JP2010276308A - Refrigerator having vacuum heat insulating material - Google Patents

Refrigerator having vacuum heat insulating material Download PDF

Info

Publication number
JP2010276308A
JP2010276308A JP2009131215A JP2009131215A JP2010276308A JP 2010276308 A JP2010276308 A JP 2010276308A JP 2009131215 A JP2009131215 A JP 2009131215A JP 2009131215 A JP2009131215 A JP 2009131215A JP 2010276308 A JP2010276308 A JP 2010276308A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
outer box
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009131215A
Other languages
Japanese (ja)
Inventor
Hisashi Echigoya
恒 越後屋
Kuninari Araki
邦成 荒木
Takashi Izeki
崇 井関
Yushi Arai
祐志 新井
Toshimitsu Tsuruga
俊光 鶴賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009131215A priority Critical patent/JP2010276308A/en
Publication of JP2010276308A publication Critical patent/JP2010276308A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an influence of a heat bridge of a jacketing material of a vacuum heat insulating material, and to suppress a thermal influence by a radiation pipe by disposing the vacuum heat insulating material in a state of being separated from an outer box and an inner box at the entire length of at least two side sections observed from its thin thickness direction, and securing a constant distance to the radiation pipe disposed on an inner face of the outer box. <P>SOLUTION: In the refrigerator having the outer box 21, the inner box, the radiation pipe 90 disposed on the inner face of the outer box, and urethane foam and the vacuum heat insulating material 50 disposed between the outer box and the inner box, the vacuum heat insulating material 50 has the roughly-rectangular shape composed of a pair of short sides and a pair of long sides when observed from its thin thickness direction, the entire length part of one of the pair of sides and a partial length part of the other pair of sides have bent shapes disposed in a state of being separated from the outer box and the inner box, the bent part is bonded and fixed to the outer box 21, and a part of the vacuum heat insulating material disposed in a separating state keeps a constant distance from the radiation pipe 90 disposed on the inner face of the outer box 21. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、真空断熱材を適用した冷蔵庫に関するものである。   The present invention relates to a refrigerator to which a vacuum heat insulating material is applied.

近年、地球温暖化防止等の地球環境保護の観点から、冷蔵庫においても省エネルギー化が求められている。また、最近の社会背景として、共働き化や核家族化の傾向にあるため、週末の休みを利用して食材を纏め買いする家庭が増えていること等から、冷蔵庫の大容量化ニーズは年々高まっている。従来から冷蔵庫は、省エネルギー化のため、冷蔵庫筐体の断熱材である硬質ウレタンフォームに真空断熱材を併用して断熱性能を大幅に向上させた製品が発売されている。真空断熱材は硬質ウレタンフォームの10倍以上の断熱性能を有するものである。   In recent years, from the viewpoint of global environmental protection such as prevention of global warming, energy saving is also demanded for refrigerators. In addition, as the recent social background tends to work together and become a nuclear family, the need for large-capacity refrigerators has been increasing year by year due to an increase in the number of households that use weekend breaks to purchase ingredients. ing. Conventionally, in order to save energy, refrigerators have been put on the market in which the heat insulation performance is greatly improved by using a vacuum urethane heat insulating material together with a hard urethane foam as a heat insulating material for the refrigerator case. The vacuum heat insulating material has a heat insulating performance 10 times or more that of rigid urethane foam.

従来技術として、真空断熱材は一般的には作業性等を考慮して、例えば冷蔵庫筐体の外箱側の平坦な部分に配置される例が多いが、真空断熱材特有である外被材のヒートブリッジ影響によって本来の断熱性能を十分に発揮することができていない場合があった。また、外箱側には省エネ性を考慮して、放熱パイプ等の高温部品を設置する場合があるため、外被材のヒートブリッジを助長し、所定の効果が得られないことがあった。ここで、ヒートブリッジとは、熱伝導率の高い冷蔵庫外箱に設置された真空断熱材が、温度の高い外気から外箱を通し、さらに後述する図3に示す真空断熱材の外被材(例えばアルミ箔を材料とする)の端部に形成された折り曲げ部を介して、芯材を通ることなく硬質ウレタンフォームに橋絡する現象(逆に冷蔵庫内部から外気への流れでも同様)を云い、本発明の説明においても同様の意味で用いる。   As a conventional technique, vacuum insulating materials are generally arranged on a flat part on the outer box side of a refrigerator case, for example, in consideration of workability and the like. In some cases, the original heat insulation performance could not be sufficiently exhibited due to the heat bridge effect. In addition, high temperature parts such as a heat radiating pipe may be installed on the outer box side in consideration of energy saving, so that the heat bridge of the jacket material is promoted and a predetermined effect may not be obtained. Here, the heat bridge means that the vacuum heat insulating material installed in the refrigerator outer box having a high thermal conductivity passes through the outer box from the high temperature outside air, and further covers the outer covering material of the vacuum heat insulating material shown in FIG. This refers to the phenomenon of bridging hard urethane foam without passing through the core through the bent part formed at the end of the aluminum foil (for example, the flow from the inside of the refrigerator to the outside). The same meaning is used in the description of the present invention.

また、特許文献1に示される従来技術として、真空断熱材を両側面、天面、背面、底面及び前面の各面に配置し、外箱の表面積に対し真空断熱材の被覆率が50%を超え80%以下として省エネルギー効果を高め、外箱表面積が外気温度よりも高くなる面において真空断熱材を外箱と内箱の中間で硬質ウレタンフォーム内に埋設して真空断熱材の経時的な劣化を押さえようとする冷蔵庫の例が示されている。この特許文献1には、真空断熱材と内箱の間の空間上にウレタン注入口を配置することでウレタン注入時の流動を阻害しないものと記載されている。   Moreover, as a prior art shown by patent document 1, a vacuum heat insulating material is arrange | positioned on each surface of both sides | surfaces, a top surface, a back surface, a bottom surface, and a front surface, and the coverage of a vacuum heat insulating material is 50% with respect to the surface area of an outer box. Exceeding 80% or less to improve energy saving effect, vacuum insulation material is embedded in hard urethane foam between the outer box and inner box on the surface where the outer box surface area becomes higher than the outside air temperature, and the vacuum insulation material deteriorates over time The example of the refrigerator which is going to hold down is shown. In this patent document 1, it is described that the flow at the time of urethane injection is not hindered by disposing a urethane injection port on the space between the vacuum heat insulating material and the inner box.

また、特許文献2に示される従来技術として、外箱と内箱の間に外箱側に固定されたスペーサに支持された真空断熱材が、外箱と内箱に接しないように配置されるとともに、外箱と真空断熱材および内箱と真空断熱材との隙間に硬質ウレタンフォームが充填された冷蔵庫が示されている。このスペーサは、硬質ウレタンフォームの発泡方向に並列され、真空断熱材と外箱にそれぞれ接している底部と頂部を有しており、底部と外箱および頂部と真空断熱材の間に硬質ウレタンフォームが通過できる流路を設けた冷蔵庫が提案されている。また、この従来技術においては、外箱側に放熱パイプを配置する場合、放熱パイプがスペーサの頂部と頂部の間に位置しており、スペーサの底部すなわち真空断熱材には接触しないため、真空断熱材が放熱パイプの熱影響を受け難い構造とした冷蔵庫の例が示されている。   Moreover, as a prior art shown by patent document 2, the vacuum heat insulating material supported by the spacer fixed to the outer box side between an outer box and an inner box is arrange | positioned so that it may not contact an outer box and an inner box. In addition, a refrigerator is shown in which hard urethane foam is filled in the gap between the outer box and the vacuum heat insulating material and between the inner box and the vacuum heat insulating material. This spacer is arranged in parallel with the foaming direction of the rigid urethane foam, and has a bottom and a top that are in contact with the vacuum heat insulating material and the outer box, respectively, and the rigid urethane foam is located between the bottom and the outer box and between the top and the vacuum heat insulating material. There has been proposed a refrigerator provided with a flow path through which water can pass. In this prior art, when the heat radiating pipe is disposed on the outer box side, the heat radiating pipe is located between the top and the top of the spacer and does not contact the bottom of the spacer, that is, the vacuum heat insulating material. An example of a refrigerator in which the material is not easily affected by the heat of the heat radiating pipe is shown.

特開2003−14368号公報JP 2003-14368 A 特開2005−55086号公報JP-A-2005-55086

一般に真空断熱材の特性として、低温雰囲気中で使用した場合に比べ、高温雰囲気中で使用した場合は断熱性能が低下する傾向が見られる。特に放熱パイプ等の高温部品に接して使用した場合は、真空断熱材の断熱性能を低下させる虞があるのと、外被材のヒートブリッジ影響により、冷蔵庫の寿命年数を迎える前に断熱性能が著しく低下する可能性があった。また、大容量を実現するためには冷蔵庫箱体の断熱壁厚を薄くしなければならないため、その分断熱性能の向上が求められることになるので、真空断熱材の断熱性能を効果的に発揮できる使用方法が課題である。   In general, as a characteristic of a vacuum heat insulating material, when used in a high temperature atmosphere, the heat insulating performance tends to be lower than when used in a low temperature atmosphere. Especially when used in contact with high-temperature parts such as heat radiating pipes, there is a risk of reducing the heat insulation performance of the vacuum heat insulating material, and due to the heat bridge effect of the jacket material, the heat insulation performance is reduced before the lifetime of the refrigerator is reached. There was a possibility of a significant decrease. In addition, in order to realize a large capacity, the insulation wall thickness of the refrigerator box must be reduced, so that the improvement of the insulation performance is required accordingly, so that the insulation performance of the vacuum insulation material is effectively demonstrated. Possible usage is a challenge.

また、特許文献1に示される従来の冷蔵庫の構造では、外箱側に設けたウレタン製のスペーサにより真空断熱材を硬質ウレタンフォーム(発泡ウレタン)の中間位置になるように配置しているので外被材のヒートブリッジ影響を軽減できるが、真空断熱材の姿勢を安定化するため、数多くのスペーサを配置しなくてはならず、1個1個配置するため組み立て工数が増大する課題がある。また、スペーサが大きすぎると硬質ウレタンフォームの流れを阻害し、小さすぎると発泡圧に耐えることができないという課題もあった。   Moreover, in the structure of the conventional refrigerator shown by patent document 1, since the vacuum heat insulating material is arrange | positioned so that it may become the intermediate position of a rigid urethane foam (foaming urethane) with the urethane-made spacer provided in the outer case side, it is outside. Although the influence of the heat bridge of the workpiece can be reduced, in order to stabilize the posture of the vacuum heat insulating material, a large number of spacers must be arranged. In addition, if the spacer is too large, the flow of the rigid urethane foam is hindered, and if it is too small, there is a problem that it cannot withstand the foaming pressure.

また、ウレタンスペーサが外箱と真空断熱材の間にのみ設置されていることから、硬質ウレタンフォーム(発泡ウレタン)が発泡方向に立ち上がる際、流動抵抗等によって外箱と真空断熱材の間に多く流れた場合、発泡圧によって真空断熱材がスペーサから剥がされ、真空断熱材が内箱に接触すること等によってウレタンの未充填部(ボイド)を発生させることがあり、真空断熱材の断熱性能を十分に発揮できていなかった。   Also, since the urethane spacer is installed only between the outer box and the vacuum heat insulating material, when the rigid urethane foam (foamed urethane) rises in the foaming direction, there are many between the outer box and the vacuum heat insulating material due to flow resistance etc. When it flows, the vacuum insulation is peeled off from the spacer by the foaming pressure, and the vacuum insulation may come into contact with the inner box, etc., which may generate unfilled parts (voids) of urethane, which improves the insulation performance of the vacuum insulation. It was not able to fully demonstrate.

また、図14に示されるように、液状の硬質ウレタンフォーム(発泡ウレタン)を背面125の注入穴d6から注入する際、硬質ウレタンフォーム(発泡ウレタン)が真空断熱材130と内箱120に接触しないようにスペーサ124で空間d7を確保しているが、近年の大容量化に対応するためには、空間d7の確保は困難であると考えられる。   Further, as shown in FIG. 14, when liquid hard urethane foam (foamed urethane) is injected from the injection hole d <b> 6 of the back surface 125, the hard urethane foam (foamed urethane) does not contact the vacuum heat insulating material 130 and the inner box 120. As described above, the space d7 is secured by the spacer 124, but it is considered difficult to secure the space d7 in order to cope with the recent increase in capacity.

また、特許文献2に示される従来の冷蔵庫は、真空断熱材と外箱の間に設置されたスペーサが、その底部を真空断熱材に接着され、さらに外箱に接着された頂部が互い違いになった略波形状を形成しており、そのスペーサを発泡方向に並列するように設けているため、真空断熱材と外箱の間にも発泡ウレタンが充填されやすいという利点はあるが、波形状の頂部と外箱の接着面が分割された矩形面であるため、接着面積が十分に取れず、特許文献1と同様に外箱側のみに設置されていることから、例えば外箱と真空断熱材の間の発泡ウレタンが早く立ち上がった場合等、発泡ウレタンの発泡圧によって真空断熱材が剥がされて内箱に接触する等、未充填部(ボイド)を発生させてしまうことがあった。   Moreover, the conventional refrigerator shown by patent document 2 has the spacer installed between the vacuum heat insulating material and an outer box, the bottom part adhere | attached on a vacuum heat insulating material, and the top part further adhere | attached on the outer box became alternate. However, there is an advantage that the urethane foam is easily filled between the vacuum heat insulating material and the outer box. Since the adhesive surface of the top portion and the outer box is a divided rectangular surface, the adhesive area is not sufficient and is installed only on the outer box side as in Patent Document 1, for example, the outer box and the vacuum heat insulating material. When the urethane foam rises quickly, the vacuum heat insulating material may be peeled off by the foaming pressure of the foamed urethane and may come into contact with the inner box, which may cause an unfilled portion (void).

また、特許文献2の場合、断熱性能をより高くするために真空断熱材の面積を大きくした場合、発泡ウレタン注入口の投影面内に真空断熱材が位置することが考えられ、この場合,発泡ウレタン注入時に発泡ウレタンの流路を阻害することになるため、発泡ウレタンの未充填部(ボイド)の発生割合が高くなるという課題がある。また、真空断熱材を外箱に配置する際に、接着を安定させるために押付けるが、スペーサの接着面が島状の矩形面であるため、外箱表面に凹凸形状が現れてしまい、外観上の課題があった。   In the case of Patent Document 2, when the area of the vacuum heat insulating material is increased in order to further improve the heat insulating performance, it is considered that the vacuum heat insulating material is located in the projection plane of the urethane foam injection port. Since the urethane urethane flow path is obstructed at the time of urethane injection, there is a problem that the generation ratio of the unfilled portion (void) of the urethane foam is increased. In addition, when placing the vacuum heat insulating material on the outer box, it is pressed to stabilize the adhesion, but since the bonding surface of the spacer is an island-shaped rectangular surface, an uneven shape appears on the outer box surface, and the appearance There was the above problem.

本発明は、略矩形形状(正方形形状でも構わない)真空断熱材に対して、その薄厚方向からみて少なくとも2辺部の全長が外箱と内箱から離隔した状態で設置し、その離隔した状態を外箱に接着固定した支持部材で支持することで外箱内面に配設された放熱パイプと一定の距離を確保することで、真空断熱材の外被材のヒートブリッジ影響を低減し、放熱パイプによる熱影響を抑制する冷蔵庫を提供することを主たる目的とする。   The present invention is installed in a state of being separated from the outer box and the inner box with respect to the substantially rectangular shape (which may be a square shape) vacuum heat insulating material in the state where the total length of at least two sides is separated from the outer box and the inner box. Is supported by a support member that is bonded and fixed to the outer box, ensuring a certain distance from the heat radiating pipe disposed on the inner surface of the outer box, reducing the heat bridge effect of the jacket material of the vacuum heat insulating material, and radiating heat The main purpose is to provide a refrigerator that suppresses the thermal effects of pipes.

上述した課題を解決するために、本発明は次のような構成を採用する。
背面と両側面と天面をもつ外箱と、前記外箱に対面する内箱と、前記外箱の両側面の内面に配置された放熱パイプと、前記外箱と前記内箱の間に設置された発泡ウレタン及び真空断熱材と、を備えた冷蔵庫において、前記外箱の背面に前記発泡ウレタンを注入する注入口を設け、前記真空断熱材は、その薄厚方向からみて一対の短辺部と一対の長辺部とからなる略矩形形状であり、いずれか一方の一対の辺部の全長部分と他方の一対の辺部の一部長部分は、前記外箱と前記内箱から離隔した離隔状態で設置される構成とする。さらに、前記離隔状態で設置される前記真空断熱材の部分は、前記外箱に接着固定された支持部材により支持される構成とする。さらに、前記真空断熱材は、前記他方の一対の辺部の一部長部分を除いた他部長部分で折り曲げ成形され、前記折り曲げ成形された他部長部分が前記外箱に接着固定される構成とする。さらに、前記離隔状態で設置された前記真空断熱材の部分は、前記外箱の内面配置の放熱パイプから一定の距離を保持する構成とする。さらに、前記支持部材は、前記外箱の内面配置の放熱パイプが接しないように溝を設けるとともに、前記溝の無い部分で前記外箱に接着固定する構成とする。さらに、前記注入口に最も近い前記真空断熱材の部分は、前記発泡ウレタンの注入を誘導案内するように注入方向に対して傾斜した面を有する構成とする。
In order to solve the above-described problems, the present invention employs the following configuration.
Installed between the outer box and the inner box, an outer box having a back surface, both side surfaces, and a top surface, an inner box facing the outer box, a heat radiating pipe disposed on the inner surfaces of both side surfaces of the outer box In the refrigerator provided with the foamed urethane and the vacuum heat insulating material, an inlet for injecting the urethane foam is provided on the back surface of the outer box, and the vacuum heat insulating material has a pair of short sides when viewed from the thin direction. It is a substantially rectangular shape composed of a pair of long sides, and the full length part of one of the pair of side parts and the partial long part of the other pair of side parts are separated from the outer box and the inner box It is set as the configuration installed in. Furthermore, the portion of the vacuum heat insulating material installed in the separated state is supported by a support member that is bonded and fixed to the outer box. Further, the vacuum heat insulating material is formed by bending at the other portion long portion excluding a portion of the other pair of side portions, and the other portion long portion formed by bending is bonded and fixed to the outer box. . Furthermore, the part of the said vacuum heat insulating material installed in the said separation state is set as the structure hold | maintained a fixed distance from the heat radiating pipe of the inner surface arrangement | positioning of the said outer box. Further, the support member is provided with a groove so that the heat dissipating pipe disposed on the inner surface of the outer box does not come into contact with the support member, and is bonded and fixed to the outer box at a portion without the groove. Furthermore, the portion of the vacuum heat insulating material closest to the injection port has a surface inclined with respect to the injection direction so as to guide and guide the injection of the urethane foam.

また、背面と両側面と天面をもつ外箱と、前記外箱に対面する内箱と、前記外箱の両側面の内面に配置された放熱パイプと、前記外箱と前記内箱の間に設置された発泡ウレタン及び真空断熱材と、を備えた冷蔵庫において、前記外箱の背面に前記発泡ウレタンを注入する注入口を設け、前記発泡ウレタン注入方向における前記注入口の投影面内に前記真空断熱材が位置しないように、前記投影面に対応する前記真空断熱材を折り曲げ成形し、前記折り曲げ成形した折り曲げ部分を前記外箱に接着固定するとともに、前記折り曲げ部分以外の真空断熱材が前記外箱と前記内箱から離隔した離隔状態で設置される構成とする。さらに、折り曲げ成形された真空断熱材は、柔軟性を有する繊維集合体からなる芯材を用いて折り曲げ部分の厚さが、断熱性能を悪化させないように減少しないものである構成とする。さらに、前記繊維集合体は、平均繊維径1〜10μmの無機繊維集合体、または平均繊維径1〜50μmの有機繊維集合体であって、いずれも繊維同士を結着又は結合をさせないバインダーレスである構成とする。   Further, an outer box having a back surface, both side surfaces, and a top surface, an inner box facing the outer box, a heat radiating pipe disposed on inner surfaces of both side surfaces of the outer box, and between the outer box and the inner box In the refrigerator provided with the urethane foam and the vacuum heat insulating material installed in, the injection port for injecting the urethane foam is provided on the back surface of the outer box, and the projection surface of the injection port in the urethane foam injection direction is provided with the injection port. The vacuum heat insulating material corresponding to the projection surface is bent so that the vacuum heat insulating material is not located, and the bent portion formed by bending is bonded and fixed to the outer box, and the vacuum heat insulating material other than the bent portion is It is set as the structure installed in the separated state separated from the outer box and the said inner box. Furthermore, the vacuum heat insulating material formed by bending is configured such that the thickness of the bent portion does not decrease so as not to deteriorate the heat insulating performance using a core material made of a flexible fiber assembly. Further, the fiber aggregate is an inorganic fiber aggregate having an average fiber diameter of 1 to 10 μm, or an organic fiber aggregate having an average fiber diameter of 1 to 50 μm, both of which are binderless that does not bind or bond fibers together. It has a certain configuration.

本発明によれば、真空断熱材を薄厚方向からみて一対の短辺部と一対の長辺部の内の少なくともいずれかの2辺部(一対の短辺部か一対の長辺部)の全長部分を外箱と内箱に接触しないように配置することで、外被材のヒートブリッジを抑制でき、真空断熱材の断熱性能を効果的に発揮できるようになり、断熱性能を良好とすることができる。   According to the present invention, when the vacuum heat insulating material is viewed from the thickness direction, the total length of at least two sides (a pair of short sides or a pair of long sides) of the pair of short sides and the pair of long sides. By arranging the parts so that they do not come into contact with the outer box and the inner box, the heat bridge of the jacket material can be suppressed, the heat insulating performance of the vacuum heat insulating material can be effectively exhibited, and the heat insulating performance should be good. Can do.

また、外箱に放熱パイプを配置した場合、真空断熱材の少なくとも2辺の全長部分を折り曲げ成形したことにより、放熱パイプと真空断熱材の折り曲げ部が一定の距離が保たれるため、放熱パイプの熱影響による断熱性能の悪化や、外被材のヒートブリッジを低減した断熱性能が良好な冷蔵庫を提供することができる。   In addition, when a heat radiating pipe is arranged in the outer box, the heat radiation pipe and the bent portion of the vacuum heat insulating material are kept at a constant distance by bending the full length part of at least two sides of the vacuum heat insulating material. It is possible to provide a refrigerator with good heat insulation performance in which the heat insulation performance is deteriorated due to the heat influence of the material and the heat bridge of the jacket material is reduced.

また、断熱性能をより高くするために、真空断熱材の面積を大きくしても、真空断熱材を発泡ウレタンの注入方向に対して傾斜させるように折り曲げることで、発泡ウレタンの流動を阻害しないため、発泡ウレタンが均一に効率よく充填されるため、断熱性能が良好で発泡ウレタンの使用量を抑制した冷蔵庫を提供することができる。   In addition, even if the area of the vacuum heat insulating material is increased in order to enhance the heat insulating performance, the flow of the urethane foam is not hindered by bending the vacuum heat insulating material so as to be inclined with respect to the injection direction of the urethane foam. Since the urethane foam is uniformly and efficiently filled, it is possible to provide a refrigerator having good heat insulation performance and suppressing the amount of urethane foam used.

また、真空断熱材を発泡ウレタンの注入方向の投影した空間内に位置させないように折り曲げ成形することによって、発泡ウレタンの流動を阻害しないため、上述の効果が得られる。また、真空断熱材を組み込む際、予め折り曲げ成形することにより、従来の真空断熱材を外箱に貼り付けていた作業と同等の作業で容易に組み付けることができる。したがって、従来例のように、スペーサの配置にかかる組み立て作業工数が低減できるため、低コスト化の効果も奏でる。以上をまとめると、本発明により、断熱性能すなわち省エネ性能が良好で、組み立て作業工数を低減できる、コストパフォーマンスに優れた冷蔵庫を提供することができる。   Moreover, since the flow of the urethane foam is not hindered by bending the vacuum heat insulating material so as not to be positioned in the projected space of the injection direction of the urethane foam, the above-described effect can be obtained. In addition, when the vacuum heat insulating material is assembled, it can be easily assembled by the same work as the operation in which the conventional vacuum heat insulating material is attached to the outer box by bending in advance. Therefore, as in the conventional example, the number of assembling operations for arranging the spacers can be reduced, so that the cost can be reduced. In summary, according to the present invention, it is possible to provide a refrigerator with excellent cost performance, which has good heat insulation performance, that is, energy saving performance, and can reduce the number of assembly work steps.

本発明の第1の実施形態に係る真空断熱材を適用した冷蔵庫の外観を示す正面図である。It is a front view which shows the external appearance of the refrigerator to which the vacuum heat insulating material which concerns on the 1st Embodiment of this invention is applied. 第1の実施形態に係る真空断熱材を適用した冷蔵庫の縦断面図であり、図1のA−A線の切断図である。It is a longitudinal cross-sectional view of the refrigerator to which the vacuum heat insulating material which concerns on 1st Embodiment is applied, and is the sectional view of the AA line of FIG. 第1の実施形態に用いた真空断熱材の断面図である。It is sectional drawing of the vacuum heat insulating material used for 1st Embodiment. 第1の実施形態に係る冷蔵庫に用いた発泡ウレタンの注入方向と発泡方向を示す説明図である。It is explanatory drawing which shows the injection | pouring direction and foaming direction of the foaming urethane used for the refrigerator which concerns on 1st Embodiment. 第1の実施形態に係る真空断熱材を適用した冷蔵庫の横断面図であり、図1のZ−Z線の切断図である。It is a cross-sectional view of the refrigerator to which the vacuum heat insulating material according to the first embodiment is applied, and is a sectional view taken along the line ZZ in FIG. 第1の実施形態に係る真空断熱材を放熱パイプの位置と関連させて配置した構成を示す説明図である。It is explanatory drawing which shows the structure which has arrange | positioned the vacuum heat insulating material which concerns on 1st Embodiment in relation with the position of a thermal radiation pipe. 第1の実施形態に用いたスペーサの構成を示す見取図である。It is a sketch which shows the structure of the spacer used for 1st Embodiment. 第2の実施形態に係る真空断熱材を放熱パイプの位置と関連させて配置した構成を示す説明図である。It is explanatory drawing which shows the structure which has arrange | positioned the vacuum heat insulating material which concerns on 2nd Embodiment in relation to the position of a thermal radiation pipe. 第2の実施形態に用いたスペーサの構成を示す見取図と断面図である。It is the sketch and sectional drawing which show the structure of the spacer used for 2nd Embodiment. 従来技術における比較例1の冷蔵庫における縦断面図である。It is a longitudinal cross-sectional view in the refrigerator of the comparative example 1 in a prior art. 従来技術における比較例1の真空断熱材を放熱パイプの位置と関連させて配置した構成を示す説明図である。It is explanatory drawing which shows the structure which has arrange | positioned the vacuum heat insulating material of the comparative example 1 in a prior art in relation to the position of a thermal radiation pipe. 本発明の第1と第2の実施形態に係る冷蔵庫に適用された真空断熱材の変形構成例を示す図である。It is a figure which shows the modification structural example of the vacuum heat insulating material applied to the refrigerator which concerns on the 1st and 2nd embodiment of this invention. 本発明の第1と第2の実施形態に係る冷蔵庫に適用された真空断熱材の他の変形構成例を示す図である。It is a figure which shows the other modified structural example of the vacuum heat insulating material applied to the refrigerator which concerns on the 1st and 2nd embodiment of this invention. 特許文献1に示された従来技術に関する真空断熱材の配置を示す図である。It is a figure which shows arrangement | positioning of the vacuum heat insulating material regarding the prior art shown by patent document 1. FIG.

本発明の実施形態に係る真空断熱材を適用した冷蔵庫について、図面を参照しながら以下詳細に説明する。本発明の第1の実施形態については図1〜図7を用いて、第2の実施形態については図8と図9を用いて、また、本発明の第1と第2の実施形態における変形構成例については図12と図13を用いて、それぞれ説明する。なお、図10と図11は本実施形態と対比すべき比較例を示す図であり、図14は本実施形態に対する従来技術を示す図である。   A refrigerator to which a vacuum heat insulating material according to an embodiment of the present invention is applied will be described in detail below with reference to the drawings. 1 to 7 for the first embodiment of the present invention, FIGS. 8 and 9 for the second embodiment, and modifications in the first and second embodiments of the present invention. A configuration example will be described with reference to FIGS. 10 and 11 are diagrams showing a comparative example to be compared with the present embodiment, and FIG. 14 is a diagram showing a prior art with respect to the present embodiment.

「第1の実施形態」
本発明の第1の実施形態に係る真空断熱材を適用した冷蔵庫について、図1〜図7を参照しながら説明する。図1は本発明の第1の実施形態に係る真空断熱材を適用した冷蔵庫の外観を示す正面図である。図2は第1の実施形態に係る真空断熱材を適用した冷蔵庫の縦断面図であり、図1のA−A線の切断図である。図3は第1の実施形態に用いた真空断熱材の断面図である。図4は第1の実施形態に係る冷蔵庫に用いた発泡ウレタンの注入方向と発泡方向を示す説明図である。
“First Embodiment”
A refrigerator to which a vacuum heat insulating material according to a first embodiment of the present invention is applied will be described with reference to FIGS. FIG. 1 is a front view showing an external appearance of a refrigerator to which a vacuum heat insulating material according to a first embodiment of the present invention is applied. FIG. 2 is a longitudinal sectional view of a refrigerator to which the vacuum heat insulating material according to the first embodiment is applied, and is a cross-sectional view taken along line AA of FIG. FIG. 3 is a cross-sectional view of the vacuum heat insulating material used in the first embodiment. FIG. 4 is an explanatory diagram showing the injection direction and the foaming direction of urethane foam used in the refrigerator according to the first embodiment.

また、図5は第1の実施形態に係る真空断熱材を適用した冷蔵庫の横断面図であり、図1のZ−Z線の切断図である。図6は第1の実施形態に係る真空断熱材を放熱パイプの位置と関連させて配置した構成を示す説明図である。図7は第1の実施形態に用いたスペーサの構成を示す見取図である。   FIG. 5 is a cross-sectional view of the refrigerator to which the vacuum heat insulating material according to the first embodiment is applied, and is a sectional view taken along the line ZZ in FIG. FIG. 6 is an explanatory view showing a configuration in which the vacuum heat insulating material according to the first embodiment is arranged in association with the position of the heat radiating pipe. FIG. 7 is a sketch showing the structure of the spacer used in the first embodiment.

図1に示す本実施形態を備えた冷蔵庫1は、図2に示すように、上から冷蔵室2、貯氷室3(製氷室3aと上段冷凍室3b)、冷凍室4、野菜室5を有している。図1の符号は、各室の前面開口部を閉塞する扉であり、上からヒンジ10等を中心に回動する冷蔵室扉6a,6b、冷蔵室扉6a,6b以外は全て引き出し式の扉であり、製氷室扉7aと上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9を配置する。これらの引き出し式扉6〜9は扉を引き出すと、各室を構成する容器が扉と共に引き出されてくる。各扉6〜9には冷蔵庫本体1を密閉するためのパッキン11を備え、各扉6〜9の室内側外周縁に取り付けられている。   As shown in FIG. 2, the refrigerator 1 having this embodiment shown in FIG. 1 has a refrigerator compartment 2, an ice storage compartment 3 (an ice making compartment 3a and an upper freezer compartment 3b), a freezer compartment 4, and a vegetable compartment 5 from the top. is doing. The code | symbol of FIG. 1 is a door which obstruct | occludes the front-surface opening part of each chamber, All are drawer-type doors except the refrigerator compartment doors 6a and 6b and the refrigerator compartment doors 6a and 6b which rotate centering on the hinge 10 grade | etc., From the top. The ice making room door 7a, the upper freezing room door 7b, the lower freezing room door 8, and the vegetable room door 9 are arranged. When these drawer-type doors 6 to 9 are pulled out, the containers constituting each chamber are pulled out together with the doors. Each door 6-9 is provided with a packing 11 for sealing the refrigerator main body 1, and is attached to the indoor peripheral edge of each door 6-9.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために仕切断熱壁12を配置している。この仕切断熱壁12は厚さ30〜50mm程度の断熱壁で、スチロフォーム、発泡断熱材、真空断熱材等でできており、それぞれを単独使用又は複数の断熱材を組み合わせて作られている。製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、温度帯が同じであるため区画断熱する仕切り断熱壁ではなく、パッキン11受面を形成した仕切り部材13を設けている。下段冷凍室4と野菜室5の間には区画断熱するための仕切断熱壁14を設けており、仕切断熱壁12と同様に30〜50mm程度の断熱壁で、これまたスチロフォーム、或いは発泡断熱材、真空断熱材等で作られている。基本的に冷蔵、冷凍等の貯蔵温度帯の異なる部屋の仕切りには仕切断熱壁を設置している。   Moreover, the partition heat insulation wall 12 is arrange | positioned in order to carry out the partition heat insulation between the refrigerator compartment 2, the ice-making room 3a, and the upper stage freezer compartment 3b. The partition heat insulating wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is made of a styrofoam, a foam heat insulating material, a vacuum heat insulating material, or the like, and each is made of a single material or a combination of a plurality of heat insulating materials. Since the temperature zone is the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 having a packing 11 receiving surface is provided instead of a partition heat insulating wall for partition heat insulation. A partition heat insulation wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 to insulate the partition. Like the partition heat insulation wall 12, it is a heat insulation wall of about 30 to 50 mm, which is also styrofoam or foam heat insulation. Made of wood, vacuum insulation, etc. Basically, partition heat insulation walls are installed in partitions of rooms with different storage temperature zones such as refrigeration and freezing.

なお、箱体20内には上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a,6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9に関しても、回転による開閉、引き出しによる開閉及び扉の分割数等において、特に限定するものではない。   In addition, the storage compartment of the refrigerator compartment 2, the ice making compartment 3a and the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 is divided and formed in the box 20, respectively. The invention is not particularly limited to this. The refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are also particularly limited in terms of opening and closing by rotation, opening and closing by drawers, and the number of divided doors. Not what you want.

箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。この外箱21と内箱22の間の空間に真空断熱材50を配置し、真空断熱材50以外の空間には硬質ウレタンフォーム等の発泡断熱材23を充填してある。真空断熱材50については図3で説明するが、後述する固定部材70、支持部材80等で固定支持されている。   The box 20 includes an outer box 21 and an inner box 22, and a heat insulating part is provided in a space formed by the outer box 21 and the inner box 22 to insulate each storage chamber in the box 20 from the outside. Yes. A vacuum heat insulating material 50 is disposed in a space between the outer box 21 and the inner box 22, and a space other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as rigid urethane foam. Although the vacuum heat insulating material 50 is demonstrated in FIG. 3, it is fixedly supported by the fixing member 70, the supporting member 80, etc. which are mentioned later.

また、冷蔵庫の冷蔵室2、冷凍室3a、4、野菜室5等の各室を所定の温度に冷却するために冷凍室3a,4の背側には冷却器28が備えられており、この冷却器28と圧縮機30と凝縮機31、図示しないキャピラリーチューブとを接続し、冷凍サイクルを構成している。冷却器28の上方にはこの冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設されている。また、冷蔵庫の冷蔵室2と製氷室3a及び上段冷凍室3b、冷凍室4と野菜室5を区画する断熱材として、それぞれ断熱仕切り12,14を配置し、発泡ポリスチレン33と真空断熱材50cで構成されている。この断熱仕切り12,14については硬質ウレタンフォーム等の発泡断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50cに限定するものではない。   In addition, a refrigerator 28 is provided on the back side of the freezer compartments 3a and 4 in order to cool the refrigerator compartment 2, the freezer compartments 3a and 4 and the vegetable compartment 5 to a predetermined temperature. The refrigeration cycle is configured by connecting the cooler 28, the compressor 30, the condenser 31, and a capillary tube (not shown). Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed. Moreover, as the heat insulating material which divides the refrigerator compartment 2 and ice making room 3a and the upper freezing room 3b of the refrigerator, and the freezing room 4 and the vegetable room 5, the heat insulating partitions 12 and 14 are arranged, respectively, and the expanded polystyrene 33 and the vacuum heat insulating material 50c are used. It is configured. The heat insulating partitions 12 and 14 may be filled with a foam heat insulating material 23 such as rigid urethane foam, and are not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50c.

また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されており、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。これに伴って、凹部40は断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するため必然的に内容積が犠牲になってしまう。内容積をより大きくとると凹部40と内箱22間の断熱材23の厚さが薄くなってしまう。   In addition, a concave portion 40 for accommodating an electrical component 41 such as a substrate for controlling the operation of the refrigerator 1 or a power supply substrate is formed in the rear portion of the top surface of the box 20, and a cover 42 that covers the electrical component 41. Is provided. The height of the cover 42 is arranged so as to be substantially the same height as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. Although it does not specifically limit, when the height of the cover 42 protrudes from the top | upper surface of an outer box, it is desirable to set it in the range within 10 mm. Along with this, the recess 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the heat insulating material 23 side, so that the internal volume is inevitably sacrificed in order to ensure the heat insulating thickness. If the internal volume is increased, the thickness of the heat insulating material 23 between the recess 40 and the inner box 22 will be reduced.

このため、凹部40の断熱材23中に真空断熱材50aを配置して断熱性能を確保、強化している。本実施形態では、真空断熱材50aを天面と電気部品41とに跨るように略Z形状に成形した1枚の真空断熱材50aとしている。尚、カバー42は外部からのもらい火や何らかの原因で発火した場合等を考慮し鋼板製としている。また、箱体20の背面下部に配置された圧縮機30や凝縮機31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材50dを配置している。   For this reason, the vacuum heat insulating material 50a is arrange | positioned in the heat insulating material 23 of the recessed part 40, and the heat insulation performance is ensured and strengthened. In the present embodiment, the vacuum heat insulating material 50a is a single vacuum heat insulating material 50a formed in a substantially Z shape so as to straddle the top surface and the electrical component 41. The cover 42 is made of a steel plate in consideration of a fire from the outside or a case where it is ignited for some reason. In addition, since the compressor 30 and the condenser 31 arranged at the lower back of the box 20 are components that generate a large amount of heat, in order to prevent heat from entering the inside of the box, a vacuum insulation is provided on the projection surface toward the inner box 22 side. The material 50d is arranged.

真空断熱材50について、図3を用いてその構成を説明する。真空断熱材50は、芯材51と該芯材51を圧縮状態に保持するための内包材52、前記内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53、及び吸着剤54とから構成される。外被材53は真空断熱材50の両面に配置され、同じ大きさのラミネートフィルムの稜線から一定の幅の部分を熱溶着により貼り合わせた袋状で構成されている。   About the vacuum heat insulating material 50, the structure is demonstrated using FIG. The vacuum heat insulating material 50 includes a core material 51, an inner packaging material 52 for holding the core material 51 in a compressed state, and an outer jacket material 53 having a gas barrier layer covering the core material 51 held in a compressed state by the inner packaging material 52. , And an adsorbent 54. The jacket material 53 is disposed on both surfaces of the vacuum heat insulating material 50, and is configured in a bag shape in which portions of a certain width are bonded together by thermal welding from the ridge line of the laminate film having the same size.

なお、本実施形態において、芯材51についてはバインダー等で接着や結着していない無機繊維の積層体として平均繊維径4μmのグラスウールを用いた。芯材51については、無機系繊維材料の積層体を使用することによりアウトガスが少なくなるため(一方、有機系の場合、真空引きのとき又は経時的にガスが発生し、このガスをアウトガスと云う)、断熱性能的に有利であるが、特にこれに限定するものではなく、例えばセラミック繊維やロックウール、グラスウール以外のガラス繊維等の無機繊維等でもよい。芯材51の種類によっては内包材52が不要の場合もある。   In the present embodiment, for the core material 51, glass wool having an average fiber diameter of 4 μm is used as a laminate of inorganic fibers that are not bonded or bound with a binder or the like. As for the core material 51, outgas is reduced by using a laminate of inorganic fiber materials (on the other hand, in the case of an organic material, gas is generated during evacuation or over time, and this gas is called outgas. ), Which is advantageous in terms of heat insulation performance, but is not particularly limited thereto, and may be, for example, ceramic fibers, rock wool, inorganic fibers such as glass fibers other than glass wool, and the like. Depending on the type of the core material 51, the inner packaging material 52 may be unnecessary.

また、芯材51については、無機系繊維材料の他に、有機系樹脂繊維材料を用いることができる。有機系樹脂繊維の場合、耐熱温度等をクリヤーしていれば特に使用に際しては制約されるものではない。具体的には、ポリスチレンやポリエチレンテレフタレート、ポリプロピレン等をメルトブローン法やスパンボンド法等で1〜30μm程度の繊維径になるように繊維化するのが一般的であるが、繊維化できる有機系樹脂や繊維化方法であればよい。   Moreover, about the core material 51, an organic resin fiber material other than an inorganic fiber material can be used. In the case of organic resin fibers, there are no particular restrictions on use as long as the heat resistant temperature is cleared. Specifically, it is common to fiberize polystyrene, polyethylene terephthalate, polypropylene, etc. to a fiber diameter of about 1 to 30 μm by a melt blown method or a spunbond method, Any fiberizing method may be used.

取り纏めると、芯材の繊維集合体が、平均繊維径1〜10μmの無機繊維集合体、又は平均繊維径1〜50μmの有機繊維集合体であり、繊維同士を結着や結合をさせないバインダーレスを採用することによって、上述した柔軟性を有し板厚の減少しない真空断熱材を実現することができる。   In summary, the core fiber aggregate is an inorganic fiber aggregate with an average fiber diameter of 1 to 10 μm, or an organic fiber aggregate with an average fiber diameter of 1 to 50 μm, and does not bind or bond fibers. By adopting the above, it is possible to realize a vacuum heat insulating material that has the above-described flexibility and does not reduce the plate thickness.

外被材53のラミネート構成についてはガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面保護層、第1ガスバリヤ層、第2ガスバリヤ層、熱溶着層の4層構成からなるラミネートフィルムとし、表面層は保護材の役割を持つ樹脂フィルムとし、第1ガスバリヤ層は樹脂フィルムに金属蒸着層を設け、第2ガスバリヤ層は酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、第1ガスバリヤ層と第2ガスバリヤ層は金属蒸着層同士が向かい合うように貼り合わせている。熱溶着層については表面層と同様に吸湿性の低いフィルムを用いた。   The laminate structure of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In this embodiment, the surface protective layer, the first gas barrier layer, the second gas barrier layer, the heat It is a laminate film composed of four layers of welding layers, the surface layer is a resin film serving as a protective material, the first gas barrier layer is provided with a metal vapor deposition layer on the resin film, and the second gas barrier layer is a resin having a high oxygen barrier property. A metal vapor deposition layer is provided on the film, and the first gas barrier layer and the second gas barrier layer are bonded so that the metal vapor deposition layers face each other. For the heat-welded layer, a film having low hygroscopicity was used as in the surface layer.

具体的には、表面層を二軸延伸タイプのポリプロピレン、ポリアミド、ポリエチレンテレフタレート等の各フィルム、第1ガスバリヤ層をアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルム、第2ガスバリヤ層をアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン、ポリプロピレン等の各フィルムとした。この4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。例えば第1ガスバリヤ層や第2ガスバリヤ層として、金属箔、或いは樹脂系のフィルムに無機層状化合物、ポリアクリル酸等の樹脂系ガスバリヤコート材、DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。   Specifically, the surface layer is a biaxially stretched film of polypropylene, polyamide, polyethylene terephthalate, the first gas barrier layer is a biaxially stretched polyethylene terephthalate film with aluminum deposition, and the second gas barrier layer is a two-layered film with aluminum deposition. An axially stretched ethylene vinyl alcohol copolymer resin film, a biaxially stretched polyvinyl alcohol resin film with aluminum deposition, or an aluminum foil was used, and the heat-welded layer was an unstretched polyethylene, polypropylene, or other film. The layer structure and material of the four-layer laminate film are not particularly limited to these. For example, as a first gas barrier layer or a second gas barrier layer, a metal foil or a resin film is provided with a gas barrier film made of an inorganic layer compound, a resin gas barrier coating material such as polyacrylic acid, or DLC (diamond-like carbon). Alternatively, for example, a polybutylene terephthalate film having a high oxygen barrier property may be used for the heat welding layer.

表面保護層は、第1ガスバリヤ層の保護材であるが、真空断熱材の製造工程における真空排気効率を良くするためにも、好ましくは吸湿性の低い樹脂を配置するのが良い。また、通常、第2ガスバリヤ層に使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。これにより、先に述べた真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながっている。尚、各フィルムのラミネート(貼り合せ)は、二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法には特にこれに限定するものではなく、ウェットラミネート法、サーマルラミネート法等の他の方法によるものでも何ら構わない。   The surface protective layer is a protective material for the first gas barrier layer, but in order to improve the vacuum exhaust efficiency in the manufacturing process of the vacuum heat insulating material, it is preferable to dispose a resin having a low hygroscopic property. In addition, the resin-based film other than the metal foil used for the second gas barrier layer usually has a gas barrier property that is significantly deteriorated by moisture absorption. While suppressing deterioration of gas barrier property, the moisture absorption amount of the whole laminate film is suppressed. As a result, even in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought into the jacket material 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved, leading to higher performance of heat insulation performance. . In addition, the lamination (bonding) of each film is generally performed by a dry lamination method through a two-component curable urethane adhesive, but the type of adhesive and the bonding method are particularly limited to this. It is not necessary to use any other method such as a wet laminating method or a thermal laminating method.

また、内包材52については本実施形態では熱溶着可能なポリエチレンフィルム、吸着剤54については物理吸着タイプの合成ゼオライトを用いたが、いずれもこれらの材料に限定するものではない。内包材52についてはポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであれば良く、吸着剤54については水分やガスを吸着するもので、物理吸着、化学反応型吸着のどちらでも良い。   Further, in the present embodiment, the encapsulating material 52 is a polyethylene film that can be thermally welded, and the adsorbent 54 is a physical adsorption type synthetic zeolite, but these are not limited to these materials. The inner packaging material 52 may be a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film or the like that has low hygroscopicity and can be thermally welded and has little outgas, and the adsorbent 54 adsorbs moisture and gas. Either adsorption or chemical reaction type adsorption may be used.

次に、発泡ウレタンの注入方法と発泡方法について、図4を用いて説明する。図4(a)に示すように、外箱21の背面21cに設けたウレタン注入孔25から発泡ウレタン23を外箱前面21f側に注入方向23aに示すように注入する。その後、図4(b)の如く、発泡ウレタンが発泡を始め、背面21c側に発泡方向23bのように立ち上がり、外箱21に充填される。なお、発泡ウレタンは、ウレタンに発泡剤を混入させて液状としたものであり、注入口25からは液状で滴下され、ゲル状になった底面からは発泡ウレタンは泡状となって上方に立ち上がっていき次第に固化するものである。   Next, a method for injecting urethane and a method for foaming will be described with reference to FIG. As shown in FIG. 4A, urethane foam 23 is injected from the urethane injection hole 25 provided on the back surface 21c of the outer box 21 to the outer box front surface 21f side as shown in the injection direction 23a. Thereafter, as shown in FIG. 4B, the urethane foam starts to foam, rises in the foaming direction 23b on the back surface 21c side, and fills the outer box 21. In addition, urethane foam is made liquid by mixing a foaming agent into urethane. It is dropped in liquid form from the injection port 25, and the urethane foam rises upward from the gel-like bottom surface in the form of foam. It will solidify over time.

ここで、第1の実施形態に係る真空断熱材を適用した冷蔵庫の具体的構成について、図5〜図7及び図2を用いて説明する。本実施形態に係る冷蔵庫1は、箱体20に使用する真空断熱材50のうち、外箱21の両側面21eに配置する真空断熱材50eを、発泡ウレタン(硬質ウレタンフォーム)23の略中間に埋設した例である。その他、図2に示すとおり、天面と背面については外箱21a,21bにそれぞれ真空断熱材50a,50bを直接貼り付け、底面については内箱22面に貼り付けた。仕切り断熱12,13については図2には真空断熱材50cを図示しているが、第1の実施形態においては真空断熱材50cを使用しなかった。図示の通り、真空断熱材50cを使用しても何ら問題はない。   Here, the specific structure of the refrigerator to which the vacuum heat insulating material according to the first embodiment is applied will be described with reference to FIGS. In the refrigerator 1 according to the present embodiment, among the vacuum heat insulating materials 50 used for the box body 20, the vacuum heat insulating materials 50 e arranged on the both side surfaces 21 e of the outer box 21 are placed substantially in the middle of the urethane foam (hard urethane foam) 23. This is a buried example. In addition, as shown in FIG. 2, the vacuum heat insulating materials 50 a and 50 b were directly attached to the outer boxes 21 a and 21 b for the top surface and the back surface, respectively, and the bottom surface was attached to the inner box 22 surface. As for the partition heat insulations 12 and 13, the vacuum heat insulating material 50c is illustrated in FIG. 2, but the vacuum heat insulating material 50c is not used in the first embodiment. As illustrated, there is no problem even if the vacuum heat insulating material 50c is used.

第1の実施形態では、外箱21eの内側の面に、図示しない冷媒の放熱性を向上させるために、放熱パイプ90をアルミテープ91で貼付けた。より放熱性を向上させるために、放熱パイプ90の長さを延長し、図6(b)のD矢視図である図6(a)に示すように配置した。   In 1st Embodiment, in order to improve the heat dissipation of the refrigerant | coolant which is not shown in figure to the inner surface of the outer case 21e, the heat radiating pipe 90 was affixed with the aluminum tape 91. FIG. In order to further improve the heat dissipation, the length of the heat radiating pipe 90 was extended and arranged as shown in FIG. 6 (a), which is a view taken in the direction of arrow D in FIG. 6 (b).

真空断熱材50eについては、放熱パイプ90と直接触れないように、距離dを確保するように配置した。これは、真空断熱材50の特性として、高温雰囲気下では断熱性能の維持が難しいためである。本実施形態に用いた真空断熱材50eは、放熱パイプ90を配設した部分を、折り曲げ成形して外箱21eから浮かす形状とし、放熱パイプ90を配設していない部分については外箱21eに図示しない接着剤で貼り付けて配置した。   About the vacuum heat insulating material 50e, it arrange | positioned so that the distance d might be ensured so that the heat radiating pipe 90 might not be touched directly. This is because, as a characteristic of the vacuum heat insulating material 50, it is difficult to maintain heat insulating performance under a high temperature atmosphere. The vacuum heat insulating material 50e used in this embodiment has a shape in which the portion where the heat radiating pipe 90 is disposed is bent and formed to float from the outer box 21e, and the portion where the heat radiating pipe 90 is not disposed is attached to the outer box 21e. Attached with an adhesive (not shown).

図6を用いて真空断熱材の配置についてさらに詳しく説明すると、真空断熱材50を薄厚方向(図6(a)の紙面垂直方向)からみて、その短辺部(図6(a)の紙面左右方向の辺部)と長辺部(同様に紙面上下方向の辺部)の内で、上下の2つの短辺部は外箱側面21eから浮いた状態で取り付けられ、左右2つの長辺部はその中央部分で側面21eに当接されている(外箱側面に当接しているのは左右の辺(縁)部のみならず、それらの辺(縁)部を結ぶ面上で当接している)。上下の短辺(短縁)部が浮いていることにより当該縁部を介したヒートブリッジの影響を避けている。真空断熱材の4つの辺の端部が外箱側面に接していると、当該端部を介した熱伝導の回り込み、すなわちヒートブリッジが発生して断熱性能が低くなるが、図6に示す本実施形態の構成によれば、ヒートブリッジの影響を低下させることができる。図6の構成では長辺部における中央部分を介したヒートブリッジは発生するので、真空断熱材50の辺部の部分を除いた真空断熱材の中央部だけ凸形状とすれば、ヒートブリッジの影響は避けることができる。しかし、この中央部のみの凸形状は製作上の難点が存在する。ヒートブリッジによる熱の回り込みを避けるための観点からは、真空断熱材のすべての周辺部を浮かせることが望ましい。   The arrangement of the vacuum heat insulating material will be described in more detail with reference to FIG. 6. When the vacuum heat insulating material 50 is viewed from the thin thickness direction (perpendicular to the paper surface of FIG. 6A), its short side (left and right of the paper surface of FIG. 6A) Direction side) and the long side part (similarly, the side part in the vertical direction of the drawing), the upper and lower two short sides are attached in a state of floating from the outer box side surface 21e, and the two right and left long sides are It is in contact with the side surface 21e at the center (not only the left and right sides (edges) are in contact with the side surface of the outer box, but also on the surface connecting these sides (edges). ). Since the upper and lower short sides (short edges) are floating, the influence of the heat bridge via the edges is avoided. When the end portions of the four sides of the vacuum heat insulating material are in contact with the side surface of the outer box, heat conduction wraps around the end portions, that is, a heat bridge is generated and the heat insulating performance is lowered. According to the configuration of the embodiment, the influence of the heat bridge can be reduced. In the configuration of FIG. 6, a heat bridge is generated through the central portion in the long side portion. Therefore, if only the central portion of the vacuum heat insulating material excluding the side portion of the vacuum heat insulating material 50 has a convex shape, the influence of the heat bridge. Can be avoided. However, this convex shape only at the center has a manufacturing difficulty. From the viewpoint of avoiding heat wraparound by the heat bridge, it is desirable to float all the peripheral portions of the vacuum heat insulating material.

放熱パイプ90上に位置する真空断熱材50eは、図7(a)又は(b)に示すようなスペーサ70を、発泡ウレタン(硬質ウレタンフォーム)の発泡方向23bに並列するように配置した。本実施形態に用いたスペーサ70は連続した平面からなる接着面70a,70bを有し、接着面70aと70bを結ぶ柱状部70cを有するH形断面形状からなる。接着面70aは真空断熱材50eと、反対側の接着面70bは外箱21eとそれぞれ接着される。スペーサ70の柱状部70cには発泡ウレタン23との接着性を強固にするための貫通孔70dを設けた。この貫通孔70dに発泡ウレタン23が流入することで、スペーサ70が埋没して強固に固定されることになる。貫通孔70dについては、図7(b)に示すように、貫通しない溝70eを柱状部70cの両面に設けてもよく、場合によっては貫通孔70dや柱状部70cへの溝加工については省略してもよい。   In the vacuum heat insulating material 50e located on the heat radiating pipe 90, a spacer 70 as shown in FIG. 7A or 7B is arranged in parallel with the foaming direction 23b of urethane foam (rigid urethane foam). The spacer 70 used in this embodiment has adhesive surfaces 70a and 70b that are continuous planes, and has an H-shaped cross-sectional shape having a columnar portion 70c that connects the adhesive surfaces 70a and 70b. The bonding surface 70a is bonded to the vacuum heat insulating material 50e, and the opposite bonding surface 70b is bonded to the outer box 21e. A through hole 70d for strengthening the adhesiveness to the urethane foam 23 was provided in the columnar portion 70c of the spacer 70. When the foamed urethane 23 flows into the through hole 70d, the spacer 70 is buried and firmly fixed. As for the through hole 70d, as shown in FIG. 7B, grooves 70e that do not penetrate may be provided on both surfaces of the columnar portion 70c. In some cases, the groove processing to the through hole 70d and the columnar portion 70c is omitted. May be.

スペーサ70の材料として、本実施形態ではABS樹脂を用いた。ABS樹脂は射出成形しやすい材料であることから選定したものであるが、材質についてはAS(アクリロニトリルスチレン共重合化合物)、PS(ポリスチレン)およびその他の樹脂を用いてもよく、成形方法についても押出し成形やその他の方法等、特に限定するものではない。   In this embodiment, ABS resin is used as the material of the spacer 70. ABS resin is selected because it is easy to injection mold, but AS (acrylonitrile styrene copolymer compound), PS (polystyrene) and other resins may be used as the material, and the molding method is also extruded. There are no particular limitations on molding or other methods.

また、本実施形態に用いた真空断熱材50については、外被材53のラミネート構成として、表面層を二軸延伸ポリプロピレンフィルム、第1ガスバリヤ層をアルミニウム蒸着付き二軸延伸ポリエチレンテレフタレートフィルム、第2ガスバリヤ層をアルミニウム蒸着付き二軸延伸エチレンビニルアルコール共重合体樹脂フィルム、熱溶着層を未延伸タイプの直鎖状低密度ポリエチレンフィルムとした。芯材51については、無機系繊維材料である平均繊維径4μmのガラス繊維の集合体であるノンバインダーのグラスウールを用いた。その他の材料については上述した通りである。   Moreover, about the vacuum heat insulating material 50 used for this embodiment, as a laminated structure of the jacket material 53, a surface layer is a biaxially stretched polypropylene film, a 1st gas barrier layer is a biaxially stretched polyethylene terephthalate film with aluminum vapor deposition, 2nd The gas barrier layer was a biaxially stretched ethylene vinyl alcohol copolymer resin film with aluminum vapor deposition, and the heat welded layer was an unstretched linear low density polyethylene film. For the core material 51, non-binder glass wool, which is an aggregate of glass fibers having an average fiber diameter of 4 μm, which is an inorganic fiber material, was used. Other materials are as described above.

冷蔵庫1への真空断熱材50eの組込みについては、スペーサ70の接着面70aに図示しない合成ゴム系粘着タイプのホットメルト接着剤を塗布し、予め折り曲げ成形をした真空断熱材50eの所定位置に複数のスペーサ70を貼付けた後、真空断熱材50eの外箱21eとの接着面およびスペーサ70の接着面70bにも同様にホットメルト接着剤を塗布し、外箱21eの内側の面に接着して配置した。   Regarding the incorporation of the vacuum heat insulating material 50e into the refrigerator 1, a synthetic rubber-based adhesive-type hot melt adhesive (not shown) is applied to the adhesive surface 70a of the spacer 70, and a plurality of the heat insulating materials 50e are preliminarily bent and formed at predetermined positions. After the spacer 70 is pasted, a hot melt adhesive is similarly applied to the adhesive surface of the vacuum heat insulating material 50e with the outer box 21e and the adhesive surface 70b of the spacer 70, and adhered to the inner surface of the outer box 21e. Arranged.

以上の仕様で発泡ウレタン(硬質ウレタンフォーム)を注入した結果、外箱21eと真空断熱材50eの間および内箱22と真空断熱材50eの間のそれぞれの空間には、未充填部(ボイド)部は確認されず、発泡ウレタン23が均一に充填されていることを確認した。   As a result of injecting urethane foam (hard urethane foam) with the above specifications, the spaces between the outer box 21e and the vacuum heat insulating material 50e and between the inner box 22 and the vacuum heat insulating material 50e are not filled (voids). The part was not confirmed and it confirmed that the urethane foam 23 was filled uniformly.

第1の実施形態の冷蔵庫の消費電力量を測定した結果、後述する比較例1を100(指数)とした場合、97(数値が小さい方が高断熱性能を表す)となり、放熱パイプ90の投影部分を真空断熱材50eで覆い、その少なくとも2辺の全長部分を発泡ウレタン23の略中間に配置することで、断熱性能が約3%改善することを確認した。   As a result of measuring the power consumption of the refrigerator of the first embodiment, when Comparative Example 1 to be described later is 100 (index), it becomes 97 (the smaller the numerical value represents high heat insulation performance), and the projection of the heat radiating pipe 90 It was confirmed that the heat insulation performance was improved by about 3% by covering the part with the vacuum heat insulating material 50e and arranging the full length part of at least two sides in the middle of the urethane foam 23.

「第2の実施形態」
本発明の第2の実施形態に係る真空断熱材を適用した冷蔵庫について、図8と図9を参照しながら以下説明する。図8は第2の実施形態に係る真空断熱材を放熱パイプの位置と関連させて配置した構成を示す説明図である。図9は第2の実施形態に用いたスペーサの構成を示す見取図と断面図である。ここで、図8は第1の実施形態の図6に,図9は第1の図7に,それぞれ対応させて図示している。第2の実施形態における構成は、第1実施形態の図6と図7に示す構成以外は共通しているので、その説明を援用する。
“Second Embodiment”
A refrigerator to which a vacuum heat insulating material according to a second embodiment of the present invention is applied will be described below with reference to FIGS. 8 and 9. FIG. 8 is an explanatory view showing a configuration in which the vacuum heat insulating material according to the second embodiment is arranged in association with the position of the heat radiating pipe. FIG. 9 is a sketch and a cross-sectional view showing the configuration of the spacer used in the second embodiment. Here, FIG. 8 corresponds to FIG. 6 of the first embodiment, and FIG. 9 corresponds to FIG. 7 of the first embodiment. Since the configuration in the second embodiment is common except for the configuration shown in FIGS. 6 and 7 of the first embodiment, the description thereof is incorporated.

図8(b)に示すように、放熱パイプ90を外箱21eの内側の面にアルミテープ91で貼り付け、図8(b)のG矢視図である図8(a)に示す如く、放熱パイプ90の投影面上に真空断熱材50eを配置した。真空断熱材50eは折り曲げ成形をせずに、板状のまま使用し、スペーサ77を用いて、発泡ウレタン(硬質ウレタンフォーム)23の略中間に配置するようにした。   As shown in FIG. 8 (b), the heat radiating pipe 90 is attached to the inner surface of the outer box 21e with an aluminum tape 91, and as shown in FIG. A vacuum heat insulating material 50e was disposed on the projection surface of the heat radiating pipe 90. The vacuum heat insulating material 50e was used in the form of a plate without being bent, and was disposed approximately in the middle of the urethane foam (hard urethane foam) 23 using a spacer 77.

スペーサ77については、図9(a)および(b)に示すように、真空断熱材50eとの接着面77bに、放熱パイプ90を逃げるための溝77cを設けてある。その他は第1の実施形態と同じ仕様とした。スペーサ77はH形断面形状を有しており、一方の面(図9の図示例で下面)は真空断熱材50に接着され、他方の面(図9の図示例で上面)は、放熱パイプ90が通る部位にU溝77が穿たれていてそのU溝を除いた平面が側面21eに接着されている。   As for the spacer 77, as shown in FIGS. 9A and 9B, a groove 77c for escaping the heat radiating pipe 90 is provided on the adhesion surface 77b with the vacuum heat insulating material 50e. Other specifications are the same as those in the first embodiment. The spacer 77 has an H-shaped cross-sectional shape, one surface (the lower surface in the illustrated example in FIG. 9) is bonded to the vacuum heat insulating material 50, and the other surface (the upper surface in the illustrated example in FIG. 9) is the heat radiating pipe. A U-groove 77 is formed in a portion through which 90 passes, and a plane excluding the U-groove is bonded to the side surface 21e.

以上の仕様で発泡ウレタン23を注入した結果、外箱21eと真空断熱材50eの間および内箱22と真空断熱材50eの間のそれぞれの空間に、未充填部(ボイド) 部は確認されず、第1の実施形態と同様に発泡ウレタン23が均一に充填されていることを確認した。   As a result of injecting the urethane foam 23 with the above specifications, no unfilled part (void) part is confirmed in each space between the outer box 21e and the vacuum heat insulating material 50e and between the inner box 22 and the vacuum heat insulating material 50e. As in the first embodiment, it was confirmed that the urethane foam 23 was uniformly filled.

第2の実施形態の冷蔵庫の消費電力量を測定した結果、後述する比較例1を100(指数)とした場合、95となり、放熱パイプ90の投影部分を真空断熱材50eで覆い、真空断熱材50e全体を発泡ウレタン23の略中間に配置することで、断熱性能が約5%改善することを確認した。   As a result of measuring the power consumption of the refrigerator of the second embodiment, when Comparative Example 1 described later is 100 (index), it becomes 95, and the projected portion of the heat radiating pipe 90 is covered with the vacuum heat insulating material 50e, and the vacuum heat insulating material It was confirmed that the thermal insulation performance was improved by about 5% by arranging the entire 50e in the middle of the urethane foam 23.

「比較例1」
本発明の第1と第2の実施形態と対比すべき比較例1の冷蔵庫について、図10と図11を参照しながら以下説明する。図10は従来技術における比較例1の冷蔵庫における縦断面図である。図11は従来技術における比較例1の真空断熱材を放熱パイプの位置と関連させて配置した構成を示す説明図である。この比較例1が典型的な従来技術における真空断熱材の配置態様(外箱の内面に真空断熱材を配置)を示すものである。
“Comparative Example 1”
The refrigerator of the comparative example 1 which should be contrasted with the 1st and 2nd embodiment of this invention is demonstrated below, referring FIG. 10 and FIG. FIG. 10 is a longitudinal sectional view of the refrigerator of Comparative Example 1 in the prior art. FIG. 11 is an explanatory view showing a configuration in which the vacuum heat insulating material of Comparative Example 1 in the prior art is arranged in association with the position of the heat radiating pipe. This Comparative Example 1 shows a typical arrangement of vacuum heat insulating materials in the prior art (a vacuum heat insulating material is arranged on the inner surface of the outer box).

図10および図11に示すように、両側面である外箱21eの真空断熱材50eは折り曲げ成形をせずに板状のままで、スペーサ70を使用せずに、外箱21eの内側の面に、従来のように外箱21eの内面にホットメルト接着剤で直接貼り付け、放熱パイプ90については、真空断熱材50eの周囲にアルミテープ91で貼り付けて配置した仕様とした。それ以外は第1の実施形態と同じ仕様とした。   As shown in FIG. 10 and FIG. 11, the vacuum heat insulating material 50e of the outer box 21e on both sides remains plate-shaped without being bent, and the inner surface of the outer box 21e without using the spacer 70. In addition, as in the prior art, it was directly attached to the inner surface of the outer box 21e with a hot melt adhesive, and the heat radiating pipe 90 was attached with an aluminum tape 91 around the vacuum heat insulating material 50e. The other specifications are the same as those in the first embodiment.

以上の仕様で発泡ウレタン(硬質ウレタンフォーム)を充填した結果、真空断熱材50eと内箱22の間には未充填部(ボイド)部は確認されず、硬質ウレタンフォームが均一に充填されていることを確認した。しかし、比較例1の冷蔵庫の消費電力量については、前述の通り100(指数)である。   As a result of filling urethane foam (hard urethane foam) with the above specifications, no unfilled part (void) part is confirmed between the vacuum heat insulating material 50e and the inner box 22, and the hard urethane foam is uniformly filled. It was confirmed. However, the power consumption of the refrigerator of Comparative Example 1 is 100 (index) as described above.

「本実施形態の変形構成例1」
次に、本発明の第1と第2の実施形態に係る真空断熱材を適用した冷蔵庫に関する変形構成例1について図12を用いて説明する。この変形構成例1に用いた真空断熱材50eは、発泡ウレタン23の注入孔25の注入方向23aに対して傾斜面を成すように配置したものである。変形構成例1の冷蔵庫は、内容積を大容量化しているため、断熱厚が薄く、注入孔25の投影面内に真空断熱材50eが入る位置関係になっている。
“Modified configuration example 1 of this embodiment”
Next, a modified configuration example 1 related to the refrigerator to which the vacuum heat insulating material according to the first and second embodiments of the present invention is applied will be described with reference to FIG. The vacuum heat insulating material 50e used in this modified configuration example 1 is arranged so as to form an inclined surface with respect to the injection direction 23a of the injection hole 25 of the urethane foam 23. Since the refrigerator of the modified configuration example 1 has a large internal volume, the heat insulation thickness is thin, and the vacuum heat insulating material 50e is placed in the projection plane of the injection hole 25.

したがって、発泡ウレタン23が注入方向23aに向かう際、真空断熱材50eが障害物になり得る。この変形構成例1では、発泡ウレタン23の流動を阻害しないように、真空断熱材50eに傾斜面を設けたものである。真空断熱材50eは予め図示のような形状に折り曲げ成形し、第2の実施形態と同様にスペーサ70を用いて配置した。   Therefore, when the urethane foam 23 is directed in the injection direction 23a, the vacuum heat insulating material 50e can be an obstacle. In this modified configuration example 1, the vacuum heat insulating material 50e is provided with an inclined surface so as not to hinder the flow of the urethane foam 23. The vacuum heat insulating material 50e was previously bent into a shape as shown in the figure, and arranged using the spacer 70 in the same manner as in the second embodiment.

また、真空断熱材50eの投影面となる内箱22の表面の一部に、二液硬化性の発泡ウレタン(ウレタンに発泡剤を混入させたもの)を液状のまま直接滴下させ、略ボール状に発泡した支持部材80を数箇所に配置した。この支持部材80の配置された内箱22を、スペーサ70によって外箱21eに取り付けられた真空断熱材50に対面させて組み合わせると、真空断熱材50eがスペーサ70と支持部材80によってサンドイッチされた状態に保持することができる。   In addition, a two-component curable urethane foam (a mixture of urethane and a foaming agent) is directly dropped in a liquid state on a part of the surface of the inner box 22 serving as a projection surface of the vacuum heat insulating material 50e, and is substantially ball-shaped. The support members 80 foamed in the same manner were arranged in several places. When the inner box 22 in which the support member 80 is disposed is combined with the vacuum heat insulating material 50 attached to the outer box 21e by the spacer 70, the vacuum heat insulating material 50e is sandwiched between the spacer 70 and the support member 80. Can be held in.

なお、支持部材80については、真空断熱材50eのスペーサ70を配置した面と反対側の面に予め配置してもよい。支持部材80については発泡ウレタン以外にもフォームメルト等の発泡系接着剤を内箱22或いは真空断熱材50eに直接塗布したり、ブロック状に成形したスチロフォームや硬質ウレタンフォーム等の発泡断熱材等を内箱22或いは真空断熱材50eに配置してもよい。樹脂材料からなる成形品等を予め内箱22に嵌め込みや接着等で配置してもよい。それ以外については第1の実施形態と同じ仕様とした。   In addition, about the support member 80, you may arrange | position previously on the surface on the opposite side to the surface which has arrange | positioned the spacer 70 of the vacuum heat insulating material 50e. For the support member 80, in addition to urethane foam, a foam adhesive such as foam melt is directly applied to the inner box 22 or the vacuum heat insulating material 50e, or a foam heat insulating material such as styrofoam or rigid urethane foam formed into a block shape, etc. May be arranged in the inner box 22 or the vacuum heat insulating material 50e. A molded product made of a resin material or the like may be placed in advance in the inner box 22 by bonding or bonding. The other specifications are the same as those in the first embodiment.

以上の仕様で発泡ウレタン23を充填した結果、注入孔25から注入された発泡ウレタン23は、真空断熱材50eの図示する上方部の傾斜面に当たり、傾斜面に沿って注入方向23aに導かれて注入されており、外箱21eと真空断熱材50eの間および内箱22と真空断熱材50eの間には未充填部(ボイド)部は確認されず、発泡ウレタンが均一に充填されていることを確認した。ウレタン使用量については後述の比較例2に対して約2%低減できることを確認した。   As a result of filling the urethane foam 23 with the above specifications, the urethane foam 23 injected from the injection hole 25 hits the inclined surface of the upper portion of the vacuum heat insulating material 50e shown in the figure, and is guided in the injection direction 23a along the inclined surface. Injected, no unfilled part (void) part is confirmed between the outer box 21e and the vacuum heat insulating material 50e and between the inner box 22 and the vacuum heat insulating material 50e, and the urethane foam is uniformly filled. It was confirmed. It was confirmed that the amount of urethane used could be reduced by about 2% with respect to Comparative Example 2 described later.

「本実施形態の変形構成例2」
次に、本発明の第1と第2の実施形態に係る真空断熱材を適用した冷蔵庫に関する変形構成例2について図13を用いて説明する。この変形構成例2に用いた真空断熱材50eは、発泡ウレタン23の注入孔25の投影面内に入らないように配置したものである。図13の図示例において、4個設けた注入孔25のいずれの孔の投影面内にも入らないように、真空断熱材50eは予め図示のような形状に折り曲げ成形し、真空断熱材50eの一部は外箱21eに図示しない接着剤で接着固定した。真空断熱材50eの姿勢を安定化させるため、スペーサ70を外箱21eと真空断熱材50eの間に配置し、図示しない接着剤で固定した。また、上述した変形構成例1と同様に支持部材80を配置した。それ以外については、第1の実施形態と同じ仕様とした。
“Modified configuration example 2 of this embodiment”
Next, a modified configuration example 2 related to the refrigerator to which the vacuum heat insulating material according to the first and second embodiments of the present invention is applied will be described with reference to FIG. The vacuum heat insulating material 50e used in this modified configuration example 2 is arranged so as not to enter the projection plane of the injection hole 25 of the urethane foam 23. In the illustrated example of FIG. 13, the vacuum heat insulating material 50 e is previously bent into a shape as illustrated so that it does not enter the projection surface of any of the four injection holes 25. A part was adhered and fixed to the outer box 21e with an adhesive (not shown). In order to stabilize the posture of the vacuum heat insulating material 50e, the spacer 70 was disposed between the outer box 21e and the vacuum heat insulating material 50e and fixed with an adhesive (not shown). Further, the support member 80 is disposed in the same manner as in the modified configuration example 1 described above. The other specifications are the same as those in the first embodiment.

以上の仕様において、発泡ウレタンを充填した結果、注入孔25から注入された発泡ウレタン23は、真空断熱材50eや外箱21eおよび内箱22に触れることなく注入することができ、外箱21eと真空断熱材50eの間および内箱22と真空断熱材50eの間には未充填部(ボイド)部は確認されず、硬質ウレタンフォームが均一に充填されていることを確認した。ウレタン使用量については後述の比較例2に対して約3%低減できることを確認した。   In the above specifications, as a result of filling with urethane foam, the urethane foam 23 injected from the injection hole 25 can be injected without touching the vacuum heat insulating material 50e, the outer box 21e, and the inner box 22, and the outer box 21e and An unfilled portion (void) portion was not confirmed between the vacuum heat insulating material 50e and between the inner box 22 and the vacuum heat insulating material 50e, and it was confirmed that the hard urethane foam was uniformly filled. It was confirmed that the amount of urethane used can be reduced by about 3% with respect to Comparative Example 2 described later.

「比較例2」
本発明の第1と第2の実施形態と対比すべき比較例2の冷蔵庫について以下説明する。比較例2は、上述の変形構成例2において、真空断熱材50eを折り曲げ成形せずに、スペーサ70を用いて発泡ウレタン23の略中間に真空断熱材50eを配置し、且つ注入孔25の投影面内に真空断熱材50eが位置するように配置した。それ以外は第1の実施形態と同じ仕様とした。
“Comparative Example 2”
The refrigerator of the comparative example 2 which should be contrasted with the 1st and 2nd embodiment of this invention is demonstrated below. In Comparative Example 2, the vacuum heat insulating material 50e is arranged in the middle of the urethane foam 23 by using the spacer 70 without bending the vacuum heat insulating material 50e in the above-described modified configuration example 2, and the injection hole 25 is projected. It arrange | positioned so that the vacuum heat insulating material 50e may be located in a surface. The other specifications are the same as those in the first embodiment.

以上の仕様で発泡ウレタンを充填した結果、外箱21eと真空断熱材50eの間および内箱22と真空断熱材50eの間には未充填部(ボイド)部は確認されず、硬質ウレタンフォームが均一に充填されていることを確認した。しかし、ウレタン使用量は、上述した変更構成例1及び変形構成例2と比較して多いという結果になった。その理由は、発泡ウレタンは、その注入孔付近で真空断熱材と衝突してスムーズな流れが形成されないので多めに発泡ウレタンを使用する必要があった。この比較例2のウレタン使用量については前述の通り100である。   As a result of filling urethane foam with the above specifications, no unfilled part (void) part was confirmed between the outer box 21e and the vacuum heat insulating material 50e and between the inner box 22 and the vacuum heat insulating material 50e, and the hard urethane foam was It was confirmed that the filling was uniform. However, the result was that the amount of urethane used was larger than in the modified configuration example 1 and the modified configuration example 2 described above. The reason is that urethane foam collides with the vacuum heat insulating material in the vicinity of the injection hole and a smooth flow is not formed, so it is necessary to use a large amount of urethane foam. The amount of urethane used in Comparative Example 2 is 100 as described above.

以上説明したように、本発明の実施形態に係る真空断熱材を適用した冷蔵庫は、放熱パイプ90を外箱21eの内側の面に配置し、放熱パイプ90の投影面上に、放熱パイプ90とは接触しないように真空断熱材50eを配置することによって、断熱性能が向上し、消費電力量を低減可能な冷蔵庫を実現した。また、冷蔵庫のコスト低減の観点から、省スペースで大容量化を実現しつつ、真空断熱材50eの形状を工夫して、発泡ウレタン23の流動を阻害しないようにしたことで、発泡ウレタン注入時および発泡時の流動抵抗による損失を抑制でき、低コスト化に寄与するものである。   As described above, in the refrigerator to which the vacuum heat insulating material according to the embodiment of the present invention is applied, the heat radiating pipe 90 is disposed on the inner surface of the outer box 21e, and the heat radiating pipe 90 and By arranging the vacuum heat insulating material 50e so as not to come into contact with each other, a heat insulating performance was improved and a refrigerator capable of reducing power consumption was realized. In addition, from the viewpoint of reducing the cost of the refrigerator, while realizing a large capacity in a space-saving manner, the shape of the vacuum heat insulating material 50e has been devised so that the flow of the foamed urethane 23 is not hindered. In addition, loss due to flow resistance during foaming can be suppressed, which contributes to cost reduction.

また、図6に示すような本実施形態に係る冷蔵庫は、真空断熱材の薄厚方向からみて、真空断熱材の少なくとも2辺(短辺と長辺の端部)の全長部分を発泡ウレタンの略中間(外箱と内箱の間)に配置することで、真空断熱材特有のヒートブリッジ影響を低減することができ、断熱性能の良好な省エネ冷蔵庫を提供できるものである。また、図12及び図13に示す実施形態のように、ウレタン注入孔の投影面にかかる部分の真空断熱材を折り曲げ成形して、ウレタン流動を阻害しないようにしたことで、発泡ウレタンの使用量が低減され、コスト低減に効果を発揮するものである。   Further, in the refrigerator according to the present embodiment as shown in FIG. 6, when viewed from the thickness direction of the vacuum heat insulating material, the full length portion of at least two sides (short side and long side end) of the vacuum heat insulating material is substantially the same as that of urethane foam. By arranging in the middle (between the outer box and the inner box), it is possible to reduce the heat bridge effect peculiar to the vacuum heat insulating material, and to provide an energy saving refrigerator with good heat insulating performance. Also, as in the embodiment shown in FIGS. 12 and 13, the amount of urethane foam used is reduced by bending the vacuum heat insulating material on the projection surface of the urethane injection hole so as not to inhibit urethane flow. This is effective in reducing costs.

また、真空断熱材の投影面内に放熱パイプを配置しても、真空断熱材が熱による断熱性能の悪化等を生じさせない距離を確保できるスペーサを採用したことによって、放熱特性が大幅に向上し、より省エネを実現できる冷蔵庫を提供できるものである。本発明は冷蔵庫のみならず、断熱材を必要とする製品、機器、住宅・建物及び自動車や電車等の車両分野にも広く適用できる。   In addition, even if a heat radiating pipe is placed in the projection plane of the vacuum heat insulating material, the heat radiation characteristics are greatly improved by adopting a spacer that can secure a distance that does not cause the heat insulating performance to deteriorate due to heat. Therefore, it is possible to provide a refrigerator that can realize more energy saving. The present invention can be widely applied not only to refrigerators but also to products, equipment, houses / buildings, and vehicles such as automobiles and trains that require heat insulating materials.

繰り返して、本実施形態に係る真空断熱材を適用した冷蔵庫の構成上と効果上の特徴を略記すると次のようになる。外箱と内箱の間に発泡ウレタンと真空断熱材とを備え、外箱の背面に発泡ウレタンの注入口を有し、外箱側面の内面に放熱パイプを有する冷蔵庫において、真空断熱材の少なくとも2辺の全長部分が外箱と内箱から離れた状態で設置されているものであるから、真空断熱材のヒートブリッジ影響を低減でき、放熱パイプによる熱影響についても抑制できるものである。さらに、真空断熱材の少なくとも2辺の全長部分が、外箱と内箱との間にそれぞれ一定の空間を保持するように、接着部材又は支持部材により配置されているものであるから、従来の冷蔵庫と同様の作業方法で真空断熱材を配置できる。さらに、真空断熱材が、少なくとも向かい合う2辺の全長部分が外箱及び内箱から離れた状態になるように折り曲げ成形された状態で、折り曲げ部以外の真空断熱材が外箱に接着固定されているものであるから、直上の効果を奏することができる(なお、ここでは前記離れた状態の真空断熱材の部分を折り曲げ部と称している)。さらに、真空断熱材が、外箱に固定された放熱パイプ上に配置され、放熱パイプと一定の距離を確保できるように、少なくとも向かい合う2辺の全長部分が外箱から離れた状態になるように折り曲げ成形され、且つ、内箱と一定の距離を確保したものであるから、放熱パイプの熱影響を低減できるため、真空断熱材の断熱性能の経時劣化を抑制することが可能となる。さらに、真空断熱材が、発泡ウレタンの注入方向又は発泡方向に対して、傾斜した面を有するものであるから、発泡ウレタンの注入口の投影面内に真空断熱材が配置された場合でも、傾斜面により発泡ウレタンの流路方向を案内することができるため、発泡ウレタンの流動阻害による未充填部(ボイド)の発生を抑制することができる。   It will be as follows if the characteristic on the structure and effect of a refrigerator to which the vacuum heat insulating material which concerns on this embodiment is applied repeatedly is abbreviated. In a refrigerator having urethane foam and a vacuum heat insulating material between the outer box and the inner box, having a foam urethane inlet on the back of the outer box, and having a heat radiating pipe on the inner surface of the outer box side surface, at least the vacuum heat insulating material Since the two sides are installed in a state where they are separated from the outer box and the inner box, the heat bridge effect of the vacuum heat insulating material can be reduced, and the heat effect of the heat radiating pipe can also be suppressed. Furthermore, since the full length part of at least 2 sides of a vacuum heat insulating material is arrange | positioned by the adhesive member or the supporting member so that a fixed space may be hold | maintained between an outer box and an inner box, respectively, it is conventional. A vacuum heat insulating material can be arrange | positioned with the working method similar to a refrigerator. Further, the vacuum heat insulating material is folded and formed so that at least the full length portions of the two sides facing each other are separated from the outer box and the inner box, and the vacuum heat insulating material other than the bent portion is bonded and fixed to the outer box. Therefore, the effect immediately above can be achieved (in this case, the part of the vacuum heat insulating material in the separated state is referred to as a bent part). Furthermore, the vacuum heat insulating material is disposed on the heat radiating pipe fixed to the outer box, and at least two full length parts facing each other are separated from the outer box so as to ensure a certain distance from the heat radiating pipe. Since it is bent and secured at a certain distance from the inner box, it is possible to reduce the thermal effect of the heat radiating pipe, and thus it is possible to suppress deterioration over time of the heat insulating performance of the vacuum heat insulating material. Furthermore, since the vacuum heat insulating material has an inclined surface with respect to the injection direction or the foaming direction of the urethane foam, even when the vacuum heat insulating material is disposed in the projection surface of the injection port of the urethane foam, the inclination is inclined. Since the flow direction of the urethane foam can be guided by the surface, it is possible to suppress the occurrence of unfilled portions (voids) due to the flow inhibition of the urethane foam.

また、本実施形態においては、外箱と内箱の間に発泡ウレタンと真空断熱材とを備え、背面部に発泡ウレタンの注入口を有する冷蔵庫において、注入口を発泡ウレタン注入方向に投影した空間内と内箱との間に真空断熱材を配置し、真空断熱材が発泡ウレタンの注入方向に投影した空間内に位置しないよう折り曲げ成形したものであるから、発泡ウレタンの流動を阻害することなく、冷蔵庫の前面側に溜まり、発泡方向に均一に立ち上がることができるため、未充填部(ボイド)の発生頻度を低減することができるものである。さらに、真空断熱材が、柔軟性を有する繊維集合体からなる芯材と、芯材を覆う合成樹脂フィルムからなる内袋と、ガスバリヤ性を有する外被材、及び、芯材や外被材などから発生するガスや水分を吸着する吸着剤とで構成され、芯材は吸着剤を投入、内袋で覆って圧縮した後、脱気して一旦密封状態とし、これを外被材に挿入後、内袋の密封を解除して真空封止してなり、折り曲げ成形を施しても曲げ部分の板厚が減少しないので、箱体の断熱性能を悪化させることなく、大きな面積を被覆できるため、断熱性能を大幅に改善することが可能である。さらに、芯材の繊維集合体が、平均繊維径1〜10μmの無機繊維集合体、又は平均繊維径1〜50μmの有機繊維集合体であり、繊維同士を結着や結合をさせないバインダーレスであるので、上述した柔軟性を有し板厚の減少しない真空断熱材を実現することができる。   Further, in the present embodiment, in a refrigerator having urethane foam and a vacuum heat insulating material between the outer box and the inner box and having a urethane foam inlet on the back surface, a space in which the inlet is projected in the direction of urethane foam injection A vacuum heat insulating material is placed between the inner box and the inner box, and it is bent so that the vacuum heat insulating material is not located in the space projected in the injection direction of the urethane foam. Since it accumulates on the front side of the refrigerator and can stand up uniformly in the foaming direction, the occurrence frequency of unfilled portions (voids) can be reduced. Furthermore, the vacuum heat insulating material is a core material made of a flexible fiber assembly, an inner bag made of a synthetic resin film covering the core material, a jacket material having gas barrier properties, and a core material and a jacket material. It consists of an adsorbent that adsorbs gas and moisture generated from the core, and after the core material is filled with the adsorbent, covered with the inner bag and compressed, it is deaerated and sealed once, and then inserted into the jacket material Since the inner bag is released and sealed in a vacuum, the thickness of the bent portion does not decrease even if bending is performed, so it can cover a large area without deteriorating the heat insulation performance of the box, It is possible to greatly improve the heat insulation performance. Furthermore, the fiber aggregate of the core material is an inorganic fiber aggregate with an average fiber diameter of 1 to 10 μm, or an organic fiber aggregate with an average fiber diameter of 1 to 50 μm, and is binderless that does not bind or bond fibers together. Therefore, the vacuum heat insulating material which has the flexibility mentioned above and does not reduce the plate thickness can be realized.

1:冷蔵庫、2:冷蔵室、3a:製氷室、3b:上段冷凍室、4:下段冷凍室、5:野菜室、6a:冷蔵室扉、6b:冷蔵室扉、7a:製氷室扉、7b:上段冷凍室扉、8:下段冷凍室扉、9:野菜室扉、10:扉用ヒンジ、11:パッキン、12,14:断熱仕切り、13:仕切り部材、20:箱体、21:外箱、21a:天板、21b:後板、21d:底板、21e:側面、21f:前面、22:内箱、23:断熱材、23a:注入方向、23b:発泡方向、25:注入孔、27:送風機、28:冷却器、30:圧縮機、31:凝縮機、33:発泡ポリスチレン、40:凹部、41:電気部品、42:カバー、
50,50a,50b,50c,50d,50e:真空断熱材、51:芯材、52:内包材、53:外被材、54:吸着剤、70:スペーサ、70a,70b:接着面、70c:柱状部、71:スペーサ、71a,71b:接着面、72:スペーサ、72c:傾斜部、73:スペーサ、75:ブロック材、77:スペーサ、77c:溝部、80:支持部材、90:放熱パイプ、91:アルミテープ。
1: refrigerator, 2: cold room, 3a: ice making room, 3b: upper freezer room, 4: lower freezer room, 5: vegetable room, 6a: cold room door, 6b: cold room door, 7a: ice room door, 7b : Upper freezer door, 8: Lower freezer door, 9: Vegetable room door, 10: Hinge for door, 11: Packing, 12, 14: Thermal insulation partition, 13: Partition member, 20: Box, 21: Outer box 21a: top plate, 21b: rear plate, 21d: bottom plate, 21e: side surface, 21f: front surface, 22: inner box, 23: heat insulating material, 23a: injection direction, 23b: foaming direction, 25: injection hole, 27: Blower, 28: Cooler, 30: Compressor, 31: Condenser, 33: Expanded polystyrene, 40: Recess, 41: Electrical component, 42: Cover,
50, 50a, 50b, 50c, 50d, 50e: vacuum heat insulating material, 51: core material, 52: enveloping material, 53: jacket material, 54: adsorbent, 70: spacer, 70a, 70b: adhesive surface, 70c: Columnar part, 71: Spacer, 71a, 71b: Adhesive surface, 72: Spacer, 72c: Inclined part, 73: Spacer, 75: Block material, 77: Spacer, 77c: Groove part, 80: Support member, 90: Radiation pipe, 91: Aluminum tape.

Claims (9)

背面と両側面と天面をもつ外箱と、前記外箱に対面する内箱と、前記外箱の両側面の内面に配置された放熱パイプと、前記外箱と前記内箱の間に設置された発泡ウレタン及び真空断熱材と、を備えた冷蔵庫において、
前記外箱の背面に前記発泡ウレタンを注入する注入口を設け、
前記真空断熱材は、その薄厚方向からみて一対の短辺部と一対の長辺部とからなる略矩形形状であり、
いずれか一方の一対の辺部の全長部分と他方の一対の辺部の一部長部分は、前記外箱と前記内箱から離隔した離隔状態で設置される
ことを特徴とする冷蔵庫。
Installed between the outer box and the inner box, an outer box having a back surface, both side surfaces, and a top surface, an inner box facing the outer box, a heat radiating pipe disposed on the inner surfaces of both side surfaces of the outer box In a refrigerator provided with a foamed urethane and a vacuum heat insulating material,
Provide an injection port for injecting the urethane foam on the back of the outer box,
The vacuum heat insulating material has a substantially rectangular shape composed of a pair of short sides and a pair of long sides as viewed from the thin direction,
The full length part of any one pair of side part and the partial length part of the other pair of side part are installed in the separated state separated from the said outer box and the said inner box. The refrigerator characterized by the above-mentioned.
請求項1において、
前記離隔状態で設置される前記真空断熱材の部分は、前記外箱に接着固定された支持部材により支持されることを特徴とする冷蔵庫。
In claim 1,
The portion of the vacuum heat insulating material installed in the separated state is supported by a support member bonded and fixed to the outer box.
請求項1または2において、
前記真空断熱材は、前記他方の一対の辺部の一部長部分を除いた他部長部分で折り曲げ成形され、前記折り曲げ成形された他部長部分が前記外箱に接着固定されることを特徴とする冷蔵庫。
In claim 1 or 2,
The vacuum heat insulating material is formed by bending at the other part length part excluding a part of the other pair of side parts, and the other part length part formed by bending is bonded and fixed to the outer box. refrigerator.
箱の内面配請求項1、2または3において、
前記離隔状態で設置された前記真空断熱材の部分は、前記外置の放熱パイプから一定の距離を保持することを特徴とする冷蔵庫。
In claim 1, 2, or 3, the inner surface of the box,
The portion of the vacuum heat insulating material installed in the separated state maintains a certain distance from the external heat radiating pipe.
請求項2において、
前記支持部材は、前記外箱の内面配置の放熱パイプが接しないように溝を設けるとともに、前記溝の無い部分で前記外箱に接着固定することを特徴とする冷蔵庫。
In claim 2,
The support member is provided with a groove so that a heat radiating pipe disposed on the inner surface of the outer box is not in contact with the support member, and is adhesively fixed to the outer box at a portion without the groove.
請求項1、2または3において、
前記注入口に最も近い前記真空断熱材の部分は、前記発泡ウレタンの注入を誘導案内するように注入方向に対して傾斜した面を有することを特徴とする冷蔵庫。
In claim 1, 2 or 3,
The portion of the vacuum heat insulating material closest to the inlet has a surface inclined with respect to the injection direction so as to guide and guide the injection of the urethane foam.
背面と両側面と天面をもつ外箱と、前記外箱に対面する内箱と、前記外箱の両側面の内面に配置された放熱パイプと、前記外箱と前記内箱の間に設置された発泡ウレタン及び真空断熱材と、を備えた冷蔵庫において、
前記外箱の背面に前記発泡ウレタンを注入する注入口を設け、
前記発泡ウレタン注入方向における前記注入口の投影面内に前記真空断熱材が位置しないように、前記投影面に対応する前記真空断熱材を折り曲げ成形し、
前記折り曲げ成形した折り曲げ部分を前記外箱に接着固定するとともに、前記折り曲げ部分以外の真空断熱材が前記外箱と前記内箱から離隔した離隔状態で設置される
ことを特徴とする冷蔵庫。
Installed between the outer box and the inner box, an outer box having a back surface, both side surfaces, and a top surface, an inner box facing the outer box, a heat radiating pipe disposed on the inner surfaces of both side surfaces of the outer box In a refrigerator provided with a foamed urethane and a vacuum heat insulating material,
Provide an injection port for injecting the urethane foam on the back of the outer box,
The vacuum heat insulating material corresponding to the projection surface is bent so that the vacuum heat insulating material is not located in the projection surface of the injection port in the urethane foam injection direction,
The refrigerator is characterized in that the bent portion formed by bending is adhered and fixed to the outer box, and a vacuum heat insulating material other than the bent portion is installed in a separated state separated from the outer box and the inner box.
請求項3または7において、
折り曲げ成形された真空断熱材は、柔軟性を有する繊維集合体からなる芯材を用いて折り曲げ部分の厚さが、断熱性能を悪化させないように減少しないものであることを特徴とする冷蔵庫。
In claim 3 or 7,
The refrigerator is characterized in that the vacuum heat insulating material formed by bending is such that the thickness of the bent portion does not decrease so as not to deteriorate the heat insulating performance using a core material made of a flexible fiber assembly.
請求項8において、
前記繊維集合体は、平均繊維径1〜10μmの無機繊維集合体、または平均繊維径1〜50μmの有機繊維集合体であって、いずれも繊維同士を結着又は結合をさせないバインダーレスであることを特徴とする冷蔵庫。
In claim 8,
The fiber aggregate is an inorganic fiber aggregate with an average fiber diameter of 1 to 10 μm or an organic fiber aggregate with an average fiber diameter of 1 to 50 μm, both of which are binderless that do not bind or bond fibers together. A refrigerator characterized by.
JP2009131215A 2009-05-29 2009-05-29 Refrigerator having vacuum heat insulating material Withdrawn JP2010276308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009131215A JP2010276308A (en) 2009-05-29 2009-05-29 Refrigerator having vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009131215A JP2010276308A (en) 2009-05-29 2009-05-29 Refrigerator having vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JP2010276308A true JP2010276308A (en) 2010-12-09

Family

ID=43423426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131215A Withdrawn JP2010276308A (en) 2009-05-29 2009-05-29 Refrigerator having vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP2010276308A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053822A (en) * 2011-09-05 2013-03-21 Panasonic Corp Heat insulation box body
JP2013119998A (en) * 2011-12-07 2013-06-17 Toshiba Corp Heat insulation cabinet
JP2014055720A (en) * 2012-09-13 2014-03-27 Sharp Corp Refrigerator and manufacturing process of refrigerator
JP2014219172A (en) * 2013-05-10 2014-11-20 株式会社東芝 Refrigerator
JP2014240709A (en) * 2013-06-11 2014-12-25 日立アプライアンス株式会社 Refrigerator
JP2015129634A (en) * 2013-06-07 2015-07-16 三菱電機株式会社 Adiabatic box, refrigerator, and machinery having adiabatic box
WO2016035492A1 (en) * 2014-09-05 2016-03-10 シャープ株式会社 Refrigerator door and method for manufacturing same
CN107367105A (en) * 2016-05-11 2017-11-21 富士电机株式会社 Freezer
JP2017215142A (en) * 2017-09-11 2017-12-07 東芝ライフスタイル株式会社 Heat insulation cabinet
TWI613131B (en) * 2013-06-07 2018-02-01 Mitsubishi Electric Corp refrigerator
JP2019002581A (en) * 2017-06-12 2019-01-10 東芝ライフスタイル株式会社 refrigerator
WO2022172494A1 (en) * 2021-02-15 2022-08-18 日立グローバルライフソリューションズ株式会社 Refrigerator
JP7328185B2 (en) 2020-08-12 2023-08-16 日立グローバルライフソリューションズ株式会社 Refrigerator manufacturing method and refrigerator

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053822A (en) * 2011-09-05 2013-03-21 Panasonic Corp Heat insulation box body
JP2013119998A (en) * 2011-12-07 2013-06-17 Toshiba Corp Heat insulation cabinet
JP2014055720A (en) * 2012-09-13 2014-03-27 Sharp Corp Refrigerator and manufacturing process of refrigerator
JP2014219172A (en) * 2013-05-10 2014-11-20 株式会社東芝 Refrigerator
JP2015129634A (en) * 2013-06-07 2015-07-16 三菱電機株式会社 Adiabatic box, refrigerator, and machinery having adiabatic box
TWI613131B (en) * 2013-06-07 2018-02-01 Mitsubishi Electric Corp refrigerator
JP2014240709A (en) * 2013-06-11 2014-12-25 日立アプライアンス株式会社 Refrigerator
CN106104185A (en) * 2014-09-05 2016-11-09 夏普株式会社 Refrigerator doors and manufacture method thereof
JP2016056958A (en) * 2014-09-05 2016-04-21 シャープ株式会社 Refrigerator door
WO2016035492A1 (en) * 2014-09-05 2016-03-10 シャープ株式会社 Refrigerator door and method for manufacturing same
CN106104185B (en) * 2014-09-05 2019-06-18 夏普株式会社 Refrigerator doors and its manufacturing method
CN107367105A (en) * 2016-05-11 2017-11-21 富士电机株式会社 Freezer
JP2019002581A (en) * 2017-06-12 2019-01-10 東芝ライフスタイル株式会社 refrigerator
JP7045141B2 (en) 2017-06-12 2022-03-31 東芝ライフスタイル株式会社 refrigerator
JP2017215142A (en) * 2017-09-11 2017-12-07 東芝ライフスタイル株式会社 Heat insulation cabinet
JP7328185B2 (en) 2020-08-12 2023-08-16 日立グローバルライフソリューションズ株式会社 Refrigerator manufacturing method and refrigerator
WO2022172494A1 (en) * 2021-02-15 2022-08-18 日立グローバルライフソリューションズ株式会社 Refrigerator

Similar Documents

Publication Publication Date Title
JP2010276308A (en) Refrigerator having vacuum heat insulating material
WO2010137081A1 (en) Refrigerator equipped with vacuum insulation material
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5689387B2 (en) Refrigerator and manufacturing method thereof
KR100980175B1 (en) Refrigerator
TWI231356B (en) Refrigerator
JP5544338B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2012063029A (en) Vacuum heat insulating material and refrigerator using the same
JP2009024922A (en) Refrigerator
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP5401258B2 (en) refrigerator
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2011153721A (en) Refrigerator
JP2016080281A (en) Heat insulation box body and heat insulation door
JP2009024921A (en) Refrigerator
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP2011149624A (en) Refrigerator
JP2012026583A (en) Refrigerator
JP2013024440A (en) Refrigerator
JP2012026622A (en) Vacuum heat insulation material and refrigerator using the same
JP5401422B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2012229849A (en) Refrigerator and freezer
JP5982276B2 (en) Refrigerator using vacuum heat insulating material and vacuum heat insulating material
JP2015055368A (en) Vacuum heat insulation material and refrigerator using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807