JP2012063029A - Vacuum heat insulating material and refrigerator using the same - Google Patents

Vacuum heat insulating material and refrigerator using the same Download PDF

Info

Publication number
JP2012063029A
JP2012063029A JP2010205044A JP2010205044A JP2012063029A JP 2012063029 A JP2012063029 A JP 2012063029A JP 2010205044 A JP2010205044 A JP 2010205044A JP 2010205044 A JP2010205044 A JP 2010205044A JP 2012063029 A JP2012063029 A JP 2012063029A
Authority
JP
Japan
Prior art keywords
core material
inner bag
heat insulating
vacuum heat
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010205044A
Other languages
Japanese (ja)
Inventor
Yushi Arai
祐志 新井
Kuninari Araki
邦成 荒木
Hisashi Echigoya
恒 越後屋
Takashi Izeki
崇 井関
Yasuto Terauchi
康人 寺内
Hiroyuki Yamazaki
裕之 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010205044A priority Critical patent/JP2012063029A/en
Publication of JP2012063029A publication Critical patent/JP2012063029A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material suppressing degradation of heat insulation performance and including a recess for storing a heat radiation pipe or the like, and to provide a refrigerator using the vacuum insulating material.SOLUTION: The vacuum heat insulating material includes a core material, an inside bag for storing the core material, and a covering material which stores the inside bag. In the core material, a first core material and a second core material which is larger than and is independent of the first core material are arranged to be stacked each other. The first core material is stored in a first inside bag, and the second core material is stored in a second inside bag which is independent of the first inside bag. A welding part is provided to regulate the mutual positions of the first inside bag and the second inside bag. The second core material is bent and deformed toward the first core material side to form a recess on the second core material side.

Description

本発明は真空断熱材及び真空断熱材を適用した冷蔵庫に関するものである。   The present invention relates to a vacuum heat insulating material and a refrigerator to which the vacuum heat insulating material is applied.

本技術分野の背景技術として、特開2007−92776号公報(特許文献1),特開2008−157431号公報(特許文献2),特開2007−198622号公報(特許文献3)がある。   As background art of this technical field, there are JP-A-2007-92776 (Patent Document 1), JP-A-2008-157431 (Patent Document 2), and JP-A-2007-198622 (Patent Document 3).

特許文献1には、グラスウールからなる芯材と、この芯材を圧縮状態で収納保持可能な包装体としてのインナーパックと、外被体としてのバリヤ材とからなり、芯材の一部を取り除いてこの芯材に線状の薄肉部を形成する点が記載されている。   Patent Document 1 includes a core material made of glass wool, an inner pack as a package capable of storing and holding the core material in a compressed state, and a barrier material as an outer cover, and a part of the core material is removed. The point which forms a linear thin part in the core material of a lever is described.

特許文献2には、第1の芯材と第2の芯材とを含む芯材を用いて、第1の芯材と第2の芯材とを含む厚層部と、第1の芯材を含みかつ厚層部よりも厚さが薄い薄層部とを形成する点が記載されている。   Patent Document 2 uses a core material including a first core material and a second core material, a thick layer portion including the first core material and the second core material, and a first core material. And forming a thin layer portion having a thickness smaller than that of the thick layer portion.

特許文献3には、外箱に密着した真空断熱材と、真空断熱材と外箱の間に構成された放熱パイプと、内箱と、内箱と真空断熱材の間に充填されるウレタン断熱材とからなる断熱壁を有する冷蔵庫において、放熱パイプは真空断熱材の表面に埋設する点が記載されている。   Patent Document 3 discloses a vacuum heat insulating material in close contact with an outer box, a heat radiation pipe formed between the vacuum heat insulating material and the outer box, an inner box, and a urethane heat insulating material filled between the inner box and the vacuum heat insulating material. In a refrigerator having a heat insulating wall made of a material, it is described that the heat radiating pipe is embedded in the surface of the vacuum heat insulating material.

特開2007−92776号公報JP 2007-92776 A 特開2008−157431号公報JP 2008-157431 A 特開2007−198622号公報JP 2007-198622 A

しかしながら、特許文献1では、芯材に角部が多く存在することで、製造時及び組み立て時に外包材が損傷して、断熱性能が悪化するおそれがある。   However, in patent document 1, since there are many corners in the core material, the outer packaging material may be damaged at the time of manufacturing and assembly, and the heat insulation performance may be deteriorated.

特許文献2では、複数の芯材を外被材に収納し減圧状態にしたときに芯材のずれが発生して形状が歪むおそれがある。   In Patent Document 2, when a plurality of core materials are housed in a jacket material and are in a reduced pressure state, the core materials may be displaced and the shape may be distorted.

特許文献3では、真空断熱材を形成した後に、金型によりプレス加工を行うことで溝部を形成している。そのため、芯材の無機繊維が切断されて断熱性能が悪化する。また、外被材がプレス加工により延伸されて、破れやガスバリヤ性が低下するおそれがある。   In patent document 3, after forming a vacuum heat insulating material, the groove part is formed by performing press work with a metal mold | die. Therefore, the inorganic fiber of the core material is cut and the heat insulating performance is deteriorated. Moreover, there is a possibility that the jacket material is stretched by press working, and the tear and gas barrier properties are lowered.

そこで本発明は、断熱性能の低下を抑制しつつ放熱パイプ等を収納する凹所を有する真空断熱材及びこれを用いた冷蔵庫を提供することを目的とする。   Then, an object of this invention is to provide the vacuum heat insulating material which has a recess which accommodates a heat radiating pipe etc., suppressing the fall of heat insulation performance, and a refrigerator using the same.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。一例として、芯材と、該芯材を収納する内袋と、該内袋を収納する外被材とを備えた真空断熱材において、前記芯材は第一の芯材と、該第一の芯材よりも大きい独立した第二の芯材とを重ねて配置し、前記第一の芯材は第一の内袋に収納し、前記第二の芯材は前記第一の内袋と独立した第二の内袋に収納し、前記第一の内袋と前記第二の内袋の互いの位置を規制する溶着部を有し、前記第二の芯材は前記第一の芯材側に湾曲して変形することで該第二の芯材側に凹部が形成した。   In order to solve the above problems, for example, the configuration described in the claims is adopted. As an example, in a vacuum heat insulating material provided with a core material, an inner bag for storing the core material, and an outer jacket material for storing the inner bag, the core material includes a first core material and the first core material. An independent second core material, which is larger than the core material, is placed on top of each other, the first core material is stored in the first inner bag, and the second core material is independent of the first inner bag. And having a welded portion that regulates the position of the first inner bag and the second inner bag, and the second core material is on the first core material side. To form a recess on the second core material side.

本発明によれば、断熱性能の低下を抑制しつつ放熱パイプ等を収納する凹所を有する真空断熱材及びこれを用いた冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material which has a recess which accommodates a heat radiating pipe etc., suppressing the fall of heat insulation performance, and a refrigerator using this can be provided.

本発明の実施例における冷蔵庫の正面図。The front view of the refrigerator in the Example of this invention. 図1のA−A断面図。AA sectional drawing of FIG. 本発明の実施例における真空断熱材の概略断面図。The schematic sectional drawing of the vacuum heat insulating material in the Example of this invention. 本発明の実施例1を示す真空断熱材の芯材構成の説明図。Explanatory drawing of the core material structure of the vacuum heat insulating material which shows Example 1 of this invention. 本発明の実施例1を示す真空断熱材の斜視図。The perspective view of the vacuum heat insulating material which shows Example 1 of this invention. 本発明の実施例1を示す真空断熱材の外箱への設置状態の説明図。Explanatory drawing of the installation state to the outer box of the vacuum heat insulating material which shows Example 1 of this invention.

以下、本発明の実施形態について、図1〜図3を用いて説明する。図1は本実施形態を示す冷蔵庫の正面図であり、図2は図1のA−A断面図を示している。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view of a refrigerator showing the present embodiment, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

冷蔵庫1は、図2に示すように、上から冷蔵室2,製氷室3a(上段冷凍室3b),下段冷凍室4,野菜室5を有している。図1の符号は、各室の前面開口を閉塞する扉であり、冷蔵室2にはヒンジ10等を中心に回動する冷蔵室扉6a,6bを備えている。冷蔵室扉6a,6b以外は、引き出し式の扉であり、製氷室扉7a,上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9をそれぞれ配置する。これらの引き出し式扉を引き出すと、各室の容器が共に引き出されてくる。各扉には冷蔵庫1と密着させるためのパッキン11を備え、各扉の室内側外周縁に取り付けられている。   As shown in FIG. 2, the refrigerator 1 has a refrigerator room 2, an ice making room 3 a (upper freezer room 3 b), a lower freezer room 4, and a vegetable room 5 from the top. The code | symbol of FIG. 1 is a door which obstruct | occludes the front opening of each chamber, and the refrigerator compartment 2 is equipped with refrigerator door 6a, 6b rotated centering on hinge 10 grade | etc.,. Except for the refrigerator compartment doors 6a and 6b, they are drawer type doors, and an ice making compartment door 7a, an upper freezer compartment door 7b, a lower freezer compartment door 8, and a vegetable compartment door 9 are arranged respectively. When these pull-out doors are pulled out, the containers in each chamber are pulled out together. Each door is provided with a packing 11 to be in close contact with the refrigerator 1, and is attached to the indoor peripheral edge of each door.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために、仕切断熱壁12を配置している。この仕切断熱壁12は厚さ30〜50mm程度の断熱壁で、スチロフォーム,発泡断熱材(硬質ウレタンフォーム),真空断熱材等、それぞれを単独使用又は複数の断熱材を組み合わせて構成されている。   In addition, a partition heat insulation wall 12 is disposed in order to partition and insulate between the refrigerator compartment 2, the ice making chamber 3a, and the upper freezer compartment 3b. The partition heat insulating wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is composed of a single material or a combination of a plurality of heat insulating materials such as styrofoam, foam heat insulating material (hard urethane foam), vacuum heat insulating material, and the like. .

製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、温度帯が同じであるため区画断熱する仕切り断熱壁ではなく、パッキン11受面を形成した仕切り部材13を設けている。   Since the temperature zone is the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 having a packing 11 receiving surface is provided instead of a partition heat insulating wall for partition heat insulation.

下段冷凍室4と野菜室5の間には区画断熱するための仕切断熱壁14を設けており、仕切断熱壁12と同様に30〜50mm程度の断熱壁であり、スチロフォーム、或いは発泡断熱材(硬質ウレタンフォーム),真空断熱材等で構成されている。   A partition heat insulation wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 to insulate the partition. Like the partition heat insulation wall 12, it is a heat insulation wall of about 30 to 50 mm, and is made of styrofoam or foam insulation. (Rigid urethane foam), vacuum heat insulating material, etc.

基本的に冷蔵,冷凍等の貯蔵温度帯の異なる部屋の仕切りには仕切断熱壁を設置している。尚、箱体20内には上から冷蔵室2,製氷室3a及び上段冷凍室3b,下段冷凍室4,野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a,6b,製氷室扉7a,上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9に関しても回転による開閉,引き出しによる開閉及び扉の分割数等、特に限定するものではない。   Basically, partition insulation walls are installed in the partitions of rooms with different storage temperature zones such as refrigeration and freezing. In addition, although the storage room of the refrigerator compartment 2, the ice-making room 3a, the upper stage freezer compartment 3b, the lower stage freezer compartment 4, and the vegetable compartment 5 is each dividedly formed in the box 20, the arrangement | positioning of each storage room is carried out. The invention is not particularly limited to this. Further, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are particularly limited in terms of opening and closing by rotation, opening and closing by drawers, and the number of divided doors. is not.

箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。この外箱21と内箱22の間の空間に真空断熱材50を配置し、真空断熱材50以外の空間には硬質ウレタンフォーム等の発泡断熱材23を充填してある。真空断熱材50については図3で詳細に説明する。   The box 20 includes an outer box 21 and an inner box 22, and a heat insulating part is provided in a space formed by the outer box 21 and the inner box 22 to insulate each storage chamber in the box 20 from the outside. Yes. A vacuum heat insulating material 50 is disposed in a space between the outer box 21 and the inner box 22, and a space other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as rigid urethane foam. The vacuum heat insulating material 50 will be described in detail with reference to FIG.

また、冷蔵庫の冷蔵室2,製氷室3a,上段冷凍室3b,下段冷凍室4,野菜室5等の各室を所定の温度に冷却するために製氷室3a,上段冷凍室3b,下段冷凍室4の背側には冷却器28が備えられている。この冷却器28と圧縮機30と凝縮器30a、図示しないキャピラリーチューブとを接続し、冷凍サイクルを構成している。冷却器28の上方にはこの冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設されている。   Further, the ice making room 3a, the upper freezing room 3b, and the lower freezing room are used for cooling the refrigerator room 2, the ice making room 3a, the upper freezing room 3b, the lower freezing room 4, the vegetable room 5 and the like to a predetermined temperature. 4 is provided with a cooler 28. The refrigeration cycle is configured by connecting the cooler 28, the compressor 30, the condenser 30a, and a capillary tube (not shown). Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed.

また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されており、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。   In addition, a concave portion 40 for accommodating an electrical component 41 such as a substrate for controlling the operation of the refrigerator 1 or a power supply substrate is formed in the rear portion of the top surface of the box 20, and a cover 42 that covers the electrical component 41. Is provided. The height of the cover 42 is arranged so as to be substantially the same height as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. Although it does not specifically limit, when the height of the cover 42 protrudes from the top | upper surface of an outer box, it is desirable to keep in the range within 10 mm.

これに伴って、凹部40は発泡断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するため必然的に内容積が犠牲になってしまう。内容積をより大きくとると凹部40と内箱22間の発泡断熱材23の厚さが薄くなってしまう。このため、凹部40の発泡断熱材23中に真空断熱材50aを配置して断熱性能を確保,強化している。本実施例では、真空断熱材50aを前述の庫内灯45のケース45aと電気部品41に跨るように略Z形状に成形した1枚の真空断熱材50aとしている。尚、前記カバー42は耐熱性を考慮し鋼板製としている。   Along with this, the recess 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the side of the foam heat insulating material 23, so that the internal volume is inevitably sacrificed in order to ensure the heat insulation thickness. If the internal volume is made larger, the thickness of the foam heat insulating material 23 between the recess 40 and the inner box 22 becomes thin. For this reason, the vacuum heat insulating material 50a is arrange | positioned in the foam heat insulating material 23 of the recessed part 40, and the heat insulation performance is ensured and strengthened. In the present embodiment, the vacuum heat insulating material 50a is a single vacuum heat insulating material 50a formed in a substantially Z shape so as to straddle the case 45a and the electrical component 41 of the interior lamp 45 described above. The cover 42 is made of a steel plate in consideration of heat resistance.

また、箱体20の背面下部に配置された圧縮機30や凝縮器31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材50dを配置している。   In addition, since the compressor 30 and the condenser 31 arranged at the lower back of the box 20 are components that generate a large amount of heat, in order to prevent heat from entering the inside of the box, a vacuum insulation is provided on the projection surface toward the inner box 22 side. The material 50d is arranged.

次に、真空断熱材50について、図3を用いてその構成を説明する。真空断熱材50は、芯材51と該芯材51を圧縮状態に保持するための内袋52と、内袋52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53と、吸着剤とを備えている。   Next, the structure of the vacuum heat insulating material 50 will be described with reference to FIG. The vacuum heat insulating material 50 includes a core material 51, an inner bag 52 for holding the core material 51 in a compressed state, and an outer jacket material 53 having a gas barrier layer covering the core material 51 held in a compressed state by the inner bag 52. And an adsorbent.

外被材53は真空断熱材50の両面に配置され、同じ大きさのラミネートフィルムの稜線から一定の幅の部分を熱溶着された溶着部54により貼り合わせた袋状で構成されている。なお、本実施例において、芯材51についてはバインダー等で接着や結着していない柔軟性を有する無機繊維の積層体として平均繊維径4μmのグラスウールを用いた。   The jacket material 53 is disposed on both surfaces of the vacuum heat insulating material 50, and is configured in a bag shape in which a portion having a certain width is bonded to a ridge line of a laminate film of the same size by a welded portion 54 that is thermally welded. In the present embodiment, for the core material 51, glass wool having an average fiber diameter of 4 μm was used as a laminate of flexible inorganic fibers that are not bonded or bound with a binder or the like.

芯材51については、無機系繊維材料の積層体を使用することによりアウトガスが少なくなるため、断熱性能的に有利であるが、特にこれに限定するものではなく、例えばセラミック繊維やロックウール,グラスウール以外のガラス繊維等の無機繊維等でも良い。   The core material 51 is advantageous in terms of heat insulation performance because the outgas is reduced by using a laminate of inorganic fiber materials. However, the core material 51 is not limited to this. For example, ceramic fibers, rock wool, glass wool, etc. Other inorganic fibers such as glass fibers may be used.

芯材51の種類によっては内袋52が不要の場合もある。また、芯材51については、無機系繊維材料の他に、有機系樹脂繊維材料を用いることができる。有機系樹脂繊維の場合、耐熱温度等をクリヤーしていれば特に使用に際しては制約されるものではない。具体的には、ポリスチレンやポリエチレンテレフタレート,ポリプロピレン等をメルトブローン法やスパンボンド法等で1〜30μm程度の繊維径になるように繊維化するのが一般的であるが、繊維化できる有機系樹脂や繊維化方法であれば特に問うものではない。   Depending on the type of the core material 51, the inner bag 52 may be unnecessary. Moreover, about the core material 51, an organic resin fiber material other than an inorganic fiber material can be used. In the case of organic resin fibers, there are no particular restrictions on use as long as the heat resistant temperature is cleared. Specifically, it is common to fiberize polystyrene, polyethylene terephthalate, polypropylene, etc. to a fiber diameter of about 1 to 30 μm by a melt blown method or a spun bond method, If it is a fiberization method, it will not ask in particular.

外被材53のラミネート構成についてはガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面保護層,ガスバリヤ層a,ガスバリヤ層b,熱溶着層の4層構成からなるラミネートフィルムとし、表面層は保護材の役割を持つ樹脂フィルムとし、ガスバリヤ層aは樹脂フィルムに金属蒸着層を設け、ガスバリヤ層bは酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、ガスバリヤ層aとガスバリヤ層bは金属蒸着層同士が向かい合うように貼り合わせている。   The laminate structure of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In the present embodiment, the surface protective layer, the gas barrier layer a, the gas barrier layer b, and the heat welded layer are used. The laminate film is composed of the following four layers, the surface layer is a resin film serving as a protective material, the gas barrier layer a is provided with a metal vapor deposition layer on the resin film, and the gas barrier layer b is vapor deposited on a resin film having a high oxygen barrier property A layer is provided, and the gas barrier layer a and the gas barrier layer b are bonded so that the metal deposition layers face each other.

熱溶着層については表面層と同様に吸湿性の低いフィルムを用いた。具体的には、表面層を二軸延伸タイプのポリプロピレン,ポリアミド,ポリエチレンテレフタレート等の各フィルム、ガスバリヤ層aをアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルム、ガスバリヤ層bをアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン,ポリプロピレン等の各フィルムとした。   For the heat-welded layer, a film having low hygroscopicity was used as in the surface layer. Specifically, the surface layer is a biaxially stretched film of polypropylene, polyamide, polyethylene terephthalate, the gas barrier layer a is a biaxially stretched polyethylene terephthalate film with aluminum vapor deposition, and the gas barrier layer b is biaxially stretched with aluminum vapor deposition An ethylene vinyl alcohol copolymer resin film, a biaxially stretched polyvinyl alcohol resin film with aluminum vapor deposition, or an aluminum foil was used, and the heat-welded layer was an unstretched polyethylene, polypropylene, or other film.

この4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。例えばガスバリヤ層a,bとして、金属箔、或いは樹脂系のフィルムに無機層状化合物,ポリアクリル酸等の樹脂系ガスバリヤコート材,DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。   The layer structure and material of the four-layer laminate film are not particularly limited to these. For example, as the gas barrier layers a and b, a metal foil or a resin-based film provided with a gas-barrier film made of an inorganic layered compound, a resin-based gas barrier coating material such as polyacrylic acid, DLC (diamond-like carbon), etc. For example, a polybutylene terephthalate film having a high oxygen barrier property may be used for the layer.

表面層についてはガスバリヤ層aの保護材であるが、真空断熱材の製造工程における真空排気効率を良くするためにも、好ましくは吸湿性の低い樹脂を配置するのが良い。また、通常ガスバリヤ層bに使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。   The surface layer is a protective material for the gas barrier layer a. However, in order to improve the vacuum exhaust efficiency in the manufacturing process of the vacuum heat insulating material, it is preferable to dispose a resin having a low hygroscopic property. Moreover, since the resin-based film other than the metal foil normally used for the gas barrier layer b deteriorates the gas barrier property due to moisture absorption, it is possible to arrange the gas barrier property by arranging a resin having a low hygroscopic property for the heat-welded layer. This suppresses the moisture absorption of the entire laminate film.

これにより、先に述べた真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながっている。尚、各フィルムのラミネート(貼り合わせ)は、二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法には特にこれに限定するものではなく、ウェットラミネート法,サーマルラミネート法等の他の方法によるものでも何ら構わない。   As a result, even in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought into the jacket material 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved, leading to higher performance of heat insulation performance. . In addition, the lamination (bonding) of each film is generally performed by a dry lamination method through a two-component curable urethane adhesive, but the type of the adhesive and the bonding method are particularly limited to this. However, it may be any other method such as a wet laminating method or a thermal laminating method.

また、内袋52については本実施例では熱溶着可能なポリエチレンフィルム、吸着剤については物理吸着タイプの合成ゼオライトを用いたが、いずれもこれらの材料に限定するものではない。内袋52についてはポリプロピレンフィルム,ポリエチレンテレフタレートフィルム,ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであれば良く、吸着剤については水分やガスを吸着するもので、物理吸着,化学反応型吸着のどちらでも良い。   Further, in the present embodiment, a polyethylene film that can be thermally welded is used for the inner bag 52, and a physical adsorption type synthetic zeolite is used for the adsorbent, but these are not limited to these materials. For the inner bag 52, polypropylene film, polyethylene terephthalate film, polybutylene terephthalate film, etc., which have low hygroscopicity and can be thermally welded and have low outgas, adsorbents adsorb moisture and gas, and are physically adsorbed. Either chemical reaction type adsorption may be used.

本発明の実施例1について、図4を参照しながら説明する。真空断熱材50の芯材51は、大きさの異なる複数の繊維集合体を、複数の空間を有した内袋52にそれぞれ独立して挿入する。複数の空間を有する内袋52は、袋状の内袋52a,52b,52cを重ねて端部をヒートシールにより溶着することで得る方法や、内袋用のフィルムを3枚重ね合わせて溶着することで得ることができる。   A first embodiment of the present invention will be described with reference to FIG. The core material 51 of the vacuum heat insulating material 50 inserts a plurality of fiber assemblies having different sizes into the inner bag 52 having a plurality of spaces, respectively. The inner bag 52 having a plurality of spaces is welded by superimposing bag-shaped inner bags 52a, 52b, 52c and welding the end portions by heat sealing, or by stacking three inner bag films. Can be obtained.

また、大きさの異なる複数の空間を有する内袋52を得るためには、小さい寸法の第一の内袋52a(第三の芯材52c)と大きい寸法の第二の内袋52bのそれぞれの片側面を融着後(図4における溶着部54b)、大きい寸法の端面を融着する(図4における溶着部54a)。   Moreover, in order to obtain the inner bag 52 having a plurality of spaces of different sizes, the first inner bag 52a (third core member 52c) having a small size and the second inner bag 52b having a large size are respectively used. After fusing one side surface (welded portion 54b in FIG. 4), the end surface having a large size is fused (welded portion 54a in FIG. 4).

また、内袋52内に、内袋52よりも融点の高い芯材51を収納することで、大きい寸法の第二の内袋52bと小さい寸法の第一の内袋52a(第三の内袋52c)が、全て溶着することなく、複数の空間層を保持した内袋52を得ることができる。   Further, by storing the core material 51 having a melting point higher than that of the inner bag 52 in the inner bag 52, the second inner bag 52b having a larger size and the first inner bag 52a having a smaller size (third inner bag). 52c) can obtain the inner bag 52 holding a plurality of space layers without welding.

内袋52は溶着部54bで空間が区画されており、第一の内袋52aに収納した第一の芯材51a、第二の内袋52bに収納した第二の芯材51b、及び第三の内袋52cに収納した第三の芯材51cの位置を規制することができる。   The inner bag 52 is partitioned by a weld 54b. The first core material 51a stored in the first inner bag 52a, the second core material 51b stored in the second inner bag 52b, and the third The position of the third core material 51c stored in the inner bag 52c can be regulated.

本実施例においては、ヒートシールによる溶着部54a,54bを用いて固定部を設けているが、芯材寸法に合わせた一体物の内袋を複数重ね合わせて、面溶着或いは端部を溶着することでも固定することが可能である。   In the present embodiment, the fixing portion is provided by using the heat-sealed welded portions 54a and 54b, but a plurality of integral inner bags matching the core material dimensions are overlapped, and surface welding or end welding is performed. Can also be fixed.

この芯材を内袋に入れたものを外被材内に挿入し、真空包装後に真空包装機内の雰囲気を大気圧状態に開放すると、真空断熱材の内部は負圧状態であるため、外からの圧力によって形状が変形する。このとき、大きい第二の芯材51bが小さい第一の芯材51aと第三の芯材51cの間に入り込むように湾曲して変形する。そして、真空断熱材に凹部が形成される。従来の複数の芯材を重ねて圧縮し内袋を溶着するよりも、予め複数の空間を有する内袋に芯材を独立して挿入することで、真空包装したときの芯材の層のずれを抑制し、所望の形状の真空断熱材を得ることができる。   When this core material is put in an inner bag and inserted into the jacket material, and the atmosphere inside the vacuum packaging machine is released to atmospheric pressure after vacuum packaging, the inside of the vacuum heat insulating material is in a negative pressure state. The shape is deformed by the pressure of. At this time, the large second core material 51b is curved and deformed so as to enter between the small first core material 51a and the third core material 51c. And a recessed part is formed in a vacuum heat insulating material. Rather than stacking and compressing a plurality of conventional core materials and welding the inner bag, the core material layer is shifted when vacuum-packed by independently inserting the core material into the inner bag having a plurality of spaces in advance. And a vacuum heat insulating material having a desired shape can be obtained.

なお、溶着部54a,54bは、芯材51の圧縮変形量を予め考慮した溶着代で溶着しておけば、引張応力が必要以上に加わることがない。また、大きい第二の芯材51bに無機繊維の柔軟性を有するグラスウール繊維を用いることで、より湾曲変形しやすくなるので好適である。   In addition, if the welding parts 54a and 54b are welded by the welding allowance which considered the amount of compressive deformation of the core material 51 in advance, a tensile stress will not be added more than necessary. In addition, it is preferable to use glass wool fibers having the flexibility of inorganic fibers for the second large core material 51b because it is easier to bend and deform.

次に、図5には、第一の芯材51aを第二の芯材51bよりも長さ寸法が短いものとした例を示す。第一の内袋52aは第二の内袋52bよりも小さく、それぞれ第一の芯材51a,第二の芯材51bの大きさに対応した内部空間を形成している。第一の芯材51aを第一の内袋52aに収納して、第二の芯材51bを第二の内袋52bに収納することで、真空断熱材の所定位置に段部を形成することができる。   Next, FIG. 5 shows an example in which the first core material 51a is shorter in length than the second core material 51b. The first inner bag 52a is smaller than the second inner bag 52b and forms internal spaces corresponding to the sizes of the first core material 51a and the second core material 51b, respectively. By forming the first core material 51a in the first inner bag 52a and storing the second core material 51b in the second inner bag 52b, a step portion is formed at a predetermined position of the vacuum heat insulating material. Can do.

また、溶着部54を所定位置に設けることで、芯材の位置ずれを抑制することができる。   Moreover, the position shift of the core material can be suppressed by providing the welded portion 54 at a predetermined position.

次に、図6には、本実施例における真空断熱材50を冷蔵庫1の外箱21の内面に貼り付けた断面図を示す。真空断熱材50の凹部56には、放熱パイプ60を配置しており、放熱パイプ60はアルミニウムテープ61で鉄板製の外箱21に貼り付けている。なお、真空断熱材50の凹部56に冷蔵庫1の構成部品を配置してもよい。   Next, FIG. 6 shows a cross-sectional view in which the vacuum heat insulating material 50 in this embodiment is attached to the inner surface of the outer box 21 of the refrigerator 1. A heat radiating pipe 60 is disposed in the recess 56 of the vacuum heat insulating material 50, and the heat radiating pipe 60 is attached to the outer box 21 made of iron plate with an aluminum tape 61. In addition, you may arrange | position the component of the refrigerator 1 in the recessed part 56 of the vacuum heat insulating material 50. FIG.

また、真空断熱材に用いられている複数の空間を有した内袋に、独立して芯材を入れることで、リサイクル性が向上し容易に分別することができる。異なる種類の芯材を用いた場合でも、内袋の独立した空間にそれぞれ芯材が収納されているので、芯材を簡単に分別することが可能となる。例えば、芯材に樹脂繊維とグラスウール繊維を用いた場合でも、繊維同士が接触して繊維が絡み合うことがない。また、バインダーやガス吸着物質を含有した芯材を一方に用いても、他の芯材には付着しない。また、複数の芯材を用いる場合に、それぞれの芯材の種類ごとに異なる色とした第一の内袋及び第二の内袋に芯材をそれぞれ収納することで、真空断熱材のリサイクル時に繊維の種類を判別することも可能である。また、第一の芯材と第二の芯材の色をそれぞれ異なる色としても、識別可能である。   Moreover, recyclability improves and it can sort easily by putting a core material into the inner bag which has the some space used for the vacuum heat insulating material independently. Even when different types of core materials are used, since the core materials are stored in the independent spaces of the inner bag, the core materials can be easily separated. For example, even when resin fibers and glass wool fibers are used as the core material, the fibers do not come into contact with each other and the fibers are not entangled. Even if a core material containing a binder or a gas adsorbing material is used on one side, it does not adhere to the other core material. Moreover, when using a plurality of core materials, by storing the core materials in the first inner bag and the second inner bag, which have different colors for each type of core material, when recycling the vacuum heat insulating material It is also possible to determine the type of fiber. The first core material and the second core material can also be distinguished from each other by different colors.

以上より、寸法誤差の少ない凹部を形成し、寸法・形状の安定した真空断熱材を提供することができる。また、本実施例の真空断熱材を適用することで、断熱性能を保持した状態で冷蔵庫の外箱に放熱パイプを設置できるので、冷蔵庫の省エネルギー性が向上する。   From the above, it is possible to provide a vacuum heat insulating material which is formed with a recess having a small dimensional error and has a stable size and shape. Moreover, since the heat radiating pipe can be installed in the outer box of the refrigerator while the heat insulating performance is maintained by applying the vacuum heat insulating material of the present embodiment, the energy saving property of the refrigerator is improved.

1 冷蔵庫
20 箱体
21 外箱
22 内箱
23 発泡断熱材
50 真空断熱材
51 芯材
51a 第一の芯材
51b 第二の芯材
51c 第三の芯材
52 内袋
52a 第一の内袋
52b 第二の内袋
52c 第三の内袋
53 外被材
54,54a,54b 溶着部
56 凹部
60 放熱パイプ
DESCRIPTION OF SYMBOLS 1 Refrigerator 20 Box 21 Outer box 22 Inner box 23 Foam heat insulating material 50 Vacuum heat insulating material 51 Core material 51a First core material 51b Second core material 51c Third core material 52 Inner bag 52a First inner bag 52b Second inner bag 52c Third inner bag 53 Cover materials 54, 54a, 54b Welding portion 56 Recessed portion 60 Radiation pipe

Claims (4)

芯材と、該芯材を収納する内袋と、該内袋を収納する外被材とを備えた真空断熱材において、
前記芯材は第一の芯材と、該第一の芯材よりも大きい独立した第二の芯材とを重ねて配置し、
前記第一の芯材は第一の内袋に収納し、前記第二の芯材は前記第一の内袋と独立した第二の内袋に収納し、前記第一の内袋と前記第二の内袋の互いの位置を規制する溶着部を有し、
前記第二の芯材は前記第一の芯材側に湾曲して変形することで該第二の芯材側に凹部が形成されたことを特徴とする真空断熱材。
In a vacuum heat insulating material comprising a core material, an inner bag for storing the core material, and an outer jacket material for storing the inner bag,
The core material is arranged by stacking a first core material and an independent second core material larger than the first core material,
The first core material is stored in a first inner bag, the second core material is stored in a second inner bag independent of the first inner bag, the first inner bag and the first inner bag. It has a welded part that regulates the mutual position of the two inner bags,
A vacuum heat insulating material, wherein the second core material is curved and deformed toward the first core material side to form a recess on the second core material side.
前記第一の内袋及び前記第二の内袋をそれぞれ異なる色としたことを特徴とする、請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the first inner bag and the second inner bag have different colors. 前記第一の芯材及び前記第二の芯材をそれぞれ異なる色としたことを特徴とする、請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the first core material and the second core material have different colors. 外箱の内側に配置された真空断熱材と、該真空断熱材と前記外箱との間に配置された放熱パイプと、を備えた冷蔵庫において、
前記真空断熱材は、芯材と、該芯材を収納する内袋と、該内袋を収納する外被材とを備え、
前記芯材は第一の芯材と、該第一の芯材よりも大きい独立した第二の芯材とを重ねて配置し、
前記第一の芯材は第一の内袋に収納し、前記第二の芯材は前記第一の内袋と独立した第二の内袋に収納し、前記第一の内袋と前記第二の内袋の互いの位置を規制する溶着部を有し、
前記第二の芯材は前記第一の芯材側に湾曲して変形することで該第二の芯材側に凹部が形成され、該凹部に前記放熱パイプを配置したことを特徴とする冷蔵庫。
In a refrigerator comprising a vacuum heat insulating material disposed inside an outer box, and a heat radiating pipe disposed between the vacuum heat insulating material and the outer box,
The vacuum heat insulating material includes a core material, an inner bag that stores the core material, and an outer jacket material that stores the inner bag,
The core material is arranged by stacking a first core material and an independent second core material larger than the first core material,
The first core material is stored in a first inner bag, the second core material is stored in a second inner bag independent of the first inner bag, the first inner bag and the first inner bag. It has a welded part that regulates the mutual position of the two inner bags,
The refrigerator is characterized in that the second core member is curved and deformed toward the first core member to form a recess on the second core member side, and the heat radiating pipe is disposed in the recess. .
JP2010205044A 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator using the same Withdrawn JP2012063029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010205044A JP2012063029A (en) 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205044A JP2012063029A (en) 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator using the same

Publications (1)

Publication Number Publication Date
JP2012063029A true JP2012063029A (en) 2012-03-29

Family

ID=46058926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010205044A Withdrawn JP2012063029A (en) 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP2012063029A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007450A (en) * 2013-06-25 2015-01-15 アキレス株式会社 Vacuum heat insulation material vacuum-packaged doubly
US9038403B2 (en) 2012-04-02 2015-05-26 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
JP7287302B2 (en) 2020-02-07 2023-06-06 三菱電機株式会社 Insulation material for hot water storage type water heater

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874394B2 (en) 2012-04-02 2018-01-23 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9140481B2 (en) 2012-04-02 2015-09-22 Whirlpool Corporation Folded vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9885516B2 (en) 2012-04-02 2018-02-06 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9038403B2 (en) 2012-04-02 2015-05-26 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9463917B2 (en) 2012-04-11 2016-10-11 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
JP2015007450A (en) * 2013-06-25 2015-01-15 アキレス株式会社 Vacuum heat insulation material vacuum-packaged doubly
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
JP7287302B2 (en) 2020-02-07 2023-06-06 三菱電機株式会社 Insulation material for hot water storage type water heater

Similar Documents

Publication Publication Date Title
JP2012063029A (en) Vacuum heat insulating material and refrigerator using the same
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5544338B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP2009228917A (en) Refrigerator
JP2009024922A (en) Refrigerator
JP2010276308A (en) Refrigerator having vacuum heat insulating material
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP5455673B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP2016080281A (en) Heat insulation box body and heat insulation door
JP5401258B2 (en) refrigerator
JP2011153721A (en) Refrigerator
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2009024921A (en) Refrigerator
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP2013024440A (en) Refrigerator
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP5401422B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2012026583A (en) Refrigerator
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2012026622A (en) Vacuum heat insulation material and refrigerator using the same
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120518

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203