JP2008057745A - Vacuum heat insulation material and glass composition - Google Patents

Vacuum heat insulation material and glass composition Download PDF

Info

Publication number
JP2008057745A
JP2008057745A JP2006238490A JP2006238490A JP2008057745A JP 2008057745 A JP2008057745 A JP 2008057745A JP 2006238490 A JP2006238490 A JP 2006238490A JP 2006238490 A JP2006238490 A JP 2006238490A JP 2008057745 A JP2008057745 A JP 2008057745A
Authority
JP
Japan
Prior art keywords
glass
heat insulating
vacuum heat
core material
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006238490A
Other languages
Japanese (ja)
Inventor
Takeshi Katsube
毅 勝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006238490A priority Critical patent/JP2008057745A/en
Publication of JP2008057745A publication Critical patent/JP2008057745A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat insulation performance, by reducing heat conduction of a solid component in a core material part, by restraining high density of a core material by atmospheric compression and an increase in a fiber contact part, by enhancing raw material strength of glass fiber used for the core material of a vacuum heat insulation material. <P>SOLUTION: This vacuum heat insulation material 1 is formed by sealing the inside of an external capsule material 4 by reducing pressure, by covering the core material 2 composed of the glass fiber and a moisture absorbing material 3 with the external capsule material 4 having gas-barrier performance. The glass fiber is alkali silicic acid glass, and is composed of composition including at least any one component among ZrO<SB>2</SB>, ZnO and TiO<SB>2</SB>, and including the total of ZrO<SB>2</SB>, ZnO and TiO<SB>2</SB>within a range of 0.5 to 13 wt.%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、真空断熱材及びガラス組成物に関するものである。   The present invention relates to a vacuum heat insulating material and a glass composition.

近年、地球温暖化の防止を目的に省エネルギー化が望まれており、民生用機器に対しても省エネルギー化の推進が行われている。特に、冷凍冷蔵庫に関しては、冷熱を効率的に利用するという観点から、優れた断熱性を有する断熱材が求められている。   In recent years, energy saving has been desired for the purpose of preventing global warming, and energy saving has been promoted for consumer devices. In particular, with respect to a refrigerator-freezer, a heat insulating material having excellent heat insulating properties is required from the viewpoint of efficiently using cold heat.

一般的な断熱材としては、グラスウールなどの繊維体やウレタンフォームなどの発泡体が用いられている。しかし、これらの断熱材の断熱性を向上するには断熱材の厚みを増大して適用する必要がある。よって、断熱材を設置できる空間に制限がある場合や、省スペース化や空間の有効利用が必要な場合には従来の断熱材の適用は望ましくない。   As a general heat insulating material, a fiber body such as glass wool or a foam body such as urethane foam is used. However, it is necessary to increase the thickness of the heat insulating material in order to improve the heat insulating properties of these heat insulating materials. Therefore, when there is a limit to the space where the heat insulating material can be installed, or when space saving or effective use of the space is necessary, application of the conventional heat insulating material is not desirable.

このような課題を解決する一手段として、多孔体からなる芯材と、芯材を外包材によって覆い内部を減圧密閉して構成した真空断熱材がある。真空断熱材は、近年、省エネ競争が激化するなか、より一層、断熱性能の優れた真空断熱材が求められている。   As a means for solving such a problem, there are a core material made of a porous body and a vacuum heat insulating material configured by covering the core material with an outer packaging material and sealing the inside under reduced pressure. In recent years, vacuum heat insulating materials that are further superior in heat insulating performance have been demanded in the face of intensifying competition for energy saving in recent years.

一般に、断熱材の伝熱は、固体と気体成分の熱伝導、輻射、対流熱伝達により引き起こされる。一方、外包材内部を減圧してなる真空断熱材は、気体成分の熱伝導と対流熱伝達に関してはその影響は小さい。また、常温以下の温度領域での使用においては、輻射の寄与もほとんどない。   In general, heat transfer of a heat insulating material is caused by heat conduction, radiation, and convective heat transfer of solid and gas components. On the other hand, the vacuum heat insulating material formed by reducing the pressure inside the outer packaging material has little effect on the heat conduction and convective heat transfer of the gas component. In addition, there is almost no contribution of radiation when used in a temperature range below room temperature.

よって、常温以下で使用する保冷機器等に適用する真空断熱材においては、固体成分の熱伝導を抑制することが重要となる。そこで、断熱性能に優れる真空断熱材用の芯材として、種々の繊維材料が報告されている。   Therefore, it is important to suppress the heat conduction of the solid component in the vacuum heat insulating material applied to a cold insulation device used at room temperature or lower. Therefore, various fiber materials have been reported as a core material for vacuum heat insulating materials having excellent heat insulating performance.

例えば、芯材に、ガラス繊維、セラミック繊維、スラグウール繊維、ロックウール繊維等を用い、平均繊維長1mm以下、平均繊維径0.5〜3μmと形状を適正化した無機質繊維が熱伝導の方向に対して垂直方向に配向されている真空断熱材が提案されている(例えば、特許文献1参照)。   For example, glass fibers, ceramic fibers, slag wool fibers, rock wool fibers, etc. are used for the core material, and the average fiber length is 1 mm or less, the average fiber diameter is 0.5 to 3 μm, and the shape of the inorganic fibers is the direction of heat conduction. There has been proposed a vacuum heat insulating material oriented in the vertical direction with respect to (see, for example, Patent Document 1).

本構成により、真空断熱材の芯材部分では、伝熱方向に対して一本の繊維を熱が伝わっていくような固体成分の熱伝導ではなく、各繊維間の接触点を介して次々と隣り合う繊維へと熱が伝わっていくため、伝熱方向に対しては接触している繊維間の熱伝導となる。よって、繊維間の接触熱抵抗が存在するため、繊維一本がそのまま伝熱方向へ熱を伝えるような芯材と比べて芯材部分の伝熱を抑制している。さらに、繊維径及び繊維長を制御することにより、汎用性のある無機質繊維の適用が可能で、真空断熱材としての熱伝導率が安定的に0.01W/mK以下としたものである。
特開平7−167376号公報
With this configuration, in the core material part of the vacuum heat insulating material, heat conduction of a single component is not performed so that heat is transmitted through one fiber in the heat transfer direction, but one after another through contact points between the fibers. Since heat is transferred to adjacent fibers, heat transfer is performed between the fibers in contact with each other in the heat transfer direction. Therefore, since the contact thermal resistance between the fibers exists, heat transfer in the core material portion is suppressed as compared with a core material in which one fiber directly transfers heat in the heat transfer direction. Furthermore, by controlling the fiber diameter and fiber length, it is possible to apply versatile inorganic fibers, and the thermal conductivity as a vacuum heat insulating material is stably set to 0.01 W / mK or less.
JP 7-167376 A

しかしながら、上記従来の真空断熱材の構成では、汎用性を備え、かつ真空断熱材の芯材部分における固体成分の熱伝導をこれ以上低減することは不可能であった。   However, the configuration of the conventional vacuum heat insulating material has versatility, and it has been impossible to further reduce the heat conduction of the solid component in the core portion of the vacuum heat insulating material.

本発明は、さらに芯材部分における固体成分の熱伝導を低減する新たな設計方針について、以下に述べる。   The present invention further describes a new design policy for reducing the heat conduction of the solid component in the core part.

無機質繊維を真空断熱材の芯材として適用した場合、減圧封止後に繊維全体としての反発力が大気圧縮応力と釣り合った状態で内部空間が保持される。この芯材を構成する繊維の素材強度を向上すれば、芯材は高反発性とすることができ、より低密度な芯材でも空間を保持することが実現し、伝熱媒体となる芯材固体を低減することができると考えられる。   When the inorganic fiber is applied as the core material of the vacuum heat insulating material, the internal space is maintained in a state where the repulsive force of the entire fiber is balanced with the atmospheric compressive stress after the vacuum sealing. If the material strength of the fibers constituting this core material is improved, the core material can be made to have high resilience, and it is possible to maintain a space even with a lower density core material, which becomes a heat transfer medium. It is believed that solids can be reduced.

また、芯材が高反発性となることで、より少ない繊維接触点数でも大気圧縮応力を支えられること、さらには大気圧縮応力による各繊維間の接触部が押し潰されることによる接触面積の増大をも抑制できるのではないかと考えられる。   In addition, since the core material has high resilience, the atmospheric compressive stress can be supported even with a smaller number of fiber contact points, and the contact area between the fibers due to the atmospheric compressive stress is crushed and the contact area can be increased. Can be suppressed.

つまり、材料及び製造面でのコストが安価なガラス繊維を芯材として用いる場合、そのガラス素材の強度を高めることができれば、汎用性を備え、かつ真空断熱材の断熱性能をさらに向上させ得ると考えた。   In other words, when using glass fiber with a low cost in terms of material and production as a core material, if the strength of the glass material can be increased, it has versatility and can further improve the heat insulating performance of the vacuum heat insulating material. Thought.

また、セラミック繊維を用いる場合には、高強度であるために大気圧縮時にも芯材部分の高密度化を抑制し、断熱性能を高めることは可能であるが、材料コストが高いこと、及び繊維化するための製造コストが極めて高いために汎用断熱材に用いる繊維としては好ましくない。   In addition, when using ceramic fibers, it is possible to suppress the densification of the core material part even during air compression and increase the heat insulation performance because of high strength, but the material cost is high and the fibers Since the manufacturing cost for converting to a very high temperature is not preferable as a fiber used for a general-purpose heat insulating material.

また、スラグウールやロックウールを用いる場合では、汎用ガラス繊維を用いるよりも更に断熱性能が悪化してしまう。これは、汎用のガラス繊維よりも脆く、大気圧縮による芯材部の高密度化、繊維接点数及びの接触面積増大が生じ、真空断熱材の断熱性能を低下させてしまっていると考えられる。   Moreover, in the case of using slag wool or rock wool, the heat insulation performance is further deteriorated compared to the case of using general-purpose glass fibers. This is more fragile than general-purpose glass fibers, and it is considered that the densification of the core material portion due to atmospheric compression, the number of fiber contacts and the contact area increase occur, and the heat insulating performance of the vacuum heat insulating material is lowered.

本発明は、上記従来の課題を解決するもので、真空断熱材の芯材として、原料及び製造コストが安価で汎用性の高いガラス繊維において、ガラス素材自体の強度を向上することで、芯材部分の伝熱を抑制し、真空断熱材の断熱性能を飛躍的に向上させることを目的とする。   The present invention solves the above-mentioned conventional problems, and as a core material of a vacuum heat insulating material, a core material by improving the strength of the glass material itself in a highly versatile glass fiber with low raw material and manufacturing costs. It aims at suppressing the heat transfer of a part and improving the heat insulation performance of a vacuum heat insulating material dramatically.

上記目的を達成するために、本発明の真空断熱材は、芯材に用いるガラス繊維が、ZrO、ZnO、TiOのうち、少なくともいずれか1成分を含み、かつ前記ZrO、ZnO、TiOの合計は重量%で、0.5〜13%の範囲内で含まれる組成からなるアルカリケイ酸ガラスであることを特徴とする。 To achieve the above object, the vacuum heat insulator of the present invention, the glass fibers used in the core material, ZrO 2, ZnO, of TiO 2, wherein at least any one component, and said ZrO 2, ZnO, TiO The total of 2 is% by weight and is characterized in that it is an alkali silicate glass having a composition contained within a range of 0.5 to 13%.

これにより、汎用ガラスにおける素材自体の強度を高めることができるため、真空断熱材の芯材として適用した場合に、減圧封止後の大気圧縮応力による芯材の変形量を小さくでき、高密度化を抑制することができる。また、芯材の支持部となる各繊維同士の接触部においても、接触点数の減少が図れ、かつガラスの変形が小さいことは繊維間の接触部面積が小さいことを意味しており、各繊維間を伝わっていく熱量を低減できる。   As a result, the strength of the material itself in general-purpose glass can be increased, so when applied as a vacuum insulation core material, the amount of deformation of the core material due to atmospheric compressive stress after decompression sealing can be reduced and the density increased. Can be suppressed. Moreover, also in the contact part of each fiber used as the support part of a core material, the reduction | decrease of a contact point can be aimed at and the small deformation | transformation of glass means that the contact part area between fibers is small, and each fiber The amount of heat that travels between them can be reduced.

本発明の真空断熱材は、芯材部分における高密度化を抑え、かつ繊維接触部の増大をも抑制することで、芯材部の繊維間伝熱量を低減できる。これにより、芯材固体成分の熱伝導を低減し、真空断熱材の断熱性能を飛躍的に改善する。よって、繊維長、繊維径や積層状態等、品質状態を変えることなく従来通りの製造で高い断熱効果が得られるため、製造が容易である。   The vacuum heat insulating material of the present invention can reduce the heat transfer amount between fibers in the core material part by suppressing the increase in density in the core material part and also suppressing the increase in the fiber contact part. Thereby, the heat conduction of the core solid component is reduced, and the heat insulating performance of the vacuum heat insulating material is dramatically improved. Therefore, since a high heat insulation effect is obtained by conventional production without changing the quality state such as fiber length, fiber diameter, and lamination state, the production is easy.

本来、グラスウールにおけるガラス素材の硬さ及び強度は、断熱性能と無関係といえる物性であったにも関わらず、その素材の機械物性に着目し、より硬く強い繊維とすることで真空断熱材の断熱性能の改善効果が得られるということは驚くべき事実である。   Although the hardness and strength of the glass material in glass wool was originally a physical property that could be said to be irrelevant to the heat insulation performance, paying attention to the mechanical property of the material, heat insulation of the vacuum heat insulating material by making it a harder and stronger fiber It is a surprising fact that a performance improvement effect can be obtained.

さらにはZrO、ZnO、TiO、これらの成分は、重量%で0.5〜13%の添加によりガラス素材の熱伝導率を低減し、芯材部分のガラス固体の熱伝導を抑制する。よって、強度を高めることと熱伝導率の低減により芯材部分の断熱性能を相乗的に改善できる。 Furthermore ZrO 2, ZnO, TiO 2, these components reduce the thermal conductivity of the glass material by the addition of 0.5 to 13% by weight, suppressing heat conduction of the glass solid core portion. Therefore, the heat insulation performance of the core material portion can be synergistically improved by increasing the strength and reducing the thermal conductivity.

また、これらのガラス繊維は、汎用グラスウールよりも高い機械強度を備えるために、取扱いも容易で、一般の建材用グラスウールや、補強材としても有用である。また、ZrO、ZnO、TiOは全てガラスの耐水性を改善するため、表面積の大きく、侵食されやすいガラス繊維の成分として用いる場合には、特に有効となる。 Moreover, since these glass fibers have higher mechanical strength than general-purpose glass wool, they are easy to handle and are useful as glass wool for general building materials and reinforcing materials. ZrO 2 , ZnO, and TiO 2 are all particularly effective when used as components of glass fibers that have a large surface area and are easily eroded because they all improve the water resistance of glass.

本発明の請求項1に記載の真空断熱材の発明は、ガラス繊維からなる芯材をガスバリア性を有する外包材で被覆し、前記外包材の内部を減圧密閉してなり、前記ガラス繊維はアルカリケイ酸ガラスであり、ZrO、ZnO、TiOのうち、少なくともいずれか1成分を含み、かつ前記ZrO、ZnO、TiOの合計は重量%で、0.5〜13%の範囲内で含まれる組成からなるものである。 The invention of the vacuum heat insulating material according to claim 1 of the present invention is such that a core material made of glass fiber is covered with an outer packaging material having a gas barrier property, and the inside of the outer packaging material is hermetically sealed under reduced pressure. a silicate glass, ZrO 2, ZnO, of TiO 2, wherein at least any one component, and said ZrO 2, ZnO, the total of the TiO 2 in weight percent, in the range of 0.5 to 13% It consists of the composition contained.

これにより、ガラス繊維の素材強度を高め、大気圧縮応力による芯材の高密度化を抑制でき、かつ大気圧縮によるガラス繊維の変形量を小さくするため、各繊維間の接触面積の増大を抑制できる。   Thereby, the material strength of the glass fiber can be increased, the densification of the core material due to the atmospheric compression stress can be suppressed, and the deformation amount of the glass fiber due to the atmospheric compression can be reduced, so that the increase in the contact area between the fibers can be suppressed. .

以上の作用により、真空断熱材の芯材部分における固体成分の熱伝導を抑制し、断熱性能が向上する。さらには、ガラス素材の熱伝導率が低減することで、相乗的に断熱性能が改善できる。   By the above effect | action, the heat conduction of the solid component in the core material part of a vacuum heat insulating material is suppressed, and heat insulation performance improves. Furthermore, heat insulation performance can be improved synergistically by reducing the thermal conductivity of the glass material.

また、本発明の請求項2に記載の真空断熱材の発明は、請求項1に記載の発明におけるガラス繊維が、重量%で、少なくともSiOが50〜70%、Alが0〜7%、NaOとKOを合わせて8〜20%、MgOが0〜6%、CaOが2〜15%の範囲内で、かつ、それらの成分の重量%の合計が100%を超えずに含まれる組成からなるものである。 Moreover, the invention of the vacuum heat insulating material according to claim 2 of the present invention is such that the glass fiber in the invention according to claim 1 is by weight%, at least SiO 2 is 50 to 70%, and Al 2 O 3 is 0 to 0. 7%, combined Na 2 O and K 2 O 8-20%, MgO 0-6%, CaO 2-15%, and the total weight percent of these components is 100% It is composed of a composition that does not exceed.

これにより、請求項1に記載の作用に加え、板ガラス等の一般的なガラス材料に近いために、市中カレット等を用いることも可能であり、材料が安価で入手も容易である。以上の作用により、製造コストが低減でき、より汎用性が高まる。   Thereby, in addition to the effect | action of Claim 1, since it is close to common glass materials, such as plate glass, it is also possible to use commercial cullet etc., and a material is cheap and easy to acquire. With the above operation, the manufacturing cost can be reduced and the versatility is further increased.

また、本発明の請求項3に記載の真空断熱材の発明は、請求項1または2に記載の発明におけるガラス繊維が、重量%で、Bを0.1〜12%の範囲で含むものである。 Moreover, the invention of the vacuum heat insulating material according to claim 3 of the present invention is such that the glass fiber in the invention according to claim 1 or 2 is in% by weight and B 2 O 3 is in the range of 0.1 to 12%. Is included.

これにより、ガラスはさらに素材強度が高まり、芯材の高密度化、及び繊維間の接触面積増大をより抑えることができる。   Thereby, the strength of the glass is further increased, and the density of the core material and the increase in the contact area between the fibers can be further suppressed.

以上の作用により、真空断熱材の芯材部分における固体成分の熱伝導を抑制し、断熱性能がより一層向上する。また、Bを含むことでガラス溶融時の表面張力が低下し、紡糸時の抵抗力が低くなるために生産性が向上する。 By the above effect | action, the heat conduction of the solid component in the core part of a vacuum heat insulating material is suppressed, and heat insulation performance improves further. Further, by containing B 2 O 3 , the surface tension at the time of glass melting is lowered, and the resistance force at the time of spinning is lowered, so that productivity is improved.

また、本発明の請求項4に記載のガラス組成物の発明は、請求項1から3のいずれか一項に記載の真空断熱材に使用したガラス組成物である。   Moreover, invention of the glass composition as described in Claim 4 of this invention is a glass composition used for the vacuum heat insulating material as described in any one of Claims 1-3.

よって、これらのガラスは素材の強度が高いために、ガラス成形品としての剛性が増す。   Therefore, since these glasses have high material strength, the rigidity as a glass molded product increases.

以上の作用により、本発明におけるガラス組成物は、高強度であり、かつ従来の板ガラス組成物よりも熱伝導率が低いために、割れにくく、断熱性の高いガラス製品となる。特にグラスウール用途として従来品よりも機械強度に優れた汎用断熱材として有用である。   By the above effect | action, since the glass composition in this invention is high intensity | strength and heat conductivity is lower than the conventional plate glass composition, it becomes a glass product which is hard to break and has high heat insulation. In particular, it is useful as a general-purpose heat insulating material superior in mechanical strength than conventional products for glass wool applications.

また、本発明で使用できるガラスは、ガラス状態になり得るガラス形成酸化物からなる繊維であればよいが、特に汎用性、環境面を混慮すると、SiOを主成分とするケイ酸塩系、ホウケイ酸塩系のガラスが好ましい。 In addition, the glass that can be used in the present invention may be a fiber made of a glass-forming oxide that can be in a glass state. However, in consideration of versatility and environmental aspects, a silicate system mainly containing SiO 2. Borosilicate glass is preferred.

各成分における重量%において、ZrOを少量でも含むことでガラス素材強度が大きく増加するが、12%を超えるとガラスの液相温度が極端に上昇し、ガラスの繊維化時に、ガラスの失透が問題となりガラス繊維の安定製造が困難となる。よって、ZrOは0.5〜12%の範囲が好ましく、1〜11%がより好ましい。 The glass material strength is greatly increased by containing ZrO 2 even in a small amount in the weight% of each component. However, if it exceeds 12%, the liquidus temperature of the glass is extremely increased, and the glass is devitrified at the time of fiber formation. Becomes a problem, and it becomes difficult to stably produce glass fibers. Therefore, ZrO 2 is preferably in the range of 0.5 to 12%, more preferably 1 to 11%.

ZnOは少量でも含むことでガラス素材強度が増加し、さらに溶融性が改善するが、8%を超えると液相温度が上昇するため、0.5〜10%の範囲がよく、1〜8%の範囲がより好ましい。また、耐水性が大きく向上し、特に繊維としては耐候性の改善効果が大きい。   Although ZnO contains even a small amount, the strength of the glass material is increased and the meltability is further improved. However, since the liquidus temperature rises when it exceeds 8%, the range of 0.5 to 10% is good, and 1 to 8% The range of is more preferable. Further, the water resistance is greatly improved, and the effect of improving the weather resistance is particularly great as a fiber.

TiOは少量でも含むことで、ガラス素材強度が大きく増加するが、10%を超えると結晶核ができ易く、やはり製造時に失透が問題となる。よって、0.5〜10%の範囲がよく、1〜8%の範囲がより好ましい。また、TiOはガラスの素材熱伝導率の低減効果も大きく、素材強度及び素材熱伝導率両面からの真空断熱材の断熱性改善効果が得られる。 By including even a small amount of TiO 2 , the strength of the glass material is greatly increased. However, if it exceeds 10%, crystal nuclei are easily formed, and devitrification becomes a problem at the time of production. Therefore, the range of 0.5 to 10% is good, and the range of 1 to 8% is more preferable. In addition, TiO 2 has a large effect of reducing the material thermal conductivity of glass, and the effect of improving the heat insulating property of the vacuum heat insulating material from both sides of the material strength and the material thermal conductivity can be obtained.

ZrO、ZnO、TiOを2成分、または3成分を同時に含む場合でも、同様に素材強度の向上を見込めるが、合計が10%を超えると液相温度の上昇、及び結晶核ができやすいため、失透の問題から合計で0.5〜13%、より好ましくは1〜13%の範囲が良い。 Even when ZrO 2 , ZnO, and TiO 2 are included in two or three components at the same time, improvement in material strength can be expected in the same manner, but if the total exceeds 10%, the liquidus temperature rises and crystal nuclei are likely to be formed. From the problem of devitrification, the total content is preferably 0.5 to 13%, more preferably 1 to 13%.

SiOは減少すれば液相温度が上昇し、増大すれば粘性が高くなることで生産性が低下するため、50〜70%の範囲が良いが、より好ましくは52〜68%の範囲である。 If SiO 2 decreases, the liquidus temperature rises, and if it increases, the viscosity decreases and productivity decreases, so the range of 50 to 70% is preferable, but the range of 52 to 68% is more preferable. .

Alが増加すると液相温度の上昇を招き、また粘性が高くなってしまい、含まなければ素材強度が低下する。よって、0.1%〜7%の範囲で含む方が良いが、より好ましくは0.5〜5.5%以下の範囲が良い。 If Al 2 O 3 increases, the liquidus temperature rises and the viscosity increases, and if not contained, the strength of the material decreases. Therefore, it is better to contain in the range of 0.1% to 7%, more preferably in the range of 0.5 to 5.5%.

は増加することで材料コストの増大を招き、含まない場合には素材強度が低下するため、0.1〜12%の範囲で含むことが良い。より好ましくは1〜12%、さらに好ましくは5〜12%の範囲である。 Increase in B 2 O 3 causes an increase in material cost, and if not included, the strength of the material is lowered. Therefore, it is preferable to include B 2 O 3 in a range of 0.1 to 12%. More preferably, it is 1-12%, More preferably, it is the range of 5-12%.

NaOとKOは、増加すると素材強度が低下し、低下しすぎると溶融温度の上昇を招くため、NaOとKOとを合わせて重量%で8〜20%の範囲が良い。さらに好ましくは、10〜18%の範囲である。また、耐水性の問題からKOは5%以下である方が良いが、0.1%以上含むことで粘性の低減効果が大きく、かつ材料コストの問題から、KOは0.1〜3.5%の範囲である方が良い。尚、アルカリ土類金属酸化物は、他のLiO等を混合してもよく、その場合には素材強度が更に向上する。 When Na 2 O and K 2 O increase, the strength of the material decreases, and when it decreases too much, the melting temperature rises. Therefore, the combined range of Na 2 O and K 2 O ranges from 8 to 20% by weight. good. More preferably, it is 10 to 18% of range. Moreover, it is better that K 2 O is 5% or less from the viewpoint of water resistance. However, if 0.1% or more is contained, the effect of reducing viscosity is large, and K 2 O is 0.1% from the problem of material cost. It is better to be in the range of ~ 3.5%. The alkaline earth metal oxide may be mixed with other LiO 2 or the like, and in this case, the material strength is further improved.

MgOを含むことで、液相温度を低げ、増加すると素材強度を向上させるが、6%を超えると逆に液相温度が上昇するため、0〜6%の範囲が良く、より好ましくは2〜5%の範囲である。   When MgO is included, the liquid phase temperature is lowered and the material strength is improved when it is increased. However, if it exceeds 6%, the liquid phase temperature rises conversely, so the range of 0 to 6% is better, more preferably 2 It is in the range of ˜5%.

CaOは2%以上含むことでMgOと同様にガラス素材の強度を高め、15%を超えると液相温度が上昇するので、2〜15%の範囲、より好ましくは4〜11%の範囲である。   CaO contains 2% or more to increase the strength of the glass material in the same manner as MgO. If it exceeds 15%, the liquidus temperature rises, so the range is 2 to 15%, more preferably 4 to 11%. .

その他の成分としては、重量%で合計3%未満であれば、ガラス全体への影響はほとんどなく、原料としては不純物を含む天然原料を用いることが可能である。   As other components, if the total is less than 3% by weight, there is almost no influence on the whole glass, and natural raw materials containing impurities can be used as raw materials.

尚、Pを添加することで人体安全性が高まることは公知であり、その他3%以内の範囲で含んでも良い。その場合、ヤング率が低下してしまうことなく、粘性が低下し、生産性が増す。 In addition, it is publicly known that human body safety is increased by adding P 2 O 5, and may be included within a range of 3% or less. In that case, the viscosity decreases and the productivity increases without lowering the Young's modulus.

また、Feを含む場合、着色する傾向にあるが、輻射熱を吸収することが可能となるため、可視光領域の透明度が問題にならない場合には重量%で0.3〜5%の範囲で含むことで断熱性が向上する。また、失透性の面では4%以下であることがより好ましく、0.5〜4%の範囲がさらに良い。 In addition, when Fe 2 O 3 is included, it tends to be colored, but since it becomes possible to absorb radiant heat, when transparency in the visible light region does not matter, it is 0.3 to 5% by weight. Inclusion in the range improves heat insulation. Moreover, it is more preferable that it is 4% or less in terms of devitrification, and the range of 0.5 to 4% is still better.

また、ガラスの製造時には、清澄剤を用いると泡切れを良好にし、生産性を向上させるために好ましく、Sb等の公知のものが適用できる。 Moreover, when manufacturing a glass, it is preferable to use a refining agent in order to improve foaming and improve productivity, and known materials such as Sb 2 O 3 can be applied.

また、本発明の真空断熱材には水分吸着剤が使用できる。水分吸着材は特に限定するものではなく、真空断熱材の内部に存在する水蒸気を吸着し、内部雰囲気中の水蒸気量を減少されるものであればよい。   Moreover, a moisture adsorbent can be used for the vacuum heat insulating material of the present invention. The moisture adsorbing material is not particularly limited as long as it adsorbs water vapor existing inside the vacuum heat insulating material and reduces the amount of water vapor in the internal atmosphere.

一例としては、合成ゼオライト、活性炭、活性アルミナ、シリカゲル、ドーソナイト、ハイドロタルサイトなどの物理吸着剤、アルカリ金属やアルカリ土類金属単体やその酸化物および水酸化物などの化学吸着剤などが適用可能である。さらに、空気成分が吸着できるゲッター材等を併用することで内部の気体成分の熱伝導を低減して、断熱性能を向上させることも可能である。   Examples include physical adsorbents such as synthetic zeolite, activated carbon, activated alumina, silica gel, dosonite, and hydrotalcite, and chemical adsorbents such as alkali metals and alkaline earth metals alone and their oxides and hydroxides. It is. Furthermore, by using together a getter material or the like that can adsorb an air component, it is possible to reduce the heat conduction of the internal gas component and improve the heat insulation performance.

また、本発明の外包材は、プラスチックラミネートフィルムが使用できるが、より高いガスバリア性を付与するためには金属箔や蒸着層が適用できる。なお、金属箔、および蒸着層は公知のもが利用でき、特に指定するものではない。   In addition, a plastic laminate film can be used as the outer packaging material of the present invention, but a metal foil or a vapor deposition layer can be applied in order to impart higher gas barrier properties. In addition, a metal foil and a vapor deposition layer can use a well-known thing, and it does not specify it in particular.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の断面図を示す。
(Embodiment 1)
FIG. 1 shows a cross-sectional view of a vacuum heat insulating material according to Embodiment 1 of the present invention.

図1において、真空断熱材1は、芯材2と水分吸着材3とを外包材4に挿入し、内部を減圧して構成している。   In FIG. 1, a vacuum heat insulating material 1 is configured by inserting a core material 2 and a moisture adsorbing material 3 into an outer packaging material 4 and reducing the pressure inside.

真空断熱材1の作製は、芯材2を140℃の乾燥炉で30分間乾燥した後、ラミネートフィルムの三方を熱溶着によりシールして袋状に成形した外包材4に挿入し、減圧チャンバー内で、外包材4内部が10Pa以下になるように減圧し、開口部を熱溶着により密閉封止している。   The vacuum heat insulating material 1 is produced by drying the core material 2 in a drying furnace at 140 ° C. for 30 minutes, and then inserting the three sides of the laminate film into the outer packaging material 4 formed into a bag shape by heat sealing. Thus, the pressure is reduced so that the inside of the outer packaging material 4 becomes 10 Pa or less, and the opening is hermetically sealed by heat welding.

この時、外包材4は、表面保護層としてポリエチレンテレフタレートフィルム(12μm)、中間層にはアルミ箔(6μm)、熱溶着層として直鎖状低密度ポリエチレンフィルム(50μm)からなるラミネートフィルムにより構成している。   At this time, the outer packaging material 4 is composed of a laminate film composed of a polyethylene terephthalate film (12 μm) as a surface protective layer, an aluminum foil (6 μm) as an intermediate layer, and a linear low-density polyethylene film (50 μm) as a heat welding layer. ing.

また、水分吸着剤3は、酸化カルシウムを適用している。水分吸着材3がない場合にも特に問題はないが、水分吸着材3を備えることで、内部の残存水蒸気を吸着し、端面からの水蒸気侵入による内圧上昇を長期に渡って抑制できる。さらに、ガス吸着材を併用することでより内圧を低減し、断熱性能を高めることも可能である。   In addition, calcium oxide is applied as the moisture adsorbent 3. Although there is no particular problem even when the moisture adsorbing material 3 is not provided, by providing the moisture adsorbing material 3, the internal residual water vapor is adsorbed and an increase in internal pressure due to water vapor intrusion from the end face can be suppressed over a long period of time. Furthermore, by using a gas adsorbent in combination, the internal pressure can be further reduced and the heat insulation performance can be improved.

一方、芯材2は、平均繊維径3.5μmのガラス繊維集合体を加圧した状態で加熱し、密度が200kg/m程度の形状を維持しているボード状のものを用いている。平均繊維径は1μm〜10μmの範囲のものが品質、生産性の面で好ましい。 On the other hand, the core material 2 is a board-shaped member that is heated in a state where a glass fiber aggregate having an average fiber diameter of 3.5 μm is pressurized and maintains a shape with a density of about 200 kg / m 3 . An average fiber diameter in the range of 1 μm to 10 μm is preferable in terms of quality and productivity.

また、断熱性能及び取扱い性の面で密封後の芯材部嵩密度は200kg/m〜280kg/mの範囲がより好ましく、この範囲となるように作製した。芯材2部嵩密度は、芯材2のみの重量と密封後のサイズから算出している。 Further, the core part bulk density after sealing in terms of thermal insulation performance and handling properties is more preferably in the range of 200kg / m 3 ~280kg / m 3 , was made as a this range. The core material 2 part bulk density is calculated from the weight of the core material 2 alone and the size after sealing.

ここではバインダーを用いることなく芯材2成形を行っているが、バインダーを用いてより低温で芯材2を成形しても良い。また、表面性が問題とならない場合には、ガラス繊維の集合体をそのまま密閉封止しても構わない。その場合には、製造工数が削減するために、生産性が向上する。   Here, the core material 2 is molded without using a binder, but the core material 2 may be molded at a lower temperature using a binder. If the surface property does not matter, the glass fiber aggregate may be hermetically sealed as it is. In that case, since the number of manufacturing steps is reduced, productivity is improved.

また、用いたガラス組成の具体的な内容については、実施例の中で詳しく説明するが、本発明におけるガラスを繊維化後にグラスウールとして積層し、芯材2として作製した後に内部を減圧した外包材4で封止し、真空断熱材1を得た。   Further, the specific contents of the glass composition used will be described in detail in Examples, but the outer packaging material in which the glass in the present invention is laminated as glass wool after fiberization and produced as the core material 2 and then the inside is decompressed. 4 was sealed to obtain a vacuum heat insulating material 1.

以上のようにして形成した真空断熱材1の熱伝導率を英弘精機製のオートラムダにて測定した。結果、熱伝導率は、平均温度24℃にて0.0014W/mK〜0.0019W/mKであり、汎用的な硬質ウレタンフォームの10倍以上、従来の真空断熱材と比較しても大幅に優れた断熱性能を有していた。   The thermal conductivity of the vacuum heat insulating material 1 formed as described above was measured with an auto lambda manufactured by Eihiro Seiki. As a result, the thermal conductivity is 0.0014 W / mK to 0.0019 W / mK at an average temperature of 24 ° C., which is more than 10 times that of a general-purpose rigid urethane foam, greatly compared to conventional vacuum heat insulating materials. It had excellent heat insulation performance.

このように、本構成により作製した真空断熱材1は、優れた断熱性能を有している。断熱性能の向上は、芯材2に用いたガラス繊維集合体において、ガラス自体の素材強度が高まるにつれてその効果が大きくなることが確認できる。よって、従来、真空断熱材の伝熱要素の大部分を占めていた芯材部における固体成分の熱伝導をガラス素材の強度向上により抑制でき、真空断熱材の断熱性能が大幅に改善するものである。   Thus, the vacuum heat insulating material 1 produced by this structure has the outstanding heat insulation performance. It can be confirmed that the improvement of the heat insulation performance increases in the glass fiber aggregate used for the core material 2 as the strength of the glass itself increases. Therefore, the heat conduction of the solid component in the core material part that previously occupied the majority of the heat transfer elements of the vacuum heat insulating material can be suppressed by improving the strength of the glass material, and the heat insulating performance of the vacuum heat insulating material is greatly improved. is there.

このことは、ガラス素材強度としてのヤング率の評価結果、及び真空断熱材の芯材部嵩密度と真空断熱材熱伝導率の関係を確認することからも素材強度と断熱性能の関連は明白である。つまり、ガラスの素材強度向上により、芯材部嵩密度を小さくして伝熱媒体を低減すること、繊維間の接触点が少なくても大気圧縮後に空間を保持し得ること、芯材繊維間の接触点の変形防止により接触熱抵抗が増大すること、これらの要因により芯材部における固体成分の伝熱量を低減したと考えられる。   The relationship between the material strength and the heat insulation performance is clear from the evaluation result of Young's modulus as the strength of the glass material and the relationship between the bulk density of the core material of the vacuum heat insulating material and the heat conductivity of the vacuum heat insulating material. is there. In other words, by improving the material strength of the glass, the core material bulk density is reduced to reduce the heat transfer medium, the space can be retained after atmospheric compression even if there are few contact points between the fibers, and between the core fibers It is thought that the contact heat resistance is increased by preventing deformation of the contact point, and that the heat transfer amount of the solid component in the core material part is reduced due to these factors.

ガラス素材自体の熱伝導率も低減しているが、真空断熱材の熱伝導率の低減幅から考えると、その影響度は素材強度向上の方がはるかに高いといえる。   Although the thermal conductivity of the glass material itself has also decreased, it can be said that the degree of influence is much higher when the strength of the material is improved, considering the range of reduction in the thermal conductivity of the vacuum heat insulating material.

ガラス素材の強度については、厚さ1mm程度の平板に加工したガラスを共振法によりヤング率測定し、評価を行った。また、同様にヤング率を求める場合にはパルス伝搬法等の他の方法で測定しても良く、他の強度指標を用いてもよい。   The strength of the glass material was evaluated by measuring Young's modulus of glass processed into a flat plate having a thickness of about 1 mm by a resonance method. Similarly, when obtaining the Young's modulus, it may be measured by another method such as a pulse propagation method, or another intensity index may be used.

ガラス素材の熱伝導率は、50×700×15tmmの板ガラスを用い、非定常熱線法(昭和電工製 ShothermQTM)にて測定を行った。その他、レーザーフラッシュ法等で測定を行っても良い。   The thermal conductivity of the glass material was measured by an unsteady hot wire method (Shower Denko ShotermTM) using a plate glass of 50 × 700 × 15 tmm. In addition, the measurement may be performed by a laser flash method or the like.

尚、Feは不純物として混入し易いが、特にこれにより問題となることはなく、輻射熱を吸収する効果があるために、輻射の寄与が大きい50℃以上の温度領域での適用には有用である。 Although Fe 2 O 3 is easy to be mixed as an impurity, it does not cause a problem in particular, and has an effect of absorbing radiant heat. Therefore, for applications in a temperature range of 50 ° C. or higher where radiation contributes greatly. Useful.

(実施の形態2)
本発明の実施の形態2におけるガラス組成物について説明する。各ガラス組成物は繊維状態に成形を行った。
(Embodiment 2)
The glass composition in Embodiment 2 of this invention is demonstrated. Each glass composition was formed into a fiber state.

本発明のガラス組成物からなる溶融物を平均繊維径が3.5μm程度になるように繊維化した。平均繊維径は、1〜10μmの範囲が良い。1μm未満では繊維化のコストが極端に増大し、10μmを超える場合は取扱い時に剛性のある繊維による不快感を伴う恐れがある。繊維化工程については、長繊維として連続紡糸、または短繊維として火炎法、遠心法等どのようにして行ってもよいが、生産性を考慮して遠心法によりグラスウールを作製した。チョップストランドマットや、ロービングクロス等のように長繊維を作製した後に加工して断熱材として用いることもできる。   The melt made of the glass composition of the present invention was fiberized so that the average fiber diameter was about 3.5 μm. The average fiber diameter is preferably in the range of 1 to 10 μm. If it is less than 1 μm, the cost of fiberization increases extremely, and if it exceeds 10 μm, there is a risk of discomfort due to rigid fibers during handling. Regarding the fiberizing step, continuous spinning may be used as long fibers, or flame method, centrifugal method, etc. may be used as short fibers, but glass wool was produced by a centrifugal method in consideration of productivity. A long fiber such as a chop strand mat or a roving cloth can be produced and then processed to be used as a heat insulating material.

このようにして作製したグラスウールを200×200mmサイズにトリミングし、厚み方向に圧縮し、密度が250kg/mとなる厚みまで圧縮時の圧縮強度測定を行った。 The glass wool thus produced was trimmed to a size of 200 × 200 mm, compressed in the thickness direction, and the compression strength at the time of compression was measured until the density was 250 kg / m 3 .

結果、本発明によるガラス組成物からなるグラスウールの圧縮強度は1020hPa以上であり、従来の汎用的なグラスウールよりも高い圧縮強度を示していた。これは、ガラス成分におけるB量を5〜12%含むことで、ガラス素材自体の強度が高まり、グラスウール全体として強度が高まったためである。 As a result, the compressive strength of the glass wool made of the glass composition according to the present invention was 1020 hPa or more, indicating a higher compressive strength than the conventional general-purpose glass wool. This is because the strength of the glass material itself is increased by including 5 to 12% of the amount of B 2 O 3 in the glass component, and the strength of the entire glass wool is increased.

よって、このように従来のものよりも高い素材強度を有するガラス組成とすることで、グラスウールの圧縮強度は高まり、建材用断熱材や補強材として有用で取扱い性及び施工性の良好なグラスウールを提供できる。   Therefore, by using a glass composition having a higher material strength than conventional ones, the compressive strength of glass wool is increased, providing glass wool that is useful as a heat insulating material and a reinforcing material for building materials, and has good handleability and workability. it can.

また、本発明のガラス組成物は、一般的な板ガラスと比較しても、高強度、かつ低熱伝導率であるため、断熱板ガラスとしても有用である。   Moreover, since the glass composition of this invention is high intensity | strength and low heat conductivity compared with general plate glass, it is useful also as heat insulation plate glass.

以下、実施例、および比較例を用いて、本発明を更に具体的に説明するが、本発明は本実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited only to the Examples.

(実施例1)
本実施例はガラス組成の重量%において、SiOが68.0%、Alが2.9%、Bが4.1%、NaOが14.3%、KOが0.9%、MgOが2.0%、CaOが6.8%、ZrOが0.5%、Feが0.1%、その他複数成分合計が0.4%からなるガラスを作製し、その素材ヤング率は77.2GPaであった。比較例1よりもヤング率が向上した要因は、ZrOの添加に伴うものである。また、このガラスの素材熱伝導率は1.08W/mKであった。
(Example 1)
In this example, SiO 2 was 68.0%, Al 2 O 3 was 2.9%, B 2 O 3 was 4.1%, Na 2 O was 14.3%, and K 2 in terms of% by weight of the glass composition. O is 0.9%, MgO is 2.0%, CaO is 6.8%, ZrO 2 is 0.5%, Fe 2 O 3 is 0.1%, and the total of other components is 0.4%. Glass was produced, and the material Young's modulus was 77.2 GPa. The factor that the Young's modulus is improved as compared with Comparative Example 1 is due to the addition of ZrO 3 . Moreover, the raw material thermal conductivity of this glass was 1.08 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1045hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1045 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は245kg/m、熱伝導率は0.0019W/mKであった。 Further, when the vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 245 kg / m 3 and the thermal conductivity was 0.0019 W / mK.

(実施例2)
本実施例はガラス組成の重量%において、SiOが50.0%、Bが4.9%、NaOが15.5%、KOが0.1%、MgOが3.7%、CaOが9.5%、ZrOが11.0%、Feが5.0%、その他複数成分合計が0.3%からなるガラスを作製し、その素材ヤング率は83.2GPa、素材熱伝導率は0.95W/mKであった。
(Example 2)
In this example, SiO 2 is 50.0%, B 2 O 3 is 4.9%, Na 2 O is 15.5%, K 2 O is 0.1%, and MgO is 3% by weight% of the glass composition. A glass composed of 0.7%, CaO 9.5%, ZrO 2 11.0%, Fe 2 O 3 5.0%, and other components totaling 0.3%, and its material Young's modulus is It was 83.2 GPa and the material thermal conductivity was 0.95 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1195hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1195 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は233kg/m、熱伝導率は0.0014W/mKであった。さらに、平均50℃でも同じ真空断熱材は熱伝導率であり、輻射の影響を受ける高温側でも、Feを5%含むことで輻射を抑制していると考えられる。 Further, when the vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 233 kg / m 3 and the thermal conductivity was 0.0014 W / mK. Furthermore, even at an average of 50 ° C., the same vacuum heat insulating material has thermal conductivity, and it is considered that radiation is suppressed by containing 5% of Fe 2 O 3 even on the high temperature side affected by radiation.

(実施例3)
本実施例はガラス組成の重量%において、SiOが55.4%、Alが0.1%、Bが1.0%、NaOが16.4%、KOが3.5%、MgOが3.0%、CaOが8.0%、ZrOが12%、Feが0.3、その他複数成分合計が0.3%からなるガラスを作製し、その素材ヤング率は83.7GPa、素材熱伝導率は0.94W/mKであった。
(Example 3)
In this example, SiO 2 was 55.4%, Al 2 O 3 was 0.1%, B 2 O 3 was 1.0%, Na 2 O was 16.4%, and K 2 in terms of% by weight of the glass composition. A glass composed of 3.5% O, 3.0% MgO, 8.0% CaO, 12% ZrO 2 , 0.3 Fe 2 O 3 and 0.3% of the total of other components is prepared. The material Young's modulus was 83.7 GPa and the material thermal conductivity was 0.94 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1230hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1230 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は231kg/m、熱伝導率は0.0014W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 231 kg / m 3 and the thermal conductivity was 0.0014 W / mK.

(実施例4)
本実施例はガラス組成の重量%において、SiOが64.6%、Alが6.0%、Bが0.1%、NaOが19.6%、KOが0.4%、MgOが6.0%、CaOが2.0%、ZnOが0.5%、その他複数成分合計が0.8%からなるガラスを作製し、その素材ヤング率は77.0GPa、素材熱伝導率は1.08W/mKであった。
Example 4
In this example, SiO 2 was 64.6%, Al 2 O 3 was 6.0%, B 2 O 3 was 0.1%, Na 2 O was 19.6%, and K 2 , in terms of% by weight of the glass composition. A glass composed of 0.4% O, 6.0% MgO, 2.0% CaO, 0.5% ZnO, and a total of other components of 0.8% is produced, and the material Young's modulus is 77. 0.0 GPa and the material thermal conductivity was 1.08 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1040hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1040 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は245kg/m、熱伝導率は0.0019W/mKであった。 Further, when the vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 245 kg / m 3 and the thermal conductivity was 0.0019 W / mK.

(実施例5)
本実施例はガラス組成の重量%において、SiOが57.3%、Alが1.7%、Bが5.0%、NaOが7.7%、KOが0.3%、MgOが4.5%、CaOが15.0%、ZnOが8%、その他複数成分合計が0.5%からなるガラスを作製し、その素材ヤング率は79.3GPa、素材熱伝導率は0.99W/mKであった。
(Example 5)
In this example, SiO 2 is 57.3%, Al 2 O 3 is 1.7%, B 2 O 3 is 5.0%, Na 2 O is 7.7%, and K 2 in terms of% by weight of the glass composition. A glass composed of 0.3% O, 4.5% MgO, 15.0% CaO, 8% ZnO, and a total of 0.5% of other components, and its material Young's modulus is 79.3 GPa. The material thermal conductivity was 0.99 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1075hPaであった。   The compression strength when this glass was laminated after fiberization to form glass wool was 1075 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は240kg/m、熱伝導率は0.0017W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material part was 240 kg / m 3 , and the thermal conductivity was 0.0017 W / mK.

尚、本実施例ではNaOとKOのアルカリ金属酸化物が8%として他の実施例同様に問題なく繊維が得られたが、アルカリ金属酸化物を8%未満とした場合は、溶融時の粘性が極端に増大し、溶融温度の上昇のため、大幅に生産性が低下した。 In this example, the alkali metal oxides of Na 2 O and K 2 O were 8%, and the fiber was obtained without problems as in the other examples. However, when the alkali metal oxide was less than 8%, The viscosity at the time of melting increased extremely, and the productivity was greatly reduced due to the increase in melting temperature.

(実施例6)
本実施例はガラス組成の重量%において、SiOが56.8%、Alが0.5%、Bが4.0%、NaOが7.9%、KOが2.1%、MgOが5.0%、CaOが9.5%、ZnOが10.0%、Feが4.0%、その他複数成分合計が0.2%からなるガラスを作製し、その素材ヤング率は79.8GPa、素材熱伝導率は0.96W/mKであった。
(Example 6)
In this example, SiO 2 was 56.8%, Al 2 O 3 was 0.5%, B 2 O 3 was 4.0%, Na 2 O was 7.9%, and K 2 in terms of% by weight of the glass composition. Glass made of 2.1% O, 5.0% MgO, 9.5% CaO, 10.0% ZnO, 4.0% Fe 2 O 3 and 0.2% of the total of other components The material had a Young's modulus of 79.8 GPa and a material thermal conductivity of 0.96 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1090hPaであった。   The compression strength when this glass was laminated after fiberization to form glass wool was 1090 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は239kg/m、熱伝導率は0.0017W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 239 kg / m 3 and the thermal conductivity was 0.0017 W / mK.

(実施例7)
本実施例はガラス組成の重量%において、SiOが70.0%、Alが3.2%、Bが3.0%、NaOが16.1%、KOが2.0%、CaOが4.0%、TiOが0.5%、Feが0.5%、その他複数成分合計が0.7%からなるガラスを作製し、その素材ヤング率は77.0GPa、素材熱伝導率は1.07W/mKであった。
(Example 7)
In this example, SiO 2 is 70.0%, Al 2 O 3 is 3.2%, B 2 O 3 is 3.0%, Na 2 O is 16.1%, and K 2 in terms of% by weight of the glass composition. A glass composed of 2.0% O, 4.0% CaO, 0.5% TiO 2 , 0.5% Fe 2 O 3 , and a total of several other components of 0.7% is prepared. The Young's modulus was 77.0 GPa and the material thermal conductivity was 1.07 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1040hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1040 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は246kg/m、熱伝導率は0.0019W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 246 kg / m 3 and the thermal conductivity was 0.0019 W / mK.

(実施例8)
本実施例はガラス組成の重量%において、SiOが52.0%、Alが1.3%、Bが4.8%、NaOが10.0%、KOが5.0%、MgOが4.0%、CaOが9.9%、TiOが8.0%、Feが3.0%、その他複数成分合計が2.0%からなるガラスを作製し、その素材ヤング率は82.1GPa、素材熱伝導率は0.94W/mKであった。
(Example 8)
In this example, SiO 2 is 52.0%, Al 2 O 3 is 1.3%, B 2 O 3 is 4.8%, Na 2 O is 10.0%, and K 2 in terms of% by weight of the glass composition. O is 5.0%, MgO is 4.0%, CaO is 9.9%, TiO 2 is 8.0%, Fe 2 O 3 is 3.0%, and the total of other components is 2.0%. A glass was produced, and the material Young's modulus was 82.1 GPa and the material thermal conductivity was 0.94 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1160hPaであった。   The compression strength when this glass was laminated after fiberization to form glass wool was 1160 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は236kg/m、熱伝導率は0.0015W/mKであった。 Further, when the vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 236 kg / m 3 and the thermal conductivity was 0.0015 W / mK.

(実施例9)
本実施例はガラス組成の重量%において、SiOが53.9%、Bが4.0%、NaOが16.2%、MgOが4.0%、CaOが7.4%、TiOが10.0%、Feが1.5%、その他複数成分合計が3.0%からなるガラスを作製し、その素材ヤング率は82.5GPa、素材熱伝導率は0.91W/mKであった。
Example 9
In this example, SiO 2 is 53.9%, B 2 O 3 is 4.0%, Na 2 O is 16.2%, MgO is 4.0%, and CaO is 7.4% by weight% of the glass composition. %, TiO 2 is 10.0%, Fe 2 O 3 is 1.5%, and other components total 3.0%, and the material Young's modulus is 82.5 GPa and the material thermal conductivity is It was 0.91 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1165hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1165 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は235kg/m、熱伝導率は0.0015W/mKであった。 Further, when the vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 235 kg / m 3 and the thermal conductivity was 0.0015 W / mK.

(実施例10)
本実施例はガラス組成の重量%において、SiOが54.5%、Alが7.0%、Bが12.0%、NaOが15.0%、KOが0.8%、MgOが3.0%、CaOが6.0%、ZrOが0.5%、TiOが0.5%、Feが0.2%、その他複数成分合計が0.5%からなるガラスを作製し、その素材ヤング率は81.7GPa、素材熱伝導率は1.06W/mKであった。
(Example 10)
In this example, SiO 2 is 54.5%, Al 2 O 3 is 7.0%, B 2 O 3 is 12.0%, Na 2 O is 15.0%, K 2 in terms of% by weight of the glass composition. O is 0.8%, MgO is 3.0%, CaO is 6.0%, ZrO 2 is 0.5%, TiO 2 is 0.5%, Fe 2 O 3 is 0.2%, and other components. Glass with a total of 0.5% was produced, and the material Young's modulus was 81.7 GPa and the material thermal conductivity was 1.06 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1120hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1120 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は238kg/m、熱伝導率は0.0016W/mKであった。 Further, when the vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 238 kg / m 3 and the thermal conductivity was 0.0016 W / mK.

(実施例11)
本実施例はガラス組成の重量%において、SiOが61.1%、Alが1.0%、NaOが12.0%、KOが0.9%、MgOが3.3%、CaOが6.9%、ZrOが5.0%、ZnOが3.0%、TiOが5.0%、Feが1.0%、その他複数成分合計が0.8%からなるガラスを作製し、その素材ヤング率は82.6GPa、素材熱伝導率は0.90W/mKであった。
(Example 11)
In this example, SiO 2 is 61.1%, Al 2 O 3 is 1.0%, Na 2 O is 12.0%, K 2 O is 0.9%, and MgO is 3% by weight% of the glass composition. .3%, CaO 6.9%, ZrO 2 5.0%, ZnO 3.0%, TiO 2 5.0%, Fe 2 O 3 1.0%, and other components total 0 A glass composed of 0.8% was produced, and the material Young's modulus was 82.6 GPa and the material thermal conductivity was 0.90 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1180hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1180 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は235kg/m、熱伝導率は0.0014W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material part was 235 kg / m 3 and the thermal conductivity was 0.0014 W / mK.

(比較例1)
本比較例は一般的なグラスウールであり、ガラス組成の重量%において、SiOが64.6%、Alが1.7%、Bが4.0%、NaOが14.5%、KOが0.8%、MgOが3.8%、CaOが10.0%、TiOが0.1%、Feが0.1%、その他複数成分合計が0.4%からなるガラスを作製し、その素材ヤング率は75.0GPa、素材熱伝導率は1.08W/mKであった。
(Comparative Example 1)
This comparative example is a general glass wool, in which the SiO 2 is 64.6%, Al 2 O 3 is 1.7%, B 2 O 3 is 4.0%, and Na 2 O is 5% by weight of the glass composition. 14.5%, K 2 O 0.8%, MgO 3.8%, CaO 10.0%, TiO 2 0.1%, Fe 2 O 3 0.1%, and other multiple components total Of 0.4% was produced, and the material Young's modulus was 75.0 GPa and the material thermal conductivity was 1.08 W / mK.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1010hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1010 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は250kg/m、熱伝導率は0.0022W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 250 kg / m 3 and the thermal conductivity was 0.0022 W / mK.

(比較例2)
本比較例は、ガラス組成の重量%において、SiOが57.8%、Alが0.1%、Bが4.2%、NaOが13.5%、KOが0.7%、MgOが3.5%、CaOが6.3%、ZrOが14%、Feが0.1%、その他複数成分合計が0.8%からなるガラスを作製し、その素材ヤング率は88.5GPa、素材熱伝導率は0.92W/mKであった。
(Comparative Example 2)
In this comparative example, SiO 2 is 57.8%, Al 2 O 3 is 0.1%, B 2 O 3 is 4.2%, Na 2 O is 13.5%, and K 2 2 O is 0.7% MgO is 3.5% CaO is 6.3% ZrO 2 is 14% Fe 2 O 3 is 0.1%, glass and other multi-component sum is a 0.8% The material Young's modulus was 88.5 GPa and the material thermal conductivity was 0.92 W / mK.

また、このガラスはZrOを14%含むために、液相温度が極端に上昇し、繊維化時に失透してしまうために繊維化できなかった。 Further, since this glass contains 14% of ZrO 2 , the liquidus temperature was extremely increased, and the glass was devitrified during fiberization, so that it could not be fiberized.

(比較例3)
本比較例はガラス組成の重量%において、SiOが60.5%、Alが0.9%、Bが4.8%、NaOが16.2%、KOが0.2%、MgOが2.0%、CaOが4.1%、ZnOが14%、Feが0.2%、その他複数成分合計が0.1%からなるガラスを作製し、その素材ヤング率は80.5GPa、素材熱伝導率は0.95W/mKであった。
(Comparative Example 3)
In this comparative example, SiO 2 is 60.5%, Al 2 O 3 is 0.9%, B 2 O 3 is 4.8%, Na 2 O is 16.2%, and K 2 in terms of% by weight of the glass composition. A glass composed of 0.2% O, 2.0% MgO, 4.1% CaO, 14% ZnO, 0.2% Fe 2 O 3 and a total of other components of 0.1% is prepared. The material Young's modulus was 80.5 GPa, and the material thermal conductivity was 0.95 W / mK.

また、このガラスはZnOを14%含むために、液相温度が上昇し、繊維化時に失透してしまうために繊維化できなかった。   Further, since this glass contains 14% of ZnO, the liquidus temperature rises, and it becomes devitrified at the time of fiberization, so that it cannot be fiberized.

(比較例4)
本比較例はガラス組成の重量%において、SiOが60.1%、Alが2.1%、Bが3.6%、NaOが15.3%、KOが0.7%、MgOが1.2%、CaOが5.0%、TiOが14%、Feが0.2%、その他複数成分合計が0.8%からなるガラスを作製し、その素材ヤング率は87.0GPa、素材熱伝導率は0.90W/mKであった。
(Comparative Example 4)
In this comparative example, SiO 2 was 60.1%, Al 2 O 3 was 2.1%, B 2 O 3 was 3.6%, Na 2 O was 15.3%, and K 2 in terms of% by weight of the glass composition. A glass composed of 0.7% O, 1.2% MgO, 5.0% CaO, 14% TiO 2 , 0.2% Fe 2 O 3 , and a total of other components of 0.8%. The material Young's modulus was 87.0 GPa and the material thermal conductivity was 0.90 W / mK.

また、このガラスはTiOを14%含むために、液相温度が上昇し、繊維化時に失透してしまうために繊維化できなかった。 Further, since this glass contains 14% of TiO 2 , the liquidus temperature rises and the glass becomes devitrified at the time of fiberization, so that it cannot be fiberized.

(比較例5)
本比較例はガラス組成の重量%において、SiOが56.6%、Alが2.0%、Bが4.1%、NaOが16.0%、KOが0.7%、MgOが1.2%、CaOが3.5%、ZrOが5%、ZnOが5%、TiOが5%、Feが0.1%、その他複数成分合計が0.8%からなるガラスを作製し、その素材ヤング率は89.2GPa、素材熱伝導率は0.89W/mKであった。
(Comparative Example 5)
In this comparative example, SiO 2 is 56.6%, Al 2 O 3 is 2.0%, B 2 O 3 is 4.1%, Na 2 O is 16.0%, and K 2 in terms of% by weight of the glass composition. O 0.7%, MgO 1.2%, CaO 3.5%, ZrO 2 5%, ZnO 5%, TiO 2 5%, Fe 2 O 3 0.1%, and others A glass having a total component of 0.8% was prepared, and the material Young's modulus was 89.2 GPa and the material thermal conductivity was 0.89 W / mK.

また、このガラスはZrO、ZnO、TiOを合計で15%含むために、液相温度が上昇し、繊維化時に失透してしまうために繊維化できなかった。 Further, since this glass contains ZrO 2 , ZnO and TiO 2 in total 15%, the liquidus temperature rises and the glass becomes devitrified at the time of fiberization, so that it cannot be fiberized.

なお、実施例1から11、および比較例1から5の結果について(表1)にまとめた。   The results of Examples 1 to 11 and Comparative Examples 1 to 5 are summarized in (Table 1).

Figure 2008057745
Figure 2008057745

以上のように、本発明にかかる真空断熱材及びガラス組成物は、ガラスの素材強度を向上し、従来よりも優れた断熱性能を有するものである。   As mentioned above, the vacuum heat insulating material and glass composition concerning this invention improve the raw material intensity | strength of glass, and have the heat insulation performance superior to the past.

その結果、真空断熱材としては、さらなる高性能化により用途が広まるだけでなく、ガラス組成物単体としても、建材や車等、強度が要求される部材として適用が可能である。   As a result, the vacuum heat insulating material can be used not only for widening the performance by further improving the performance, but also as a member requiring high strength, such as a building material and a car, as a single glass composition.

本発明の実施の形態1における真空断熱材の断面図Sectional drawing of the vacuum heat insulating material in Embodiment 1 of this invention

符号の説明Explanation of symbols

1 真空断熱材
2 芯材
4 外包材
1 Vacuum insulation material 2 Core material 4 Outer packaging material

Claims (4)

ガラス繊維からなる芯材をガスバリア性を有する外包材で被覆し、前記外包材の内部を減圧密閉してなり、前記ガラス繊維はアルカリケイ酸ガラスであり、ZrO、ZnO、TiOのうち、少なくともいずれか1成分を含み、かつ前記ZrO、ZnO、TiOの合計は重量%で、0.5〜13%の範囲内で含まれる組成からなる真空断熱材。 A core material made of glass fiber is coated with an outer packaging material having a gas barrier property, and the inside of the outer packaging material is sealed under reduced pressure, and the glass fiber is alkali silicate glass, and among ZrO 2 , ZnO, and TiO 2 , wherein at least any one component, and said ZrO 2, ZnO, the total of the TiO 2 in weight%, the vacuum heat insulating material having a composition contained within the 0.5 to 13%. ガラス繊維は、重量%で、少なくともSiOが50〜70%、Alが0〜7%、NaOとKOを合わせて8〜20%、MgOが0〜6%、CaOが2〜15%の範囲内で、かつ、それらの成分の重量%の合計が100%を超えずに含まれる組成からなる請求項1に記載の真空断熱材。 Glass fibers, in weight%, at least SiO 2 is 50-70%, Al 2 O 3 is 0-7% 8-20% combined Na 2 O and K 2 O, MgO is Less than six%, CaO The vacuum heat insulating material according to claim 1, comprising a composition in which the total content of the components is within a range of 2 to 15% and the total weight percent of these components does not exceed 100%. ガラス繊維は、重量%で、Bを0.1〜12%の範囲で含む請求項1または2に記載の真空断熱材。 Glass fibers, in weight%, the vacuum heat insulating material according to claim 1 or 2 containing B 2 O 3 in the range of 0.1 to 12%. 請求項1から3のいずれか一項に記載の真空断熱材に使用したガラス組成物。   The glass composition used for the vacuum heat insulating material as described in any one of Claim 1 to 3.
JP2006238490A 2006-09-04 2006-09-04 Vacuum heat insulation material and glass composition Pending JP2008057745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238490A JP2008057745A (en) 2006-09-04 2006-09-04 Vacuum heat insulation material and glass composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238490A JP2008057745A (en) 2006-09-04 2006-09-04 Vacuum heat insulation material and glass composition

Publications (1)

Publication Number Publication Date
JP2008057745A true JP2008057745A (en) 2008-03-13

Family

ID=39240734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238490A Pending JP2008057745A (en) 2006-09-04 2006-09-04 Vacuum heat insulation material and glass composition

Country Status (1)

Country Link
JP (1) JP2008057745A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228917A (en) * 2008-03-19 2009-10-08 Hitachi Appliances Inc Refrigerator
JP2010121652A (en) * 2008-11-17 2010-06-03 Mitsubishi Electric Corp Vacuum thermal insulating material and thermal insulation box
WO2010116719A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and appliance provided therewith
WO2010116720A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and device provided with same
JP2011236953A (en) * 2010-05-10 2011-11-24 Hitachi Appliances Inc Vacuum heat insulating material, heat insulating box and refrigerator using the same
WO2014010983A1 (en) * 2012-07-12 2014-01-16 주식회사 케이씨씨 Vacuum insulation panel including annealed binderless glass fiber
KR20140141420A (en) 2013-05-31 2014-12-10 히타치 어플라이언스 가부시키가이샤 Vacuum insulating material and insulated equipment
CN104261684A (en) * 2014-09-17 2015-01-07 安徽吉曜玻璃微纤有限公司 Vacuum insulation board core material and manufacturing method thereof
JP2016155730A (en) * 2015-02-26 2016-09-01 日本電気硝子株式会社 Heat insulation material
JP6091692B1 (en) * 2016-09-20 2017-03-08 サン−ゴバン イゾベール Inorganic fiber laminate, vacuum heat insulating material using the same, and method for producing the same
WO2018088488A1 (en) * 2016-11-10 2018-05-17 日本板硝子株式会社 Glass filler and method for manufacturing same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695663B2 (en) * 2008-03-19 2011-06-08 日立アプライアンス株式会社 refrigerator
JP2009228917A (en) * 2008-03-19 2009-10-08 Hitachi Appliances Inc Refrigerator
JP2010121652A (en) * 2008-11-17 2010-06-03 Mitsubishi Electric Corp Vacuum thermal insulating material and thermal insulation box
JP4726970B2 (en) * 2009-04-07 2011-07-20 シャープ株式会社 Vacuum insulation and equipment equipped with it
JP2010242868A (en) * 2009-04-07 2010-10-28 Sharp Corp Vacuum heat insulating material and apparatus having the same
JP2010242867A (en) * 2009-04-07 2010-10-28 Sharp Corp Vacuum heat insulating material and apparatus having the same
WO2010116720A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and device provided with same
JP4717126B2 (en) * 2009-04-07 2011-07-06 シャープ株式会社 Vacuum insulation and equipment equipped with it
CN102388253A (en) * 2009-04-07 2012-03-21 夏普株式会社 Vacuum insulation material and appliance provided therewith
CN102388252A (en) * 2009-04-07 2012-03-21 夏普株式会社 Vacuum insulation material and device provided with same
WO2010116719A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and appliance provided therewith
CN102388252B (en) * 2009-04-07 2015-07-22 夏普株式会社 Vacuum insulation material and device provided with same
JP2011236953A (en) * 2010-05-10 2011-11-24 Hitachi Appliances Inc Vacuum heat insulating material, heat insulating box and refrigerator using the same
CN104487755A (en) * 2012-07-12 2015-04-01 株式会社Kcc Vacuum insulation panel including annealed binderless glass fiber
WO2014010983A1 (en) * 2012-07-12 2014-01-16 주식회사 케이씨씨 Vacuum insulation panel including annealed binderless glass fiber
US9523460B2 (en) 2012-07-12 2016-12-20 Kcc Corporation Vacuum insulation panel including annealed binderless glass fiber
JP2014234843A (en) * 2013-05-31 2014-12-15 日立アプライアンス株式会社 Vacuum heat insulation material and heat insulation apparatus
KR20140141420A (en) 2013-05-31 2014-12-10 히타치 어플라이언스 가부시키가이샤 Vacuum insulating material and insulated equipment
CN104261684A (en) * 2014-09-17 2015-01-07 安徽吉曜玻璃微纤有限公司 Vacuum insulation board core material and manufacturing method thereof
JP2016155730A (en) * 2015-02-26 2016-09-01 日本電気硝子株式会社 Heat insulation material
JP6091692B1 (en) * 2016-09-20 2017-03-08 サン−ゴバン イゾベール Inorganic fiber laminate, vacuum heat insulating material using the same, and method for producing the same
CN109715875A (en) * 2016-09-20 2019-05-03 圣戈班伊索福公司 Inorfil laminated body, Vacuumed insulation panel and its manufacturing method using it
CN109715875B (en) * 2016-09-20 2022-01-14 圣戈班伊索福公司 Inorganic fiber laminate, vacuum heat insulator using same, and method for producing same
WO2018088488A1 (en) * 2016-11-10 2018-05-17 日本板硝子株式会社 Glass filler and method for manufacturing same
CN109790061A (en) * 2016-11-10 2019-05-21 日本板硝子株式会社 Glass filler and its manufacturing method
JPWO2018088488A1 (en) * 2016-11-10 2019-07-25 日本板硝子株式会社 Glass filler and method for producing the same
CN114772925A (en) * 2016-11-10 2022-07-22 日本板硝子株式会社 Glass filler and method for producing same
US11440832B2 (en) 2016-11-10 2022-09-13 Nippon Sheet Glass Company, Limited Glass filler and method for producing the same
CN114772925B (en) * 2016-11-10 2023-10-27 日本板硝子株式会社 Glass filler and method for producing same

Similar Documents

Publication Publication Date Title
JP2008057745A (en) Vacuum heat insulation material and glass composition
JP2007057095A (en) Vacuum heat insulating material and heat insulating material
JP4819999B2 (en) Double glazing
JP3712129B1 (en) Manufacturing method of glass wool molded body, glass wool molded body, and vacuum heat insulating material
JP5040433B2 (en) Vacuum insulation
JP5013836B2 (en) Vacuum insulation
JP6311704B2 (en) Double-glazed glass for architectural windows
US7718252B2 (en) Inorganic fiber article
JP2010522686A5 (en)
KR101767658B1 (en) Core material for vacuum insulation panel comprising porous aluminosilicate and vacuum insulation panel with the core material
RU2009138527A (en) REFRIGERATOR FOR GLASS-FURNACE FURNACE REGENERATOR NOZZLE ELEMENT
JP2007016806A (en) Vacuum heat insulating material
JP2007153649A (en) Glass composition, glass fiber, and vacuum heat insulating material
JP6190165B2 (en) Vacuum insulation and insulation equipment
JP5673617B2 (en) Vacuum insulation
JP6860582B2 (en) Glass wool and vacuum heat insulating material using it
JP2006038123A (en) Vacuum thermal insulation material and glass composition
JP2005344871A (en) Vacuum heat insulating material and production system of vacuum heat insulating material
WO2016064138A1 (en) Core material for vacuum insulation material comprising porous aluminosilicate, and vacuum insulation material having same
JP2007211958A (en) Inorganic fiber block
JP2007084971A (en) Method for producing glass wool molding
JP2014222112A (en) Vacuum heat insulating material
JP6342996B2 (en) Porous ceramic tile with high strength and high moisture absorption and desorption
JP2007002995A (en) Vacuum heat insulating material
JP2005344900A (en) Vacuum heat insulating material