JP2013053722A - Vacuum heat insulating material and heat insulating apparatus using the same - Google Patents

Vacuum heat insulating material and heat insulating apparatus using the same Download PDF

Info

Publication number
JP2013053722A
JP2013053722A JP2011193853A JP2011193853A JP2013053722A JP 2013053722 A JP2013053722 A JP 2013053722A JP 2011193853 A JP2011193853 A JP 2011193853A JP 2011193853 A JP2011193853 A JP 2011193853A JP 2013053722 A JP2013053722 A JP 2013053722A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
urethane foam
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011193853A
Other languages
Japanese (ja)
Inventor
Yasuto Terauchi
康人 寺内
Kuninari Araki
邦成 荒木
Hisashi Echigoya
恒 越後屋
Yushi Arai
祐志 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011193853A priority Critical patent/JP2013053722A/en
Publication of JP2013053722A publication Critical patent/JP2013053722A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve ease of handling of a vacuum heat insulating material and prevent scratching to increase reliability as the vacuum heat insulating material.SOLUTION: The vacuum heat insulating material 50 includes: a core material of a polygonal shape including a square shape; and a film-like casing material of a polygonal shape including a square shape for covering the core material. An outer periphery 60, corer parts 61, and the whole of a surface 63 and a back surface 64 of the polygonal casing material are covered with urethane foam 62. Recess parts 65 in which heat radiating pipes used in a refrigeration cycle are inserted, are formed to a surface 63 or a back surface 64 of the urethane foam 62. The urethane foam is made by urethane-foaming using a foaming die. Depending on sizes of the foaming die, a thickness of the urethane foam can be changed.

Description

本発明は、真空断熱材及びこれを用いた断熱機器に係わり、特に、家電製品、住宅及び車輌等の断熱材として好適な真空断熱材に関し、さらに、この真空断熱材を適用した機器である断熱容器、断熱箱体、電気給湯器、冷蔵庫、炊飯器、洗濯機、及びコンピュータなどに関する。   The present invention relates to a vacuum heat insulating material and a heat insulating device using the same, and more particularly to a vacuum heat insulating material suitable as a heat insulating material for home appliances, homes, vehicles, and the like, and further, heat insulation that is a device to which the vacuum heat insulating material is applied. The present invention relates to containers, heat insulating boxes, electric water heaters, refrigerators, rice cookers, washing machines, computers, and the like.

近年、地球環境保護が大きく叫ばれている雰囲気において、家電製品、住宅及び車輌等に関する省エネルギー化はますます重要となってきている。この解決策の一つとして、無駄な熱の授受を防ぐ目的での断熱材の高性能化がある。断熱材の高性能化の例として、多孔質構造の芯材をアルミ箔ラミネートフィルム製の外被材で覆って内部を減圧封止する真空断熱材があり、電気ジャーポットや電気冷蔵庫などの家電製品やクーラーボックス等に適用されている。例えば、冷蔵庫は、鉄板からなる外箱と、ABS樹脂からなる内箱と、外箱と内箱によって形成される空間に充填された発泡断熱材とからなる断熱壁において、断熱壁内部に予め真空断熱材を貼り付け、発泡断熱材とともに一体構造体とする方法により適用している。   In recent years, in an atmosphere where the protection of the global environment has been greatly sought, energy saving for home appliances, homes, vehicles, etc. has become increasingly important. One solution is to improve the performance of heat insulating materials for the purpose of preventing unnecessary heat transfer. As an example of improving the performance of heat insulating materials, there is a vacuum heat insulating material that covers the core material with a porous structure with a jacket material made of an aluminum foil laminate film, and seals the inside under reduced pressure. It is applied to products and cooler boxes. For example, in a heat insulating wall composed of an outer box made of iron plate, an inner box made of ABS resin, and a foam heat insulating material filled in a space formed by the outer box and the inner box, the refrigerator is preliminarily vacuumed inside the heat insulating wall. It is applied by a method in which a heat insulating material is pasted and is made into an integral structure together with a foam heat insulating material.

冷蔵庫に適用された従来の真空断熱材としては、2枚のフィルムの幅方向に対向する一対の端縁部を互いに熱溶着して、一つの筒状の外被材を形成し、筒状の外被材の長さ方向に対向する開口部から四角形状の芯材を挿入し、外被材と芯材との間を減圧後、外被材の開口部を熱溶着により密封したものがある。この真空断熱材では外被材の熱溶着部を形成する部分(芯材よりはみ出している外被材の熱溶着された部分)を芯材の表面側に折り曲げた状態(熱溶着部を含む折り曲げ部を形成して)で冷蔵庫の内箱と外箱の空間に収納させている。しかし、真空断熱材の熱溶着の部分を芯材の表面側に折り曲げると、外被材の角部に一般に凸部が形成され、この凸部により作業者の取り扱い危険性や、他の真空断熱材の外被材を傷付けるという課題が生じていた。   As a conventional vacuum heat insulating material applied to a refrigerator, a pair of edge portions opposed to each other in the width direction of two films are thermally welded together to form one cylindrical jacket material, There is a case in which a rectangular core material is inserted from the opening facing the length direction of the jacket material, the pressure between the jacket material and the core material is reduced, and then the jacket material opening is sealed by heat welding. . In this vacuum heat insulating material, the portion forming the heat-welded portion of the outer jacket material (the portion of the outer shell material that has been heat-welded from the core material) is bent to the surface side of the core material (bending including the heat-welded portion) In the space between the inner box and the outer box of the refrigerator. However, when the heat-welded part of the vacuum heat insulating material is bent to the surface side of the core material, a convex part is generally formed at the corner of the jacket material, and this convex part causes the handling risk of the operator and other vacuum heat insulating materials. The problem of damaging the jacket material of the material has arisen.

この課題を改善するために、特許文献1では、真空断熱材における折り曲げ部を有する4つの角部をホットメルト接着剤で覆う(角部では隣接する2つの辺が時間差を以て折り曲げられて当該折り曲げ部で切れ目が生じているのでこの切れ目をホットメルト接着剤で覆う)ようにすることによって、真空断熱材の外形寸法を小さくして収納性を向上しつつ、作業者の取り扱い危険性や、多数の真空断熱材の保管時に他の真空断熱材の外被材を傷付ける可能性を低減させるようにしている。   In order to improve this problem, in Patent Document 1, four corners having a bent portion in a vacuum heat insulating material are covered with a hot melt adhesive (at the corner, two adjacent sides are bent with a time difference so that the bent portion is covered. By covering the cut with a hot melt adhesive), the outer dimensions of the vacuum heat insulating material can be reduced to improve the storage property, while handling hazards for workers and many The possibility of damaging the jacket material of another vacuum heat insulating material during storage of the vacuum heat insulating material is reduced.

特開2005−106094号公報JP 2005-106094 A

しかしながら、外被材の角部がホットメルト系接着剤で覆われていることで、重ねて保管する他の真空断熱材や保管用棚等に接触すると、その接触で相手側に接着し作業性が悪化してしまう場合があるため、真空断熱材を重ねて保管することが出来ず、また、保管用棚等に接触しないよう保管しなければならないため、保管スペースを含め保管方法に課題が生じる。   However, since the corners of the jacket material are covered with a hot melt adhesive, contact with other vacuum heat insulating materials or storage shelves that are stored in layers causes the contact to adhere to the other side and improve workability. Since it may deteriorate, the vacuum insulation material cannot be stored repeatedly, and it must be stored so that it does not come in contact with storage shelves, etc., so there are problems in the storage method including the storage space. .

そこで、真空断熱材の保管において課題が生じるため、真空断熱材を製品に取り付ける直前に製造ライン上でホットメルト系接着剤を取り付けることになるが、むしろ、接着剤の直前取付工程までの作業者の取り扱い危険性や他の真空断熱材の外被材を傷付ける可能性があり、十分な効果を得ることが出来ない場合がある。   Therefore, problems arise in storage of the vacuum insulation material, so hot melt adhesive is attached on the production line immediately before attaching the vacuum insulation material to the product. There is a possibility that it may not be able to obtain a sufficient effect due to the danger of handling the material or the outer cover material of other vacuum heat insulating materials.

このように、外被材の角部をホットメルト系接着剤で覆っても、その接着性によって作業性の悪化や保管上の課題が発生し、十分な効果を得ることが出来ないことになる。   As described above, even if the corners of the jacket material are covered with the hot melt adhesive, workability is deteriorated due to the adhesiveness and storage problems occur, and sufficient effects cannot be obtained. .

そこで、本発明の目的は、真空断熱材の取り扱い性を向上させ、外被材に傷付け性を無くすることで、真空断熱材としての信頼性を向上させ、さらに、冷蔵庫への適用に際して真空断熱材の有効断熱面積を拡大させて断熱性能を向上させる真空断熱材を提供することにある。   Therefore, the object of the present invention is to improve the handling property of the vacuum heat insulating material, to improve the reliability as a vacuum heat insulating material by eliminating the scratching property on the jacket material, and further to the vacuum heat insulating material when applied to a refrigerator. An object of the present invention is to provide a vacuum heat insulating material that expands the effective heat insulating area of the material and improves the heat insulating performance.

前記課題を解決するために、本発明は次のような構成を採用する。
四角形状を含む多角形状の芯材と、前記芯材を包む四角形状を含む多角形状のフィルム状の外被材と、を備える真空断熱材であって、前記多角形状の外被材の外周縁がウレタンフォームで覆われている構成とする。さらに、四角形状を含む多角形状の芯材と、前記芯材を包む四角形状を含む多角形状のフィルム状の外被材と、を備える真空断熱材であって、前記多角形状の外被材の外周縁、角部、表面及び裏面の全面がウレタンフォームで覆われている構成とする。
In order to solve the above problems, the present invention adopts the following configuration.
A vacuum heat insulating material comprising a polygonal core material including a quadrangle shape and a polygonal film-shaped envelope material including a quadrangle shape surrounding the core material, and an outer peripheral edge of the polygonal envelope material Is covered with urethane foam. Furthermore, a vacuum heat insulating material comprising a polygonal core material including a quadrangle shape and a polygonal film-shaped envelope material including a quadrangle shape surrounding the core material, wherein the polygonal envelope material The outer peripheral edge, corners, front and back surfaces are all covered with urethane foam.

また、前記真空断熱材において、冷凍サイクルで使用される放熱パイプを通すための凹部を前記ウレタンフォームの前記表面又は裏面に形成すること。さらに、前記ウレタンフォームは発泡金型を使用しウレタン発泡したものであり、前記発泡金型のサイズによって前記ウレタンフォームの厚さを可変すること。さらに、上述された真空断熱材が外箱と内箱によって形成される空間内に配設された断熱機器。   Moreover, in the said vacuum heat insulating material, the recessed part for letting the heat radiating pipe used by a refrigerating cycle pass is formed in the said surface or back surface of the said urethane foam. Furthermore, the urethane foam is urethane foamed using a foaming mold, and the thickness of the urethane foam is variable depending on the size of the foaming mold. Furthermore, the heat insulation apparatus by which the vacuum heat insulating material mentioned above was arrange | positioned in the space formed by an outer box and an inner box.

本発明によれば、真空断熱材の取り扱い性を改善し、傷付け性を無くすることで真空断熱材としての信頼性を向上させることができる。また、真空断熱材を外箱と内箱をもつ冷蔵庫に適用する場合に有効断熱面積を拡大することができて、真空断熱材の断熱性能を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the reliability as a vacuum heat insulating material can be improved by improving the handleability of a vacuum heat insulating material and eliminating scratching property. Moreover, when applying a vacuum heat insulating material to the refrigerator which has an outer box and an inner box, an effective heat insulation area can be expanded and the heat insulation performance of a vacuum heat insulating material can be improved.

本発明の実施形態に係る真空断熱材を適用した冷蔵庫の正面外観図である。It is a front external view of the refrigerator which applied the vacuum heat insulating material which concerns on embodiment of this invention. 本実施形態に係る真空断熱材を適用した冷蔵庫の側面断面図であり、図1のA−A線の断面矢視図である。It is side surface sectional drawing of the refrigerator to which the vacuum heat insulating material which concerns on this embodiment is applied, and is a cross-sectional arrow line view of the AA line of FIG. 本実施形態に係る真空断熱材の基本的構成を示す断面図である。It is sectional drawing which shows the basic composition of the vacuum heat insulating material which concerns on this embodiment. 本実施形態に係る真空断熱材の実施例における構成を示す図である。It is a figure which shows the structure in the Example of the vacuum heat insulating material which concerns on this embodiment. 本実施形態に係る真空断熱材の他の実施例における構成を示す図である。It is a figure which shows the structure in the other Example of the vacuum heat insulating material which concerns on this embodiment. 本実施形態に係る真空断熱材の他の実施例における冷蔵庫への取付及び配置を説明する図である。It is a figure explaining attachment to the refrigerator and arrangement | positioning in the other Example of the vacuum heat insulating material which concerns on this embodiment. 従来技術に関する真空断熱材の代表的構成を示す断面図である。It is sectional drawing which shows the typical structure of the vacuum heat insulating material regarding a prior art.

本発明の実施形態に係る真空断熱材の基本的構造とその適用分野の概要について、まず、図1〜図3を参照しながら以下説明する。図1は本発明の実施形態に係る真空断熱材を適用した冷蔵庫の正面外観図であり、図2は本実施形態に係る真空断熱材を適用した冷蔵庫の側面断面図であって図1のA−A線の断面矢視図であり、図3は本実施形態に係る真空断熱材の基本的構成を示す断面図である。   The basic structure of the vacuum heat insulating material according to the embodiment of the present invention and the outline of the application field thereof will be described below with reference to FIGS. 1 is a front external view of a refrigerator to which a vacuum heat insulating material according to an embodiment of the present invention is applied, and FIG. 2 is a side sectional view of the refrigerator to which a vacuum heat insulating material according to the present embodiment is applied. FIG. 3 is a cross-sectional view taken along line -A, and FIG. 3 is a cross-sectional view illustrating a basic configuration of the vacuum heat insulating material according to the present embodiment.

図1に示す本実施形態に係る真空断熱材を備えた冷蔵庫1は、図2に示すように、上から順に、冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5を有している。図1に示す符号6〜9は、上述した各室の前面開口部を閉塞する扉であり、上から順に、扉用ヒンジ10等を中心に回動する冷蔵室扉6a,6b、製氷室扉7a及び上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9を表している。冷蔵室扉6a,6b以外は全て引き出し式の扉であり、これらの引き出し式扉7〜9は扉を引き出すと、各室を構成する容器が扉と共に引き出されてくる。各扉6〜9には冷蔵庫本体1とを密閉するためのパッキン11を備え、各扉6〜9の室内側外周縁に取り付けられている。   As shown in FIG. 2, the refrigerator 1 provided with the vacuum heat insulating material according to the present embodiment shown in FIG. 1 is, in order from the top, the refrigerator compartment 2, the ice making compartment 3a, the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment. 5 Reference numerals 6 to 9 shown in FIG. 1 are doors that close the front openings of the respective chambers described above, and in order from the top, the refrigerator compartment doors 6a and 6b that rotate around the door hinges 10 and the like, and the ice making room doors. 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are shown. Except for the refrigerator compartment doors 6a and 6b, all are drawer-type doors. When these drawer-type doors 7 to 9 are pulled out, the containers constituting each chamber are drawn out together with the doors. Each door 6-9 is provided with a packing 11 for sealing the refrigerator main body 1, and is attached to the indoor side outer periphery of each door 6-9.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために仕切断熱壁12を配置している。製氷室3a及び上段冷凍室3bと下段冷凍室4との間は、温度帯が同じであるため区画断熱する仕切断熱壁ではなく、パッキン11受面を形成した仕切り部材13を設けている。下段冷凍室4と野菜室5との間には区画断熱するための仕切断熱壁14を設けている。基本的に冷蔵、冷凍等の貯蔵温度帯の異なる部屋の仕切りには仕切断熱壁を設置している。   Moreover, the partition heat insulation wall 12 is arrange | positioned in order to carry out the partition heat insulation between the refrigerator compartment 2, the ice-making room 3a, and the upper stage freezer compartment 3b. Since the temperature zone is the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 having a packing 11 receiving surface is provided instead of a partition heat insulating wall for partition heat insulation. A partition heat insulation wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 to insulate the compartment. Basically, partition heat insulation walls are installed in partitions of rooms with different storage temperature zones such as refrigeration and freezing.

なお、箱体20内には上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a,6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9に関しても回転による開閉、引き出しによる開閉及び扉の分割数等について、特に限定するものではない。   In addition, the storage compartment of the refrigerator compartment 2, the ice making compartment 3a and the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 is divided and formed in the box 20, respectively. The invention is not particularly limited to this. Further, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are also particularly limited in terms of opening and closing by rotation, opening and closing by drawer, and the number of divided doors. It is not a thing.

箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。外箱21と内箱22の間の空間に真空断熱材50(50a,50b,50d)を配置し、真空断熱材50以外の空間には硬質ウレタンフォーム等の発泡断熱材23を充填してある。   The box 20 includes an outer box 21 and an inner box 22, and a heat insulating part is provided in a space formed by the outer box 21 and the inner box 22 to insulate each storage chamber in the box 20 from the outside. Yes. A vacuum heat insulating material 50 (50a, 50b, 50d) is disposed in a space between the outer box 21 and the inner box 22, and a space other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as hard urethane foam. .

また、冷蔵庫の冷蔵室2と製氷室3a及び上段冷凍室3b、冷凍室4と野菜室5を区画する断熱材として、それぞれ仕切断熱壁12,14を配置し、発泡ポリスチレン33と真空断熱材50cで構成されている。この仕切断熱壁12,14については硬質ウレタンフォーム等の発泡断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50cに限定するものではない。   Moreover, partition heat insulation walls 12 and 14 are respectively arranged as heat insulating materials for partitioning the refrigerator refrigerating chamber 2, the ice making chamber 3a, the upper freezing chamber 3b, the freezing chamber 4 and the vegetable chamber 5, and the expanded polystyrene 33 and the vacuum heat insulating material 50c. It consists of The partition heat insulating walls 12 and 14 may be filled with a foam heat insulating material 23 such as rigid urethane foam, and are not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50c.

また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されており、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。   In addition, a concave portion 40 for accommodating an electrical component 41 such as a substrate for controlling the operation of the refrigerator 1 or a power supply substrate is formed in the rear portion of the top surface of the box 20, and a cover 42 that covers the electrical component 41. Is provided. The height of the cover 42 is arranged so as to be substantially the same height as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. Although it does not specifically limit, when the height of the cover 42 protrudes from the top | upper surface of an outer box, it is desirable to set it in the range within 10 mm.

これに伴って、凹部40は断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するため必然的に内容積が犠牲になってしまう。内容積をより大きくとると凹部40と内箱22間の断熱材23の厚さが薄くなってしまう。このため、凹部40の断熱材23中に略Z形状に成形した1枚の真空断熱材50aを配置して断熱性能を確保、強化している。なお、カバー42は外部からのもらい火や何らかの原因で発火した場合等を考慮し鋼板製としている。   Along with this, the recess 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the heat insulating material 23 side, so that the internal volume is inevitably sacrificed in order to ensure the heat insulating thickness. If the internal volume is increased, the thickness of the heat insulating material 23 between the recess 40 and the inner box 22 will be reduced. For this reason, the one heat insulating material 50a shape | molded in the substantially Z shape is arrange | positioned in the heat insulating material 23 of the recessed part 40, and the heat insulation performance is ensured and strengthened. Note that the cover 42 is made of a steel plate in consideration of a fire from the outside or a case where it is ignited for some reason.

また、箱体20の背面下部に配置された圧縮機30、凝縮機31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、底板21d側に真空断熱材50dを配置している。   In addition, since the compressor 30 and the condenser 31 disposed at the lower back of the box body 20 are components that generate large amounts of heat, a vacuum heat insulating material 50d is disposed on the bottom plate 21d side in order to prevent heat from entering into the cabinet. ing.

冷蔵庫1の冷蔵室2、冷凍室(3a,3b,4)、野菜室5等の各室を所定の温度に冷却するために、冷凍室4の背側には冷却器28が備えられており、この冷却器28、圧縮機30、凝縮機31、及び図示しないキャピラリーチューブが、冷凍サイクルの構成要素である。冷却器28の上方には、冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設されている。   A refrigerator 28 is provided on the back side of the freezer compartment 4 in order to cool the refrigerator compartment 2, the freezer compartments (3a, 3b, 4), the vegetable compartment 5 and the like to a predetermined temperature. The cooler 28, the compressor 30, the condenser 31, and a capillary tube (not shown) are components of the refrigeration cycle. Above the cooler 28, a blower 27 that circulates cold air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed.

圧縮機30、凝縮器31からキャピラリーチューブに至る配管からなる放熱パイプ90(図6を参照)が、外箱21の天板21a、背面板21b、側面板21e等の各内面に沿って配設され、天板21a、背面板21b、側面板21e等を放熱板として放熱パイプ90の熱を庫外に放出している。   A heat radiating pipe 90 (see FIG. 6) including piping from the compressor 30 and the condenser 31 to the capillary tube is disposed along each inner surface of the outer box 21 such as the top plate 21a, the back plate 21b, and the side plate 21e. The heat of the heat radiating pipe 90 is released to the outside by using the top plate 21a, the back plate 21b, the side plate 21e and the like as heat radiating plates.

次に、図3を用いて、冷蔵庫1の断熱性能の維持、強化に用いられる真空断熱材50の構成を説明する。真空断熱材50は、芯材51と、芯材51を圧縮状態に保持するための内包材52(内包材52は省略されてもよい)と、内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53と、吸着剤54と、から構成されている。真空断熱材50の片面には、放熱パイプ90を配置するための溝部50mが設けられている。   Next, the structure of the vacuum heat insulating material 50 used for maintenance and reinforcement of the heat insulating performance of the refrigerator 1 will be described with reference to FIG. The vacuum heat insulating material 50 includes a core material 51, an inner packaging material 52 for holding the core material 51 in a compressed state (the inner packaging material 52 may be omitted), and a core material 51 held in a compressed state by the inner packaging material 52. And an adsorbent 54 having a gas barrier layer covering the surface. On one side of the vacuum heat insulating material 50, a groove portion 50m for arranging the heat radiating pipe 90 is provided.

真空断熱材50を製造するに際しては、外被材53を2枚準備し、外被材53のうちで熱溶着可能な内層フィルム面同士を対向させ、その間に芯材51を内包するように配置する。芯材51は平面からみて四角形状で薄い矩形の直方体に形成されている。2枚の外被材53は同面積で且つ同形状に作成されており、芯材51を内包させて熱溶着フィルムの側縁辺から一定の幅の部分を熱溶着により貼り合わせる。熱溶着部を含む外被材をその外方側の四辺で折り曲げて折曲部55を形成し、袋状を構成する。本実施形態において、芯材51についてはバインダー等で接着や結着していない無機繊維の積層体として平均繊維径4μmのグラスウールを用いた。   When the vacuum heat insulating material 50 is manufactured, two outer jacket materials 53 are prepared, and the inner film surfaces that can be heat-welded in the outer jacket material 53 are opposed to each other, and the core material 51 is included therebetween. To do. The core material 51 is formed in a rectangular and thin rectangular parallelepiped when viewed from the plane. The two jacket materials 53 have the same area and the same shape. The core material 51 is included, and a portion having a certain width is bonded from the side edge of the heat-welded film by heat-welding. The outer cover material including the heat-welded portion is bent at the four sides on the outer side to form a bent portion 55 to form a bag shape. In the present embodiment, for the core material 51, glass wool having an average fiber diameter of 4 μm was used as a laminate of inorganic fibers not bonded or bound with a binder or the like.

芯材51に、無機系繊維材料の積層体を使用することによりアウトガスが少なくなるため、断熱性能的に有利であるが、特にこれに限定するものではなく、例えばセラミック繊維やロックウール、グラスウール以外のガラス繊維等の無機繊維等でもよい。芯材51の種類によっては内包材52を不要としてもよい。   Outgassing is reduced by using a laminate of inorganic fiber material for the core material 51, which is advantageous in terms of heat insulation performance, but is not particularly limited thereto, for example, other than ceramic fiber, rock wool, glass wool, etc. Inorganic fibers such as glass fibers may be used. Depending on the type of the core material 51, the inner packaging material 52 may be unnecessary.

また、芯材51については、無機系繊維材料の他に、有機系樹脂繊維材料を用いることができる。有機系樹脂繊維の場合、耐熱温度等をクリヤーしていれば特に使用に際しては制約されるものではない。具体的には、ポリスチレンやポリエチレンテレフタレート、ポリプロピレン等をメルトブローン法やスパンボンド法等で1〜30μm程度の繊維径になるように繊維化するのが一般的であるが、繊維化できる有機系樹脂や繊維化方法であれば特に問うものではない。   Moreover, about the core material 51, an organic resin fiber material other than an inorganic fiber material can be used. In the case of organic resin fibers, there are no particular restrictions on use as long as the heat resistant temperature is cleared. Specifically, it is common to fiberize polystyrene, polyethylene terephthalate, polypropylene, etc. to a fiber diameter of about 1 to 30 μm by a melt blown method or a spunbond method, If it is a fiberization method, it will not ask in particular.

外被材53のラミネート構成についてはガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面保護層、ガスバリヤ層1、ガスバリヤ層2、熱溶着層の4層構成からなるラミネートフィルムとし、表面保護層は保護材の役割を持つ樹脂フィルムとし、ガスバリヤ層1は樹脂フィルムに金属蒸着層を設け、ガスバリヤ層2は酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、ガスバリヤ層1とガスバリヤ層2は金属蒸着層同士が向かい合うように貼り合わせている。熱溶着層については表面保護層と同様に吸湿性の低いフィルムを用いた。   The laminate structure of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In the present embodiment, the surface protective layer, the gas barrier layer 1, the gas barrier layer 2, and the heat welded layer are used. The surface protective layer is a resin film having a role of a protective material, the gas barrier layer 1 is provided with a metal vapor deposition layer on the resin film, and the gas barrier layer 2 is formed on the resin film having a high oxygen barrier property. A vapor deposition layer is provided, and the gas barrier layer 1 and the gas barrier layer 2 are bonded so that the metal vapor deposition layers face each other. As the heat-welding layer, a film having low hygroscopicity was used as in the surface protective layer.

具体的には、表面保護層を二軸延伸タイプのポリプロピレン、ポリアミド、ポリエチレンテレフタレート等の各フィルム、ガスバリヤ層1をアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルム、ガスバリヤ層2をアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン、ポリプロピレン等の各フィルムとした。   Specifically, the surface protective layer is a biaxially stretched film of polypropylene, polyamide, polyethylene terephthalate, etc., the gas barrier layer 1 is a biaxially stretched polyethylene terephthalate film with aluminum vapor deposition, and the gas barrier layer 2 is biaxial with aluminum vapor deposition. A stretched ethylene vinyl alcohol copolymer resin film, a biaxially stretched polyvinyl alcohol resin film with aluminum vapor deposition, or an aluminum foil was used, and the heat-welded layer was a film of unstretched polyethylene, polypropylene, or the like.

上述した4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。例えばガスバリヤ層1及び2として、金属箔、或いは樹脂系のフィルムに無機層状化合物、ポリアクリル酸等の樹脂系ガスバリヤコート材、DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。表面保護層についてはガスバリヤ層1の保護材であるが、真空断熱材の製造工程における真空排気効率を良くするためにも、好ましくは吸湿性の低い樹脂を配置するのが良い。また、通常ガスバリヤ層2に使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。   The layer configuration and materials of the above-described four-layer laminate film are not particularly limited to these. For example, as the gas barrier layers 1 and 2, a metal foil or a resin film provided with a gas barrier film made of an inorganic layered compound, a resin gas barrier coating material such as polyacrylic acid, DLC (diamond-like carbon), or the like is thermally welded. For example, a polybutylene terephthalate film having a high oxygen barrier property may be used for the layer. The surface protective layer is a protective material for the gas barrier layer 1, but in order to improve the vacuum exhaust efficiency in the manufacturing process of the vacuum heat insulating material, it is preferable to dispose a resin having a low hygroscopic property. Further, since the resin-based film other than the metal foil normally used for the gas barrier layer 2 deteriorates the gas barrier property by absorbing moisture, the gas barrier property can be obtained by arranging a resin having a low hygroscopic property for the heat-welded layer. This suppresses the moisture absorption of the entire laminate film.

これにより、先に述べた真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながっている。尚、各フィルムのラミネート(貼り合せ)は、二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法には特にこれに限定するものではなく、ウェットラミネート法、サーマルラミネート法等の他の方法によるものでも何ら構わない。   As a result, even in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought into the jacket material 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved, leading to higher performance of heat insulation performance. . In addition, the lamination (bonding) of each film is generally performed by a dry lamination method through a two-component curable urethane adhesive, but the type of adhesive and the bonding method are particularly limited to this. It is not necessary to use any other method such as a wet laminating method or a thermal laminating method.

また、内包材52については本実施形態では熱溶着可能なポリエチレンフィルム、吸着剤54については物理吸着タイプの合成ゼオライトを用いたが、いずれもこれらの材料に限定するものではない。内包材52についてはポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであれば良く、吸着剤54については水分やガスを吸着するもので、物理吸着、化学反応型吸着のどちらでも良い。   Further, in the present embodiment, the encapsulating material 52 is a polyethylene film that can be thermally welded, and the adsorbent 54 is a physical adsorption type synthetic zeolite, but these are not limited to these materials. The inner packaging material 52 may be a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film or the like that has low hygroscopicity and can be thermally welded and has little outgas, and the adsorbent 54 adsorbs moisture and gas. Either adsorption or chemical reaction type adsorption may be used.

「実施例」
次に、本発明の実施形態に係る真空断熱材の実施例について、図4を参照しながら説明する。本実施例を説明する前に、まず、背景技術として特許文献1に開示した従来例を図7を用いて説明する。従来例では、図3に示すような真空断熱材50の4つの角部に形成された折曲部55による凸形状によって、作業者の取り扱い危険性や他の真空断熱材の外被材を傷付けるおそれを考慮して、真空断熱材101の角部102をホットメルト系接着剤103で覆う構成を採用していた。しかしながら、ホットメルト系接着剤103を用いた真空断熱材を保管する場合に、重ねて保管する他の真空断熱材や保管用棚等に接触すると接着し作業性が悪化してしまうという課題があった。
"Example"
Next, an example of the vacuum heat insulating material according to the embodiment of the present invention will be described with reference to FIG. Before describing this embodiment, first, a conventional example disclosed in Patent Document 1 will be described as background art with reference to FIG. In the conventional example, the convex shape formed by the bent portions 55 formed at the four corners of the vacuum heat insulating material 50 as shown in FIG. 3 damages the handling risk of the operator and other vacuum heat insulating materials. In consideration of the fear, the configuration in which the corner portion 102 of the vacuum heat insulating material 101 is covered with the hot-melt adhesive 103 has been adopted. However, when storing the vacuum heat insulating material using the hot-melt adhesive 103, there is a problem that the workability deteriorates if it is in contact with other vacuum heat insulating materials or storage shelves that are stored in layers. It was.

そこで、本発明の実施形態に係る真空断熱材の実施例では、上述した従来例の課題を解決するとともに、さらに、真空断熱材の有効断熱面積を拡大することを意図した構成を採用するものであり、図4を用いて以下説明する。   Therefore, in the example of the vacuum heat insulating material according to the embodiment of the present invention, a configuration intended to solve the above-described problems of the conventional example and further expand the effective heat insulating area of the vacuum heat insulating material is adopted. There will be described below with reference to FIG.

図4(1)は真空断熱材50の4つの外周縁60をウレタンフォームで覆った構成を示す図であり、図4(2)は、図4(1)に示すC−C線で切断した切断端面を示す図である。図4において、50は真空断熱材、58はウレタンフォームで覆った真空断熱材、60は真空断熱材の外周縁、61は真空断熱材の角部、62はウレタンフォーム、63は真空断熱材の表面、64は真空断熱材の裏面、をそれぞれ表す。   4 (1) is a view showing a configuration in which four outer peripheral edges 60 of the vacuum heat insulating material 50 are covered with urethane foam, and FIG. 4 (2) is cut along a CC line shown in FIG. 4 (1). It is a figure which shows a cutting | disconnection end surface. In FIG. 4, 50 is a vacuum heat insulating material, 58 is a vacuum heat insulating material covered with urethane foam, 60 is an outer periphery of the vacuum heat insulating material, 61 is a corner of the vacuum heat insulating material, 62 is urethane foam, and 63 is a vacuum heat insulating material. The front surface 64 represents the back surface of the vacuum heat insulating material.

図3と図4に示すように、真空断熱材50は、その表面63と裏面64をもつ薄型の平板形状を呈するものである(図2に示す真空断熱材50b,50cの形状を参照)。また、冷蔵庫への適用部位によっては平板形状のみに限らず、図2に示す50a,50dのように、屈曲形状をもつ平板形状であってもよい。   As shown in FIGS. 3 and 4, the vacuum heat insulating material 50 has a thin flat plate shape having a front surface 63 and a back surface 64 (see the shapes of the vacuum heat insulating materials 50b and 50c shown in FIG. 2). Moreover, depending on the application site | part to a refrigerator, not only a flat plate shape but flat plate shape with a bending shape like 50a, 50d shown in FIG. 2 may be sufficient.

図4に示す真空断熱材の実施例は、発泡金型を使用して真空断熱材の外周縁廻りをウレタン発泡することによって、4つの角部61に限らず4つの外周縁60について、ウレタンフォーム62で覆った構造である。この際、金型の形状と寸法を変えることで、ウレタンフォームの覆う厚さを外周縁60と角部61の箇所、部位に応じて自在に可変させることができる。図4に示すように、ウレタンフォーム62は真空断熱材50の4つの外周縁60のみならず、真空断熱材50の表面63及び裏面64の一部にも覆っているので、ウレタンフォーム62が真空断熱材50から離脱することはない。   The embodiment of the vacuum heat insulating material shown in FIG. 4 is not limited to the four corners 61 but by urethane foaming around the outer peripheral edge of the vacuum heat insulating material by using a foaming mold. The structure is covered with 62. At this time, by changing the shape and dimensions of the mold, the thickness covered by the urethane foam can be freely changed according to the location and part of the outer peripheral edge 60 and the corner 61. As shown in FIG. 4, the urethane foam 62 covers not only the four outer peripheral edges 60 of the vacuum heat insulating material 50 but also a part of the front surface 63 and the back surface 64 of the vacuum heat insulating material 50, so that the urethane foam 62 is in a vacuum state. There is no separation from the heat insulating material 50.

以上の説明では、真空断熱材50が四角形形状を対象としたが、この形状に限らず、五角形又は六角形を含む多角形形状の真空断熱材であっても当然に適用可能である。また、多角形のすべての外周縁と角部をウレタンフォームで覆う構成例に限らず、一部の外周縁と角部にはウレタンフォームで覆わない構成例であってもよい。   In the above description, the vacuum heat insulating material 50 is a rectangular shape, but the present invention is not limited to this shape, and may naturally be applied to a polygonal vacuum heat insulating material including a pentagon or a hexagon. Further, the configuration example is not limited to a configuration in which all the outer peripheral edges and corners of the polygon are covered with urethane foam, but may be a configuration example in which some outer peripheral edges and corner portions are not covered with urethane foam.

次に、本発明の実施形態に係る真空断熱材の他の実施例について、図5を参照しながら説明する。図5(1)は真空断熱材60の4つの外周縁60、表面63及び裏面64をウレタンフォーム62で覆い、箱体に沿わせた放熱パイプ90用の溝部65をウレタンフォーム62に形成した構成を示す図であり、図5(2)は、図5(1)に示す全面ウレタンフォームで覆った真空断熱材の断面図である。図5において、50は真空断熱材、58はウレタンフォームで覆った真空断熱材、60は真空断熱材の外周縁、61は真空断熱材の角部、62はウレタンフォーム、63は真空断熱材の表面、64は真空断熱材の裏面、をそれぞれ表す。   Next, another example of the vacuum heat insulating material according to the embodiment of the present invention will be described with reference to FIG. FIG. 5A shows a configuration in which the four outer peripheral edges 60, the front surface 63, and the back surface 64 of the vacuum heat insulating material 60 are covered with urethane foam 62, and the groove 65 for the heat radiating pipe 90 is formed in the urethane foam 62 along the box. FIG. 5 (2) is a cross-sectional view of the vacuum heat insulating material covered with the entire surface urethane foam shown in FIG. 5 (1). In FIG. 5, 50 is a vacuum heat insulating material, 58 is a vacuum heat insulating material covered with urethane foam, 60 is an outer peripheral edge of the vacuum heat insulating material, 61 is a corner of the vacuum heat insulating material, 62 is urethane foam, and 63 is a vacuum heat insulating material. The front surface 64 represents the back surface of the vacuum heat insulating material.

図5に示す他の実施例においては、真空断熱材50の全面をウレタンフォーム62で覆うため、真空断熱材としての断熱性能に関する信頼性はさらに向上し、作業者の取り扱い危険性や他の真空断熱材の外被材を傷付ける可能性を低減することができる。発泡金型を使用してウレタン発泡することで真空断熱材50の全面を覆うことができる。ウレタンフォームの厚さは発泡金型のサイズを変更することで加減することができる。   In another embodiment shown in FIG. 5, since the entire surface of the vacuum heat insulating material 50 is covered with the urethane foam 62, the reliability regarding the heat insulating performance as the vacuum heat insulating material is further improved. The possibility of damaging the jacket material of the heat insulating material can be reduced. The entire surface of the vacuum heat insulating material 50 can be covered by foaming urethane using a foaming mold. The thickness of the urethane foam can be adjusted by changing the size of the foam mold.

また、薄型の平板形状の真空断熱材は、薄型形状を上下に重ねるようにして積み重ねて保管していたが、全面が覆われているため薄型形状を縦にし垂直状態として水平配列で保管することが可能となり、僅かなスペースでも保管スペースとして有効に使用することが可能となる。   In addition, thin flat vacuum heat insulating materials were stacked and stored so that the thin shapes were stacked one above the other. However, since the entire surface is covered, the thin shapes should be stored vertically and vertically in a horizontal arrangement. Thus, even a small space can be used effectively as a storage space.

次に、本発明の実施形態に係る真空断熱材の更に他の実施例について説明する。当該実施例については図示していないが、図7に示すように真空断熱材の4つの角部をスプレー式のウレタンフォームを使用して覆う構造である。このスプレー式を使用すると、短い作業時間で確実に角部を保護することが可能であり、さらに、真空断熱材を扱う作業者の取り扱い危険性又は他の真空断熱材の外被材傷付性を低減できるため、信頼性を向上させることができる。この実施例では、4つの角部のそれぞれは当該角部を含めて真空断熱材の表面及び裏面の一部にもウレタンフォームが覆うのでウレタンフォームが真空断熱材から離脱する可能性は少ない。さらに、外被材の隣接する辺を折り曲げた折曲部の間には互いに隙間が生じているので、この隙間にスプレー式ウレタンフォームが入り込むことによってウレタンフォームの離脱が一層避けられることとなる。   Next, still another example of the vacuum heat insulating material according to the embodiment of the present invention will be described. Although not shown in the drawing, this embodiment has a structure in which the four corners of the vacuum heat insulating material are covered with spray type urethane foam as shown in FIG. Using this spray type, it is possible to reliably protect the corners in a short working time, and furthermore, handling hazards for workers handling vacuum insulation materials or damage to the outer cover material of other vacuum insulation materials Therefore, reliability can be improved. In this embodiment, each of the four corners includes the corner and the urethane foam covers part of the front and back surfaces of the vacuum heat insulating material, so that the urethane foam is less likely to be detached from the vacuum heat insulating material. Furthermore, since a gap is formed between the bent portions where adjacent sides of the jacket material are bent, separation of the urethane foam is further avoided by the spray type urethane foam entering the gap.

次に、本実施形態に係る真空断熱材の他の実施例における冷蔵庫への取付及び配置について、図6を参照しながら以下説明する。図6において、21bは冷蔵庫の背面板、21eは冷蔵庫の側面板、23は断熱材、50は真空断熱材、62はウレタンフォーム、65はウレタンフォーム溝部、66は外箱曲げ部、90は放熱パイプ、91はアルミテープ、をそれぞれ表す。   Next, attachment to the refrigerator and arrangement in another example of the vacuum heat insulating material according to the present embodiment will be described below with reference to FIG. In FIG. 6, 21b is a refrigerator back plate, 21e is a refrigerator side plate, 23 is a heat insulating material, 50 is a heat insulating material, 50 is a vacuum heat insulating material, 62 is a urethane foam, 65 is a urethane foam groove, 66 is an outer box bending portion, and 90 is heat dissipation. A pipe 91 represents an aluminum tape.

図6(1)は真空断熱材50を冷蔵庫側面板に取り付けた配置構造を示し、図6(2)はその取付手順を示す図である。外箱21の側面板21eの内面側に放熱パイプ90を配置するため、例えばアルミテープ91を用いて外箱21に固定している。また、側面板21eの端部には、内箱22を配置するための外箱曲げ部66が設けられている。ウレタンフォーム62には放熱パイプ90を配置するための溝部65が形成されていることにより、真空断熱材50に放熱パイプ90を配置するための溝(図3に示す溝50mを参照)を形成しなくてもよいため、真空断熱材の断熱性能は向上する。   FIG. 6 (1) shows an arrangement structure in which the vacuum heat insulating material 50 is attached to the refrigerator side plate, and FIG. 6 (2) is a diagram showing the attachment procedure. In order to arrange the heat radiating pipe 90 on the inner surface side of the side plate 21 e of the outer box 21, the outer box 21 is fixed to the outer box 21 using, for example, an aluminum tape 91. Moreover, the outer box bending part 66 for arrange | positioning the inner box 22 is provided in the edge part of the side plate 21e. The urethane foam 62 is provided with a groove portion 65 for disposing the heat radiating pipe 90, thereby forming a groove (see the groove 50 m shown in FIG. 3) for disposing the heat radiating pipe 90 in the vacuum heat insulating material 50. Since it is not necessary, the heat insulation performance of the vacuum heat insulating material is improved.

図6(2)において、外箱21の側面板21eには、内箱22を配置するための外箱曲げ部66が設けられているが、外箱21の側面板21e及び外箱曲げ部66は鉄製であるため、ウレタンフォームで覆われていない従来の真空断熱材を配置するためには、真空断熱材と外箱曲げ部66との接触による真空のリークを防止するため、真空断熱材と外箱曲げ部66との間には一定の隙間(クリアランス)を設ける必要であったが、真空断熱材50の全面をウレタンフォームで覆うことにより、その外周縁ウレタンフォームを外箱曲げ部66に突当てて、ウレタンフォームで覆った真空断熱材58を配置することで、クリアランスとして必要であった寸法分の大部分を真空断熱材の拡大化に充当できるため、断熱性能を向上させることが可能となる。   In FIG. 6 (2), the side plate 21 e of the outer box 21 is provided with an outer box bending portion 66 for arranging the inner box 22, but the side plate 21 e and the outer box bending portion 66 of the outer box 21 are provided. Is made of iron, and in order to arrange a conventional vacuum heat insulating material not covered with urethane foam, in order to prevent vacuum leakage due to contact between the vacuum heat insulating material and the outer box bending portion 66, Although it was necessary to provide a certain clearance (clearance) between the outer box bending portion 66 and the entire surface of the vacuum heat insulating material 50 was covered with urethane foam, the outer peripheral urethane foam was formed on the outer box bending portion 66. By placing the vacuum insulation 58 that is abutted and covered with urethane foam, the majority of the dimensions required for the clearance can be used for the expansion of the vacuum insulation, thus improving the insulation performance. When That.

すなわち、ウレタンフォームで覆われていない真空断熱材50と外箱曲げ部66とのクリアランスが従来例えば10mm必要としていた場合、ウレタンフォームで覆われた真空断熱材58を図6(2)に示すように取り付けると、ウレタンフォームを直接に外箱曲げ部66に当接してもよいので(真空断熱材自体50の当接可能性はないので)、ウレタンフォームの厚さを3mmとすると、真空断熱材自体は外箱曲げ部66から3mm離れて配置されることとなり、図6の左端で従来例と比べて7mmだけ真空断熱材を大きくすることができ、真空断熱材50の有効断熱面積を拡大することができる。図6の右端でも同様なことが云える。このように、ウレタンフォームの厚さを変えることによって真空断熱材の有効熱断面積を拡大することができる。   That is, when the clearance between the vacuum heat insulating material 50 that is not covered with urethane foam and the outer box bending portion 66 has conventionally been required, for example, 10 mm, the vacuum heat insulating material 58 covered with urethane foam is shown in FIG. Since the urethane foam may be directly contacted to the outer box bending portion 66 when it is attached to (there is no possibility of contact of the vacuum heat insulating material 50 itself), if the thickness of the urethane foam is 3 mm, the vacuum heat insulating material As such, the vacuum heat insulating material can be enlarged by 7 mm at the left end of FIG. 6 compared to the conventional example at the left end of FIG. 6, and the effective heat insulating area of the vacuum heat insulating material 50 can be expanded. be able to. The same applies to the right end of FIG. Thus, the effective heat cross-sectional area of a vacuum heat insulating material can be expanded by changing the thickness of urethane foam.

以上のように、本発明の実施例は、真空断熱材50の少なくとも外周縁がウレタンフォームで覆われていることで、真空断熱材の取り扱い性及び信頼性を向上させ、更に有効断熱面積を拡大し、断熱性能を向上させることができる。なお、本発明は上述した実施例に限定されるものではなく、本発明の技術思想の範囲内において様々な変形例が含まれるものである。   As described above, in the embodiment of the present invention, at least the outer peripheral edge of the vacuum heat insulating material 50 is covered with urethane foam, thereby improving the handling and reliability of the vacuum heat insulating material and further expanding the effective heat insulating area. And heat insulation performance can be improved. The present invention is not limited to the above-described embodiments, and various modifications are included within the scope of the technical idea of the present invention.

1…冷蔵庫、2…冷蔵室、3a…製氷室、3b…上段冷凍室、4…下段冷凍室、5…野菜室、6a…冷蔵室扉、6b…冷蔵室扉、7a…製氷室扉、7b…上段冷凍室扉、8…下段冷凍室扉、9…野菜室扉、10…扉用ヒンジ、11…パッキン、12,14…仕切断熱壁、13…仕切り部材、
20…箱体、21…外箱、21a…天板、21b…背面板、21d…底板、21e…側面板、21f…前面、22…内箱、23…断熱材、27…送風機、28…冷却器、30…圧縮機、31…凝縮機、33…発泡ポリスチレン、40…凹部、41…電気部品、42…カバー、
50,50a〜50d…真空断熱材、50m…真空断熱材溝部、51…芯材、52…内包材、53…外被材、54…吸着剤、55…折曲部、58…ウレタンフォームで覆った真空断熱材、60…外周縁、61…角部、62…ウレタンフォーム、63…表面、64…裏面、65…ウレタンフォーム溝部、66…外箱曲げ部、90…放熱パイプ、91…アルミテープ、101…真空断熱材、102…角部、103…ホットメルト系接着剤
DESCRIPTION OF SYMBOLS 1 ... Refrigerator, 2 ... Refrigeration room, 3a ... Ice making room, 3b ... Upper stage freezing room, 4 ... Lower stage freezing room, 5 ... Vegetable room, 6a ... Refrigeration room door, 6b ... Refrigeration room door, 7a ... Ice making room door, 7b ... upper freezer compartment door, 8 ... lower freezer compartment door, 9 ... vegetable compartment door, 10 ... door hinge, 11 ... packing, 12, 14 ... partition insulation wall, 13 ... partition member,
DESCRIPTION OF SYMBOLS 20 ... Box body, 21 ... Outer box, 21a ... Top plate, 21b ... Back plate, 21d ... Bottom plate, 21e ... Side plate, 21f ... Front surface, 22 ... Inner box, 23 ... Heat insulation material, 27 ... Blower, 28 ... Cooling 30 ... Compressor, 31 ... Condenser, 33 ... Polystyrene, 40 ... Recess, 41 ... Electrical component, 42 ... Cover,
50, 50a-50d ... Vacuum heat insulating material, 50m ... Vacuum heat insulating material groove part, 51 ... Core material, 52 ... Inner packaging material, 53 ... Coating material, 54 ... Adsorbent, 55 ... Bent part, 58 ... Cover with urethane foam 60 ... outer peripheral edge, 61 ... corner, 62 ... urethane foam, 63 ... front surface, 64 ... back surface, 65 ... urethane foam groove, 66 ... outer box bent portion, 90 ... heat radiating pipe, 91 ... aluminum tape DESCRIPTION OF SYMBOLS 101 ... Vacuum heat insulating material 102 ... Corner | angular part 103 ... Hot-melt-type adhesive agent

Claims (5)

四角形状を含む多角形状の芯材と、前記芯材を包む四角形状を含む多角形状のフィルム状の外被材と、を備える真空断熱材であって、
前記多角形状の外被材の外周縁がウレタンフォームで覆われていることを特徴とする真空断熱材。
A vacuum heat insulating material comprising a polygonal core material including a quadrangular shape, and a polygonal film-shaped envelope material including a quadrangular shape surrounding the core material,
A vacuum heat insulating material, wherein an outer peripheral edge of the polygonal outer covering material is covered with urethane foam.
四角形状を含む多角形状の芯材と、前記芯材を包む四角形状を含む多角形状のフィルム状の外被材と、を備える真空断熱材であって、
前記多角形状の外被材の外周縁、角部、表面及び裏面の全面がウレタンフォームで覆われていることを特徴とする真空断熱材。
A vacuum heat insulating material comprising a polygonal core material including a quadrangular shape, and a polygonal film-shaped envelope material including a quadrangular shape surrounding the core material,
A vacuum heat insulating material, characterized in that the outer peripheral edge, corners, front and back surfaces of the polygonal outer cover material are entirely covered with urethane foam.
請求項2において、
冷凍サイクルで使用される放熱パイプを通すための凹部を前記ウレタンフォームの前記表面又は裏面に形成することを特徴とする真空断熱材。
In claim 2,
The vacuum heat insulating material characterized by forming the recessed part for letting the heat radiating pipe used by a refrigerating cycle pass in the said surface or the back surface of the said urethane foam.
請求項1、2または3において、
前記ウレタンフォームは発泡金型を使用しウレタン発泡したものであり、前記発泡金型のサイズによって前記ウレタンフォームの厚さを可変することを特徴とする真空断熱材。
In claim 1, 2 or 3,
The urethane foam is urethane foamed using a foaming mold, and the thickness of the urethane foam is variable depending on the size of the foaming mold.
請求項1乃至4のいずれか1つの請求項に記載された真空断熱材が外箱と内箱によって形成される空間内に配設された断熱機器。   The heat insulation apparatus with which the vacuum heat insulating material as described in any one of Claims 1 thru | or 4 was arrange | positioned in the space formed of an outer box and an inner box.
JP2011193853A 2011-09-06 2011-09-06 Vacuum heat insulating material and heat insulating apparatus using the same Withdrawn JP2013053722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011193853A JP2013053722A (en) 2011-09-06 2011-09-06 Vacuum heat insulating material and heat insulating apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193853A JP2013053722A (en) 2011-09-06 2011-09-06 Vacuum heat insulating material and heat insulating apparatus using the same

Publications (1)

Publication Number Publication Date
JP2013053722A true JP2013053722A (en) 2013-03-21

Family

ID=48130893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193853A Withdrawn JP2013053722A (en) 2011-09-06 2011-09-06 Vacuum heat insulating material and heat insulating apparatus using the same

Country Status (1)

Country Link
JP (1) JP2013053722A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055369A (en) * 2013-09-10 2015-03-23 日立アプライアンス株式会社 Vacuum heat insulation material and cold/hot thermal equipment
JP2016038168A (en) * 2014-08-08 2016-03-22 日立アプライアンス株式会社 Heat insulation material and refrigerator
WO2016143781A1 (en) * 2015-03-10 2016-09-15 株式会社 東芝 Vacuum insulated panel, core material, and refrigerator
EP3315882A4 (en) * 2015-06-29 2018-06-20 Panasonic Intellectual Property Management Co., Ltd. Refrigerator
JP2020012523A (en) * 2018-07-19 2020-01-23 日立グローバルライフソリューションズ株式会社 Vacuum heat insulation material and refrigerator using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055369A (en) * 2013-09-10 2015-03-23 日立アプライアンス株式会社 Vacuum heat insulation material and cold/hot thermal equipment
JP2016038168A (en) * 2014-08-08 2016-03-22 日立アプライアンス株式会社 Heat insulation material and refrigerator
WO2016143781A1 (en) * 2015-03-10 2016-09-15 株式会社 東芝 Vacuum insulated panel, core material, and refrigerator
EP3315882A4 (en) * 2015-06-29 2018-06-20 Panasonic Intellectual Property Management Co., Ltd. Refrigerator
JP2020012523A (en) * 2018-07-19 2020-01-23 日立グローバルライフソリューションズ株式会社 Vacuum heat insulation material and refrigerator using the same

Similar Documents

Publication Publication Date Title
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
KR100980175B1 (en) Refrigerator
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP2012026493A (en) Vacuum heat insulating material, and refrigerator using the same
JP2009024922A (en) Refrigerator
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP2012063029A (en) Vacuum heat insulating material and refrigerator using the same
JP2001165557A (en) Refrigerator
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2010276308A (en) Refrigerator having vacuum heat insulating material
JP5455673B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP2016080281A (en) Heat insulation box body and heat insulation door
JP2009024921A (en) Refrigerator
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP5401258B2 (en) refrigerator
JP2013024440A (en) Refrigerator
JP2012026583A (en) Refrigerator
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP2015055368A (en) Vacuum heat insulation material and refrigerator using the same
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2012229849A (en) Refrigerator and freezer
JP2012026622A (en) Vacuum heat insulation material and refrigerator using the same
JP6000922B2 (en) Vacuum heat insulating material and cooling / heating equipment using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202