce and heat insulation performance deteriorated. Further, depending on the type of resin, there is a possibility that shrinkage or deformation due to heat occurs.

以上より、これまでの真空断熱材は製造時のエネルギー消費量と断熱性能のバランスを欠くことが課題となっていた。   From the above, it has been a problem that conventional vacuum heat insulating materials lack a balance between energy consumption during manufacture and heat insulating performance.

そこで、上記課題に鑑みて、本発明は、製造時のエネルギー消費量を抑制して環境負荷を低減し、且つ断熱性能の高い冷蔵庫を提供することを目的とする。   Then, in view of the said subject, this invention aims at providing the refrigerator which suppresses the energy consumption at the time of manufacture, reduces an environmental load, and has high heat insulation performance.

上記課題を解決するために、本発明の冷蔵庫は、外箱と内箱との間に発泡系断熱材と真空断熱材とを備えた冷蔵庫において、前記真空断熱材は、有機繊維を含む芯材と、該芯材を覆い内部を減圧して封止したガスバリヤ性を有する外被材と、を有し、前記外被材の表面を覆う断熱部材を備え、前記真空断熱材は前記断熱部材を介して前記外箱及び前記内箱から離れた状態で配置されることを特徴とする。   In order to solve the above problems, the refrigerator of the present invention is a refrigerator provided with a foam heat insulating material and a vacuum heat insulating material between an outer box and an inner box, wherein the vacuum heat insulating material is a core material containing organic fibers. And a jacket member having a gas barrier property that covers and seals the inside of the core member, and includes a heat insulating member that covers a surface of the jacket member, and the vacuum heat insulating member includes the heat insulating member. It is arrange | positioned in the state away from the said outer box and the said inner box via.

また、前記芯材はポリスチレン,ポリエチレンテレフタレート,ポリプロピレンの少なくともいずれかを含む繊維集合体であり、前記断熱部材は前記芯材の耐熱温度よりも低い温度で固形状態となることを特徴とする。   The core material is a fiber assembly including at least one of polystyrene, polyethylene terephthalate, and polypropylene, and the heat insulating member is in a solid state at a temperature lower than the heat resistance temperature of the core material.

また、前記断熱部材は軟質ウレタンフォーム又はポリエチレンフォームであり、且つ前記真空断熱材と接する面及び前記外箱又は前記内箱と接する面に接着層を有することを特徴とする。   The heat insulating member is a flexible urethane foam or polyethylene foam, and has an adhesive layer on a surface in contact with the vacuum heat insulating material and a surface in contact with the outer box or the inner box.

また、前記断熱部材は前記外箱又は前記内箱と接する面に設けられた接着層と、該接着層と反対側の面に設けられた熱拡散層と、を備えたことを特徴とする。   The heat insulating member includes an adhesive layer provided on a surface in contact with the outer box or the inner box, and a heat diffusion layer provided on a surface opposite to the adhesive layer.

また、前記断熱部材は有機繊維,無機繊維,発泡樹脂,天然素材のいずれかであり、前記接着層は合成樹脂フィルムであり、前記熱拡散層は金属箔,金属薄板,金属層を含む樹脂ラミネートフィルムのいずれかであることを特徴とする。   The heat insulating member is any one of organic fiber, inorganic fiber, foamed resin, and natural material, the adhesive layer is a synthetic resin film, and the heat diffusion layer is a resin laminate including a metal foil, a metal thin plate, and a metal layer. It is one of films.

また、前記外被材はガスバリヤ性を有する多層ラミネートフィルムであり、前記芯材と前記外被材との間に位置する熱溶着可能な合成樹脂フィルムの内袋と、反応型又は物理型の吸着剤と、を備えたことを特徴とする。   Further, the jacket material is a multilayer laminate film having gas barrier properties, an inner bag of a heat-sealable synthetic resin film located between the core material and the jacket material, and a reactive or physical adsorption And an agent.

本発明によれば、製造時のエネルギー消費量を抑制して環境負荷を低減し、且つ断熱性能の高い冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the energy consumption at the time of manufacture can be suppressed, an environmental load can be reduced, and a refrigerator with high heat insulation performance can be provided.

本発明の第1の実施形態に係る冷蔵庫の外観を示す正面図である。It is a front view which shows the external appearance of the refrigerator which concerns on the 1st Embodiment of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 本発明の第1の実施形態に係る複合断熱材の断面図である。It is sectional drawing of the composite heat insulating material which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る複合断熱材の断面図である。It is sectional drawing of the composite heat insulating material which concerns on the 1st Embodiment of this invention. 図2のX−X線断面図である。FIG. 3 is a sectional view taken along line XX in FIG. 2. 図1のZ−Z線断面図である。FIG. 2 is a sectional view taken along line ZZ in FIG. 1. 本発明の第2の実施形態に係る複合断熱材の断面図である。It is sectional drawing of the composite heat insulating material which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る複合断熱材の断面図である。It is sectional drawing of the composite heat insulating material which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る複合断熱材の断面図である。It is sectional drawing of the composite heat insulating material which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る複合断熱材の断面図である。It is sectional drawing of the composite heat insulating material which concerns on the 3rd Embodiment of this invention. 比較例1及び比較例2に係る冷蔵庫の正面断面図である。It is front sectional drawing of the refrigerator which concerns on the comparative example 1 and the comparative example 2. FIG.

本発明の実施形態に係る真空断熱材を備えた冷蔵庫について、図面を参照しながら以下詳細に説明する。本発明の第1の実施形態については図1〜図5を用いて、第2,第3の実施形態についてはそれぞれ図6A,B及び図7A,Bを用いて説明する。なお、図8は比較例を示す図である。   A refrigerator provided with a vacuum heat insulating material according to an embodiment of the present invention will be described in detail below with reference to the drawings. The first embodiment of the present invention will be described with reference to FIGS. 1 to 5, and the second and third embodiments will be described with reference to FIGS. 6A and B and FIGS. 7A and 7B, respectively. FIG. 8 is a diagram showing a comparative example.

「第1の実施形態」
本発明の第1の実施形態に係る真空断熱材を備えた冷蔵庫について、図1〜図5を参照しながら説明する。図1は、本発明の第1の実施形態に係る冷蔵庫の外観を示す正面図である。図2は、図1のA−A線断面図である。図3A,Bは、本発明の第1の実施形態に係る複合断熱材の断面図である。図4は、図2のX−X線断面図である。図5は、図1のZ−Z線断面図である。
“First Embodiment”
A refrigerator provided with a vacuum heat insulating material according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view showing the appearance of the refrigerator according to the first embodiment of the present invention. 2 is a cross-sectional view taken along line AA in FIG. 3A and 3B are cross-sectional views of the composite heat insulating material according to the first embodiment of the present invention. 4 is a cross-sectional view taken along line XX of FIG. 5 is a cross-sectional view taken along the line ZZ in FIG.

図1に示す本実施形態を備えた冷蔵庫1は、図2に示すように、上から冷蔵室2,製氷室3a及び上段冷凍室3b,下段冷凍室4,野菜室5を有している。なお、以下の説明中、製氷室3a,上段冷凍室3b及び下段冷凍室4を、総称して冷凍温度帯室3という場合がある。   The refrigerator 1 provided with this embodiment shown in FIG. 1 has the refrigerator compartment 2, the ice making room 3a, the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 from the top, as shown in FIG. In the following description, the ice making chamber 3 a, the upper freezing chamber 3 b, and the lower freezing chamber 4 may be collectively referred to as the freezing temperature zone 3.

図1において、各貯蔵室は前面開口を有し、この前面開口を閉塞する扉がそれぞれ設けられている。冷蔵室2には、ヒンジ10等を中心に回動する冷蔵室扉6a,6bが設けられている。冷蔵室扉6a,6b以外は引き出し式の扉であり、製氷室扉7a,上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9を配置している。これらの引き出し式扉を引き出すと、各貯蔵室に設けた貯蔵容器が共に引き出される。また、冷蔵庫本体と密着して前面開口を密閉するためのパッキン11が、各扉の室内側外周縁に取り付けられている。   In FIG. 1, each storage chamber has a front opening, and a door for closing the front opening is provided. The refrigerator compartment 2 is provided with refrigerator compartment doors 6a and 6b that rotate around the hinge 10 and the like. Except for the refrigerator compartment doors 6a and 6b, they are drawer type doors, and an ice making compartment door 7a, an upper freezer compartment door 7b, a lower freezer compartment door 8, and a vegetable compartment door 9 are arranged. When these drawer doors are pulled out, the storage containers provided in the respective storage chambers are pulled out together. Moreover, the packing 11 for closely adhering to a refrigerator main body and sealing a front opening is attached to the indoor side outer periphery of each door.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために、断熱仕切り12を配置している。この断熱仕切り12は、厚さ30〜50mm程度の断熱壁で、スチロフォーム,発泡断熱材(発泡ウレタン),真空断熱材等で構成されており、それぞれを単独使用又は複数の断熱材を組み合わせて設けられている。製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、温度帯が同じであるため、区画断熱する仕切り断熱壁ではなく、パッキン11受面を形成した仕切り部材13を設けている。下段冷凍室4と野菜室5の間には、区画断熱するための断熱仕切り14を設けており、断熱仕切り12と同様に30〜50mm程度の断熱壁で、同様にスチロフォーム、或いは発泡断熱材(発泡ウレタン),真空断熱材等で構成されている。すなわち、冷蔵,冷凍等の貯蔵温度帯の異なる部屋の仕切りには仕切断熱壁を設置している。   In addition, a heat insulating partition 12 is disposed to insulate the compartment between the refrigerator compartment 2, the ice making chamber 3a, and the upper freezer compartment 3b. The heat insulating partition 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is composed of a styrofoam, a foam heat insulating material (foamed urethane), a vacuum heat insulating material, etc., each of which is used alone or in combination with a plurality of heat insulating materials. Is provided. Since the temperature zones are the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 having a packing 11 receiving surface is provided instead of a partition heat insulating wall for partition heat insulation. Between the lower freezer compartment 4 and the vegetable compartment 5, a heat insulating partition 14 is provided to insulate the compartment, and similarly to the heat insulating partition 12, a heat insulating wall of about 30 to 50 mm, and similarly a styrofoam or foam heat insulating material. (Urethane foam), vacuum insulation, etc. That is, the partition heat insulation wall is installed in the partition of rooms with different storage temperature zones, such as refrigeration and freezing.

なお、箱体20内には上から冷蔵室2,製氷室3a及び上段冷凍室3b,下段冷凍室4,野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a,6b,製氷室扉7a,上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9に関しても回転による開閉、引き出しによる開閉及び扉の分割数等について、特に限定するものではない。   In addition, although the storage room of the refrigerator compartment 2, the ice-making room 3a, the upper stage freezer compartment 3b, the lower stage freezer compartment 4, and the vegetable compartment 5 is each dividedly formed in the box 20, the arrangement | positioning of each storage room is carried out. The invention is not particularly limited to this. Further, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are also particularly limited in terms of opening and closing by rotation, opening and closing by drawer, and the number of divided doors. It is not a thing.

次に、箱体20は、外箱21と内箱22とを備える。外箱21と内箱22とによって形成される空間には、断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。この外箱21と内箱22の間に真空断熱材50,50a,50b,50c,50dを配置し、真空断熱材50以外の空間には、発泡ウレタンの断熱材23を充填する。真空断熱材50については図3で詳述するが、断熱部材72で覆われた複合断熱材70,70a,70b,70c,70dとして設置される。   Next, the box 20 includes an outer box 21 and an inner box 22. In a space formed by the outer box 21 and the inner box 22, a heat insulating portion is provided to insulate each storage chamber in the box 20 from the outside. Vacuum heat insulating materials 50, 50 a, 50 b, 50 c, 50 d are arranged between the outer box 21 and the inner box 22, and a space other than the vacuum heat insulating material 50 is filled with a heat insulating material 23 of urethane foam. Although the vacuum heat insulating material 50 will be described in detail with reference to FIG. 3, it is installed as a composite heat insulating material 70, 70 a, 70 b, 70 c, 70 d covered with a heat insulating member 72.

また、冷蔵庫1の冷蔵室2,冷凍温度帯室3,野菜室5等の各室を所定の温度に冷却するために、冷凍温度帯室3の背側には冷却器28が備えられている。冷却器28,圧縮機30,凝縮機31、及び図示しないキャピラリーチューブを接続し、冷凍サイクルを構成している。冷却器28の上方には、この冷却器28にて冷却された冷気を冷蔵庫1内に循環して所定の低温温度を保持する送風機27が配設されている。また、冷蔵庫1の冷蔵室2と冷凍温度帯室3、冷凍温度帯室3と野菜室5とを夫々区画する断熱材として、断熱仕切り12,14を夫々配置する。断熱仕切り12,14は、発泡ポリスチレン33と、その内部に真空断熱材50eが配置される構成である。この断熱仕切り12,14については、所望の断熱性能を発揮するものであれば、発泡ウレタンの断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50eに限定するものではない。   In addition, a cooler 28 is provided on the back side of the freezing temperature zone 3 in order to cool each room such as the refrigerator compartment 2, the freezing temperature zone 3, and the vegetable room 5 of the refrigerator 1 to a predetermined temperature. . A refrigeration cycle is configured by connecting the cooler 28, the compressor 30, the condenser 31, and a capillary tube (not shown). Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator 1 and maintains a predetermined low temperature is disposed. Moreover, the heat insulation partitions 12 and 14 are each arrange | positioned as a heat insulating material which partitions the refrigerator compartment 2 and the freezing temperature zone room 3 of the refrigerator 1, and the freezing temperature zone room 3 and the vegetable compartment 5, respectively. The heat insulation partitions 12 and 14 are the structures by which the polystyrene foam 33 and the vacuum heat insulating material 50e are arrange | positioned inside. The heat insulating partitions 12 and 14 may be filled with a urethane foam heat insulating material 23 as long as the desired heat insulating performance is exhibited, and is not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50e.

また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されている。さらに凹部40の上方は、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積効率を考慮して、外箱21の天板21aとほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱21の天板21aよりも突き出る場合は、10mm以内の範囲に収めることが望ましい。   Moreover, the recessed part 40 for accommodating electrical components 41, such as a board | substrate for controlling the driving | operation of the refrigerator 1, and a power supply board, is formed in the top surface rear part of the box 20. As shown in FIG. Further, a cover 42 that covers the electrical component 41 is provided above the recess 40. The height of the cover 42 is arranged so as to be substantially the same height as the top plate 21a of the outer box 21 in consideration of appearance design and internal volume efficiency. Although it does not specifically limit, when the height of the cover 42 protrudes from the top plate 21a of the outer box 21, it is desirable to keep it within the range of 10 mm.

これに伴って、凹部40は発泡ウレタンの断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるので、断熱厚さを確保するためには内容積が犠牲になってしまう。このため、凹部40の発泡ウレタンの断熱材23の中に真空断熱材50aを配置して断熱性能を確保し薄肉化を図っている。本実施形態では、真空断熱材50aを略Z形状に成形した1枚の真空断熱材50aとしている。尚、カバー42は耐熱性を考慮して鋼板製としている。   Accordingly, the concave portion 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the heat insulating material 23 side of the urethane foam, so that the internal volume is sacrificed in order to ensure the heat insulation thickness. . For this reason, the vacuum heat insulating material 50a is arrange | positioned in the heat insulating material 23 of the urethane foam of the recessed part 40, the heat insulation performance is ensured and thickness reduction is aimed at. In the present embodiment, the vacuum heat insulating material 50a is a single vacuum heat insulating material 50a formed in a substantially Z shape. The cover 42 is made of a steel plate in consideration of heat resistance.

また、箱体20の背面下部に配置された圧縮機30や凝縮機31は発熱の大きい部品である。そのため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材50dを配置している。真空断熱材50dについては後述する断熱部材72で覆われた複合断熱材70の形態となっている。   Moreover, the compressor 30 and the condenser 31 arrange | positioned at the back lower part of the box 20 are components with big heat_generation | fever. Therefore, a vacuum heat insulating material 50d is disposed on the projection surface toward the inner box 22 in order to prevent heat from entering the interior. The vacuum heat insulating material 50d is in the form of a composite heat insulating material 70 covered with a heat insulating member 72 described later.

次に、真空断熱材50について、図3A,Bを用いてその構成を説明する。真空断熱材50は、芯材51と該芯材51を圧縮状態に保持するための内包材52、前記内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53、及び吸着剤54とを有する構成である。外被材53は真空断熱材50の両面に配置され、同じ大きさのラミネートフィルムの稜線から一定の幅の部分を熱溶着により貼り合わせた袋状で構成されている。本実施形態においては、真空断熱材50を予め断熱部材72で覆った状態の複合断熱材70とした。断熱部材72の表面の一部或いは全体には、金属や樹脂等の材料からなるシート材74を配置している。ここで、断熱部材72は、発泡ウレタン,スチロフォーム,ポリエチレンフォーム等であるが、特にこれらに限定するものではない。   Next, the structure of the vacuum heat insulating material 50 will be described with reference to FIGS. 3A and 3B. The vacuum heat insulating material 50 includes a core material 51, an inner packaging material 52 for holding the core material 51 in a compressed state, and an outer jacket material 53 having a gas barrier layer covering the core material 51 held in a compressed state by the inner packaging material 52. , And the adsorbent 54. The jacket material 53 is disposed on both surfaces of the vacuum heat insulating material 50, and is configured in a bag shape in which portions of a certain width are bonded together by thermal welding from the ridge line of the laminate film having the same size. In the present embodiment, the composite heat insulating material 70 in a state where the vacuum heat insulating material 50 is covered with the heat insulating member 72 in advance is used. A sheet material 74 made of a material such as metal or resin is disposed on a part or the entire surface of the heat insulating member 72. Here, the heat insulating member 72 is foamed urethane, styrofoam, polyethylene foam, or the like, but is not particularly limited thereto.

また、シート材74は、アルミニウム,ステンレス,鉄等からなる箔や薄板、及び、ポリプロピレン,ポリアミド,ポリエチレンテレフタレート,ポリエチレン等の樹脂フィルムや樹脂の薄板で、無機系,金属系の蒸着層を設けてもよく、金属箔等と組み合わせた複数層のラミネートフィルムとしてもよい。   Further, the sheet material 74 is a foil or thin plate made of aluminum, stainless steel, iron, or the like, and a resin film or resin thin plate of polypropylene, polyamide, polyethylene terephthalate, polyethylene, or the like, and is provided with an inorganic or metallic vapor deposition layer. Alternatively, a multi-layer laminate film combined with a metal foil or the like may be used.

シート材74の表面(両面)は、接着剤や発泡ウレタンとの密着性がよいものである。具体的には、シート材74の表面張力が35(mN/m)以上であることが好ましい。表面張力を35(mN/m)以上にするためには、材料的にはポリエチレンテレフタレート、ポリアミド(ナイロン)等がこの範囲内にある。アルミ箔やステンレス箔等の金属系のものは更に表面張力の値が大きい。また、表面張力が比較的小さい材料であるポリピロピレンやポリエチレン等であっても、表面処理を施すことで表面張力を大きくできる。表面張力を高める方法としては、コロナ放電法,微細な凹凸を付与するサンドブラスト処理法,高温処理するフレーム処理法,表面を酸化処理するオゾン処理法,溶剤処理法,薬品処理法,電子線照射処理法等があるが、特にこれらの方法に限定するものではない。本実施形態においてはコロナ処理法を用いた。   The surface (both sides) of the sheet material 74 has good adhesiveness with an adhesive or urethane foam. Specifically, the surface tension of the sheet material 74 is preferably 35 (mN / m) or more. In order to increase the surface tension to 35 (mN / m) or more, materials such as polyethylene terephthalate and polyamide (nylon) are within this range. Metallic materials such as aluminum foil and stainless steel foil have a higher surface tension. Even if the material has a relatively small surface tension, such as polypyropylene or polyethylene, the surface tension can be increased by surface treatment. Methods for increasing surface tension include corona discharge, sand blasting that gives fine irregularities, flame treatment that treats high temperatures, ozone treatment that oxidizes the surface, solvent treatment, chemical treatment, and electron beam irradiation. Although there are laws and the like, it is not particularly limited to these methods. In this embodiment, a corona treatment method is used.

複合断熱材70においては、図3Aに示すように、真空断熱材50における外被材53の端部を芯材51側に折り曲げる場合と、図3Bに示すように折り曲げない場合があるが、本実施形態では特に限定するものではない。なお、断熱部材72が発泡ウレタン等の断熱材の場合、流動の阻害をしないように外被材53の端部を折り曲げることが有効であり、また、外被材53の端部を短くして折り曲げないことにより、外被材53のヒートブリッジ影響を小さくすることができる。すなわち、用途に応じて折り曲げ有無を選択することができる。   In the composite heat insulating material 70, as shown in FIG. 3A, there are a case where the end portion of the outer covering material 53 in the vacuum heat insulating material 50 is bent toward the core material 51 side and a case where it is not bent as shown in FIG. 3B. It does not specifically limit in embodiment. When the heat insulating member 72 is a heat insulating material such as urethane foam, it is effective to bend the end portion of the covering material 53 so as not to hinder the flow, and the end portion of the covering material 53 is shortened. By not bending, the influence of the heat bridge of the jacket material 53 can be reduced. That is, the presence or absence of bending can be selected according to the application.

なお、本実施形態において、芯材51についてはポリスチレン樹脂を、メルトブローン方式で平均10μmになるように繊維化したものを用いた。特にここではポリスチレン樹脂に限定するものではなく、ポリエチレンテレフタレート,ポリプロピレン等をメルトブローン法やスパンボンド法等で1〜30μm程度の繊維径になるように繊維化してもよい。なお、繊維化方法について特にこれらに限定するものではない。また、芯材51については、無機系繊維材料の積層体と組み合わせて使用する場合であってもよい。   In the present embodiment, the core material 51 is a polystyrene resin fiberized so as to have an average of 10 μm by a melt blown method. In particular, the resin is not limited to polystyrene resin, and polyethylene terephthalate, polypropylene, or the like may be fiberized so as to have a fiber diameter of about 1 to 30 μm by a melt blown method or a spun bond method. The fiberizing method is not particularly limited to these. Further, the core material 51 may be used in combination with a laminate of inorganic fiber materials.

外被材53のラミネート構成については、ガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面保護層,第1ガスバリヤ層,第2ガスバリヤ層,熱溶着層の4層構成からなるラミネートフィルムとし、表面層は保護材の役割を持つ樹脂フィルムとし、第1ガスバリヤ層は樹脂フィルムに金属蒸着層を設け、第2ガスバリヤ層は酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、第1ガスバリヤ層と第2ガスバリヤ層は金属蒸着層同士が向かい合うように貼り合わせている。熱溶着層については表面層と同様に吸湿性の低いフィルムを用いた。   The laminate configuration of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In this embodiment, the surface protective layer, the first gas barrier layer, the second gas barrier layer, It is a laminate film having a four-layer structure of heat-welded layers, the surface layer is a resin film serving as a protective material, the first gas barrier layer is provided with a metal vapor deposition layer on the resin film, and the second gas barrier layer has a high oxygen barrier property A metal vapor deposition layer is provided on the resin film, and the first gas barrier layer and the second gas barrier layer are bonded so that the metal vapor deposition layers face each other. For the heat-welded layer, a film having low hygroscopicity was used as in the surface layer.

具体的には、表面層を二軸延伸タイプのポリプロピレン,ポリアミド,ポリエチレンテレフタレート等の各フィルム、第1ガスバリヤ層をアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルム、第2ガスバリヤ層をアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン,ポリプロピレン等の各フィルムとした。この4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。例えば第1ガスバリヤ層や第2ガスバリヤ層として、金属箔、或いは樹脂系のフィルムに無機層状化合物,ポリアクリル酸等の樹脂系ガスバリヤコート材,DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。   Specifically, the surface layer is a biaxially stretched film of polypropylene, polyamide, polyethylene terephthalate, the first gas barrier layer is a biaxially stretched polyethylene terephthalate film with aluminum deposition, and the second gas barrier layer is a two-layered film with aluminum deposition. An axially stretched ethylene vinyl alcohol copolymer resin film, a biaxially stretched polyvinyl alcohol resin film with aluminum vapor deposition, or an aluminum foil was used, and the heat-welded layer was an unstretched polyethylene, polypropylene, or other film. The layer structure and material of the four-layer laminate film are not particularly limited to these. For example, as a first gas barrier layer or a second gas barrier layer, a metal foil or a resin film is provided with a gas barrier film made of an inorganic layer compound, a resin gas barrier coating material such as polyacrylic acid, or DLC (diamond-like carbon). Alternatively, for example, a polybutylene terephthalate film having a high oxygen barrier property may be used for the heat welding layer.

表面層については第1ガスバリヤ層の保護材であるが、真空断熱材の製造工程における真空排気効率を良くするためにも、好ましくは吸湿性の低い樹脂を配置するのが良い。尚、発泡系断熱材72等との接着或いは密着性が良好であることが望まれる。また、通常、第2ガスバリヤ層に使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。これにより、先に述べた真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながっている。尚、各フィルムのラミネート(貼り合せ)は、二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法には特にこれに限定するものではなく、ウェットラミネート法,サーマルラミネート法等の他の方法によるものでもよい。   The surface layer is a protective material for the first gas barrier layer, but in order to improve the vacuum exhaust efficiency in the manufacturing process of the vacuum heat insulating material, it is preferable to dispose a resin having a low hygroscopic property. In addition, it is desired that the adhesion or adhesion with the foamed heat insulating material 72 or the like is good. In addition, the resin-based film other than the metal foil used for the second gas barrier layer usually has a gas barrier property that is significantly deteriorated by moisture absorption. While suppressing deterioration of gas barrier property, the moisture absorption amount of the whole laminate film is suppressed. As a result, even in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought into the jacket material 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved, leading to higher performance of heat insulation performance. . In addition, the lamination (bonding) of each film is generally performed by a dry lamination method via a two-component curable urethane adhesive, but the type of adhesive and the bonding method are particularly limited to this. However, other methods such as a wet laminating method and a thermal laminating method may be used.

外被材53についても、発泡ウレタンや接着剤等との接着性、密着性を良好にするため、表面層の表面張力を35(mN/m)以上とすることが好ましい。   Also for the covering material 53, it is preferable that the surface tension of the surface layer is 35 (mN / m) or more in order to improve the adhesiveness and adhesiveness with urethane foam and adhesive.

また、内包材52については本実施形態では熱溶着可能なポリエチレンフィルム、吸着剤54については物理吸着タイプの合成ゼオライトを用いたが、いずれもこれらの材料に限定するものではない。内包材52についてはポリプロピレンフィルム,ポリエチレンテレフタレートフィルム,ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであれば良く、吸着剤54については水分やガスを吸着するもので、物理吸着,化学反応型吸着のどちらでも良い。内包材52については使用しなくても良い場合もある。   Further, in the present embodiment, the encapsulating material 52 is a polyethylene film that can be thermally welded, and the adsorbent 54 is a physical adsorption type synthetic zeolite, but these are not limited to these materials. The inner packaging material 52 may be a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film or the like that has low hygroscopicity and can be heat-welded and has little outgas, and the adsorbent 54 adsorbs moisture and gas. Either adsorption or chemical reaction type adsorption may be used. The inner packaging material 52 may not be used.

次に、第1の実施形態に係る冷蔵庫について、図4及び図5を用いて説明する。第1の実施形態に係る冷蔵庫1は、箱体20に使用する真空断熱材50のうち、外箱21の側面21c,21cには真空断熱材50c,50cを有する複合断熱材70c,70cが設置される。天面及び背面は、それぞれ外箱21の天板21a及び後板21bに真空断熱材50a,50bを有する複合断熱材70a,70bが配置される。また、底面は内箱22内面に真空断熱材50dを有する複合断熱材70dが配置される。   Next, the refrigerator which concerns on 1st Embodiment is demonstrated using FIG.4 and FIG.5. In the refrigerator 1 according to the first embodiment, among the vacuum heat insulating materials 50 used for the box 20, composite heat insulating materials 70 c and 70 c having vacuum heat insulating materials 50 c and 50 c are installed on the side surfaces 21 c and 21 c of the outer box 21. Is done. Composite heat insulating materials 70a and 70b having vacuum heat insulating materials 50a and 50b are disposed on the top plate 21a and the rear plate 21b of the outer box 21, respectively. Further, a composite heat insulating material 70d having a vacuum heat insulating material 50d on the inner surface of the inner box 22 is disposed on the bottom surface.

断熱仕切り12,14については、図2にそれぞれ真空断熱材50e,50eを図示しているが、図4に示すように、真空断熱材50e,50eを用いなくてもよい。   As for the heat insulating partitions 12 and 14, the vacuum heat insulating materials 50 e and 50 e are illustrated in FIG. 2, but the vacuum heat insulating materials 50 e and 50 e may not be used as illustrated in FIG. 4.

また、本実施形態に用いた真空断熱材50,50a〜50eについては、外被材53のラミネート構成として、表面層を二軸延伸ポリプロピレンフィルム、第1ガスバリヤ層をアルミニウム蒸着付き二軸延伸ポリエチレンテレフタレートフィルム、第2ガスバリヤ層をアルミニウム蒸着付き二軸延伸エチレンビニルアルコール共重合体樹脂フィルム、熱溶着層を未延伸タイプの直鎖状低密度ポリエチレンフィルムとした。芯材51については、有機系繊維材料である平均繊維径10μmのポリスチレン繊維の集合体を用いた。その他の材料については上述した通りである。   Moreover, about the vacuum heat insulating materials 50 and 50a-50e used for this embodiment, as a laminated structure of the jacket material 53, a surface layer is a biaxially stretched polypropylene film, a 1st gas barrier layer is a biaxially stretched polyethylene terephthalate with aluminum vapor deposition. The film, the second gas barrier layer was a biaxially stretched ethylene vinyl alcohol copolymer resin film with aluminum vapor deposition, and the heat welded layer was an unstretched linear low density polyethylene film. For the core material 51, an aggregate of polystyrene fibers having an average fiber diameter of 10 μm, which is an organic fiber material, was used. Other materials are as described above.

次に、第1の実施形態に係る複合断熱材における外箱21と内箱22の間での配置について、図4と図5を参照しながら説明する。真空断熱材50が薄厚方向(図3の図示例で紙面上下方向)からみて矩形形状である場合(正方形又は多角形形状でも構わない)、短辺と長辺の対からなる4辺の端部が外箱21又は内箱22から浮いていれば、当該端部を介したヒートブリッジの影響を避けることができる。すなわち、真空断熱材50の4辺の端部が外箱21又は内箱22に接していると、当該端部を介した熱伝導の回り込み、いわゆるヒートブリッジが発生して断熱性能が低くなるので、真空断熱材50を外箱21と内箱22の略中間位置に配置する必要がある。   Next, the arrangement between the outer box 21 and the inner box 22 in the composite heat insulating material according to the first embodiment will be described with reference to FIGS. 4 and 5. When the vacuum heat insulating material 50 has a rectangular shape (which may be a square or a polygonal shape) when viewed from the thin direction (the vertical direction in the drawing in the example of FIG. 3), the end portions of the four sides consisting of pairs of short sides and long sides If it floats from the outer box 21 or the inner box 22, the influence of the heat bridge through the end can be avoided. That is, if the end portions on the four sides of the vacuum heat insulating material 50 are in contact with the outer box 21 or the inner box 22, heat conduction through the end portions, so-called heat bridges, occurs and the heat insulating performance decreases. The vacuum heat insulating material 50 needs to be disposed at a substantially intermediate position between the outer box 21 and the inner box 22.

そこで、図4,図5に示すように、複合断熱材70a,70b,70c,70dの接着面であるシート材74の面に、図示しない合成ゴム系粘着タイプのホットメルト接着剤を塗布し、外箱21の天板21a,後板21b,側面21cの内側面又は内箱22dの外側面に接着する。このとき、全ての真空断熱材50は断熱部材72(図3A,B参照)によって外箱21から浮いた状態で配置される。そのため、ヒートブリッジ影響を抑制することができる。第1の実施形態においては、断熱部材72として発泡ウレタンを用いた。また、発泡時の反応熱温度を、芯材51の軟化温度よりも低い温度とするため、発泡ウレタンの厚みを約5mmとした。このときの発泡時の反応熱による温度は約65℃であり、芯材51の軟化点である78℃を下回る。尚、断熱部材72及びその厚みについては、これに限定するものではない。発泡ウレタンの厚みが厚いほど、ウレタンが発泡する際の反応熱温度が高くなるため、芯材51の軟化点よりも温度が高くならないように設定する必要がある。   Therefore, as shown in FIG. 4 and FIG. 5, a synthetic rubber-based adhesive type hot melt adhesive (not shown) is applied to the surface of the sheet material 74, which is an adhesive surface of the composite heat insulating materials 70 a, 70 b, 70 c, 70 d, The outer plate 21 is bonded to the top plate 21a, the rear plate 21b, the inner surface of the side surface 21c, or the outer surface of the inner box 22d. At this time, all the vacuum heat insulating materials 50 are arranged in a state of floating from the outer box 21 by the heat insulating members 72 (see FIGS. 3A and 3B). Therefore, the influence of heat bridge can be suppressed. In the first embodiment, urethane foam is used as the heat insulating member 72. Further, in order to set the reaction heat temperature at the time of foaming to a temperature lower than the softening temperature of the core material 51, the thickness of the urethane foam was set to about 5 mm. At this time, the temperature due to reaction heat at the time of foaming is about 65 ° C., which is lower than 78 ° C. which is the softening point of the core material 51. The heat insulating member 72 and its thickness are not limited to this. The thicker the foamed urethane, the higher the reaction heat temperature when the urethane foams. Therefore, it is necessary to set the temperature not to be higher than the softening point of the core material 51.

以上説明した真空断熱材50を埋設した複合断熱材70の冷蔵庫への組み込みによって、真空断熱材は外箱21と内箱22から離れた状態で設置されることとなり、真空断熱材によるヒートブリッジによる断熱性能の低下を回避することができ、複合断熱材70が外箱21或いは内箱22のいずれかの側に接着固定されているため、発泡ウレタンの断熱材23の流動空間を十分確保でき、ウレタンの流動を阻害することなく、未充填(ボイド)の発生を防止できる。なお、複合断熱材70の組み込みが完了した後に、発泡ウレタンの断熱材23を注入した結果、未充填部(ボイド)は確認されず、発泡ウレタンの断熱材23が均一に充填されていることを確認した。   By incorporating the composite heat insulating material 70 in which the vacuum heat insulating material 50 described above is embedded in the refrigerator, the vacuum heat insulating material is installed in a state of being separated from the outer box 21 and the inner box 22, and by the heat bridge by the vacuum heat insulating material. A decrease in the heat insulation performance can be avoided, and the composite heat insulating material 70 is adhered and fixed to either the outer box 21 or the inner box 22, so that a sufficient flow space of the urethane foam heat insulating material 23 can be secured, Generation of unfilled (void) can be prevented without inhibiting the flow of urethane. In addition, as a result of injecting the urethane foam heat insulating material 23 after the assembly of the composite heat insulating material 70 was completed, no unfilled portion (void) was confirmed, and the urethane foam heat insulating material 23 was uniformly filled. confirmed.

また、第1の実施形態に係る冷蔵庫の断熱性能を測定した結果、後述する比較例1(対比する基準となる構成例)を100(指数)とした場合、99(数値が小さい方が高断熱性能を表す)となった。後述の比較例1よりも真空断熱材の断熱性能では若干劣るにもかかわらず、真空断熱材50eを発泡ウレタンの断熱材23の略中間に配置することで、断熱性能が約1%改善することを確認した。また、発泡ウレタンの断熱材23の発泡時の反応熱によって、芯材51から有機系ガスの発生が懸念されたが、その後の冷蔵庫を解体して真空断熱材50を取り出して熱伝導率を測定したところ、熱伝導率の値は初期値に対し、殆ど劣化していないことを確認した。これは断熱部材72によって、真空断熱材50にかかる熱影響が緩和されたものと考えられる。   Moreover, as a result of measuring the heat insulation performance of the refrigerator according to the first embodiment, when Comparative Example 1 described later (a configuration example serving as a reference for comparison) is 100 (index), 99 (the smaller the numerical value, the higher the heat insulation). Represents the performance). Although the heat insulating performance of the vacuum heat insulating material is slightly inferior to that of Comparative Example 1 described later, the heat insulating performance is improved by about 1% by arranging the vacuum heat insulating material 50e substantially in the middle of the urethane foam heat insulating material 23. It was confirmed. Also, there was concern about the generation of organic gas from the core material 51 due to the heat of reaction during foaming of the urethane foam heat insulating material 23, but the subsequent refrigerator was disassembled to take out the vacuum heat insulating material 50 and measure the thermal conductivity. As a result, it was confirmed that the thermal conductivity value hardly deteriorated with respect to the initial value. It is considered that this is because the heat effect applied to the vacuum heat insulating material 50 is alleviated by the heat insulating member 72.

「比較例1」
上述した第1の実施形態と対比すべき断熱性能に関する基準の比較例1について、図8を参照しながら説明する。図8は比較例1を示す図であり、冷蔵庫の正面切断図である。
"Comparative Example 1"
A reference comparative example 1 regarding the heat insulation performance to be compared with the first embodiment will be described with reference to FIG. FIG. 8 is a view showing Comparative Example 1, and is a front cutaway view of the refrigerator.

比較例1に示す冷蔵庫は、真空断熱材150a,150c,150dを、外箱121の内側121a,121cや内箱122の外側122dにホットメルト接着剤で直接貼り付けた構造とした。比較例1で用いた真空断熱材は、芯材を平均繊維径4μmのバインダーを用いないグラスウールとした。   The refrigerator shown in Comparative Example 1 has a structure in which the vacuum heat insulating materials 150a, 150c, and 150d are directly attached to the inner sides 121a and 121c of the outer box 121 and the outer side 122d of the inner box 122 with a hot melt adhesive. In the vacuum heat insulating material used in Comparative Example 1, the core material was glass wool without using a binder having an average fiber diameter of 4 μm.

以上の仕様で発泡ウレタン123を充填した結果、真空断熱材と内箱122の間には、未充填部(ボイド)は確認されず、発泡ウレタン123が均一に充填されていることを確認した。比較例1の真空断熱材の熱伝導率は1.5(mW/m・K)であり、冷蔵庫の断熱性能については、前述の通り100(指数)である(これを基準値とする)。発泡後に解体して真空断熱材を取り出して熱伝導率を測定したところ、1.5(mW/m・K)のままだった。尚、熱伝導率の測定は、英弘精機製の熱伝導率測定装置(HC−074)で行った。   As a result of filling the urethane foam 123 with the above specifications, no unfilled portion (void) was confirmed between the vacuum heat insulating material and the inner box 122, and it was confirmed that the urethane foam 123 was uniformly filled. The heat conductivity of the vacuum heat insulating material of Comparative Example 1 is 1.5 (mW / m · K), and the heat insulating performance of the refrigerator is 100 (index) as described above (this is the reference value). The foam was disassembled after foaming, the vacuum heat insulating material was taken out, and the thermal conductivity was measured. As a result, it remained at 1.5 (mW / m · K). The thermal conductivity was measured with a thermal conductivity measuring device (HC-074) manufactured by Eihiro Seiki.

「比較例2」
比較例2について、同様に図8を参照しながら説明する。比較例2に示す冷蔵庫は、真空断熱材の芯材として、ポリスチレンをメルトブローン法によって平均繊維径10μmに繊維化したものとした。その他は比較例1と同様である。
"Comparative Example 2"
Comparative Example 2 will be described with reference to FIG. In the refrigerator shown in Comparative Example 2, polystyrene was fiberized to an average fiber diameter of 10 μm by a melt blown method as a core material of a vacuum heat insulating material. Others are the same as in Comparative Example 1.

以上の仕様で発泡ウレタン123を充填した結果、真空断熱材と内箱122の間には未充填部(ボイド)は確認されず、発泡ウレタン123が均一に充填されていることを確認した。比較例2の真空断熱材の熱伝導率は2.0(mW/m・K)であり、冷蔵庫の断熱性能については、102(指数)であった。発泡後に解体して真空断熱材を取り出して熱伝導率を測定したところ、2.8(mW/m・K)に悪化していた。尚、熱伝導率の測定は、英弘精機製の熱伝導率測定装置(HC−074)で行った。   As a result of filling the urethane foam 123 with the above specifications, no unfilled portion (void) was confirmed between the vacuum heat insulating material and the inner box 122, and it was confirmed that the urethane foam 123 was uniformly filled. The heat conductivity of the vacuum heat insulating material of Comparative Example 2 was 2.0 (mW / m · K), and the heat insulating performance of the refrigerator was 102 (index). When the foam was disassembled after foaming, the vacuum heat insulating material was taken out and the thermal conductivity was measured, it was deteriorated to 2.8 (mW / m · K). The thermal conductivity was measured with a thermal conductivity measuring device (HC-074) manufactured by Eihiro Seiki.

「第2の実施形態」
次に、第2の実施形態について図6A,Bを参照しながら説明する。第2の実施形態は、断熱部材172a,172bを軟質ウレタンフォーム材とする複合断熱材170である。真空断熱材50については、第1の実施形態と同様である。断熱部材172aは、片面に粘着剤層173を有しており、粘着剤層173が真空断熱材50側に貼り付けられる。冷蔵庫1において、外箱21の内側或いは内箱22の外側と複合断熱材170の貼り付けは、両面粘着剤層付きの断熱部材172bが配置されることでなされる。尚、断熱部材172a,172bは、軟質ウレタンフォーム以外にも、ポリエチレンフォーム等の発泡系の断熱性を有するものであればよく、特にこれらに限定するものではない。また、断熱部材172bの表面の一部或いは全体には、金属や樹脂等の材料からなるシート材174を配置している。その他の構成は、第1の実施形態と同様であるため説明を省略する。
“Second Embodiment”
Next, a second embodiment will be described with reference to FIGS. 6A and 6B. 2nd Embodiment is the composite heat insulating material 170 which uses the heat insulation members 172a and 172b as a flexible urethane foam material. About the vacuum heat insulating material 50, it is the same as that of 1st Embodiment. The heat insulating member 172a has an adhesive layer 173 on one side, and the adhesive layer 173 is attached to the vacuum heat insulating material 50 side. In the refrigerator 1, the inner side of the outer box 21 or the outer side of the inner box 22 and the composite heat insulating material 170 are attached by arranging a heat insulating member 172b with a double-sided pressure-sensitive adhesive layer. The heat insulating members 172a and 172b only need to have foaming heat insulating properties such as polyethylene foam in addition to the flexible urethane foam, and are not particularly limited thereto. Further, a sheet material 174 made of a material such as metal or resin is disposed on a part or the whole of the surface of the heat insulating member 172b. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

以上の仕様で第1の実施形態と同様に発泡ウレタンの断熱材23を注入した結果、未充填部(ボイド)は確認されず、発泡ウレタンの断熱材23が均一に充填されていることを確認した。   As a result of injecting the urethane foam heat insulating material 23 with the above specifications as in the first embodiment, no unfilled part (void) was confirmed, and it was confirmed that the urethane foam heat insulating material 23 was uniformly filled. did.

第2の実施形態に係る冷蔵庫の断熱性能を測定した結果、比較例1を100(指数)とした場合、100となった。比較例1よりも真空断熱材の断熱性能が若干劣るにもかかわらず、真空断熱材50を発泡ウレタンの断熱材23の略中間に配置することで、断熱性能が改善することを確認した。また、発泡ウレタンの断熱材23の発泡時の反応熱によって、芯材51から有機系ガスの発生が懸念されたが、その後の冷蔵庫を解体して真空断熱材50を取り出して熱伝導率を測定したところ、熱伝導率の値は初期値に対し、殆ど劣化していないことを確認した。これは断熱部材172a,172bによって、真空断熱材50にかかる熱影響が緩和されたものである。   As a result of measuring the heat insulating performance of the refrigerator according to the second embodiment, when Comparative Example 1 was set to 100 (index), it was 100. Although the heat insulating performance of the vacuum heat insulating material was slightly inferior to that of Comparative Example 1, it was confirmed that the heat insulating performance was improved by disposing the vacuum heat insulating material 50 substantially in the middle of the heat insulating material 23 of urethane foam. Also, there was concern about the generation of organic gas from the core material 51 due to the heat of reaction during foaming of the urethane foam heat insulating material 23, but the subsequent refrigerator was disassembled to take out the vacuum heat insulating material 50 and measure the thermal conductivity. As a result, it was confirmed that the thermal conductivity value hardly deteriorated with respect to the initial value. This is because the heat effect applied to the vacuum heat insulating material 50 is alleviated by the heat insulating members 172a and 172b.

「第3の実施形態」
次に、第3の実施形態について図7A,Bを参照しながら説明する。第3の実施形態では、発泡ウレタンの断熱材23側となる面に熱拡散層271を配置した複合断熱材270とする。熱拡散層271は、厚さ50μmのアルミシートとし、断熱部材272によって一体化した。尚、熱拡散層271はアルミシートに限定するものではなく、アルミニウム,ステンレス,鉄等からなる箔や薄板等、熱伝導性が良好なものであればよい。その他については第1の実施形態と同様とした。
“Third Embodiment”
Next, a third embodiment will be described with reference to FIGS. 7A and 7B. In 3rd Embodiment, it is set as the composite heat insulating material 270 which has arrange | positioned the thermal diffusion layer 271 in the surface used as the heat insulating material 23 side of urethane foam. The heat diffusion layer 271 was an aluminum sheet having a thickness of 50 μm and was integrated by a heat insulating member 272. The heat diffusion layer 271 is not limited to an aluminum sheet, and may be any material having good thermal conductivity, such as a foil or thin plate made of aluminum, stainless steel, iron, or the like. Others are the same as in the first embodiment.

以上の仕様で第1の実施形態と同様に発泡ウレタンの断熱材23を注入した結果、未充填部(ボイド)は確認されず、発泡ウレタンの断熱材23が均一に充填されていることを確認した。   As a result of injecting the urethane foam heat insulating material 23 with the above specifications as in the first embodiment, no unfilled part (void) was confirmed, and it was confirmed that the urethane foam heat insulating material 23 was uniformly filled. did.

第3の実施形態に係る冷蔵庫の断熱性能を測定した結果、比較例1を100(指数)とした場合、99であり第1の実施形態と同様であったが、発泡後の冷蔵庫を解体して真空断熱材50を取り出して熱伝導率を測定したところ、熱伝導率の値は初期値と同じ値を示した。これは発泡ウレタンの断熱材23の発熱温度を複合断熱材270の表面に設けた熱伝導性の良好な熱拡散層271部分で、断熱方向に垂直方向に熱が拡散することで、真空断熱材50にかかる温度が緩和されたことによるものと考えられる。   As a result of measuring the heat insulation performance of the refrigerator according to the third embodiment, when Comparative Example 1 was set to 100 (index), it was 99, which was the same as the first embodiment, but the foamed refrigerator was disassembled. Then, when the vacuum heat insulating material 50 was taken out and the thermal conductivity was measured, the value of the thermal conductivity showed the same value as the initial value. This is a heat diffusion layer 271 with good thermal conductivity provided with the heat generation temperature of the urethane foam heat insulating material 23 on the surface of the composite heat insulating material 270, and heat is diffused in a direction perpendicular to the heat insulating direction, so that the vacuum heat insulating material This is probably because the temperature applied to 50 was relaxed.

以上より、上記各実施形態によれば、樹脂繊維を芯材とした場合であっても、グラスウールのみを芯材とした真空断熱材とほぼ同等の断熱性能を実現でき、真空断熱材表面に設けた断熱部材によって一定の耐熱温度を確保できる。更に、真空断熱材の芯材に用いる樹脂材料として、新材の他、廃家電等から回収したリサイクル樹脂材等を使用できることから、リサイクル性の高い真空断熱材及びこれを用いた冷蔵庫を提供できるものである。   As described above, according to each of the above embodiments, even when resin fibers are used as a core material, it is possible to achieve heat insulation performance substantially equivalent to a vacuum heat insulating material using only glass wool as a core material, and provided on the surface of the vacuum heat insulating material. A certain heat-resistant temperature can be secured by the heat insulating member. Furthermore, as a resin material used for the core material of the vacuum heat insulating material, a recycled resin material recovered from waste home appliances and the like can be used in addition to the new material, and thus a highly recyclable vacuum heat insulating material and a refrigerator using the same can be provided. Is.

1 冷蔵庫
2 冷蔵室
3 冷凍温度帯室
5 野菜室
12,14 断熱仕切り
13 仕切り部材
20 箱体
21 外箱
21a 天板
21b 後板
21c 側面
21d 底板
22 内箱
23 断熱材
33 発泡ポリスチレン
50,50a,50b,50c,50d,50e 真空断熱材
51 芯材
52 内包材
53 外被材
54 吸着剤
70,70a,70b,70c,70d,170,270 複合断熱材
72,172a,172b,272 断熱部材
74,174 シート材
173 粘着剤層
271 熱拡散層
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Refrigeration room 3 Freezing temperature zone room 5 Vegetable room 12, 14 Heat insulation partition 13 Partition member 20 Box body 21 Outer box 21a Top plate 21b Rear plate 21c Side surface 21d Bottom plate 22 Inner box 23 Heat insulation material 33 Expanded polystyrene 50, 50a, 50b, 50c, 50d, 50e Vacuum heat insulating material 51 Core material 52 Inner covering material 53 Outer covering material 54 Adsorbent 70, 70a, 70b, 70c, 70d, 170, 270 Composite heat insulating material 72, 172a, 172b, 272 Heat insulating member 74, 174 Sheet material 173 Adhesive layer 271 Thermal diffusion layer

Claims (6)

外箱と内箱との間に発泡系断熱材と真空断熱材とを備えた冷蔵庫において、
前記真空断熱材は、有機繊維を含む芯材と、該芯材を覆い内部を減圧して封止したガスバリヤ性を有する外被材と、を有し、
前記外被材の表面を覆う断熱部材を備え、前記真空断熱材は前記断熱部材を介して前記外箱及び前記内箱から離れた状態で配置されることを特徴とする冷蔵庫。
In the refrigerator provided with a foam heat insulating material and a vacuum heat insulating material between the outer box and the inner box,
The vacuum heat insulating material includes a core material containing organic fibers, and a jacket material having gas barrier properties that covers the core material and seals the inside by reducing the pressure,
A refrigerator comprising a heat insulating member covering a surface of the outer jacket material, wherein the vacuum heat insulating material is disposed in a state of being separated from the outer box and the inner box via the heat insulating member.
前記芯材はポリスチレン,ポリエチレンテレフタレート,ポリプロピレンの少なくともいずれかを含む繊維集合体であり、前記断熱部材は前記芯材の耐熱温度よりも低い温度で固形状態となることを特徴とする、請求項1記載の冷蔵庫。   The core material is a fiber assembly including at least one of polystyrene, polyethylene terephthalate, and polypropylene, and the heat insulating member is in a solid state at a temperature lower than a heat resistant temperature of the core material. The refrigerator described. 前記断熱部材は軟質ウレタンフォーム又はポリエチレンフォームであり、且つ前記真空断熱材と接する面及び前記外箱又は前記内箱と接する面に接着層を有することを特徴とする、請求項1又は2記載の冷蔵庫。   The heat insulating member is a flexible urethane foam or polyethylene foam, and has an adhesive layer on a surface in contact with the vacuum heat insulating material and a surface in contact with the outer box or the inner box. refrigerator. 前記断熱部材は前記外箱又は前記内箱と接する面に設けられた接着層と、該接着層と反対側の面に設けられた熱拡散層と、を備えたことを特徴とする、請求項1又は2記載の冷蔵庫。   The heat insulating member includes an adhesive layer provided on a surface in contact with the outer box or the inner box, and a heat diffusion layer provided on a surface opposite to the adhesive layer. The refrigerator according to 1 or 2. 前記断熱部材は有機繊維,無機繊維,発泡樹脂,天然素材のいずれかであり、前記接着層は合成樹脂フィルムであり、前記熱拡散層は金属箔,金属薄板,金属層を含む樹脂ラミネートフィルムのいずれかであることを特徴とする、請求項4記載の冷蔵庫。   The heat insulating member is any one of organic fiber, inorganic fiber, foamed resin, and natural material, the adhesive layer is a synthetic resin film, and the heat diffusion layer is a metal foil, a metal thin plate, a resin laminate film including a metal layer. It is either, The refrigerator of Claim 4 characterized by the above-mentioned. 前記外被材はガスバリヤ性を有する多層ラミネートフィルムであり、前記芯材と前記外被材との間に位置する熱溶着可能な合成樹脂フィルムの内袋と、反応型又は物理型の吸着剤と、を備えたことを特徴とする、請求項1乃至5のいずれかに記載の冷蔵庫。   The jacket material is a multilayer laminate film having gas barrier properties, an inner bag of a heat-sealable synthetic resin film located between the core material and the jacket material, and a reactive or physical type adsorbent. The refrigerator according to any one of claims 1 to 5, further comprising:
JP2010013732A 2010-01-26 2010-01-26 Refrigerator Abandoned JP2011153721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013732A JP2011153721A (en) 2010-01-26 2010-01-26 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013732A JP2011153721A (en) 2010-01-26 2010-01-26 Refrigerator

Publications (2)

Publication Number Publication Date
JP2011153721A true JP2011153721A (en) 2011-08-11
JP2011153721A5 JP2011153721A5 (en) 2012-04-05

Family

ID=44539827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013732A Abandoned JP2011153721A (en) 2010-01-26 2010-01-26 Refrigerator

Country Status (1)

Country Link
JP (1) JP2011153721A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542660A (en) * 2012-07-12 2014-01-29 三星电子株式会社 Refrigerator and manufacturing method thereof
WO2014024601A1 (en) * 2012-08-08 2014-02-13 三菱電機株式会社 Heat insulating box, and refrigerator with heat insulating box
JP2014035007A (en) * 2012-08-08 2014-02-24 Dainippon Printing Co Ltd Laminate for vacuum heat insulation material
WO2014122939A1 (en) * 2013-02-07 2014-08-14 パナソニック株式会社 Insulation panel
JP2018013270A (en) * 2016-07-20 2018-01-25 日立アプライアンス株式会社 refrigerator
CN109780787A (en) * 2018-12-28 2019-05-21 青岛海尔股份有限公司 Refrigerator
JP2019113307A (en) * 2015-03-16 2019-07-11 東芝ライフスタイル株式会社 refrigerator
WO2023274022A1 (en) * 2021-06-28 2023-01-05 青岛海尔特种制冷电器有限公司 Thermal insulation board and preparation method therefor and refrigerator using thermal insulation board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159296U (en) * 1984-04-02 1985-10-23 シャープ株式会社 vacuum insulation
JPH09166275A (en) * 1995-12-15 1997-06-24 Fujimori Kogyo Kk Vacuum heat insulating panel mounting structure on heat insulating wall surface, and vacuum heat insulating panel
JP2003074785A (en) * 2001-09-05 2003-03-12 Matsushita Refrig Co Ltd Vacuum heat insulation material and manufacturing method, and apparatus using the vacuum heat insulation material
JP2006127420A (en) * 2004-11-01 2006-05-18 Sony Corp Image processor, image processing method, and program
JP2006162076A (en) * 2005-12-15 2006-06-22 Kurabo Ind Ltd Vacuum thermal insulating material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159296U (en) * 1984-04-02 1985-10-23 シャープ株式会社 vacuum insulation
JPH09166275A (en) * 1995-12-15 1997-06-24 Fujimori Kogyo Kk Vacuum heat insulating panel mounting structure on heat insulating wall surface, and vacuum heat insulating panel
JP2003074785A (en) * 2001-09-05 2003-03-12 Matsushita Refrig Co Ltd Vacuum heat insulation material and manufacturing method, and apparatus using the vacuum heat insulation material
JP2006127420A (en) * 2004-11-01 2006-05-18 Sony Corp Image processor, image processing method, and program
JP2006162076A (en) * 2005-12-15 2006-06-22 Kurabo Ind Ltd Vacuum thermal insulating material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542660A (en) * 2012-07-12 2014-01-29 三星电子株式会社 Refrigerator and manufacturing method thereof
US9970703B2 (en) 2012-07-12 2018-05-15 Samsung Electronics Co., Ltd. Refrigerator and manufacturing method thereof
CN103542660B (en) * 2012-07-12 2017-11-10 三星电子株式会社 The manufacture method of refrigerator and refrigerator
US9429357B2 (en) 2012-07-12 2016-08-30 Samsung Electronics Co., Ltd. Refrigerator and manufacturing method thereof
WO2014024601A1 (en) * 2012-08-08 2014-02-13 三菱電機株式会社 Heat insulating box, and refrigerator with heat insulating box
JP2014035007A (en) * 2012-08-08 2014-02-24 Dainippon Printing Co Ltd Laminate for vacuum heat insulation material
JP2014035124A (en) * 2012-08-08 2014-02-24 Mitsubishi Electric Corp Heat insulation box and refrigerator mounting the same
AU2013300887B2 (en) * 2012-08-08 2016-02-25 Mitsubishi Electric Corporation Heat-insulating cabinet and refrigerator including the heat-insulating cabinet
JPWO2014122939A1 (en) * 2013-02-07 2017-01-26 パナソニックIpマネジメント株式会社 Thermal insulation panel
CN104995447A (en) * 2013-02-07 2015-10-21 松下知识产权经营株式会社 Insulation panel
WO2014122939A1 (en) * 2013-02-07 2014-08-14 パナソニック株式会社 Insulation panel
JP2019113307A (en) * 2015-03-16 2019-07-11 東芝ライフスタイル株式会社 refrigerator
JP2018013270A (en) * 2016-07-20 2018-01-25 日立アプライアンス株式会社 refrigerator
CN109780787A (en) * 2018-12-28 2019-05-21 青岛海尔股份有限公司 Refrigerator
CN109780787B (en) * 2018-12-28 2022-10-18 海尔智家股份有限公司 Refrigerator with a door
WO2023274022A1 (en) * 2021-06-28 2023-01-05 青岛海尔特种制冷电器有限公司 Thermal insulation board and preparation method therefor and refrigerator using thermal insulation board

Similar Documents

Publication Publication Date Title
JP5689387B2 (en) Refrigerator and manufacturing method thereof
JP2011153721A (en) Refrigerator
KR100980175B1 (en) Refrigerator
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
WO2010137081A1 (en) Refrigerator equipped with vacuum insulation material
JP2012063029A (en) Vacuum heat insulating material and refrigerator using the same
JP2010276308A (en) Refrigerator having vacuum heat insulating material
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5455673B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5401258B2 (en) refrigerator
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2016080281A (en) Heat insulation box body and heat insulation door
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP2009024921A (en) Refrigerator
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP2012026583A (en) Refrigerator
JP2011149624A (en) Refrigerator
JP2013024440A (en) Refrigerator
JP5548025B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130416