JP2007057095A - Vacuum heat insulating material and heat insulating material - Google Patents

Vacuum heat insulating material and heat insulating material Download PDF

Info

Publication number
JP2007057095A
JP2007057095A JP2006187565A JP2006187565A JP2007057095A JP 2007057095 A JP2007057095 A JP 2007057095A JP 2006187565 A JP2006187565 A JP 2006187565A JP 2006187565 A JP2006187565 A JP 2006187565A JP 2007057095 A JP2007057095 A JP 2007057095A
Authority
JP
Japan
Prior art keywords
glass
heat insulating
insulating material
core material
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006187565A
Other languages
Japanese (ja)
Inventor
Takeshi Katsube
毅 勝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006187565A priority Critical patent/JP2007057095A/en
Publication of JP2007057095A publication Critical patent/JP2007057095A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance insulation efficiency by increasing strength of a work piece of a glass fiber employed in a core material of a vacuum heat insulating material, restraining the core material from being highly densified by atmospheric air compression and reducing heat conduction of a solid ingredient in a core material portion. <P>SOLUTION: The vacuum heat insulating material 1 is configured so as to enclose to deflate inside of a sheathed material 4 by covering the core material 2 comprising the glass fiber and a moisture adsorption material 3 by the sheath material 4 including gas barrier properties. The glass fiber consists a glass composition which is composed of SiO<SB>2</SB>of 45-75%, AL<SB>2</SB>O<SB>3</SB>of 0-25%, B<SB>2</SB>O<SB>3</SB>of 0-12%, Na<SB>2</SB>O of 0-20%, K<SB>2</SB>O of 0-3%, MgO of 0-15%, CaO of 11-30% and other composition of 3% or less, by weight fraction, respectively and furthermore, wherein the sum total of these compositions by weight fraction amounts to 100%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、真空断熱材及び断熱材に関するものである。   The present invention relates to a vacuum heat insulating material and a heat insulating material.

近年、地球温暖化の防止を目的に省エネルギー化が望まれており、民生用機器に対しても省エネルギー化の推進が行われている。特に、冷凍冷蔵庫に関しては、冷熱を効率的に利用するという観点から、優れた断熱性を有する断熱材が求められている。   In recent years, energy saving has been desired for the purpose of preventing global warming, and energy saving has been promoted for consumer devices. In particular, with respect to a refrigerator-freezer, a heat insulating material having excellent heat insulating properties is required from the viewpoint of efficiently using cold heat.

一般的な断熱材としては、グラスウールなどの繊維体やウレタンフォームなどの発泡体が用いられている。しかし、これらの断熱材の断熱性を向上するには断熱材の厚みを増大して適用する必要がある。よって、断熱材を設置できる空間に制限がある場合や、省スペース化や空間の有効利用が必要な場合には従来断熱材の適用は望ましくない。   As a general heat insulating material, a fiber body such as glass wool or a foam body such as urethane foam is used. However, it is necessary to increase the thickness of the heat insulating material in order to improve the heat insulating properties of these heat insulating materials. Therefore, when there is a limit to the space where the heat insulating material can be installed, or when space saving or effective use of the space is necessary, the conventional heat insulating material is not desirable.

このような課題を解決する一手段として、多孔体からなる芯材と、芯材を外包材によって覆い内部を減圧密閉して構成した真空断熱材がある。真空断熱材は、近年、省エネ競争が激化するなか、より一層、断熱性能の優れた真空断熱材が求められている。   As a means for solving such a problem, there are a core material made of a porous body and a vacuum heat insulating material configured by covering the core material with an outer packaging material and sealing the inside under reduced pressure. In recent years, vacuum heat insulating materials that are further superior in heat insulating performance have been demanded in the face of intensifying competition for energy saving in recent years.

一般に、断熱材の伝熱は、固体と気体成分の熱伝導、輻射、対流熱伝達により引き起こされる。一方、外包材内部を減圧してなる真空断熱材は、気体成分の熱伝導と対流熱伝達に関してはその影響は小さい。また、常温以下の温度領域での使用においては、輻射の寄与もほとんどない。   In general, heat transfer of a heat insulating material is caused by heat conduction, radiation, and convective heat transfer between a solid and a gas component. On the other hand, the vacuum heat insulating material formed by reducing the pressure inside the outer packaging material has little effect on the heat conduction and convective heat transfer of the gas component. In addition, there is almost no contribution of radiation when used in a temperature range below room temperature.

よって、常温以下で使用する保冷機器等に適用する真空断熱材においては、固体成分の熱伝導を抑制することが重要となる。そこで、断熱性能に優れる真空断熱材用の芯材として、種々の繊維材料が報告されている。   Therefore, it is important to suppress the heat conduction of the solid component in the vacuum heat insulating material applied to a cold insulation device used at room temperature or lower. Therefore, various fiber materials have been reported as a core material for vacuum heat insulating materials having excellent heat insulating performance.

例えば、芯材に、ガラス繊維、セラミック繊維、スラグウール繊維、ロックウール繊維等を用い、平均繊維長1mm以下、平均繊維径0.5〜3μmと形状を適正化した無機質繊維が断熱目的の方向(板状の芯材の厚み方向)に対して垂直方向に配向されている真空断熱材が提案されている(例えば、特許文献1参照)。   For example, glass fibers, ceramic fibers, slag wool fibers, rock wool fibers, etc. are used as the core material, and the average fiber length is 1 mm or less and the average fiber diameter is 0.5 to 3 μm. A vacuum heat insulating material oriented in a direction perpendicular to the thickness direction of the plate-like core material has been proposed (see, for example, Patent Document 1).

本構成により、一般的な板状またはシート状の真空断熱材の芯材部分では、真空断熱材の厚み方向に対して一本の繊維を熱が伝わっていくような固体成分の熱伝導ではなく、各繊維間の接触点を介して次々と隣り合う繊維へと熱が伝わっていくため、芯材の厚み方向に対しては接触している繊維間の熱伝導となる。よって、繊維間の接触熱抵抗が存在するため、繊維一本がそのまま伝熱方向へ熱を伝えるような芯材と比べて特に厚み方向に芯材部分の伝熱を抑制している。ここで、真空断熱材は、平面または曲面を有する板状、またはシート状であるため。断熱目的の方向とは厚み方向と同義である。
特開平9−4785号公報
With this configuration, in the core part of a general plate-like or sheet-like vacuum heat insulating material, heat conduction of a solid component that heat is transmitted through one fiber in the thickness direction of the vacuum heat insulating material is not Since heat is transferred to adjacent fibers one after another through contact points between the fibers, heat conduction is made between the fibers in contact with each other in the thickness direction of the core material. Therefore, since the contact thermal resistance between fibers exists, heat transfer in the core portion is suppressed particularly in the thickness direction as compared with a core material in which one fiber directly transfers heat in the heat transfer direction. Here, the vacuum heat insulating material is a plate having a flat surface or a curved surface, or a sheet. The direction of heat insulation is synonymous with the thickness direction.
Japanese Patent Laid-Open No. 9-4785

しかしながら、上記従来の構成では、真空断熱材の芯材に汎用無機質繊維をそのまま用いることを前提としており、その繊維形状を適正化するだけでは、真空断熱材として、これ以上芯材部分の伝熱を抑制することができなかった。   However, in the above-mentioned conventional configuration, it is assumed that general-purpose inorganic fibers are used as they are for the core material of the vacuum heat insulating material. Just by optimizing the fiber shape, as the vacuum heat insulating material, the heat transfer of the core material portion is no more. Could not be suppressed.

例えば、汎用ガラス繊維としては一般に、分子結合の弱いガラス構造からなるガラス繊維が用いられ、その強度は、素材ヤング率で表すと、70〜75GPa程度のガラスである。   For example, as a general-purpose glass fiber, a glass fiber having a glass structure with a weak molecular bond is generally used, and its strength is about 70 to 75 GPa when expressed in terms of the material Young's modulus.

このような強度の低いガラスからなる繊維の積層体を芯材として、板状またはシート状の真空断熱材を作製する場合、大きい面ほど大気圧縮応力を受けるために、芯材部は特に厚み方向へ大きく押し潰され、芯材部分の高密度化が起こるために積層繊維間での接点数が増す。その結果、特に厚み方向において、芯材部分の伝熱経路が増えてしまうという課題があった。   When producing a plate-like or sheet-like vacuum heat insulating material using such a fiber laminate made of low-strength glass as a core material, the core material part is particularly in the thickness direction because the larger surface receives atmospheric compressive stress. Since the core material is highly densified, the number of contacts between the laminated fibers increases. As a result, there has been a problem that the heat transfer path of the core portion increases particularly in the thickness direction.

また、セラミック繊維は高強度であるために大気圧縮時にも芯材部分の高密度化を抑制し、断熱性能を高めることは可能であるが、材料コストが高いこと、及び繊維化するための製造コストが極めて高いために汎用断熱材に用いる繊維としては好ましくない。   In addition, since ceramic fibers are high in strength, it is possible to suppress the densification of the core material part even during atmospheric compression and increase the heat insulation performance, but the material cost is high and the production for fiberization Since the cost is extremely high, it is not preferable as a fiber used for a general-purpose heat insulating material.

また、スラグウールやロックウールでは、汎用ガラス繊維よりも更に強度が低く、同様に芯材部の高密度化により真空断熱材の断熱性能を低下させてしまうという課題があった。   Moreover, in slag wool and rock wool, the intensity | strength was still lower than a general purpose glass fiber, and there existed a subject that the heat insulation performance of a vacuum heat insulating material will fall similarly by densification of a core material part.

本発明は、上記従来の課題を解決するもので、芯材部分の伝熱を抑制し、真空断熱材の断熱性能を飛躍的に向上させ、かつ製造コストを低減でき、汎用性が高い真空断熱材を提供することを目的とする。さらには、芯材に適用する無機質繊維の機械強度及び耐久性を向上させ、芯材そのものは大気圧下で建材等の断熱材としても有用な真空断熱材を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, suppresses heat transfer in the core part, dramatically improves the heat insulating performance of the vacuum heat insulating material, and reduces the manufacturing cost, and is highly versatile vacuum heat insulating. The purpose is to provide materials. Furthermore, the mechanical strength and durability of the inorganic fiber applied to the core material are improved, and the core material itself is intended to provide a vacuum heat insulating material that is also useful as a heat insulating material for building materials under atmospheric pressure.

上記目的を達成するために、本発明の真空断熱材は、ガラス繊維からなる芯材をガスバリア性を有する外包材で被覆して前記外包材の内部を減圧密閉してなり、前記ガラス繊維は、重量%で、SiO2が45〜75%、Al23が0〜25%、B23が0〜12%、Na2Oが0〜20%、K2Oが0〜3%、MgOが0〜15%、CaOが11〜30%、その他の組成が3%以下で、且つ、これら各組成の重量%の合計が100%となるように構成したガラス組成物からなることを特徴とする。 In order to achieve the above object, the vacuum heat insulating material of the present invention is formed by covering a core material made of glass fiber with an outer packaging material having a gas barrier property, and sealing the inside of the outer packaging material under reduced pressure. in weight% SiO 2 is 45 to 75% Al 2 O 3 is 0 to 25% B 2 O 3 is 0 to 12% Na 2 O is 0 to 20% K 2 O is 0-3%, MgO is 0 to 15%, CaO is 11 to 30%, other composition is 3% or less, and the total weight percentage of these compositions is 100%. And

これにより、芯材に用いるガラス繊維の成分は、従来の芯材に用いられる一般的なグラスウールよりアルカリ金属酸化物を低減することで、ガラス素材強度を高めることができる。その結果、ガラス繊維の積層体において、全体の圧縮応力に対する反発力が高まるために、圧縮時にも厚み方向に対しての高密度化を抑制することができ、接点数の増加を防止することができる。さらには、素材強度が高めることで、表面硬度が高まり、ガラス繊維間の接触点の変形を小さくし、接点面積を小さくすることも可能である。よって、大気圧縮時にも、この芯材は芯材固体による厚み方向の伝熱経路が少なく、熱抵抗が増す。   Thereby, the component of the glass fiber used for a core material can raise glass raw material intensity | strength by reducing an alkali metal oxide from the general glass wool used for the conventional core material. As a result, in the laminated body of glass fibers, the repulsive force against the overall compressive stress is increased, so that it is possible to suppress the increase in density in the thickness direction even during compression, and to prevent an increase in the number of contacts. it can. Furthermore, by increasing the material strength, it is possible to increase the surface hardness, to reduce the deformation of the contact points between the glass fibers, and to reduce the contact area. Therefore, even during atmospheric compression, the core material has few heat transfer paths in the thickness direction due to the core material solid, and the thermal resistance increases.

本発明の真空断熱材は、芯材部分における固体成分の熱伝導を低減することで、断熱性能を飛躍的に改善する。よって、繊維長、繊維径や積層状態等、品質状態を変えることなく従来通りの製造で高い断熱効果が得られるため、製造が容易である。   The vacuum heat insulating material of the present invention dramatically improves the heat insulating performance by reducing the heat conduction of the solid component in the core material portion. Therefore, since a high heat insulation effect is obtained by conventional production without changing the quality state such as fiber length, fiber diameter, and lamination state, the production is easy.

本来、硬質材料として扱われるガラス等の無機材料の素材強度を制御し、より硬い繊維とすることで、真空断熱材の断熱性能が向上することは驚くべき進歩であるといえる。   It can be said that it is a remarkable progress to improve the heat insulating performance of the vacuum heat insulating material by controlling the strength of the inorganic material such as glass, which is originally treated as a hard material, to make the fiber harder.

また、これらのガラス繊維は、汎用グラスウールよりも機械強度、耐久性を備えるために、取扱いも容易で長期間に渡る劣化も少ないため、一般の建材用グラスウールや、補強材としても有用である。   In addition, these glass fibers have mechanical strength and durability as compared with general-purpose glass wool, and therefore are easy to handle and have little deterioration over a long period of time. Therefore, these glass fibers are useful as general glass wool for building materials and reinforcing materials.

請求項1に記載の真空断熱材の発明は、ガラス繊維からなる芯材をガスバリア性を有する外包材で被覆して前記外包材の内部を減圧密閉してなり、前記ガラス繊維は、重量%で、SiO2が45〜75%、Al23が0〜25%、B23が0〜12%、Na2Oが0〜20%、K2Oが0〜3%、MgOが0〜15%、CaOが11〜30%、その他の組成が3%以下で、且つ、これら各組成の重量%の合計が100%となるように構成したガラス組成物からなるものである。 The invention of the vacuum heat insulating material according to claim 1 is formed by covering a core material made of glass fiber with an outer packaging material having a gas barrier property, and sealing the inside of the outer packaging material under reduced pressure. SiO 2 is 45 to 75%, Al 2 O 3 is 0 to 25%, B 2 O 3 is 0 to 12%, Na 2 O is 0 to 20%, K 2 O is 0 to 3%, MgO is 0 -15%, CaO 11-30%, other composition 3% or less, and consisting of a glass composition constituted such that the total of the weight% of these compositions is 100%.

これにより、芯材は従来のグラスウール組成よりもアルカリ土類金属酸化物を増加させ、ガラス分子構造のイオン充填密度を高めることで素材強度が向上し、大気圧縮時の芯材の高密度化を防止し、厚み方向における繊維間接点の増加、及び接点面積の増大を抑制できるために、芯材固体における伝熱経路を小さくし、高熱抵抗芯材とすることができる。   As a result, the core material has more alkaline earth metal oxides than the conventional glass wool composition, and the material strength is improved by increasing the ion packing density of the glass molecular structure, and the core material has a higher density during atmospheric compression. Therefore, the increase in the indirect point of the fiber in the thickness direction and the increase in the contact area can be suppressed, so that the heat transfer path in the core material solid can be reduced and a high heat resistance core material can be obtained.

以上の作用により、真空断熱材の芯材部分における固体成分の熱伝導を抑制し、断熱性能が向上する。   By the above effect | action, the heat conduction of the solid component in the core material part of a vacuum heat insulating material is suppressed, and heat insulation performance improves.

請求項2に記載の真空断熱材の発明は、ガラス繊維からなる芯材をガスバリア性を有する外包材で被覆して前記外包材の内部を減圧密閉してなり、前記ガラス繊維は、重量%で、SiO2が50〜65%、Al23が0〜18%、B23が2〜10%、Na2Oが0〜20%、K2Oが0〜3%、MgOが0〜10%、CaOが11〜23%、その他の組成が3%以下で、且つ、これら各組成の重量%の合計が100%となるように構成したガラス組成物からなるものである。 The invention of the vacuum heat insulating material according to claim 2 is formed by covering a core material made of glass fiber with an outer packaging material having a gas barrier property, and sealing the inside of the outer packaging material under reduced pressure. SiO 2 is 50 to 65%, Al 2 O 3 is 0 to 18%, B 2 O 3 is 2 to 10%, Na 2 O is 0 to 20%, K 2 O is 0 to 3%, MgO is 0 10%, CaO is 11 to 23%, the other composition is 3% or less, and the total weight percent of these compositions is 100%.

これにより、芯材は請求項1に記載の作用に加え、Al23を低減することで溶融性が高く、ガラス製造時に失透の問題もない。さらには、安価な材料を用いての製造が可能である。 Thus, the core material is added to the action according to claim 1, Al 2 O 3 is high meltability by reducing, no devitrification problems during glass production. Furthermore, it is possible to manufacture using an inexpensive material.

以上の作用により、高強度で安価なガラスが得られるため、真空断熱材の生産性が向上し、汎用性が高まる。   With the above operation, high-strength and inexpensive glass can be obtained, so that the productivity of the vacuum heat insulating material is improved and versatility is enhanced.

請求項3に記載の真空断熱材の発明は、請求項1または2に記載の発明において、アルカリ金属酸化物及びアルカリ土類金属酸化物を少なくともそれぞれ一種類以上含み、かつ前記アルカリ金属酸化物の成分の合計の重量%の数値よりも、前記アルカリ土類金属酸化物の成分の合計の重量%の数値が大きいものである。   The invention for a vacuum heat insulating material according to claim 3 is the invention according to claim 1 or 2, and includes at least one kind of alkali metal oxide and alkaline earth metal oxide, and the alkali metal oxide. The numerical value of the total weight% of the components of the alkaline earth metal oxide is larger than the numerical value of the total weight% of the components.

アルカリ金属酸化物がガラス構造における結合強度を弱める働きをすることに対し、アルカリ土類金属酸化物はガラスのイオン充填密度を高めてガラスの素材強度を向上させる働きがある。   Whereas alkali metal oxides serve to weaken the bond strength in the glass structure, alkaline earth metal oxides act to increase the ion packing density of the glass and improve the material strength of the glass.

よって、本発明のガラス組成はアルカリ土類金属の重量%を増やすことにより、素材強度が高まるため、大気圧縮時の芯材の高密度化を防止しし、厚み方向における繊維間接点の増加、及び接点面積の増大を抑制できるために、芯材固体における伝熱経路を小さくし、高熱抵抗芯材とすることができる。   Therefore, since the glass composition of the present invention increases the strength of the material by increasing the weight percent of the alkaline earth metal, the densification of the core material during atmospheric compression is prevented, and the increase of fiber indirect points in the thickness direction, And since the increase in contact area can be suppressed, the heat transfer path in the core material solid can be made small, and a high heat resistance core material can be obtained.

以上の作用により、さらに芯材部における固体熱伝導を抑制し、真空断熱材の断熱性能が向上する。   By the above effect | action, the solid heat conduction in a core material part is further suppressed and the heat insulation performance of a vacuum heat insulating material improves.

請求項4に記載の真空断熱材の発明は、請求項1から3のいずれか一項に記載の発明において、ガラスの成分におけるアルカリ金属酸化物と、アルカリ土類金属酸化物の合計は重量%で20%以上、45%以下の範囲であるものである。   The invention of the vacuum heat insulating material according to claim 4 is the invention according to any one of claims 1 to 3, wherein the total amount of the alkali metal oxide and the alkaline earth metal oxide in the glass component is% by weight. Is in the range of 20% to 45%.

アルカリ金属酸化物及びアルカリ土類金属酸化物をガラス成分に所定量含むことで、ガラスの粘性が低下するために溶融性が改善する。   By containing a predetermined amount of an alkali metal oxide and an alkaline earth metal oxide in the glass component, the viscosity of the glass is lowered, so that the meltability is improved.

以上の作用により、真空断熱材の芯材は製造時に必要な熱エネルギーを低減でき、生産性が高まる。   By the above operation, the core material of the vacuum heat insulating material can reduce the heat energy required at the time of manufacture, and the productivity is increased.

請求項5に記載の断熱材の発明は、請求項1から4のいずれか一項に記載の発明の真空断熱材の芯材からなる断熱材である。   Invention of Claim 5 is a heat insulating material which consists of a core material of the vacuum heat insulating material of the invention as described in any one of Claim 1 to 4.

よって、この断熱材は安価な材料を用いて構成し、ガラス素材強度が高く、かつ溶融性がよい。また、イオン充填密度が高く、構造上安定であるために、耐久性が高い。   Therefore, this heat insulating material is constituted by using an inexpensive material, has high glass material strength, and has good meltability. Further, since the ion packing density is high and the structure is stable, the durability is high.

以上の作用により、本発明における断熱材は、ガラス単体で用いても極めて安定で、高強度である上に安価で得られるため、従来のグラスウールよりも長期に渡って劣化が小さく、機械強度に優れた汎用断熱材として有用である。   Due to the above action, the heat insulating material in the present invention is extremely stable even when used alone as a glass, and since it is obtained at a low cost with a high strength, it is less deteriorated over a long period of time than conventional glass wool, resulting in a high mechanical strength. It is useful as an excellent general-purpose heat insulating material.

また、本発明で使用できるガラスは、ガラス状態になり得るガラス形成酸化物からなる繊維であればよいが、特に汎用性、環境面を混慮すると、SiO2を主成分とするケイ酸塩系、ホウケイ酸塩系のガラスが好ましい。 In addition, the glass that can be used in the present invention may be a fiber made of a glass-forming oxide that can be in a glass state. However, when considering versatility and environmental aspects in particular, a silicate system mainly containing SiO 2. Borosilicate glass is preferred.

各成分における重量%において、SiO2は減少すれば失透性が問題となりガラスの製造が困難となり、増大すれば粘性が高くなることで生産性が低下するため、45%以上かつ75%以下の範囲が良いが、より好ましくは50〜65%の範囲、さらに好ましくは55〜65%の範囲である。 When the SiO 2 content is decreased in terms of weight percent in each component, devitrification becomes a problem, and it becomes difficult to produce glass. When the SiO 2 content is increased, the viscosity is increased and the productivity is lowered. Although a range is good, More preferably, it is the range of 50 to 65%, More preferably, it is the range of 55 to 65%.

Al23が増加すると粘性が極めて高くなってしまうために、製造面で25%以下が良く、より好ましくは18%以下である。また、微量添加することで失透を抑制する効果があり、0.1〜3.5%の範囲がさらに好ましい。 When Al 2 O 3 increases, the viscosity becomes extremely high, so that it is preferably 25% or less, more preferably 18% or less in terms of production. Moreover, there exists an effect which suppresses devitrification by adding a trace amount, and the range of 0.1-3.5% is further more preferable.

23は多すぎると、製造時に揮発成分による炉壁へのダメージが大きくなるために12%以下が良いが、溶融性及び耐久性を向上するためには少量含むことが望ましく、より好ましくは2%以上かつ10%以下の範囲、さらに好ましくは2%以上かつ8%以下の範囲である。 If too much B 2 O 3 is used, the damage to the furnace wall due to volatile components increases during production, so 12% or less is preferable. However, in order to improve the meltability and durability, it is desirable to contain a small amount, more preferably Is in the range of 2% to 10%, more preferably in the range of 2% to 8%.

Na2Oは20%を超えると素材強度が低下するために20%以下が良いが、より好ましくは、溶融性及び失透性改善のためにNa2Oを適量含む3%以上かつ13%以下の範囲、さらに好ましくは、5%以上かつ13%以下の範囲である。 If Na 2 O exceeds 20%, the strength of the material decreases, so 20% or less is preferable. More preferably, 3% or more and 13% or less including an appropriate amount of Na 2 O for improving meltability and devitrification. More preferably, it is the range of 5% or more and 13% or less.

2Oは材料コストが高いために、積極的に入れる必要はないが、3%以下であれば溶融性改善の目的で含むことがより好ましい。MgOを増大させると素材強度及び耐久性が向上するが、材料失透性が悪化するために15%以下が良く、より好ましくは10%以下の範囲、さらに好ましくは2〜8%の範囲である。 Since K 2 O has a high material cost, it is not necessary to add K 2 O actively. Increasing MgO improves material strength and durability, but material devitrification deteriorates, so 15% or less is preferable, more preferably 10% or less, and even more preferably 2 to 8%. .

CaOはMgOと同様に素材強度及び耐久性を高め、かつ材料コストが低いが、30%を超えると失透の原因となるので、11%より大きく、かつ30%以下が良く、より好ましくは11%より大きく、かつ23%以下の範囲、さらに好ましくは、11%より大きく、かつ20%以下の範囲である。   CaO increases the strength and durability of the material in the same manner as MgO and has a low material cost. However, if it exceeds 30%, it causes devitrification, so it is greater than 11% and preferably less than 30%, more preferably 11 % And not more than 23%, and more preferably not less than 11% and not more than 20%.

また、ガラスはアルカリ土類金属酸化物の含有量の増加等に伴ってガラス製造が安定して行えない場合、TiO2、ZrO2、ZnO等の成分を加えることで失透明性を改善し、生産性を高めることもできる。また、特に低粘度特性を有するP25を少量加えると、さらに生産性が増す。 In addition, when glass cannot be stably produced due to an increase in the content of alkaline earth metal oxide, etc., the transparency can be improved by adding components such as TiO 2 , ZrO 2 , ZnO, Productivity can also be increased. Further, when a small amount of P 2 O 5 having particularly low viscosity characteristics is added, the productivity is further increased.

その他成分として重量%の合計で3%未満であれば、ガラス全体への影響はほとんどなく、原料としては不純物を含む天然原料を用いることが可能である。   If the total of the other components is less than 3% by weight, there is almost no influence on the whole glass, and natural raw materials containing impurities can be used as raw materials.

また、ガラスの製造時には、清澄剤を用いると泡切れを良好にし、生産性を向上させるために好ましく、Sb23等の公知のものが適用できる。 Moreover, it is preferable to use a refining agent at the time of manufacturing the glass in order to improve the bubble breakage and improve the productivity, and known materials such as Sb 2 O 3 can be applied.

また、本発明の真空断熱材には水分吸着材が使用できる。水分吸着材は特に限定するものではなく、真空断熱材の内部に存在する水蒸気を吸着し、内部雰囲気中の水蒸気量を減少されるものであればよい。   Moreover, a moisture adsorbent can be used for the vacuum heat insulating material of the present invention. The moisture adsorbing material is not particularly limited as long as it adsorbs water vapor existing inside the vacuum heat insulating material and reduces the amount of water vapor in the internal atmosphere.

一例としては、合成ゼオライト、活性炭、活性アルミナ、シリカゲル、ドーソナイト、ハイドロタルサイトなどの物理吸着材、アルカリ金属やアルカリ土類金属単体やその酸化物および水酸化物などの化学吸着材などが適用可能である。さらに、空気成分が吸着できるゲッター材等を併用することで内部の気体成分の熱伝導を低減して、断熱性能を向上させることも可能である。   Examples include physical adsorbents such as synthetic zeolite, activated carbon, activated alumina, silica gel, dawsonite, hydrotalcite, and chemical adsorbents such as alkali metals and alkaline earth metals alone and their oxides and hydroxides. It is. Furthermore, by using together a getter material or the like that can adsorb an air component, it is possible to reduce the heat conduction of the internal gas component and improve the heat insulation performance.

また、本発明の外包材は、プラスチックラミネートフィルムが使用できるが、より高いガスバリア性を付与するためには金属箔や蒸着層が適用できる。なお、金属箔、および蒸着層は公知のもが利用でき、特に指定するものではない。   In addition, a plastic laminate film can be used as the outer packaging material of the present invention, but a metal foil or a vapor deposition layer can be applied in order to impart higher gas barrier properties. In addition, a metal foil and a vapor deposition layer can use a well-known thing, and it does not specify it in particular.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の断面図を示す。
(Embodiment 1)
FIG. 1 shows a cross-sectional view of a vacuum heat insulating material according to Embodiment 1 of the present invention.

図1において、真空断熱材1は、芯材2と水分吸着材3とを外包材4に挿入し、内部を減圧して構成している。   In FIG. 1, a vacuum heat insulating material 1 is configured by inserting a core material 2 and a moisture adsorbing material 3 into an outer packaging material 4 and reducing the pressure inside.

真空断熱材1の作製は、芯材2を140℃の乾燥炉で30分間乾燥した後、ラミネートフィルムの三方を熱溶着によりシールして袋状に成形した外包材4に挿入し、減圧チャンバー内で、外包材4内部が10Pa以下になるように減圧し、開口部を熱溶着により密閉封止している。   The vacuum heat insulating material 1 is produced by drying the core material 2 in a drying furnace at 140 ° C. for 30 minutes, and then inserting the three sides of the laminate film into the outer packaging material 4 formed into a bag shape by heat sealing. Thus, the pressure is reduced so that the inside of the outer packaging material 4 becomes 10 Pa or less, and the opening is hermetically sealed by heat welding.

この時、外包材4は、表面保護層としてポリエチレンテレフタレートフィルム(12μm)、中間層にはアルミ箔(6μm)、熱溶着層として直鎖状低密度ポリエチレンフィルム(50μm)からなるラミネートフィルムにより構成している。   At this time, the outer packaging material 4 is composed of a laminate film composed of a polyethylene terephthalate film (12 μm) as a surface protective layer, an aluminum foil (6 μm) as an intermediate layer, and a linear low-density polyethylene film (50 μm) as a heat welding layer. ing.

また、水分吸着材3は、酸化カルシウムを適用している。水分吸着材3がない場合にも特に問題はないが、水分吸着材を備えることで、内部の残存水蒸気を吸着し、ガラス繊維が水分により浸食されること可能性をさらに低減できるだけでなく、端面からの水蒸気侵入による内圧上昇を長期に渡って抑制できる。さらに、ガス吸着材を併用することでより内圧を低減し、断熱性能を高めることも可能である。   Further, calcium oxide is applied to the moisture adsorbing material 3. Although there is no particular problem even when the moisture adsorbing material 3 is not provided, the provision of the moisture adsorbing material not only can further reduce the possibility that glass fiber will be eroded by moisture by adsorbing the residual water vapor inside, but the end face. The increase in internal pressure due to water vapor intrusion from can be suppressed over a long period of time. Furthermore, by using a gas adsorbent in combination, the internal pressure can be further reduced and the heat insulation performance can be improved.

一方、芯材2は、平均繊維径3.5μmのガラス繊維集合体を加圧した状態で加熱し、密度が200kg/m3程度の形状を維持しているボード状のものを用いている。平均繊維径は1μm〜20μmの範囲のものが好ましく、2μm〜10μmのものが芯材2としての剛性を備え、かつ生産性と熱伝導率の面でより好ましい。 On the other hand, the core material 2 is a board-shaped member that is heated in a state where a glass fiber aggregate having an average fiber diameter of 3.5 μm is pressurized and maintains a shape with a density of about 200 kg / m 3 . The average fiber diameter is preferably in the range of 1 μm to 20 μm, and the average fiber diameter of 2 μm to 10 μm has more rigidity as the core material 2 and is more preferable in terms of productivity and thermal conductivity.

また、断熱性能及び取扱い性の面で密封後の芯材部嵩密度は210kg/m3〜280kg/m3の範囲がより好ましく、この範囲となるように作製した。芯材部嵩密度は、芯材のみの重量と密封後のサイズから算出している。 Further, the core part bulk density after sealing in terms of thermal insulation performance and handling properties and more preferably in the range of 210kg / m 3 ~280kg / m 3 , was made as a this range. The core material bulk density is calculated from the weight of the core material alone and the size after sealing.

ここではバインダーを用いることなく芯材成形を行っているが、バインダーを用いてより低温で芯材2を成形しても良い。また、表面性が問題とならない場合には、ガラス繊維の集合体をそのまま密閉封止しても構わない。その場合には、製造工数が削減するために、生産性が向上する。   Here, the core material is formed without using a binder, but the core material 2 may be formed at a lower temperature using a binder. If the surface property does not matter, the glass fiber aggregate may be hermetically sealed as it is. In that case, since the number of manufacturing steps is reduced, productivity is improved.

また、用いたガラス組成の具体的な内容については、実施例の中で詳しく説明するが、本発明におけるガラスを繊維化して積層し、芯材2として作製した後に内部を減圧した外包材4で封止し、真空断熱材1を得た。   Moreover, although the concrete content of the used glass composition is demonstrated in detail in an Example, after making the glass in this invention into fiber and laminating | stacking and producing as the core material 2, it is the outer packaging material 4 which reduced the inside. Sealing was performed to obtain a vacuum heat insulating material 1.

以上のようにして形成した真空断熱材1の熱伝導率を英弘精機製のオートラムダにて測定した。結果、実施例1〜11に示すように、真空断熱材の熱伝導率は、平均温度24℃にて0.0013W/mK〜0.0019W/mKであり、汎用的な硬質ウレタンフォームの10倍以上、従来の真空断熱材と比較しても大幅に優れた断熱性能を有していた。また、芯材に用いるグラスウールの圧縮強度は比較例1の従来汎用グラスウールと比較しても大幅に高まっており、ガラス素材強度向上により真空断熱材として大気圧縮後にも、芯材は高密度化することなく、厚み方向における接点数の増大及び接点面積の増大は抑制されていると考えることができる。   The thermal conductivity of the vacuum heat insulating material 1 formed as described above was measured with an auto lambda manufactured by Eihiro Seiki. As a result, as shown in Examples 1 to 11, the thermal conductivity of the vacuum heat insulating material is 0.0013 W / mK to 0.0019 W / mK at an average temperature of 24 ° C., which is 10 times that of a general-purpose rigid urethane foam. As mentioned above, it had the heat insulation performance far superior even if compared with the conventional vacuum heat insulating material. Moreover, the compressive strength of the glass wool used for the core material is significantly higher than that of the conventional general-purpose glass wool of Comparative Example 1, and the core material is densified even after air compression as a vacuum heat insulating material by improving the strength of the glass material. Therefore, it can be considered that an increase in the number of contacts and an increase in contact area in the thickness direction are suppressed.

よって、従来、真空断熱材の伝熱要素の大部分を占めていた芯材部における厚み方向の固体成分の熱伝導を抑制でき、真空断熱材の断熱性能が大幅に改善するものである。   Therefore, the heat conduction of the solid component in the thickness direction in the core portion that has conventionally occupied the majority of the heat transfer element of the vacuum heat insulating material can be suppressed, and the heat insulating performance of the vacuum heat insulating material is greatly improved.

ガラスの素材強度については、ヤング率にて、その評価指標として測定を行った。ヤング率については、一辺が3mm程度の立方体に加工したガラスを共振法により測定を行ったが、パルス伝搬法等の他の方法で測定しても良い。また、評価についてはガラスの工業的な生産性を判断する上で、製造設備の炉壁侵食ダメージ、溶融性に関する1000P(ポアズ)粘度となる温度、ガラス製造時の失透についての3項目を実施した。実施例1〜11について、それぞれの結果は、炉壁へのダメージについては特になく、1000P粘度となる温度は全て1150℃以内であり、また失透も起こらなかったため、生産性は問題とならなかった。   The material strength of the glass was measured by Young's modulus as an evaluation index. Regarding the Young's modulus, glass processed into a cube having a side of about 3 mm was measured by the resonance method, but may be measured by other methods such as a pulse propagation method. In addition, for the evaluation of the industrial productivity of glass, three items were evaluated: furnace wall erosion damage of manufacturing equipment, temperature of 1000P (Poise) viscosity related to meltability, and devitrification during glass manufacturing. did. Regarding Examples 1 to 11, each result is not particularly about damage to the furnace wall, and all temperatures at which the viscosity becomes 1000P are within 1150 ° C., and devitrification did not occur, so productivity does not matter. It was.

尚、Fe23は不純物として混入し易いが、特にこれにより問題となることはなく、輻射熱を吸収する効果があるために、輻射の寄与が大きい50℃以上の温度領域での適用には有用である。 Although Fe 2 O 3 is easy to be mixed as an impurity, it does not cause a problem in particular, and it has an effect of absorbing radiant heat. Therefore, for applications in a temperature range of 50 ° C. or more where radiation contributes greatly. Useful.

なお、真空断熱材とは、板状及びシート状の形状を有するものであり、その厚み方向を断熱目的に用いる断熱部材を示す。また、部分的に板状及びシート状の形状を有するものであればよく、折り曲げ加工や湾曲させたものも含む。   In addition, a vacuum heat insulating material has the shape of a plate shape and a sheet shape, and shows the heat insulation member which uses the thickness direction for the purpose of heat insulation. Moreover, what is necessary is just to have a plate-shaped and sheet-like shape partially, and the thing bent and curved is also included.

(実施の形態2)
本発明の実施の形態2におけるグラスウールからなる断熱材について説明する。各ガラス組成物は繊維状態に成形を行った。
(Embodiment 2)
A heat insulating material made of glass wool in Embodiment 2 of the present invention will be described. Each glass composition was formed into a fiber state.

本発明のガラス組成物からなる溶融物を平均繊維径が3.5μm程度になるように繊維化した。繊維化工程については、長繊維として連続紡糸、または短繊維として火炎法、遠心法等どのようにして行ってもよいが、生産性を考慮して遠心法によりグラスウールを作製した。チョップストランドマットや、ロービングクロス等のように長繊維を作製した後に加工して断熱材として用いることもできる。   The melt made of the glass composition of the present invention was fiberized so that the average fiber diameter was about 3.5 μm. Regarding the fiberizing step, continuous spinning may be used as long fibers, or flame method, centrifugal method, etc. may be used as short fibers, but glass wool was produced by a centrifugal method in consideration of productivity. A long fiber such as a chop strand mat or a roving cloth can be produced and then processed to be used as a heat insulating material.

このようにして作製したグラスウールを厚み方向に圧縮し、密度が250kg/m3となる時の圧縮強度測定を行った。 The glass wool thus produced was compressed in the thickness direction, and the compression strength was measured when the density was 250 kg / m 3 .

結果、本発明によるガラス組成物からなるグラスウールの圧縮強度は1020hPa以上であり、従来の汎用的なグラスウールよりも高い圧縮強度を示していた。これは、ガラス成分におけるアルカリ土類金属酸化物を増加させることでガラス分子構造のイオン充填密度を高め、ガラス素材自体の強度が高まったためである。   As a result, the compressive strength of the glass wool made of the glass composition according to the present invention was 1020 hPa or more, indicating a higher compressive strength than the conventional general-purpose glass wool. This is because increasing the alkaline earth metal oxide in the glass component increases the ion packing density of the glass molecular structure and increases the strength of the glass material itself.

よって、このように従来のものよりも高い素材強度を有するガラス組成のグラスウールとすることで、グラスウールの圧縮強度は高まり、建材用断熱材や補強材として有用で取扱い性の良好なグラスウール(断熱材)を提供できる。   Therefore, by using glass wool with a glass composition having higher material strength than the conventional one, the glass wool has high compressive strength and is useful as a heat insulating material or reinforcing material for building materials and has good handling properties. ) Can be provided.

以下、実施例、および比較例を用いて、本発明を更に具体的に説明するが、本発明は本実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited only to the Examples.

(実施例1)
本実施例はガラス組成の重量%において、SiO2が60.7%、Al23が1.7%、B23が7.0%、Na2Oが10.4%、K2Oが0.9%、MgOが4.7%、CaOが13.2%、Fe23等のその他複数成分合計が1.4%からなるガラスを作製し、その素材ヤング率は86.4GPaであった。1000Pとなる温度は1030℃であり、炉壁へのダメージ及びガラスの失透が見られなかったため、生産性に問題はなかった。
Example 1
In this example, in terms of% by weight of the glass composition, SiO 2 is 60.7%, Al 2 O 3 is 1.7%, B 2 O 3 is 7.0%, Na 2 O is 10.4%, K 2 A glass composed of 0.9% O, 4.7% MgO, 13.2% CaO, and 1.4% of the total of other components such as Fe 2 O 3 was produced. 4 GPa. The temperature at which the temperature became 1000 P was 1030 ° C., and damage to the furnace wall and devitrification of the glass were not observed, so there was no problem in productivity.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1370hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1370 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は236kg/m3、熱伝導率は0.0015W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 236 kg / m 3 and the thermal conductivity was 0.0015 W / mK.

(実施例2)
本実施例はガラス組成の重量%において、SiO2が64.3%、Al23が0.2%、B23が3.0%、Na2Oが5.2%、K2Oが0.8%、MgOが4.9%、CaOが19.8%、ZrO2、ZnO、TiO2、P25、Fe23等のその他複数成分合計が1.8%からなるガラスを作製し、その素材ヤング率は88.1GPaであった。1000Pとなる温度は1065℃であり、炉壁へのダメージ及びガラスの失透が見られなかったため、生産性に問題はなかった。
(Example 2)
In this example, SiO 2 is 64.3%, Al 2 O 3 is 0.2%, B 2 O 3 is 3.0%, Na 2 O is 5.2%, and K 2 in terms of weight percent of the glass composition. O is 0.8%, MgO is 4.9%, CaO is 19.8%, ZrO 2 , ZnO, TiO 2 , P 2 O 5 , Fe 2 O 3, etc. A glass having a material Young's modulus of 88.1 GPa was produced. The temperature at which the temperature became 1000 P was 1065 ° C., and no damage to the furnace wall and glass devitrification were observed, so there was no problem in productivity.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1465hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1465 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は230kg/m3、熱伝導率は0.0014W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 230 kg / m 3 and the thermal conductivity was 0.0014 W / mK.

(実施例3)
本実施例はガラス組成の重量%において、SiO2が59.8%、Al23が1.0%、B23が2.0%、Na2Oが5.3%、K2Oが1.1%、MgOが9.9%、CaOが20.1%、Fe23等のその他複数成分合計が0.8%からなるガラスを作成し、その素材ヤング率は90.9GPaであった。1000Pとなる温度は1058℃であり、炉壁へのダメージ及びガラスの失透が見られなかったため、生産性に問題はなかった。
(Example 3)
In this example, the weight percentage of the glass composition is 59.8% SiO 2 , 1.0% Al 2 O 3 , 2.0% B 2 O 3 , 5.3% Na 2 O, K 2 A glass composed of 1.1% O, 9.9% MgO, 20.1% CaO, and a total of 0.8% of other plural components such as Fe 2 O 3 was prepared. It was 9 GPa. The temperature at which the temperature became 1000 P was 1058 ° C., and damage to the furnace wall and devitrification of the glass were not observed, so there was no problem in productivity.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1480hPaであった。   The compression strength when this glass was laminated after fiberization to form glass wool was 1480 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は228kg/m3、熱伝導率は0.0014W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 228 kg / m 3 , and the thermal conductivity was 0.0014 W / mK.

(実施例4)
本実施例はガラス組成の重量%において、SiO2が58.4%、Al23が1.7%、B23が5.9%、Na2Oが10.5%、K2Oが0.5%、MgOが6.1%、CaOが16.1%、Fe23等のその他複数成分合計が0.8%からなるガラスを作製し、その素材ヤング率は82.0GPaであった。1000Pとなる温度は1041℃であり、炉壁へのダメージ及びガラスの失透が見られなかったため、生産性に問題はなかった。
Example 4
In this example, SiO 2 is 58.4%, Al 2 O 3 is 1.7%, B 2 O 3 is 5.9%, Na 2 O is 10.5%, K 2 , in terms of% by weight of the glass composition. A glass composed of 0.5% of O, 6.1% of MgO, 16.1% of CaO, and 0.8% of the total of other components such as Fe 2 O 3 is produced. 0 GPa. The temperature at which the temperature became 1000 P was 1041 ° C., and damage to the furnace wall and devitrification of the glass were not observed, so there was no problem in productivity.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1120hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1120 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は241kg/m3、熱伝導率は0.0017W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 241 kg / m 3 and the thermal conductivity was 0.0017 W / mK.

(実施例5)
本実施例はガラス組成の重量%において、SiO2が53.8%、Al23が14.9%、B23が8.5%、Na2Oが0.5%、K2Oが0.3%、MgOが4.6%、CaOが16.6%、Fe23等のその他複数成分合計が0.8%からなるガラスを作製し、その素材ヤング率は87.8GPaであった。1000Pとなる温度は1059℃であり、炉壁へのダメージ及びガラスの失透が見られなかったため、生産性に問題はなかった。
(Example 5)
In this example, SiO 2 is 53.8%, Al 2 O 3 is 14.9%, B 2 O 3 is 8.5%, Na 2 O is 0.5%, and K 2 in terms of% by weight of the glass composition. A glass composed of 0.3% O, 4.6% MgO, 16.6% CaO, and 0.8% of the total of other components such as Fe 2 O 3 was produced. It was 8 GPa. The temperature at which the temperature became 1000 P was 1059 ° C., and no damage to the furnace wall and glass devitrification were observed, so there was no problem in productivity.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1415hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1415 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は233kg/m3、熱伝導率は0.0015W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 233 kg / m 3 and the thermal conductivity was 0.0015 W / mK.

(実施例6)
本実施例はガラス組成の重量%において、SiO2が56.0%、Al23が5.0%、B23が7.0%、Na2Oが13.0%、K2Oが0.5%、MgOが3.4%、CaOが15.0%、Fe23等のその他複数成分合計が0.1%からなるガラスを作製し、その素材ヤング率は77.0GPaであった。1000Pとなる温度は1045℃であり、炉壁へのダメージ及びガラスの失透が見られなかったため、生産性に問題はなかった。
(Example 6)
In this example, SiO 2 is 56.0%, Al 2 O 3 is 5.0%, B 2 O 3 is 7.0%, Na 2 O is 13.0%, K 2 , in terms of% by weight of the glass composition. A glass composed of 0.5% O, 3.4% MgO, 15.0% CaO, and 0.1% of the total of other components such as Fe 2 O 3 is produced. 0 GPa. The temperature at which the temperature became 1000 P was 1045 ° C., and damage to the furnace wall and devitrification of the glass were not observed, so there was no problem in productivity.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1040hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1040 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は246kg/m3、熱伝導率は0.0019W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 246 kg / m 3 and the thermal conductivity was 0.0019 W / mK.

(実施例7)
本実施例はガラス組成の重量%において、SiO2が46.4%、Al23が8.0%、B23が4.0%、Na2Oが19.5%、K2Oが0.5%、MgOが3.5%、CaOが18.0%、Fe23等のその他複数成分合計が0.1%からなるガラスを作製し、その素材ヤング率は78.0GPaであった。1000Pとなる温度は1026℃であり、炉壁へのダメージ及びガラスの失透が見られなかったため、生産性に問題はなかった。
(Example 7)
In this example, SiO 2 was 46.4%, Al 2 O 3 was 8.0%, B 2 O 3 was 4.0%, Na 2 O was 19.5%, and K 2 , in terms of% by weight of the glass composition. A glass composed of 0.5% O, 3.5% MgO, 18.0% CaO, and 0.1% of the total of other components such as Fe 2 O 3 is produced. 0 GPa. The temperature at which the temperature became 1000 P was 1026 ° C., and damage to the furnace wall and devitrification of the glass were not observed, so there was no problem in productivity.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1060hPaであった。   The compression strength when this glass was laminated after fiberizing into glass wool was 1060 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は245kg/m3、熱伝導率は0.0019W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 245 kg / m 3 and the thermal conductivity was 0.0019 W / mK.

(実施例8)
本実施例はガラス組成の重量%において、SiO2が65.0%、Al23が0.1%、B23が12.0%、Na2Oが5.0%、K2Oが3.0%、MgOが2.0%、CaOが11.1%、Fe23等のその他複数成分合計が1.8%からなるガラスを作製し、その素材ヤング率は89.4GPaであった。1000Pとなる温度は1052℃であり、炉壁へのダメージ及びガラスの失透が見られなかったため、生産性に問題はなかった。
(Example 8)
In this example, SiO 2 was 65.0%, Al 2 O 3 was 0.1%, B 2 O 3 was 12.0%, Na 2 O was 5.0%, and K 2 in terms of weight percent of the glass composition. A glass composed of 3.0% O, 2.0% MgO, 11.1% CaO, and a total of 1.8% of other plural components such as Fe 2 O 3 was produced. 4 GPa. The temperature at which the temperature became 1000 P was 1052 ° C., and no damage to the furnace wall and glass devitrification were observed, so there was no problem in productivity.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1470hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1470 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は228kg/m3、熱伝導率は0.0014W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 228 kg / m 3 , and the thermal conductivity was 0.0014 W / mK.

(実施例9)
本実施例はガラス組成の重量%において、SiO2が55.0%、Al23が3.5%、B23が10.0%、Na2Oが3.0%、MgOが8.0%、CaOが20.0%、Fe23等のその他複数成分合計が0.5%からなるガラスを作製し、その素材ヤング率は89.2GPaであった。1000Pとなる温度は996℃であり、炉壁へのダメージ及びガラスの失透が見られなかったため、生産性に問題はなかった。
Example 9
In this example, SiO 2 is 55.0%, Al 2 O 3 is 3.5%, B 2 O 3 is 10.0%, Na 2 O is 3.0%, MgO is 5% by weight of the glass composition. A glass composed of 8.0%, CaO 20.0%, and a total of other components such as Fe 2 O 3 of 0.5% was produced, and the material Young's modulus was 89.2 GPa. The temperature at which the temperature became 1000 P was 996 ° C., and there was no problem in productivity because damage to the furnace wall and devitrification of the glass were not observed.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1470hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1470 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は230kg/m3、熱伝導率は0.0014W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 230 kg / m 3 and the thermal conductivity was 0.0014 W / mK.

(実施例10)
本実施例はガラス組成の重量%において、SiO2が46.9%、Al23が9.0%、B23が8.0%、K2Oが0.1%、MgOが10.0%、CaOが23.0%、Fe23等のその他複数成分合計が3.0%からなるガラスを作製し、その素材ヤング率は91.0GPaであった。1000Pとなる温度は1083℃であり、炉壁へのダメージ及びガラスの失透が見られなかったため、生産性に問題はなかった。
(Example 10)
In this example, SiO 2 is 46.9%, Al 2 O 3 is 9.0%, B 2 O 3 is 8.0%, K 2 O is 0.1%, MgO is 4% by weight of the glass composition. A glass composed of 10.0%, CaO 23.0%, and other components such as Fe 2 O 3 totaling 3.0% was produced, and the material Young's modulus was 91.0 GPa. The temperature at which the temperature became 1000 P was 1083 ° C., and no damage to the furnace wall and glass devitrification were observed, so there was no problem in productivity.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1485hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1485 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は226kg/m3、熱伝導率は0.0013W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 226 kg / m 3 , and the thermal conductivity was 0.0013 W / mK.

(実施例11)
本実施例はガラス組成の重量%において、SiO2が45.0%、Al23が1.8%、Na2Oが20.0%、K2Oが2.9%、CaOが11.5%、Fe23等のその他複数成分合計が2.6%からなるガラスを作製し、その素材ヤング率は77.6GPaであった。1000Pとなる温度は1102℃であり、炉壁へのダメージ及びガラスの失透が見られなかったため、生産性に問題はなかった。
(Example 11)
In this example, SiO 2 was 45.0%, Al 2 O 3 was 1.8%, Na 2 O was 20.0%, K 2 O was 2.9%, and CaO was 11% by weight% of the glass composition. A glass having a total of 2.6% of other components such as 0.5% and Fe 2 O 3 was produced, and the material Young's modulus was 77.6 GPa. The temperature at which the temperature became 1000 P was 1102 ° C., and no damage to the furnace wall and glass devitrification were observed, so there was no problem in productivity.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1045hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1045 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は247kg/m3、熱伝導率は0.0019W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 247 kg / m 3 and the thermal conductivity was 0.0019 W / mK.

(比較例1)
本比較例は一般的なグラスウールであり、ガラス組成の重量%において、SiO2が63.6%、Al23が1.7%、B23が4.0%、Na2Oが14.5%、K2Oが0.8%、MgOが3.8%、CaOが10.0%、Fe23等のその他複数成分合計が1.6%からなるガラスを作製し、その素材ヤング率は75.0GPaであった。
(Comparative Example 1)
This comparative example is a general glass wool, in which the SiO 2 is 63.6%, the Al 2 O 3 is 1.7%, the B 2 O 3 is 4.0%, and the Na 2 O is 5% by weight of the glass composition. 14.5%, K 2 O 0.8%, MgO 3.8%, CaO 10.0%, and other multiple components such as Fe 2 O 3 total 1.6% glass, The material Young's modulus was 75.0 GPa.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1010hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1010 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は250kg/m3、熱伝導率は0.0022W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 250 kg / m 3 and the thermal conductivity was 0.0022 W / mK.

一般的なグラスウールでは、ガラスの強度が弱く、実施例と比較して望ましい断熱性能を得ることができなかった。   In general glass wool, the strength of the glass was weak, and desirable heat insulation performance could not be obtained as compared with Examples.

(比較例2)
本比較例はガラス組成の重量%において、SiO2が45.6%、Al23が25.7%、Na2Oが15.8%、K2Oが0.7%、CaOが12.1%、Fe23等のその他複数成分合計が0.1%からなるガラスの作製を試みたが、Al23が25%を超えたことで溶融温度が高くなりすぎたために、ガラス繊維の製造は不可能であった。
(Comparative Example 2)
In this comparative example, SiO 2 is 45.6%, Al 2 O 3 is 25.7%, Na 2 O is 15.8%, K 2 O is 0.7%, and CaO is 12% by weight in the glass composition. Tried to make a glass composed of 0.1% of other components such as 0.1% Fe 2 O 3 , but the melting temperature became too high because Al 2 O 3 exceeded 25%. Glass fiber production was not possible.

(比較例3)
本比較例はガラス組成の重量%において、SiO2が63.7%、Al23が0.2%、B23が13.2%、Na2Oが5.3%、K2Oが2.9%、MgOが2.0%、CaOが11.2%、Fe23等のその他複数成分合計が1.5%からなるガラスを作製し、その素材ヤング率は82.2GPaであった。
(Comparative Example 3)
In this comparative example, SiO 2 is 63.7%, Al 2 O 3 is 0.2%, B 2 O 3 is 13.2%, Na 2 O is 5.3%, and K 2 in terms of% by weight of the glass composition. A glass comprising 2.9% O, 2.0% MgO, 11.2% CaO, and a total of other components such as Fe 2 O 3 of 1.5% is produced, and the material Young's modulus is 82. 2 GPa.

このガラスは比較例1に記載の一般的なグラスウール組成よりも素材強度が高まっているが、B23が12%を超えていることで、ガラス溶融設備における炉壁への侵食ダメージが大きく、製造が不可能であった。 Although this glass has higher material strength than the general glass wool composition described in Comparative Example 1, the erosion damage to the furnace wall in the glass melting equipment is large because B 2 O 3 exceeds 12%. Production was impossible.

(比較例4)
本比較例はガラス組成の重量%において、SiO2が45.9%、Al23が18.1%、Na2Oが20.5%、K2Oが3.0%、CaOが11.4%、Fe23等のその他複数成分合計が1.1%からなるガラスを作製し、その素材ヤング率は74.8GPaであった。
(Comparative Example 4)
In this comparative example, SiO 2 is 45.9%, Al 2 O 3 is 18.1%, Na 2 O is 20.5%, K 2 O is 3.0%, and CaO is 11% by weight% of the glass composition. A glass composed of 1.1% of a total of other components such as 0.4% and Fe 2 O 3 was produced, and the material Young's modulus was 74.8 GPa.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1010hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1010 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は252kg/m3、熱伝導率は0.0022W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 252 kg / m 3 and the thermal conductivity was 0.0022 W / mK.

比較例1の一般的なグラスウールと比較しても、Na2Oが20%を超えたことで、ガラスの強度向上がみられず、望ましい断熱性能を得ることができなかった。 Even when compared with the general glass wool of Comparative Example 1, when Na 2 O exceeded 20%, the strength of the glass was not improved, and the desired heat insulation performance could not be obtained.

(比較例5)
本比較例はガラス組成の重量%において、SiO2が52.7%、Al23が2.2%、B23が4.8%、Na2Oが6.4%、K2Oが0.8%、MgOが15.9%、CaOが17.0%、Fe23等のその他複数成分合計が0.2%からなるガラスを試みたが、MgOが15%を超えたことで失透が起こりやすくなり、ガラスの製造が不可能であった。
(Comparative Example 5)
In this comparative example, SiO 2 is 52.7%, Al 2 O 3 is 2.2%, B 2 O 3 is 4.8%, Na 2 O is 6.4%, K 2 in terms of% by weight of the glass composition. Attempts were made to make glass with 0.8% Og, 15.9% MgO, 17.0% CaO, and 0.2% total of other components such as Fe 2 O 3 , but MgO exceeded 15% As a result, devitrification was likely to occur, and it was impossible to produce glass.

(比較例6)
本比較例はガラス組成の重量%において、SiO2が52.7%、Al23が2.2%、B23が4.8%、Na2Oが6.4%、K2Oが0.8%、MgOが15.9%、CaOが17.0%、Fe23等のその他複数成分合計が0.2%からなるガラスを試みたが、CaOが30%を超えたことで失透が起こりやすくなり、ガラスの製造が不可能であった。
(Comparative Example 6)
In this comparative example, SiO 2 is 52.7%, Al 2 O 3 is 2.2%, B 2 O 3 is 4.8%, Na 2 O is 6.4%, K 2 in terms of% by weight of the glass composition. Attempts were made to make glass with 0.8% O, 15.9% MgO, 17.0% CaO, and 0.2% total of other components such as Fe 2 O 3 , but CaO exceeded 30%. As a result, devitrification was likely to occur, and it was impossible to produce glass.

なお、実施例1〜11、および比較例1〜6の結果について(表1)、(表2)にまとめた。   The results of Examples 1 to 11 and Comparative Examples 1 to 6 are summarized in (Table 1) and (Table 2).

Figure 2007057095
Figure 2007057095

Figure 2007057095
Figure 2007057095

以上のように、本発明にかかる真空断熱材及び断熱材は、ガラスの素材強度を向上し、従来よりも優れた断熱性能を有するものである。   As mentioned above, the vacuum heat insulating material and heat insulating material concerning this invention improve the raw material intensity | strength of glass, and have the heat insulation performance superior to the past.

その結果、真空断熱材としては、さらなる高性能化により用途が広まるだけでなく、ガラス組成物単体としても、建材や車等、強度が要求される部材として適用が可能である。   As a result, the vacuum heat insulating material can be used not only for widening the performance by further improving the performance, but also as a member requiring high strength, such as a building material and a car, as a single glass composition.

本発明の実施の形態3における真空断熱材の断面図Sectional drawing of the vacuum heat insulating material in Embodiment 3 of this invention

符号の説明Explanation of symbols

1 真空断熱材
2 芯材
4 外包材
1 Vacuum insulation material 2 Core material 4 Outer packaging material

Claims (5)

ガラス繊維からなる芯材をガスバリア性を有する外包材で被覆して前記外包材の内部を減圧密閉してなり、前記ガラス繊維は、重量%で、SiO2が45〜75%、Al23が0〜25%、B23が0〜12%、Na2Oが0〜20%、K2Oが0〜3%、MgOが0〜15%、CaOが11〜30%、その他の組成が3%以下で、且つ、これら各組成の重量%の合計が100%となるように構成したガラス組成物からなることを特徴とする真空断熱材。 A core material made of glass fiber is coated with an outer packaging material having gas barrier properties, and the inside of the outer packaging material is sealed under reduced pressure. The glass fiber is 45% by weight, SiO 2 is 45 to 75%, Al 2 O 3. Is 0-25%, B 2 O 3 is 0-12%, Na 2 O is 0-20%, K 2 O is 0-3%, MgO is 0-15%, CaO is 11-30%, other A vacuum heat insulating material comprising a glass composition having a composition of 3% or less and a total of 100% by weight of the respective compositions. ガラス繊維からなる芯材をガスバリア性を有する外包材で被覆して前記外包材の内部を減圧密閉してなり、前記ガラス繊維は、重量%で、SiO2が50〜65%、Al23が0〜18%、B23が2〜10%、Na2Oが0〜20%、K2Oが0〜3%、MgOが0〜10%、CaOが11〜23%、その他の組成が3%以下で、且つ、これら各組成の重量%の合計が100%となるように構成したガラス組成物からなることを特徴とする真空断熱材。 A core material made of glass fiber is coated with an outer packaging material having a gas barrier property, and the inside of the outer packaging material is hermetically sealed under reduced pressure. The glass fiber is 50% by weight, SiO 2 is 50 to 65%, Al 2 O 3. Is 0 to 18%, B 2 O 3 is 2 to 10%, Na 2 O is 0 to 20%, K 2 O is 0 to 3%, MgO is 0 to 10%, CaO is 11 to 23%, other A vacuum heat insulating material comprising a glass composition having a composition of 3% or less and a total of 100% by weight of the respective compositions. ガラスの成分には、アルカリ金属酸化物及びアルカリ土類金属酸化物を少なくともそれぞれ一種類以上含み、かつ前記アルカリ金属酸化物の成分の合計の重量%の数値よりも、前記アルカリ土類金属酸化物の成分の合計の重量%の数値が大きいことを特徴とする請求項1または2に記載の真空断熱材。   The glass component contains at least one kind of alkali metal oxide and alkaline earth metal oxide, respectively, and the alkaline earth metal oxide is more than the numerical value of the total weight% of the components of the alkali metal oxide. The vacuum heat insulating material according to claim 1, wherein the numerical value of the total weight% of the components is large. ガラスの成分におけるアルカリ金属酸化物と、アルカリ土類金属酸化物の合計は重量%で20%以上、45%以下の範囲であることを特徴とする請求項1から3のいずれか一項に記載の真空断熱材。   The total of the alkali metal oxide and the alkaline earth metal oxide in the glass component is in a range of 20% to 45% by weight, and the total amount is 4%. Vacuum insulation material. 請求項1から4のいずれか一項の真空断熱材の芯材からなる断熱材。   The heat insulating material which consists of a core material of the vacuum heat insulating material as described in any one of Claim 1 to 4.
JP2006187565A 2005-07-08 2006-07-07 Vacuum heat insulating material and heat insulating material Pending JP2007057095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006187565A JP2007057095A (en) 2005-07-08 2006-07-07 Vacuum heat insulating material and heat insulating material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005199650 2005-07-08
JP2005213686 2005-07-25
JP2006187565A JP2007057095A (en) 2005-07-08 2006-07-07 Vacuum heat insulating material and heat insulating material

Publications (1)

Publication Number Publication Date
JP2007057095A true JP2007057095A (en) 2007-03-08

Family

ID=37920742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006187565A Pending JP2007057095A (en) 2005-07-08 2006-07-07 Vacuum heat insulating material and heat insulating material

Country Status (1)

Country Link
JP (1) JP2007057095A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155172A (en) * 2007-12-27 2009-07-16 Asahi Fiber Glass Co Ltd Glass fiber laminate, and vacuum heat insulating material
WO2013107097A1 (en) * 2012-01-17 2013-07-25 青岛科瑞新型环保材料有限公司 High-barrier composite film for vacuum thermal insulation panel and manufacturing method therefor
WO2013107103A1 (en) * 2012-01-17 2013-07-25 青岛科瑞新型环保材料有限公司 High-barrier composite film for vacuum thermal insulation panel and manufacturing method therefor
WO2013107101A1 (en) * 2012-01-17 2013-07-25 青岛科瑞新型环保材料有限公司 High-barrier composite film for vacuum thermal insulation panel and manufacturing method therefor
WO2013107098A1 (en) * 2012-01-17 2013-07-25 青岛科瑞新型环保材料有限公司 High-barrier composite film for vacuum thermal insulation panel and manufacturing method therefor
CN103244793A (en) * 2013-05-31 2013-08-14 重庆再升科技股份有限公司 Novel glass fiber vacuum insulation panel core and preparation method
KR101448141B1 (en) * 2014-06-02 2014-10-08 주식회사 하이템스 Energy-saving particle-free heat insulating material and manufacturing method thereof
JP2014222112A (en) * 2014-08-21 2014-11-27 パナソニック株式会社 Vacuum heat insulating material
KR20150139086A (en) * 2014-06-02 2015-12-11 주식회사 하이템스 Particle-free heat insulating furnace and construction method thereof
JP2016035320A (en) * 2013-11-26 2016-03-17 三星電子株式会社Samsung Electronics Co.,Ltd. Vacuum insulator, insulating box, and refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081818A1 (en) * 2000-04-21 2001-11-01 Matsushita Refrigeration Company Heat insulation box, and vacuum heat insulation material used therefor
JP2003267753A (en) * 2000-10-11 2003-09-25 Paramount Glass Kogyo Kk Glass composition for manufacturing inorganic fiber and its molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081818A1 (en) * 2000-04-21 2001-11-01 Matsushita Refrigeration Company Heat insulation box, and vacuum heat insulation material used therefor
JP2003267753A (en) * 2000-10-11 2003-09-25 Paramount Glass Kogyo Kk Glass composition for manufacturing inorganic fiber and its molding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155172A (en) * 2007-12-27 2009-07-16 Asahi Fiber Glass Co Ltd Glass fiber laminate, and vacuum heat insulating material
WO2013107097A1 (en) * 2012-01-17 2013-07-25 青岛科瑞新型环保材料有限公司 High-barrier composite film for vacuum thermal insulation panel and manufacturing method therefor
WO2013107103A1 (en) * 2012-01-17 2013-07-25 青岛科瑞新型环保材料有限公司 High-barrier composite film for vacuum thermal insulation panel and manufacturing method therefor
WO2013107099A1 (en) * 2012-01-17 2013-07-25 青岛科瑞新型环保材料有限公司 High-barrier composite film for vacuum thermal insulation panel and manufacturing method therefor
WO2013107101A1 (en) * 2012-01-17 2013-07-25 青岛科瑞新型环保材料有限公司 High-barrier composite film for vacuum thermal insulation panel and manufacturing method therefor
WO2013107098A1 (en) * 2012-01-17 2013-07-25 青岛科瑞新型环保材料有限公司 High-barrier composite film for vacuum thermal insulation panel and manufacturing method therefor
CN103244793A (en) * 2013-05-31 2013-08-14 重庆再升科技股份有限公司 Novel glass fiber vacuum insulation panel core and preparation method
JP2016035320A (en) * 2013-11-26 2016-03-17 三星電子株式会社Samsung Electronics Co.,Ltd. Vacuum insulator, insulating box, and refrigerator
KR101448141B1 (en) * 2014-06-02 2014-10-08 주식회사 하이템스 Energy-saving particle-free heat insulating material and manufacturing method thereof
KR20150139086A (en) * 2014-06-02 2015-12-11 주식회사 하이템스 Particle-free heat insulating furnace and construction method thereof
KR101662019B1 (en) * 2014-06-02 2016-10-05 주식회사 하이템스 Particle-free heat insulating furnace and construction method thereof
JP2014222112A (en) * 2014-08-21 2014-11-27 パナソニック株式会社 Vacuum heat insulating material

Similar Documents

Publication Publication Date Title
JP2007057095A (en) Vacuum heat insulating material and heat insulating material
JP2008057745A (en) Vacuum heat insulation material and glass composition
JP3712129B1 (en) Manufacturing method of glass wool molded body, glass wool molded body, and vacuum heat insulating material
JP4819999B2 (en) Double glazing
JP5579844B2 (en) Mineral fiber and its use
JP6311704B2 (en) Double-glazed glass for architectural windows
JP5013836B2 (en) Vacuum insulation
US7718252B2 (en) Inorganic fiber article
JP5040433B2 (en) Vacuum insulation
JP2011504448A5 (en)
JP3578172B1 (en) Vacuum insulation, refrigerators and refrigerators
JP2007016806A (en) Vacuum heat insulating material
JP2007153649A (en) Glass composition, glass fiber, and vacuum heat insulating material
JP2005344871A (en) Vacuum heat insulating material and production system of vacuum heat insulating material
JP6190165B2 (en) Vacuum insulation and insulation equipment
JP5673617B2 (en) Vacuum insulation
JP2006038123A (en) Vacuum thermal insulation material and glass composition
JP2006002919A (en) Glass wool board and vacuum heat insulating material
JP2007084971A (en) Method for producing glass wool molding
JP4591288B2 (en) Manufacturing method of vacuum insulation
JP2006002314A (en) Glass wool board and vacuum heat-insulating material
KR102502887B1 (en) Glass wool and vacuum insulation using the same
JP2006220214A (en) Vacuum heat-insulating material
KR101552212B1 (en) Lec building material reducing hazardous substance and controlling humidity
WO2013153813A1 (en) Vacuum heat insulator, and refrigerator-freezer and home wall provided with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220