WO2017168571A1 - Refrigerator and manufacturing method for same - Google Patents

Refrigerator and manufacturing method for same Download PDF

Info

Publication number
WO2017168571A1
WO2017168571A1 PCT/JP2016/060153 JP2016060153W WO2017168571A1 WO 2017168571 A1 WO2017168571 A1 WO 2017168571A1 JP 2016060153 W JP2016060153 W JP 2016060153W WO 2017168571 A1 WO2017168571 A1 WO 2017168571A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
vacuum heat
refrigerator
inner box
Prior art date
Application number
PCT/JP2016/060153
Other languages
French (fr)
Japanese (ja)
Inventor
右侑 兼松
俊 齋藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201690000308.9U priority Critical patent/CN207180153U/en
Priority to JP2018507887A priority patent/JP6683246B2/en
Priority to PCT/JP2016/060153 priority patent/WO2017168571A1/en
Publication of WO2017168571A1 publication Critical patent/WO2017168571A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/08Parts formed wholly or mainly of plastics materials

Definitions

  • the present invention relates to a refrigerator provided with a vacuum heat insulating material and a manufacturing method thereof.
  • a vacuum heat insulating material used in a refrigerator is fixed to an inner box or an outer box by applying a rubber-based hot melt to the entire surface of the bonding surface.
  • a method of applying a rubber hot melt to the entire surface of the vacuum heat insulating material for example, a method of transferring the hot melt by passing a plate-shaped vacuum heat insulating material through a roll as in the heat insulating casing disclosed in Patent Document 1 is known. It has been.
  • the vacuum heat insulating material which has the three-dimensional shape which gave the bending process cannot let a roll pass. Then, like the refrigerator disclosed by patent document 2, for example, the sheet
  • the viscosity of the styrene rubber hot melt is lowered by the heating of the heat insulating casing until the heat insulation casing is filled with the hard urethane foam heat insulating material and the foaming process. Due to factors, the vacuum heat insulating material disposed on the bottom surface of the inner box may be peeled off from the inner box and fall.
  • the present invention has been made in order to solve the above-described problems, and the vacuum heat insulating material disposed on the bottom surface of the inner box until the filling and foaming process of the hard urethane foam heat insulating material of the heat insulating casing is included.
  • An object of the present invention is to provide a refrigerator that can be prevented from falling off the box.
  • the refrigerator according to the present invention includes an outer box, an inner box which is housed in the outer box and forms an internal space with the outer box, and is L bonded to the inner box within the inner space.
  • an adhesive provided on the surface.
  • the adhesive is provided in a linear shape, a dot shape, or a wavy shape in the stress concentration region of the L-shaped vacuum heat insulating material.
  • the vacuum heat insulating material is not peeled off from the inner box and dropped until the filling and foaming process of the hard urethane foam heat insulating material of the heat insulating casing.
  • (A) is a front view of a vacuum heat insulating material provided with a linear styrene rubber hot melt
  • (B) is a plan view of (A).
  • (A) is a front view of the vacuum heat insulating material of the refrigerator which concerns on Embodiment 2 of this invention
  • (B) is a top view of (A).
  • (A) is a front view of the vacuum heat insulating material of the refrigerator which concerns on Embodiment 3 of this invention
  • (B) is a top view of (A).
  • (A) is a front view of the vacuum heat insulating material of the refrigerator which concerns on Embodiment 4 of this invention
  • (B) is a top view of (A).
  • (A) is a front view of the vacuum heat insulating material of the refrigerator which concerns on Embodiment 5 of this invention
  • (B) is a top view of (A).
  • (A) is a front view of the vacuum heat insulating material of the refrigerator which concerns on Embodiment 6 of this invention
  • (B) is a top view of (A).
  • FIG. 1 is a cross-sectional view of the refrigerator according to Embodiment 1 of the present invention as viewed from the side.
  • FIG. 2 is an explanatory view showing an assembling process of the refrigerator according to Embodiment 1 of the present invention.
  • the refrigerator 4 is divided into a refrigerating room 11, an ice making room / switching room 12, a freezing room 13, and a vegetable room 14 by a first partition wall 8, a second partition wall 9, and a third partition wall 10. .
  • a refrigerator compartment 11 is formed at the top, and an ice making room and switching room 12, a freezer compartment 13, and a storage room having a vegetable compartment 14 at the bottom are formed in order from the top.
  • the refrigerator compartment 11 is divided into the upper part of the 1st partition 8, and is maintained at the refrigerator temperature (about +5 degreeC).
  • the ice making chamber and the switching chamber 12 are divided into a space formed by a lower portion of the first partition wall 8 and an upper portion of the second partition wall 9.
  • the ice making chamber has a freezing temperature (about ⁇ 20 ° C.) and the switching chamber has a supercooling temperature (approximately -7 to 0 ° C).
  • the freezer compartment 13 is divided into a space formed by the lower part of the second partition wall 9 and the third partition wall 10, and is maintained at a freezing temperature (about ⁇ 20 ° C.).
  • the vegetable compartment 14 is divided into the lower part of the 3rd partition 10, and is maintained at the refrigerator temperature (about +5 degreeC).
  • the first partition wall 8, the second partition wall 9, and the third partition wall 10 do not have to be disposed if there is no temperature difference between the rooms.
  • the order and configuration of the refrigerator compartment 11, the ice making compartment and the switching compartment 12, the freezer compartment 13 and the vegetable compartment 14 are not limited to the illustrated embodiment, and are implemented in various variations.
  • the refrigerator 4 is composed of an outer box 5 that forms a ceiling and both side surfaces of a refrigerator 4 by bending a metal such as an iron plate into a U shape, and a synthetic resin such as ABS.
  • the main body is composed of an inner box 6 that is inserted and forms an internal space with the outer box.
  • Vacuum heat insulating materials 20, 21, and 23 are respectively disposed in the inner space between the outer box 5 and the inner box 6 on the top, back, and bottom of the refrigerator 4, and a hard urethane foam heat insulating material is provided in the surrounding gap. 7 is filled.
  • the inner box 6 has a three-dimensional shape in which the rear portion of the bottom wall 6A rises in a stepped manner, and a machine room 15 is formed on the back surface of the bottom wall 6A.
  • a compressor 16 and a condenser 18 are disposed inside the machine room 15.
  • a cooler 17 is provided at the rear of the freezer compartment 13 to cool the refrigerator compartment 11, the ice making room and switching room 12, the freezer compartment 13, and the vegetable compartment 14 to a predetermined temperature range.
  • the refrigeration cycle is constructed by connecting the cooler 17, the compressor 16, and the condenser 18 with a pipe.
  • FIG. 3 is an explanatory view showing an outline of the manufacturing process of the vacuum heat insulating material for the refrigerator according to Embodiment 1 of the present invention.
  • the core material 3 of the inorganic fiber aggregate is inserted into the inside of the jacket material 2 made of a gas barrier film, and then the inside of the jacket material 2 is evacuated. It is a configuration.
  • the vacuum heat insulating materials 20 and 23 disposed on the bottom surface and the top surface of the inner box 6 of the refrigerator 4 have a shape obtained by bending the plate-shaped vacuum heat insulating material 1 shown in FIG. 3 into an L shape.
  • the vacuum heat insulating materials 20 and 23 disposed on the bottom surface and the top surface of the inner box 6 of the refrigerator 4 are formed in an L shape.
  • the refrigerator 4 is provided with an electronic control board 19 for operation control on the back of the ceiling.
  • the electronic control board 19 is a self-heating component. Therefore, it is preferable to arrange a vacuum heat insulating material 20 having a higher heat insulating effect than urethane between the inner box 6 and the electronic control board 19.
  • the refrigerator 4 has a heat radiating pipe (not shown) disposed on the ceiling, it is preferable to dispose the vacuum heat insulating material 20 between the heat radiating pipe and the inner box 6.
  • the vacuum heat insulating material 20 disposed on the top surface of the refrigerator 4 is formed by bending the plate-shaped vacuum heat insulating material 1 into an L shape, and is applied to the outer box 5 by applying a styrene rubber hot melt.
  • the ceiling of the refrigerator 4 and the electronic control board 19 are covered at the same time. That is, the manufacturing cost can be reduced by making the vacuum heat insulating material 20 L-shaped.
  • the L-shaped vacuum heat insulating material 20 is not limited to the shape which bent the bending part, For example, it can also implement as a curved shape.
  • a vacuum heat insulating material 23 may be disposed between the inner box 6 and the machine room 15. preferable. Then, the vacuum heat insulating material 23 arrange
  • the bending part of the L-shaped vacuum heat insulating material 20 can also be implemented as a curved shape, for example.
  • the vacuum heat insulating material 21 disposed on the back surface of the refrigerator 4 is bonded to the back metal component 22 by applying a styrene rubber hot melt.
  • the vacuum heat insulating material 23 is installed on the floor surface of the inner box 6, the floor surface of the refrigerator 4 is covered with a floor surface metal component 24, and then the casing is raised, Screw the flange etc. At this time, the vacuum heat insulating material 23 installed on the floor surface of the refrigerator 4 has its own weight acting in the vertical direction that is the falling direction.
  • FIG. 4A is a front view of the L-shaped vacuum heat insulating material
  • FIG. 4B is a plan view of the L-shaped vacuum heat insulating material
  • FIG. 4C is an inner box of the L-shaped vacuum heat insulating material.
  • FIG. 6 is a distribution diagram of stress applied to an adhesive when surface bonding is performed.
  • the horizontal axis indicates the position of the bonding surface
  • the vertical axis indicates the load stress.
  • the load stress of the adhesive when the inner box 6 and the vacuum heat insulating material 20 are in surface contact is highest at the L-shaped bending start position ( ⁇ max ) and thereafter. It gradually decreases.
  • ⁇ max L-shaped bending start position
  • the stress concentration region Y is a stress (a ⁇ ⁇ max ) obtained by multiplying the maximum stress ( ⁇ max ) in the entire region by a predetermined value a obtained by experiment or calculation. It refers to the above stress region.
  • the predetermined value a and the stress concentration region Y are determined by the length L of the vacuum heat insulating material 23, the length A of the portion in contact with the inner box 6, and the length B of the bent portion.
  • the stress distribution when the inner box 6 and the vacuum heat insulating material 23 are surface bonded is determined by the A and B dimensions shown in FIG. .
  • the predetermined value a is about 0.28 to 0.32, so the stress concentration region Y is about 112 mm to 128 mm. Therefore, the stress concentration region Y is 112 mm to 128 mm from the bending start position. If the size of the stress concentration region Y is 120 mm, it is effective to provide the styrene rubber-based hot melt 30 in the region of 280 mm to 400 mm from the end face of the vacuum heat insulating material 23. Therefore, since the stress concentration region Y is 128 mm when the predetermined value a is 0.32, it may be 128 mm or more, and the adhesive may be applied assuming that the dimension B is 150 mm or more.
  • the inner box 6 made of a synthetic resin such as ABS has a heat resistant temperature of about 70 degrees, whereas the styrene rubber hot melt is heated to a high temperature of about 180 degrees at the time of application to increase the viscosity. It is in. Therefore, the styrene rubber hot melt cannot be applied directly to the inner box 6. Therefore, when the inner box 6 and the vacuum heat insulating material 23 are bonded, a styrene rubber-based hot melt is applied to the surface of the vacuum heat insulating material 23 and cooled to 60 ° C. or less which is a heat resistant temperature zone of a synthetic resin such as ABS. It is necessary to do from.
  • the styrene rubber hot melt after cooling has a reduced viscosity and a low adhesive strength.
  • the vacuum heat insulating material 23 formed in an L shape for example, there is a problem that the vacuum heat insulating material is peeled off from the arrangement position and dropped from the inner box 6 because the load on the adhesive is not uniform.
  • the styrene rubber hot melt is an inexpensive material compared to the double-sided adhesive tape, it is suitable for bonding the vacuum heat insulating materials 20, 21, and 23.
  • a vacuum heat insulating material subjected to bending is bonded with a styrene rubber hot melt
  • a method of applying a linearly formed styrene rubber hot melt at equal intervals is known.
  • the plate-like vacuum heat insulating material 1 is bent into an L shape and bonded with the styrene rubber-based hot melt 30, it is difficult to bend it with an adhesive surface in manufacturing,
  • a styrene rubber hot melt is applied.
  • FIG. 5 (A) is a front view of a vacuum heat insulating material provided with a linear styrene rubber hot melt
  • FIG. 5 (B) is a plan view of (A).
  • the adhesive which consists of a linear styrene rubber-type hot melt 30 in the stress concentration area
  • a plurality of rows are provided at predetermined intervals to reinforce the adhesive force between the vacuum heat insulating material 23 and the inner box 6.
  • the styrene rubber hot melt 30 is formed by moving the hot melt coating nozzle in a straight line directly above the L-shaped vacuum heat insulating material 23 or moving the vacuum heat insulating material 23 in a straight line and discharging the nozzle. It is formed into a linear shape by passing the curtain of the melt 30.
  • the vacuum heat insulating material 23 coated with the linear styrene rubber hot melt 30 is bonded to the floor surface of the inner box 6 that moves on the assembly conveyor of the refrigerator 4. Then, the floor surface of the refrigerator 4 is covered with a floor metal component 24 and a compressor stand 25 for installing the compressor 16 is attached. Thereafter, the casing is once stood up, and the flange of the refrigerator 4 is screwed or the like, and is again placed horizontally.
  • the back metal part 22 is covered and the hard urethane foam heat insulating material 7 is filled and foamed from the urethane inlet 26 to form a heat insulating casing.
  • the inner box 6 is covered with the outer box 5, the back metal part 22, and the floor metal part 24.
  • the L-shaped vacuum heat insulating material 23 disposed on the bottom surface of the inner box 6 is firmly bonded to the inner box 6, so that the hard urethane foam heat insulation of the heat insulating casing is provided.
  • the vacuum heat insulating material 23 is not peeled off from the inner box 6 and dropped until the filling and foaming steps of the material 7.
  • the refrigerator 4 of Embodiment 1 is the structure provided only in the stress concentration area
  • FIG. 6 (A) is a front view of the vacuum heat insulating material of the refrigerator according to Embodiment 2 of the present invention
  • FIG. 6 (B) is a plan view of FIG. 6 (A).
  • the description is abbreviate
  • the refrigerator 4 of the second embodiment has a configuration in which a styrene rubber-based hot melt 31 as an adhesive is provided in a dot shape in the stress concentration region Y of the L-shaped vacuum heat insulating material 23.
  • the dot-like styrene rubber hot melt 31 is applied to the vacuum heat insulating material 23 by opening and closing a valve of a hot melt application nozzle.
  • Other configurations are the same as those of the refrigerator of the first embodiment.
  • a styrene rubber-based hot melt 31 is provided in a dot shape in the stress concentration region Y of the vacuum heat insulating material 23 so that the adhesive force between the vacuum heat insulating material 23 and the inner box 6 is strengthened. Therefore, compared with the linear styrene rubber hot melt 30 described in the first embodiment, the density can be changed two-dimensionally with respect to the load stress, and the adhesive strength can be increased more effectively. Can do.
  • the refrigerator 4 of Embodiment 2 is the structure provided only in the stress concentration area
  • region Y which is a location which requires the styrene rubber type hot melt 31, it can reduce a material to use and there exists an economical effect.
  • FIG. 7A is a front view of a vacuum heat insulating material for a refrigerator according to Embodiment 3 of the present invention
  • FIG. 7B is a plan view of FIG. 7A.
  • the description is abbreviate
  • the refrigerator 4 of Embodiment 3 has a configuration in which a styrene rubber-based hot melt 32 as an adhesive is provided in a wavy line in the stress concentration region Y of the L-shaped vacuum heat insulating material 23.
  • a styrene rubber-based hot melt 32 as an adhesive is provided in a wavy line in the stress concentration region Y of the L-shaped vacuum heat insulating material 23.
  • four rows of wavy styrene rubber-based hot melts 32 are provided at predetermined intervals.
  • Other configurations are the same as those of the refrigerator of the first embodiment.
  • the wavy styrene rubber hot melt 32 is applied by moving the hot melt application nozzle in a wavy shape immediately above the vacuum heat insulating material 23.
  • the vacuum heat insulating material 23 is moved in a wavy line and applied through a hot melt curtain discharged from a hot melt application nozzle.
  • the styrene rubber hot melt 32 is provided in a wavy shape in the stress concentration region Y of the vacuum heat insulating material 23 so that the adhesive force between the vacuum heat insulating material 23 and the inner box 6 is enhanced. Therefore, the adhesive strength can be increased regardless of the direction of the load. That is, since the L-shaped vacuum heat insulating material 23 is firmly bonded to the inner box 6, the L-shaped vacuum heat insulating material 23 is peeled off and dropped from the inner box 6 until the filling and foaming process of the hard urethane foam heat insulating material 7 of the heat insulating housing. There is no. Moreover, since the refrigerator 4 of Embodiment 3 is the structure provided only in the stress concentration area
  • FIG. 8A is a front view of a vacuum heat insulating material for a refrigerator according to Embodiment 4 of the present invention
  • FIG. 8B is a plan view of FIG. 8A.
  • the description is abbreviate
  • the linear styrene rubber-based hot melt 30 described in the first embodiment has a plurality of rows (with a predetermined interval) in the stress concentration region Y of the L-shaped vacuum heat insulating material 23 (
  • a second linear styrene rubber hot melt 33 having a coating density lower than that of the styrene rubber hot melt 30 provided in the stress concentration region Y is provided in the non-stress concentration region X.
  • a plurality of rows (three rows in the illustrated example) are provided at predetermined intervals.
  • the refrigerator 4 of the fourth embodiment has a configuration in which the application density of the styrene rubber hot melts 30 and 33 on the bonding surface Z of the vacuum heat insulating material 23 is increased.
  • Other configurations are the same as those of the refrigerator of the first embodiment.
  • the linear styrene rubber hot melt 30 is provided in the stress concentration region Y of the vacuum heat insulating material 23, and the second linear styrene rubber hot melt is also provided in the non-stress concentration region X. 33 is provided to strengthen the adhesive force. That is, the L-shaped vacuum heat insulating material 23 is firmly bonded to the inner box 6 and is not peeled off and dropped from the inner box 6 until the filling and foaming process of the hard urethane foam heat insulating material 7 of the heat insulating casing. Moreover, since the refrigerator 4 of Embodiment 4 is the structure which concentratedly provided in the stress concentration area
  • FIG. 9 (A) is a front view of the vacuum heat insulating material for a refrigerator according to Embodiment 5 of the present invention
  • FIG. 9 (B) is a plan view of FIG. 9 (A).
  • the description is abbreviate
  • the dot-shaped styrene rubber hot melt 31 described in the second embodiment is provided in the stress concentration region Y of the L-shaped vacuum heat insulating material 23, and further, the non-stress concentration region X
  • a second dot-like styrene rubber hot melt 34 having a lower coating density than the dot-like styrene rubber hot melt 31 provided in the stress concentration region Y is provided. That is, the refrigerator 4 of the fifth embodiment has a configuration in which the application density of the styrene rubber hot melts 31 and 34 on the bonding surface Z of the vacuum heat insulating material 23 is increased. Other configurations are the same as those of the refrigerator 4 of the first embodiment.
  • the refrigerator 4 according to the fifth embodiment is provided with the dot-like styrene rubber hot melt 31 in the stress concentration region Y of the vacuum heat insulating material 23 and the second dot-like styrene rubber hot melt also in the non-stress concentration region X. 34 is provided to strengthen the adhesive force. That is, the L-shaped vacuum heat insulating material 23 is firmly bonded to the inner box 6 and is not peeled off and dropped from the inner box 6 until the filling and foaming process of the hard urethane foam heat insulating material 7 of the heat insulating casing.
  • the refrigerator 4 of Embodiment 5 is the structure which concentratedly provided in the stress concentration area
  • FIG. 10 (A) is a front view of a vacuum heat insulating material for a refrigerator according to Embodiment 6 of the present invention
  • FIG. 10 (B) is a plan view of FIG. 10 (A).
  • the description is abbreviate
  • the wavy styrene rubber hot melt 32 described in the third embodiment has a plurality of rows (with a predetermined interval) in the stress concentration region Y of the L-shaped vacuum heat insulating material 23.
  • the second wavy styrene rubber system having a coating density lower than that of the wavy styrene rubber hot melt 32 provided in the stress concentration area Y in the non-stress concentration area X.
  • the hot melt 35 is provided in a plurality of rows (two rows in the illustrated example) at predetermined intervals.
  • the refrigerator 4 of the sixth embodiment has a configuration in which the application density of the styrene rubber hot melts 32 and 35 on the bonding surface Z of the vacuum heat insulating material 23 is increased.
  • Other configurations are the same as those of the refrigerator 4 of the first embodiment.
  • a wavy styrene rubber hot melt 32 is provided in the stress concentration region Y of the vacuum heat insulating material 23, and a second wavy styrene rubber hot melt 35 is provided in the non-stress concentration region X. It is provided to strengthen the adhesive strength. That is, the L-shaped vacuum heat insulating material 23 is firmly bonded to the inner box 6 and is not peeled off and dropped from the inner box 6 until the filling and foaming process of the hard urethane foam heat insulating material 7 of the heat insulating casing.
  • the refrigerator 4 of Embodiment 6 is the structure which concentratedly provided in the stress concentration area
  • the present invention has been described above based on the embodiment, the present invention is not limited to the configuration of the embodiment described above.
  • the present invention can be carried out in a configuration in which any one of a linear styrene rubber hot melt 30, a dot styrene rubber hot melt 31, and a wavy styrene rubber hot melt 32 is provided. Modifications can be made as appropriate within the scope of the technology. In short, it should be noted that the scope of the present invention also includes the scope of various changes, applications, and uses made by those skilled in the art as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)

Abstract

Provided is a refrigerator comprising the following: an outer box; an inner box that is housed inside the outer box, an inner space being formed between the inner box and the outer box; an L-shaped vacuum heat-insulating material that is in surface bonding with the inner box inside the inner space; a foam heat-insulating material that is provided inside the inner space; and an adhesive that is provided in a linear, dot, or wavy line shape on a stress concentration region present on a portion of the vacuum heat-insulating material in surface contact with the inner box.

Description

冷蔵庫およびその製造方法Refrigerator and manufacturing method thereof
 本発明は、真空断熱材を備えた冷蔵庫およびその製造方法に関するものである。 The present invention relates to a refrigerator provided with a vacuum heat insulating material and a manufacturing method thereof.
 近年、地球温暖化防止といった地球環境保護の観点から、冷蔵庫においても省エネルギー化が求められている。一方で、市場では同じ設置スペースに対して大容量である容積効率の高い冷蔵庫のニーズが高まっている。そのため、冷蔵庫に用いられる断熱材として、断熱性能を強化することができ、更に断熱層を薄くできる真空断熱材が用いられるようになっている。 In recent years, from the viewpoint of protecting the global environment such as prevention of global warming, energy saving is also demanded for refrigerators. On the other hand, in the market, there is an increasing need for refrigerators with high volumetric efficiency that have a large capacity for the same installation space. Therefore, as a heat insulating material used for a refrigerator, a vacuum heat insulating material that can enhance the heat insulating performance and can further reduce the thickness of the heat insulating layer is used.
 ところで、一般的に、冷蔵庫に使用される真空断熱材は、ゴム系ホットメルトを接着面の全面に塗布することにより、内箱もしくは外箱に接着して固定されている。真空断熱材にゴム系ホットメルトを全面塗布する方法としては、例えば特許文献1に開示された断熱筐体のように、板状の真空断熱材をロールに通してホットメルトを転写する方法が知られている。なお、曲げ加工を施した立体形状を有する真空断熱材は、ロールを通すことができない。そこで、例えば特許文献2に開示された冷蔵庫のように、両面接着剤付きのシート材を貼り付けて接着を行っている。 By the way, in general, a vacuum heat insulating material used in a refrigerator is fixed to an inner box or an outer box by applying a rubber-based hot melt to the entire surface of the bonding surface. As a method of applying a rubber hot melt to the entire surface of the vacuum heat insulating material, for example, a method of transferring the hot melt by passing a plate-shaped vacuum heat insulating material through a roll as in the heat insulating casing disclosed in Patent Document 1 is known. It has been. In addition, the vacuum heat insulating material which has the three-dimensional shape which gave the bending process cannot let a roll pass. Then, like the refrigerator disclosed by patent document 2, for example, the sheet | seat material with a double-sided adhesive agent is affixed and it adhere | attaches.
特開2007-155279号公報JP 2007-155279 A 特開2009-228917号公報JP 2009-228917 A
 特許文献1のようなスチレンゴム系ホットメルトによる接着では、断熱筐体への硬質ウレタン発泡断熱材の充填および発泡工程まで、断熱筐体の加熱によりスチレンゴム系ホットメルトの粘度が低下する等の要因により、内箱の底面に配設された真空断熱材が内箱から剥がれて落下してしまう場合がある。 In the adhesion by the styrene rubber hot melt as in Patent Document 1, the viscosity of the styrene rubber hot melt is lowered by the heating of the heat insulating casing until the heat insulation casing is filled with the hard urethane foam heat insulating material and the foaming process. Due to factors, the vacuum heat insulating material disposed on the bottom surface of the inner box may be peeled off from the inner box and fall.
 本発明は、上述のような課題を解決するためになされたものであり、断熱筐体の硬質ウレタン発泡断熱材の充填および発泡工程まで、内箱の底面に配設された真空断熱材が内箱から剥がれて落下すること防止できる冷蔵庫を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and the vacuum heat insulating material disposed on the bottom surface of the inner box until the filling and foaming process of the hard urethane foam heat insulating material of the heat insulating casing is included. An object of the present invention is to provide a refrigerator that can be prevented from falling off the box.
 本発明に係る冷蔵庫は、外箱と、前記外箱に収納され、前記外箱との間に内部空間を形成する内箱と、前記内部空間内であって前記内箱に面接着されるL字状の真空断熱材と、前記内部空間内に設けられた発砲断熱材と、前記真空断熱材における前記内箱との面接触部に生じる応力集中領域に、線状、ドット状、又は波線状に設けられた接着剤と、を備えたものである。 The refrigerator according to the present invention includes an outer box, an inner box which is housed in the outer box and forms an internal space with the outer box, and is L bonded to the inner box within the inner space. In a stress concentration region generated in a surface contact portion between the letter-shaped vacuum heat insulating material, the foam heat insulating material provided in the internal space, and the inner box in the vacuum heat insulating material, linear, dotted, or wavy And an adhesive provided on the surface.
 本発明に係る冷蔵庫およびその製造方法は、L字状の真空断熱材の応力集中領域に接着剤が線状、ドット状、又は波線状に設けられているので、真空断熱材を内箱に強固に接着することができ、断熱筐体の硬質ウレタン発泡断熱材の充填および発泡工程まで、真空断熱材が内箱から剥がれて落下することがない。 In the refrigerator and the manufacturing method thereof according to the present invention, the adhesive is provided in a linear shape, a dot shape, or a wavy shape in the stress concentration region of the L-shaped vacuum heat insulating material. The vacuum heat insulating material is not peeled off from the inner box and dropped until the filling and foaming process of the hard urethane foam heat insulating material of the heat insulating casing.
本発明の実施の形態1に係る冷蔵庫の側面方向から見た断面図である。It is sectional drawing seen from the side surface direction of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の組立工程を示した説明図である。It is explanatory drawing which showed the assembly process of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の真空断熱材の製造工程の概要を示した説明図である。It is explanatory drawing which showed the outline | summary of the manufacturing process of the vacuum heat insulating material of the refrigerator which concerns on Embodiment 1 of this invention. (A)はL字状の真空断熱材の正面図、(B)はL字状の真空断熱材の平面図、(C)はL字状の真空断熱材を内箱に面接着させた場合における接着剤に負荷される応力分布図である。(A) is a front view of the L-shaped vacuum heat insulating material, (B) is a plan view of the L-shaped vacuum heat insulating material, and (C) is a case where the L-shaped vacuum heat insulating material is surface-bonded to the inner box. It is a stress distribution map loaded on the adhesive in FIG. (A)は線状のスチレンゴム系ホットメルトを設けた真空断熱材の正面図、(B)は(A)の平面図である。(A) is a front view of a vacuum heat insulating material provided with a linear styrene rubber hot melt, and (B) is a plan view of (A). (A)は本発明の実施の形態2に係る冷蔵庫の真空断熱材の正面図、(B)は(A)の平面図である。(A) is a front view of the vacuum heat insulating material of the refrigerator which concerns on Embodiment 2 of this invention, (B) is a top view of (A). (A)は本発明の実施の形態3に係る冷蔵庫の真空断熱材の正面図、(B)は(A)の平面図である。(A) is a front view of the vacuum heat insulating material of the refrigerator which concerns on Embodiment 3 of this invention, (B) is a top view of (A). (A)は本発明の実施の形態4に係る冷蔵庫の真空断熱材の正面図、(B)は(A)の平面図である。(A) is a front view of the vacuum heat insulating material of the refrigerator which concerns on Embodiment 4 of this invention, (B) is a top view of (A). (A)は本発明の実施の形態5に係る冷蔵庫の真空断熱材の正面図、(B)は(A)の平面図である。(A) is a front view of the vacuum heat insulating material of the refrigerator which concerns on Embodiment 5 of this invention, (B) is a top view of (A). (A)は本発明の実施の形態6に係る冷蔵庫の真空断熱材の正面図、(B)は(A)の平面図である。(A) is a front view of the vacuum heat insulating material of the refrigerator which concerns on Embodiment 6 of this invention, (B) is a top view of (A).
実施の形態1.
 本発明の実施の形態1に係る冷蔵庫を図面に基づいて説明する。先ず、冷蔵庫4の構成の一例を図1および図2に基づいて説明する。図1は、本発明の実施の形態1に係る冷蔵庫の側面方向から見た断面図である。図2は、本発明の実施の形態1に係る冷蔵庫の組立工程を示した説明図である。
Embodiment 1 FIG.
A refrigerator according to Embodiment 1 of the present invention will be described with reference to the drawings. First, an example of the configuration of the refrigerator 4 will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of the refrigerator according to Embodiment 1 of the present invention as viewed from the side. FIG. 2 is an explanatory view showing an assembling process of the refrigerator according to Embodiment 1 of the present invention.
 冷蔵庫4は、第一隔壁8と、第二隔壁9と、第三隔壁10とにより、冷蔵室11と、製氷室及び切替室12と、冷凍室13と、野菜室14とに区分けされている。冷蔵庫4において、最上部には冷蔵室11が形成され、上から順に製氷室及び切替室12と、冷凍室13と、最下部を野菜室14とする貯蔵室が形成されている。具体的には、冷蔵室11は、第一隔壁8の上部に区分けされ、冷蔵温度(+5℃程度)に維持されている。製氷室及び切替室12は、第一隔壁8の下部と第二隔壁9の上部とで形成される空間に区分けされ、製氷室では凍結温度(-20℃程度)、切替室では過冷却温度(-7~0℃)に維持されている。冷凍室13は、第二隔壁9の下部と第三隔壁10とで形成される空間に区分けされ、凍結温度(-20℃程度)に維持されている。野菜室14は、第三隔壁10の下部に区分けされ、冷蔵温度(+5℃程度)に維持されている。ただし、第一隔壁8、第二隔壁9及び第三隔壁10は、部屋間に温度差がなければ、配設しなくてもよい。また、冷蔵室11、製氷室及び切替室12、冷凍室13及び野菜室14の順序や構成も図示した実施の形態に限定するものではなく、種々のバリエーションで実施するものとする。 The refrigerator 4 is divided into a refrigerating room 11, an ice making room / switching room 12, a freezing room 13, and a vegetable room 14 by a first partition wall 8, a second partition wall 9, and a third partition wall 10. . In the refrigerator 4, a refrigerator compartment 11 is formed at the top, and an ice making room and switching room 12, a freezer compartment 13, and a storage room having a vegetable compartment 14 at the bottom are formed in order from the top. Specifically, the refrigerator compartment 11 is divided into the upper part of the 1st partition 8, and is maintained at the refrigerator temperature (about +5 degreeC). The ice making chamber and the switching chamber 12 are divided into a space formed by a lower portion of the first partition wall 8 and an upper portion of the second partition wall 9. The ice making chamber has a freezing temperature (about −20 ° C.) and the switching chamber has a supercooling temperature (approximately -7 to 0 ° C). The freezer compartment 13 is divided into a space formed by the lower part of the second partition wall 9 and the third partition wall 10, and is maintained at a freezing temperature (about −20 ° C.). The vegetable compartment 14 is divided into the lower part of the 3rd partition 10, and is maintained at the refrigerator temperature (about +5 degreeC). However, the first partition wall 8, the second partition wall 9, and the third partition wall 10 do not have to be disposed if there is no temperature difference between the rooms. Further, the order and configuration of the refrigerator compartment 11, the ice making compartment and the switching compartment 12, the freezer compartment 13 and the vegetable compartment 14 are not limited to the illustrated embodiment, and are implemented in various variations.
 冷蔵庫4は、図1に示すように、鉄板などの金属をU字形に曲げて冷蔵庫4の天井及び両側面を形成する外箱5と、ABSなどの合成樹脂からなり、外箱5の内部に挿入され、外箱との間に内部空間を形成する内箱6とで本体が構成されている。冷蔵庫4の天面、背面及び底面における外箱5と内箱6との内部空間には、真空断熱材20、21、23がそれぞれ配設されており、周囲の隙間には硬質ウレタン発泡断熱材7が充填されている。 As shown in FIG. 1, the refrigerator 4 is composed of an outer box 5 that forms a ceiling and both side surfaces of a refrigerator 4 by bending a metal such as an iron plate into a U shape, and a synthetic resin such as ABS. The main body is composed of an inner box 6 that is inserted and forms an internal space with the outer box. Vacuum heat insulating materials 20, 21, and 23 are respectively disposed in the inner space between the outer box 5 and the inner box 6 on the top, back, and bottom of the refrigerator 4, and a hard urethane foam heat insulating material is provided in the surrounding gap. 7 is filled.
 内箱6は、図1に示すように、底壁6Aの後部が階段状に立ち上がる立体形状を成し、底壁6Aの背面に機械室15が形成されている。機械室15の内部には、圧縮機16と凝縮器18が配設されている。また、冷凍室13の後部には、冷蔵室11、製氷室及び切替室12、冷凍室13、野菜室14の各室を所定の温度帯に冷却する冷却器17が配設されている。冷却器17と、圧縮機16と、凝縮器18とがパイプで結合されて、冷凍サイクルが構築されている。 As shown in FIG. 1, the inner box 6 has a three-dimensional shape in which the rear portion of the bottom wall 6A rises in a stepped manner, and a machine room 15 is formed on the back surface of the bottom wall 6A. Inside the machine room 15, a compressor 16 and a condenser 18 are disposed. In addition, a cooler 17 is provided at the rear of the freezer compartment 13 to cool the refrigerator compartment 11, the ice making room and switching room 12, the freezer compartment 13, and the vegetable compartment 14 to a predetermined temperature range. The refrigeration cycle is constructed by connecting the cooler 17, the compressor 16, and the condenser 18 with a pipe.
 図3は、本発明の実施の形態1に係る冷蔵庫の真空断熱材の製造工程の概要を示した説明図である。真空断熱材1は、図3に示すように、ガスバリア性フィルムからなる外被材2の内部に無機繊維集合体の芯材3が挿入され、その後、外被材2の内部を真空化させた構成である。冷蔵庫4の内箱6の底面及び天面に配設された真空断熱材20、23は、図3に示す板状の真空断熱材1をL字状に曲げた形状である。 FIG. 3 is an explanatory view showing an outline of the manufacturing process of the vacuum heat insulating material for the refrigerator according to Embodiment 1 of the present invention. As shown in FIG. 3, in the vacuum heat insulating material 1, the core material 3 of the inorganic fiber aggregate is inserted into the inside of the jacket material 2 made of a gas barrier film, and then the inside of the jacket material 2 is evacuated. It is a configuration. The vacuum heat insulating materials 20 and 23 disposed on the bottom surface and the top surface of the inner box 6 of the refrigerator 4 have a shape obtained by bending the plate-shaped vacuum heat insulating material 1 shown in FIG. 3 into an L shape.
 ここで、冷蔵庫4の内箱6の底面及び天面に配設された真空断熱材20、23は、L字状に形成されている。冷蔵庫4は、図1に示すように、天井背面に運転制御のための電子制御基板19が配設されている。電子制御基板19は、自己発熱部品である。そのため、内箱6と電子制御基板19との間に、断熱効果がウレタンよりも高い真空断熱材20を配置することが好ましい。また、冷蔵庫4は、天井に放熱パイプ(図示することは省略)が配設しているため、放熱パイプと内箱6との間にも真空断熱材20を配設することが好ましい。そこで、冷蔵庫4の天面に配置された真空断熱材20は、板状の真空断熱材1をL字状に曲げた形状とされ、スチレンゴム系ホットメルトを塗布して外箱5に接着され、冷蔵庫4の天井と電子制御基板19とを同時に被覆している。つまり、真空断熱材20は、L字状とすることにより、製造コストを削減することができる。なお、L字状の真空断熱材20は、屈曲部分を折り曲げた形状に限定されず、例えば湾曲させた形状として実施することもできる。 Here, the vacuum heat insulating materials 20 and 23 disposed on the bottom surface and the top surface of the inner box 6 of the refrigerator 4 are formed in an L shape. As shown in FIG. 1, the refrigerator 4 is provided with an electronic control board 19 for operation control on the back of the ceiling. The electronic control board 19 is a self-heating component. Therefore, it is preferable to arrange a vacuum heat insulating material 20 having a higher heat insulating effect than urethane between the inner box 6 and the electronic control board 19. Moreover, since the refrigerator 4 has a heat radiating pipe (not shown) disposed on the ceiling, it is preferable to dispose the vacuum heat insulating material 20 between the heat radiating pipe and the inner box 6. Therefore, the vacuum heat insulating material 20 disposed on the top surface of the refrigerator 4 is formed by bending the plate-shaped vacuum heat insulating material 1 into an L shape, and is applied to the outer box 5 by applying a styrene rubber hot melt. The ceiling of the refrigerator 4 and the electronic control board 19 are covered at the same time. That is, the manufacturing cost can be reduced by making the vacuum heat insulating material 20 L-shaped. In addition, the L-shaped vacuum heat insulating material 20 is not limited to the shape which bent the bending part, For example, it can also implement as a curved shape.
 また、冷蔵庫4は、機械室15に配設された圧縮機16と凝縮器18とが運転時に自己発熱する。そのため、冷蔵庫4の床から熱の侵入を防ぐ必要があり、電子制御基板19の場合と同様の理由により、内箱6と機械室15との間に、真空断熱材23を配設することが好ましい。そこで、冷蔵庫4の床面に配置された真空断熱材23は、冷蔵庫4の床面と機械室15を被覆するように、板状の真空断熱材1をL字に曲げた形状とされ、スチレンゴム系ホットメルトを塗布して内箱6に接着されている。なお、L字状の真空断熱材20の屈曲部分は、例えば湾曲させた形状として実施することもできる。 In the refrigerator 4, the compressor 16 and the condenser 18 disposed in the machine room 15 generate heat during operation. Therefore, it is necessary to prevent heat from entering from the floor of the refrigerator 4. For the same reason as in the case of the electronic control board 19, a vacuum heat insulating material 23 may be disposed between the inner box 6 and the machine room 15. preferable. Then, the vacuum heat insulating material 23 arrange | positioned on the floor surface of the refrigerator 4 is made into the shape which bent the plate-shaped vacuum heat insulating material 1 into the L shape so that the floor surface of the refrigerator 4 and the machine room 15 might be coat | covered, and it is styrene. A rubber hot melt is applied and adhered to the inner box 6. In addition, the bending part of the L-shaped vacuum heat insulating material 20 can also be implemented as a curved shape, for example.
 なお、冷蔵庫4の背面に配設された真空断熱材21は、背面金属部品22にスチレンゴム系ホットメルトを塗布して接着されている。 The vacuum heat insulating material 21 disposed on the back surface of the refrigerator 4 is bonded to the back metal component 22 by applying a styrene rubber hot melt.
 真空断熱材23は、図2に示すように、内箱6の床面に設置した場合、冷蔵庫4の床面に床面金属部品24で蓋をした後、筐体を起立させ、冷蔵庫4のフランジにネジ打ち等を行う。このとき、冷蔵庫4の床面に設置された真空断熱材23は、落下方向である垂直方向に自重が作用する。 As shown in FIG. 2, when the vacuum heat insulating material 23 is installed on the floor surface of the inner box 6, the floor surface of the refrigerator 4 is covered with a floor surface metal component 24, and then the casing is raised, Screw the flange etc. At this time, the vacuum heat insulating material 23 installed on the floor surface of the refrigerator 4 has its own weight acting in the vertical direction that is the falling direction.
 図4(A)はL字状の真空断熱材の正面図、図4(B)はL字状の真空断熱材の平面図、図4(C)はL字状の真空断熱材を内箱に面接着させた場合における接着剤に負荷される応力分布図である。図4(C)において、横軸は接着面の位置、縦軸は負荷応力を示している。内箱6と真空断熱材20とを面接触させた場合の接着剤の負荷応力は、図4(C)に示すように、L字の曲げ起点位置が最も高く(σmax)、それ以降は徐々に減少していく。応力集中領域Yとは、図4(B)に示すように、全領域内における最大応力(σmax)を、実験や計算等により得られた所定値aを乗じた応力(a・σmax)以上の応力領域を指す。ここで、所定値a、応力集中領域Yは、真空断熱材23の長さL、内箱6に当接する部分の長さA、折り曲げられた曲げ部分の長さBによって決まる。例えば、真空断熱材23と内箱6との接着面Zにおいて、内箱6と真空断熱材23とを面接着した場合の応力分布は、図4(A)に示すA寸法とB寸法によって決まる。具体的には、A寸法を400mm、B寸法を150mmとすると、所定値aは、0.28~0.32程度になるので、応力集中領域Yは、112mm~128mm程度となる。したがって、応力集中領域Yは、曲げ起点位置より112mm~128mmとなる。仮に、応力集中領域Yの寸法を120mmとすれば、真空断熱材23の端面から280mm~400mmの領域にスチレンゴム系ホットメルト30を設けることが有効である。したがって、応力集中領域Yは、所定値aが0.32の場合は128mmとなるので、128mm以上であれば良く、B寸法である150mm以上と考えて接着剤を塗布すればよい。 4A is a front view of the L-shaped vacuum heat insulating material, FIG. 4B is a plan view of the L-shaped vacuum heat insulating material, and FIG. 4C is an inner box of the L-shaped vacuum heat insulating material. FIG. 6 is a distribution diagram of stress applied to an adhesive when surface bonding is performed. In FIG. 4C, the horizontal axis indicates the position of the bonding surface, and the vertical axis indicates the load stress. As shown in FIG. 4C, the load stress of the adhesive when the inner box 6 and the vacuum heat insulating material 20 are in surface contact is highest at the L-shaped bending start position (σ max ) and thereafter. It gradually decreases. As shown in FIG. 4B, the stress concentration region Y is a stress (a · σ max ) obtained by multiplying the maximum stress (σ max ) in the entire region by a predetermined value a obtained by experiment or calculation. It refers to the above stress region. Here, the predetermined value a and the stress concentration region Y are determined by the length L of the vacuum heat insulating material 23, the length A of the portion in contact with the inner box 6, and the length B of the bent portion. For example, on the bonding surface Z between the vacuum heat insulating material 23 and the inner box 6, the stress distribution when the inner box 6 and the vacuum heat insulating material 23 are surface bonded is determined by the A and B dimensions shown in FIG. . Specifically, if the A dimension is 400 mm and the B dimension is 150 mm, the predetermined value a is about 0.28 to 0.32, so the stress concentration region Y is about 112 mm to 128 mm. Therefore, the stress concentration region Y is 112 mm to 128 mm from the bending start position. If the size of the stress concentration region Y is 120 mm, it is effective to provide the styrene rubber-based hot melt 30 in the region of 280 mm to 400 mm from the end face of the vacuum heat insulating material 23. Therefore, since the stress concentration region Y is 128 mm when the predetermined value a is 0.32, it may be 128 mm or more, and the adhesive may be applied assuming that the dimension B is 150 mm or more.
 また、ABS等の合成樹脂でなる内箱6は、耐熱温度が70度程度であるのに対し、スチレンゴム系ホットメルトは、塗布時に180度程度の高温に加熱して粘度を上昇させた状態にある。そのため、スチレンゴム系ホットメルトは、内箱6に直接塗布することができない。そこで、内箱6と真空断熱材23とを接着する場合、スチレンゴム系ホットメルトを真空断熱材23の表面に塗布し、ABS等の合成樹脂の耐熱温度帯である60度以下に冷却してから行う必要がある。冷却後のスチレンゴム系ホットメルトは、粘度が低下して、接着強度が低くなる。その上、例えばL字状に形成された真空断熱材23の場合は、接着剤への負荷が均一ではないため、真空断熱材が配置位置から剥がれて、内箱6から落下する問題がある。 The inner box 6 made of a synthetic resin such as ABS has a heat resistant temperature of about 70 degrees, whereas the styrene rubber hot melt is heated to a high temperature of about 180 degrees at the time of application to increase the viscosity. It is in. Therefore, the styrene rubber hot melt cannot be applied directly to the inner box 6. Therefore, when the inner box 6 and the vacuum heat insulating material 23 are bonded, a styrene rubber-based hot melt is applied to the surface of the vacuum heat insulating material 23 and cooled to 60 ° C. or less which is a heat resistant temperature zone of a synthetic resin such as ABS. It is necessary to do from. The styrene rubber hot melt after cooling has a reduced viscosity and a low adhesive strength. In addition, in the case of the vacuum heat insulating material 23 formed in an L shape, for example, there is a problem that the vacuum heat insulating material is peeled off from the arrangement position and dropped from the inner box 6 because the load on the adhesive is not uniform.
 更に、スチレンゴム系ホットメルトは、両面接着テープに比べて、安価な材料であるため、真空断熱材20、21、23の接着に好適である。例えば、曲げ加工を施した真空断熱材をスチレンゴム系ホットメルトで接着する場合、線状に形成したスチレンゴム系ホットメルトを等間隔に塗工する方法が知られている。一方、板状の真空断熱材1をL字状に曲げてスチレンゴム系ホットメルト30で接着する場合では、製造において粘着面をもった状態での曲げ加工は困難であるため、予め曲げ加工を行った上で、スチレンゴム系ホットメルトの塗布が行われている。しかし、製造コストの観点から、L字の曲げ土台面と曲げ立ち上がり面のどちらか一方に塗布することが好ましい。 Furthermore, since the styrene rubber hot melt is an inexpensive material compared to the double-sided adhesive tape, it is suitable for bonding the vacuum heat insulating materials 20, 21, and 23. For example, in the case where a vacuum heat insulating material subjected to bending is bonded with a styrene rubber hot melt, a method of applying a linearly formed styrene rubber hot melt at equal intervals is known. On the other hand, in the case where the plate-like vacuum heat insulating material 1 is bent into an L shape and bonded with the styrene rubber-based hot melt 30, it is difficult to bend it with an adhesive surface in manufacturing, In addition, a styrene rubber hot melt is applied. However, from the viewpoint of manufacturing cost, it is preferable to apply to either the L-shaped bending base surface or the bending rising surface.
 図5(A)は線状のスチレンゴム系ホットメルトを設けた真空断熱材の正面図、図5(B)は(A)の平面図である。そこで、実施の形態1の冷蔵庫4では、図5(A)、(B)に示すように、真空断熱材23の応力集中領域Yに線状のスチレンゴム系ホットメルト30からなる接着剤を、所定の間隔を開けて複数列(図示例の場合は6列)設けて、真空断熱材23と内箱6との間の接着力を強化している。 FIG. 5 (A) is a front view of a vacuum heat insulating material provided with a linear styrene rubber hot melt, and FIG. 5 (B) is a plan view of (A). Then, in the refrigerator 4 of Embodiment 1, as shown to FIG. 5 (A), (B), the adhesive which consists of a linear styrene rubber-type hot melt 30 in the stress concentration area | region Y of the vacuum heat insulating material 23, A plurality of rows (six rows in the illustrated example) are provided at predetermined intervals to reinforce the adhesive force between the vacuum heat insulating material 23 and the inner box 6.
 スチレンゴム系ホットメルト30は、L字状の真空断熱材23の直上にホットメルト塗布ノズルを直線状に移動させる、もしくは真空断熱材23を直線的に移動させ、ノズル吐出されるスチレンゴム系ホットメルト30のカーテンを通すことにより線状に形成される。線状のスチレンゴム系ホットメルト30を塗布した真空断熱材23は、冷蔵庫4の組立コンベア上を移動する内箱6の床面に接着される。そして、冷蔵庫4の床面に床面金属部品24で蓋がされ、圧縮機16を配設する為の圧縮機スタンド25が取り付けられる。その後、筐体は、一度起立させ、冷蔵庫4のフランジにネジ打ち等が行われ、再度横置きにされる。最後に、背面金属部品22で蓋がされ、ウレタン注入口26から硬質ウレタン発泡断熱材7の充填・発泡が行われ、断熱筐体が形成される。このようにして、内箱6は、周囲を外箱5と背面金属部品22と床面金属部品24とで覆われる。 The styrene rubber hot melt 30 is formed by moving the hot melt coating nozzle in a straight line directly above the L-shaped vacuum heat insulating material 23 or moving the vacuum heat insulating material 23 in a straight line and discharging the nozzle. It is formed into a linear shape by passing the curtain of the melt 30. The vacuum heat insulating material 23 coated with the linear styrene rubber hot melt 30 is bonded to the floor surface of the inner box 6 that moves on the assembly conveyor of the refrigerator 4. Then, the floor surface of the refrigerator 4 is covered with a floor metal component 24 and a compressor stand 25 for installing the compressor 16 is attached. Thereafter, the casing is once stood up, and the flange of the refrigerator 4 is screwed or the like, and is again placed horizontally. Finally, the back metal part 22 is covered and the hard urethane foam heat insulating material 7 is filled and foamed from the urethane inlet 26 to form a heat insulating casing. Thus, the inner box 6 is covered with the outer box 5, the back metal part 22, and the floor metal part 24.
 したがって、実施の形態1の冷蔵庫4は、内箱6の底面に配設されたL字状の真空断熱材23が内箱6に強固に接着されているので、断熱筐体の硬質ウレタン発泡断熱材7の充填および発泡工程まで、真空断熱材23が内箱6から剥がれて落下することがない。また、実施の形態1の冷蔵庫4は、スチレンゴム系ホットメルト30を必要とする箇所である応力集中領域Yにのみ設けた構成なので、使用材料を低減でき、経済的効果を奏する。 Therefore, in the refrigerator 4 according to the first embodiment, the L-shaped vacuum heat insulating material 23 disposed on the bottom surface of the inner box 6 is firmly bonded to the inner box 6, so that the hard urethane foam heat insulation of the heat insulating casing is provided. The vacuum heat insulating material 23 is not peeled off from the inner box 6 and dropped until the filling and foaming steps of the material 7. Moreover, since the refrigerator 4 of Embodiment 1 is the structure provided only in the stress concentration area | region Y which is a location which requires the styrene rubber-type hot melt 30, it can reduce a material to use and there exists an economical effect.
実施の形態2.
 次に、実施の形態2の冷蔵庫を図6に基づいて説明する。図6(A)は本発明の実施の形態2に係る冷蔵庫の真空断熱材の正面図、図6(B)は図6(A)の平面図である。なお、実施の形態1の冷蔵庫と同一の構成について、その説明を適宜省略する。
Embodiment 2. FIG.
Next, the refrigerator of Embodiment 2 is demonstrated based on FIG. FIG. 6 (A) is a front view of the vacuum heat insulating material of the refrigerator according to Embodiment 2 of the present invention, and FIG. 6 (B) is a plan view of FIG. 6 (A). In addition, about the structure same as the refrigerator of Embodiment 1, the description is abbreviate | omitted suitably.
 実施の形態2の冷蔵庫4は、L字状の真空断熱材23の応力集中領域Yに、接着剤であるスチレンゴム系ホットメルト31がドット状に設けられた構成である。ドット状のスチレンゴム系ホットメルト31は、真空断熱材23にホットメルト塗布ノズルのバルブを開閉することにより塗布される。なお、その他の構成は、実施の形態1の冷蔵庫と同じである。 The refrigerator 4 of the second embodiment has a configuration in which a styrene rubber-based hot melt 31 as an adhesive is provided in a dot shape in the stress concentration region Y of the L-shaped vacuum heat insulating material 23. The dot-like styrene rubber hot melt 31 is applied to the vacuum heat insulating material 23 by opening and closing a valve of a hot melt application nozzle. Other configurations are the same as those of the refrigerator of the first embodiment.
 実施の形態2の冷蔵庫4は、真空断熱材23の応力集中領域Yに、スチレンゴム系ホットメルト31をドット状に設けて、真空断熱材23と内箱6との間の接着力が強化されているので、実施の形態1で説明した線状のスチレンゴム系ホットメルト30に比べて、負荷応力に対して二次元的に密度を変化せることができ、より効果的に接着強度を高めることができる。つまり、L字状の真空断熱材23は、内箱6に強固に接着されているので、断熱筐体の硬質ウレタン発泡断熱材7の充填および発泡工程まで、内箱6から剥がれて落下することがない。また、実施の形態2の冷蔵庫4は、スチレンゴム系ホットメルト31を必要とする箇所である応力集中領域Yにのみ設けた構成なので、使用材料を低減でき、経済的効果を奏する。 In the refrigerator 4 of the second embodiment, a styrene rubber-based hot melt 31 is provided in a dot shape in the stress concentration region Y of the vacuum heat insulating material 23 so that the adhesive force between the vacuum heat insulating material 23 and the inner box 6 is strengthened. Therefore, compared with the linear styrene rubber hot melt 30 described in the first embodiment, the density can be changed two-dimensionally with respect to the load stress, and the adhesive strength can be increased more effectively. Can do. That is, since the L-shaped vacuum heat insulating material 23 is firmly bonded to the inner box 6, the L-shaped vacuum heat insulating material 23 is peeled off and dropped from the inner box 6 until the filling and foaming process of the hard urethane foam heat insulating material 7 of the heat insulating housing. There is no. Moreover, since the refrigerator 4 of Embodiment 2 is the structure provided only in the stress concentration area | region Y which is a location which requires the styrene rubber type hot melt 31, it can reduce a material to use and there exists an economical effect.
実施の形態3.
 次に、実施の形態3の冷蔵庫を図7に基づいて説明する。図7(A)は本発明の実施の形態3に係る冷蔵庫の真空断熱材の正面図、図7(B)は図7(A)の平面図である。なお、実施の形態1の冷蔵庫と同一の構成について、その説明を適宜省略する。
Embodiment 3 FIG.
Next, the refrigerator of Embodiment 3 is demonstrated based on FIG. FIG. 7A is a front view of a vacuum heat insulating material for a refrigerator according to Embodiment 3 of the present invention, and FIG. 7B is a plan view of FIG. 7A. In addition, about the structure same as the refrigerator of Embodiment 1, the description is abbreviate | omitted suitably.
 実施の形態3の冷蔵庫4は、L字状の真空断熱材23の応力集中領域Yに、接着剤であるスチレンゴム系ホットメルト32が波線状に設けられた構成である。図7(B)に示す実施の形態3では、一例として波線状のスチレンゴム系ホットメルト32が、所定の間隔を開けて4列設けられている。なお、その他の構成は実施の形態1の冷蔵庫と同じである。 The refrigerator 4 of Embodiment 3 has a configuration in which a styrene rubber-based hot melt 32 as an adhesive is provided in a wavy line in the stress concentration region Y of the L-shaped vacuum heat insulating material 23. In Embodiment 3 shown in FIG. 7B, as an example, four rows of wavy styrene rubber-based hot melts 32 are provided at predetermined intervals. Other configurations are the same as those of the refrigerator of the first embodiment.
 波線状のスチレンゴム系ホットメルト32は、真空断熱材23の直上においてホットメルト塗布ノズルを波線状に移動させることにより塗布される。或いは、真空断熱材23を波線状に移動させ、ホットメルト塗布ノズルから吐出されるホットメルトのカーテンを通すことにより波線状に塗布される。 The wavy styrene rubber hot melt 32 is applied by moving the hot melt application nozzle in a wavy shape immediately above the vacuum heat insulating material 23. Alternatively, the vacuum heat insulating material 23 is moved in a wavy line and applied through a hot melt curtain discharged from a hot melt application nozzle.
 実施の形態3の冷蔵庫4は、真空断熱材23の応力集中領域Yに、スチレンゴム系ホットメルト32を波線状に設けて、真空断熱材23と内箱6との間の接着力が強化されているので、負荷の方向にかかわらず接着強度を高めることができる。つまり、L字状の真空断熱材23は、内箱6に強固に接着されているので、断熱筐体の硬質ウレタン発泡断熱材7の充填および発泡工程まで、内箱6から剥がれて落下することがない。また、実施の形態3の冷蔵庫4は、スチレンゴム系ホットメルト32を必要とする箇所である応力集中領域Yにのみ設けた構成なので、使用材料を低減でき、経済的効果を奏する。 In the refrigerator 4 of the third embodiment, the styrene rubber hot melt 32 is provided in a wavy shape in the stress concentration region Y of the vacuum heat insulating material 23 so that the adhesive force between the vacuum heat insulating material 23 and the inner box 6 is enhanced. Therefore, the adhesive strength can be increased regardless of the direction of the load. That is, since the L-shaped vacuum heat insulating material 23 is firmly bonded to the inner box 6, the L-shaped vacuum heat insulating material 23 is peeled off and dropped from the inner box 6 until the filling and foaming process of the hard urethane foam heat insulating material 7 of the heat insulating housing. There is no. Moreover, since the refrigerator 4 of Embodiment 3 is the structure provided only in the stress concentration area | region Y which is a location which requires the styrene rubber type hot melt 32, it can reduce a material to use and there exists an economical effect.
実施の形態4.
 次に、実施の形態4の冷蔵庫を図8に基づいて説明する。図8(A)は本発明の実施の形態4に係る冷蔵庫の真空断熱材の正面図、図8(B)は図8(A)の平面図である。なお、実施の形態1の冷蔵庫と同一の構成について、その説明を適宜省略する。
Embodiment 4 FIG.
Next, the refrigerator of Embodiment 4 is demonstrated based on FIG. FIG. 8A is a front view of a vacuum heat insulating material for a refrigerator according to Embodiment 4 of the present invention, and FIG. 8B is a plan view of FIG. 8A. In addition, about the structure same as the refrigerator of Embodiment 1, the description is abbreviate | omitted suitably.
 実施の形態4の冷蔵庫4は、L字状の真空断熱材23の応力集中領域Yに、実施の形態1で説明した線状のスチレンゴム系ホットメルト30が所定の間隔を開けて複数列(図示例の場合は6列)設けられ、更に非応力集中領域Xに応力集中領域Yに設けたスチレンゴム系ホットメルト30よりも塗布密度が低い第二の線状のスチレンゴム系ホットメルト33が所定の間隔を開けて複数列(図示例の場合は3列)設けられている。つまり、実施の形態4の冷蔵庫4は、真空断熱材23の接着面Zにおけるスチレンゴム系ホットメルト30、33の塗布密度を高くした構成である。なお、その他の構成は実施の形態1の冷蔵庫と同じである。 In the refrigerator 4 of the fourth embodiment, the linear styrene rubber-based hot melt 30 described in the first embodiment has a plurality of rows (with a predetermined interval) in the stress concentration region Y of the L-shaped vacuum heat insulating material 23 ( In the case of the illustrated example, a second linear styrene rubber hot melt 33 having a coating density lower than that of the styrene rubber hot melt 30 provided in the stress concentration region Y is provided in the non-stress concentration region X. A plurality of rows (three rows in the illustrated example) are provided at predetermined intervals. That is, the refrigerator 4 of the fourth embodiment has a configuration in which the application density of the styrene rubber hot melts 30 and 33 on the bonding surface Z of the vacuum heat insulating material 23 is increased. Other configurations are the same as those of the refrigerator of the first embodiment.
 実施の形態4の冷蔵庫4は、真空断熱材23の応力集中領域Yに線状のスチレンゴム系ホットメルト30を設けると共に、非応力集中領域Xにも第二の線状のスチレンゴム系ホットメルト33を設けて接着力を強化している。つまり、L字状の真空断熱材23は、内箱6に強固に接着され、断熱筐体の硬質ウレタン発泡断熱材7の充填および発泡工程まで、内箱6から剥がれて落下することがない。また、実施の形態4の冷蔵庫4は、スチレンゴム系ホットメルト30を必要とする箇所である応力集中領域Yに集中的に設けた構成なので、使用材料を低減でき、経済的効果を奏する。 In the refrigerator 4 of the fourth embodiment, the linear styrene rubber hot melt 30 is provided in the stress concentration region Y of the vacuum heat insulating material 23, and the second linear styrene rubber hot melt is also provided in the non-stress concentration region X. 33 is provided to strengthen the adhesive force. That is, the L-shaped vacuum heat insulating material 23 is firmly bonded to the inner box 6 and is not peeled off and dropped from the inner box 6 until the filling and foaming process of the hard urethane foam heat insulating material 7 of the heat insulating casing. Moreover, since the refrigerator 4 of Embodiment 4 is the structure which concentratedly provided in the stress concentration area | region Y which is a location which requires the styrene rubber-type hot melt 30, it can reduce a material to use and has an economical effect.
実施の形態5.
 次に、実施の形態5の冷蔵庫を、図9に基づいて説明する。図9(A)は本発明の実施の形態5に係る冷蔵庫の真空断熱材の正面図、図9(B)は図9(A)の平面図である。なお、実施の形態1の冷蔵庫と同一の構成について、その説明を適宜省略する。
Embodiment 5 FIG.
Next, the refrigerator of Embodiment 5 is demonstrated based on FIG. FIG. 9 (A) is a front view of the vacuum heat insulating material for a refrigerator according to Embodiment 5 of the present invention, and FIG. 9 (B) is a plan view of FIG. 9 (A). In addition, about the structure same as the refrigerator of Embodiment 1, the description is abbreviate | omitted suitably.
 実施の形態5の冷蔵庫4は、L字状の真空断熱材23の応力集中領域Yに、実施の形態2で説明したドット状のスチレンゴム系ホットメルト31が設けられ、更に非応力集中領域Xに応力集中領域Yに設けられたドット状のスチレンゴム系ホットメルト31よりも塗布密度が低い第二のドット状のスチレンゴム系ホットメルト34が設けられている。つまり、実施の形態5の冷蔵庫4は、真空断熱材23の接着面Zにおけるスチレンゴム系ホットメルト31、34の塗布密度を高くした構成である。なお、その他の構成は、実施の形態1の冷蔵庫4と同じである。 In the refrigerator 4 of the fifth embodiment, the dot-shaped styrene rubber hot melt 31 described in the second embodiment is provided in the stress concentration region Y of the L-shaped vacuum heat insulating material 23, and further, the non-stress concentration region X A second dot-like styrene rubber hot melt 34 having a lower coating density than the dot-like styrene rubber hot melt 31 provided in the stress concentration region Y is provided. That is, the refrigerator 4 of the fifth embodiment has a configuration in which the application density of the styrene rubber hot melts 31 and 34 on the bonding surface Z of the vacuum heat insulating material 23 is increased. Other configurations are the same as those of the refrigerator 4 of the first embodiment.
実施の形態5の冷蔵庫4は、真空断熱材23の応力集中領域Yにドット状のスチレンゴム系ホットメルト31を設けると共に、非応力集中領域Xにも第二のドット状のスチレンゴム系ホットメルト34を設けて接着力を強化している。つまり、L字状の真空断熱材23は、内箱6に強固に接着され、断熱筐体の硬質ウレタン発泡断熱材7の充填、発泡工程まで、内箱6から剥がれて落下することがない。また、実施の形態5の冷蔵庫4は、スチレンゴム系ホットメルト31を必要とする箇所である応力集中領域Yに集中的に設けた構成なので、使用材料を低減でき、経済的効果を奏する。 The refrigerator 4 according to the fifth embodiment is provided with the dot-like styrene rubber hot melt 31 in the stress concentration region Y of the vacuum heat insulating material 23 and the second dot-like styrene rubber hot melt also in the non-stress concentration region X. 34 is provided to strengthen the adhesive force. That is, the L-shaped vacuum heat insulating material 23 is firmly bonded to the inner box 6 and is not peeled off and dropped from the inner box 6 until the filling and foaming process of the hard urethane foam heat insulating material 7 of the heat insulating casing. Moreover, since the refrigerator 4 of Embodiment 5 is the structure which concentratedly provided in the stress concentration area | region Y which is a location which requires the styrene rubber-type hot melt 31, it can reduce a material to use and there exists an economical effect.
実施の形態6.
 次に、実施の形態6の冷蔵庫を、図10に基づいて説明する。図10(A)は本発明の実施の形態6に係る冷蔵庫の真空断熱材の正面図、図10(B)は図10(A)の平面図である。なお、実施の形態1の冷蔵庫と同一の構成について、その説明を適宜省略する。
Embodiment 6 FIG.
Next, the refrigerator of Embodiment 6 is demonstrated based on FIG. FIG. 10 (A) is a front view of a vacuum heat insulating material for a refrigerator according to Embodiment 6 of the present invention, and FIG. 10 (B) is a plan view of FIG. 10 (A). In addition, about the structure same as the refrigerator of Embodiment 1, the description is abbreviate | omitted suitably.
 実施の形態6の冷蔵庫4は、L字状の真空断熱材23の応力集中領域Yに、実施の形態3で説明した波線状のスチレンゴム系ホットメルト32が所定の間隔を開けて複数列(図示例の場合は4列)設けられ、更に非応力集中領域Xに応力集中領域Yに設けられた波線状のスチレンゴム系ホットメルト32よりも塗布密度が低い第二の波線状のスチレンゴム系ホットメルト35が所定の間隔を開けて複数列(図示例の場合は2列)設けられている。つまり、実施の形態6の冷蔵庫4は、真空断熱材23の接着面Zにおけるスチレンゴム系ホットメルト32、35の塗布密度を高くした構成である。なお、その他の構成は、実施の形態1の冷蔵庫4と同一である。 In the refrigerator 4 of the sixth embodiment, the wavy styrene rubber hot melt 32 described in the third embodiment has a plurality of rows (with a predetermined interval) in the stress concentration region Y of the L-shaped vacuum heat insulating material 23. The second wavy styrene rubber system having a coating density lower than that of the wavy styrene rubber hot melt 32 provided in the stress concentration area Y in the non-stress concentration area X. The hot melt 35 is provided in a plurality of rows (two rows in the illustrated example) at predetermined intervals. That is, the refrigerator 4 of the sixth embodiment has a configuration in which the application density of the styrene rubber hot melts 32 and 35 on the bonding surface Z of the vacuum heat insulating material 23 is increased. Other configurations are the same as those of the refrigerator 4 of the first embodiment.
 実施の形態6の冷蔵庫は、真空断熱材23の応力集中領域Yに波線状のスチレンゴム系ホットメルト32が設けると共に、非応力集中領域Xに第二の波線状のスチレンゴム系ホットメルト35を設けて接着力を強化している。つまり、L字状の真空断熱材23は、内箱6に強固に接着され、断熱筐体の硬質ウレタン発泡断熱材7の充填および発泡工程まで、内箱6から剥がれて落下することがない。また、実施の形態6の冷蔵庫4は、スチレンゴム系ホットメルト32を必要とする箇所である応力集中領域Yに集中的に設けた構成なので、使用材料を低減でき、経済的効果を奏する。 In the refrigerator of the sixth embodiment, a wavy styrene rubber hot melt 32 is provided in the stress concentration region Y of the vacuum heat insulating material 23, and a second wavy styrene rubber hot melt 35 is provided in the non-stress concentration region X. It is provided to strengthen the adhesive strength. That is, the L-shaped vacuum heat insulating material 23 is firmly bonded to the inner box 6 and is not peeled off and dropped from the inner box 6 until the filling and foaming process of the hard urethane foam heat insulating material 7 of the heat insulating casing. Moreover, since the refrigerator 4 of Embodiment 6 is the structure which concentratedly provided in the stress concentration area | region Y which is a location which requires the styrene rubber type hot melt 32, it can reduce a material to use and there exists an economical effect.
 以上に本発明を実施の形態に基づいて説明したが、本発明は上述した実施の形態の構成に限定されるものではない。例えば、線状のスチレンゴム系ホットメルト30、ドット状のスチレンゴム系ホットメルト31、波線状のスチレンゴム系ホットメルト32のいずれかを組み合わせて設けた構成で実施することもでき、本発明の技術の範囲内で適宜変更が可能である。要するに、いわゆる当業者が必要に応じてなす種々なる変更、応用、利用の範囲をも本発明の要旨(技術的範囲)に含むことを念のため申し添える。 Although the present invention has been described above based on the embodiment, the present invention is not limited to the configuration of the embodiment described above. For example, the present invention can be carried out in a configuration in which any one of a linear styrene rubber hot melt 30, a dot styrene rubber hot melt 31, and a wavy styrene rubber hot melt 32 is provided. Modifications can be made as appropriate within the scope of the technology. In short, it should be noted that the scope of the present invention also includes the scope of various changes, applications, and uses made by those skilled in the art as needed.
 1 真空断熱材、2 外被材、3 芯材、4 冷蔵庫、5 外箱、6 内箱、6A 底壁、7 硬質ウレタン発泡断熱材、8 第一隔壁、9 第二隔壁、10 第三隔壁、11 冷蔵室、12 製氷室及び切替室、13 冷凍室、14 野菜室、15 機械室、16 圧縮機、17 冷却器、18 凝縮器、19 電子制御基板、20、21、23 真空断熱材、22 背面金属部品、24 床面金属部品、25 圧縮機スタンド、26 ウレタン注入口、30、33 線状のスチレンゴム系ホットメルト、31、34 ドット状のスチレンゴム系ホットメルト、32、35 波線状のスチレンゴム系ホットメルト、X 非応力集中領域、Y 応力集中領域、Z 接着面。 1 vacuum insulation material, 2 jacket material, 3 core material, 4 refrigerator, 5 outer box, 6 inner box, 6A bottom wall, 7 hard urethane foam insulation, 8 first partition, 9 second partition, 10 third partition , 11 Refrigerated room, 12 Ice making room and switching room, 13 Freezer room, 14 Vegetable room, 15 Machine room, 16 Compressor, 17 Cooler, 18 Condenser, 19 Electronic control board, 20, 21, 23 Vacuum insulation material, 22 rear metal parts, 24 floor metal parts, 25 compressor stand, 26 urethane inlet, 30, 33 linear styrene rubber hot melt, 31, 34 dot styrene rubber hot melt, 32, 35 wavy Styrene rubber hot melt, X non-stress concentration region, Y stress concentration region, Z bonding surface.

Claims (5)

  1.  外箱と、
     前記外箱に収納され、前記外箱との間に内部空間を形成する内箱と、
     前記内部空間内であって前記内箱に面接着されるL字状の真空断熱材と、
     前記内部空間内に設けられた発砲断熱材と、
     前記真空断熱材における前記内箱との面接触部に生じる応力集中領域に、線状、ドット状、又は波線状に設けられた接着剤と、を備えた冷蔵庫。
    An outer box,
    An inner box housed in the outer box and forming an internal space with the outer box;
    An L-shaped vacuum heat insulating material in the inner space and surface-bonded to the inner box;
    A foam insulation provided in the internal space;
    The refrigerator provided with the adhesive agent provided in the linear, dot shape, or wavy line shape in the stress concentration area | region which arises in the surface contact part with the said inner box in the said vacuum heat insulating material.
  2.  前記接着剤は、スチレンゴム系ホットメルトである請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the adhesive is a styrene rubber hot melt.
  3.  前記真空断熱材は、
     ガスバリア性フィルムからなる外被材と、
     前記外被材の内部に挿入された無機繊維集合体の芯材と、を備え、
     前記芯材が挿入された前記外被材の内部が真空化されている請求項1又は2に記載の冷蔵庫。
    The vacuum heat insulating material is
    A jacket material made of a gas barrier film;
    A core material of an inorganic fiber aggregate inserted into the jacket material,
    The refrigerator according to claim 1 or 2, wherein the inside of the jacket material into which the core material is inserted is evacuated.
  4.  前記真空断熱材の接着面における非応力集中領域に、前記応力集中領域に設けられた前記接着剤よりも塗布密度が低い接着剤が設けられている請求項1~3のいずれか一項に記載の冷蔵庫。 The adhesive having a lower coating density than the adhesive provided in the stress concentration region is provided in a non-stress concentration region on the bonding surface of the vacuum heat insulating material. Refrigerator.
  5.  外箱と、
     前記外箱に収納され、前記外箱との間に内部空間を形成する内箱と、
     前記内部空間内であって前記内箱に面接着されるL字状の真空断熱材と、
     前記内部空間内に設けられた発砲断熱材と、を備えた冷蔵庫の製造方法であって、
     前記真空断熱材における前記内箱との面接触部に生じる応力集中領域に、スチレンゴム系ホットメルトからなる接着剤を、線状、ドット状、又は波線状に塗布し、
     前記接着剤を塗布した前記真空断熱材を、前記内箱に接着し、
     前記内部空間に発泡断熱材を充填する冷蔵庫の製造方法。
    An outer box,
    An inner box housed in the outer box and forming an internal space with the outer box;
    An L-shaped vacuum heat insulating material in the inner space and surface-bonded to the inner box;
    A method for manufacturing a refrigerator comprising a foaming heat insulating material provided in the internal space,
    In a stress concentration region generated in a surface contact portion with the inner box in the vacuum heat insulating material, an adhesive made of styrene rubber-based hot melt is applied in a linear shape, a dot shape, or a wavy shape,
    The vacuum heat insulating material applied with the adhesive is bonded to the inner box,
    The manufacturing method of the refrigerator which fills the said interior space with a foam heat insulating material.
PCT/JP2016/060153 2016-03-29 2016-03-29 Refrigerator and manufacturing method for same WO2017168571A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201690000308.9U CN207180153U (en) 2016-03-29 2016-03-29 Refrigerator
JP2018507887A JP6683246B2 (en) 2016-03-29 2016-03-29 Refrigerator and manufacturing method thereof
PCT/JP2016/060153 WO2017168571A1 (en) 2016-03-29 2016-03-29 Refrigerator and manufacturing method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060153 WO2017168571A1 (en) 2016-03-29 2016-03-29 Refrigerator and manufacturing method for same

Publications (1)

Publication Number Publication Date
WO2017168571A1 true WO2017168571A1 (en) 2017-10-05

Family

ID=59963756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060153 WO2017168571A1 (en) 2016-03-29 2016-03-29 Refrigerator and manufacturing method for same

Country Status (3)

Country Link
JP (1) JP6683246B2 (en)
CN (1) CN207180153U (en)
WO (1) WO2017168571A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012833A1 (en) * 2017-07-10 2019-01-17 パナソニックIpマネジメント株式会社 Vacuum insulation case

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116695A (en) * 2002-09-27 2004-04-15 Nisshinbo Ind Inc Vacuum insulated board, and insulated container using the vacuum insulated board
JP2006046789A (en) * 2004-08-04 2006-02-16 Matsushita Electric Ind Co Ltd Refrigerator
JP2006242497A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Thermal insulation body and method for manufacturing the same
JP2007155279A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Heat insulated case body
JP2007211913A (en) * 2006-02-10 2007-08-23 Matsushita Electric Ind Co Ltd Heat insulating panel
JP2009243742A (en) * 2008-03-31 2009-10-22 Hitachi Appliances Inc Refrigerator
JP2011149624A (en) * 2010-01-22 2011-08-04 Hitachi Appliances Inc Refrigerator
JP2014095499A (en) * 2012-11-08 2014-05-22 Sharp Corp Heat insulation box body and method of manufacturing the same, and equipment with the same
JP2014234898A (en) * 2013-06-04 2014-12-15 日立アプライアンス株式会社 Refrigerator
JP2015200451A (en) * 2014-04-07 2015-11-12 三菱電機株式会社 refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029456A (en) * 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, heat insulation/cold insulation unit comprising the same, and refrigerator
JP2006242467A (en) * 2005-03-03 2006-09-14 Matsushita Electric Ind Co Ltd Thermal insulation body and method for manufacturing the same
KR20080038676A (en) * 2006-10-30 2008-05-07 엘지전자 주식회사 Thermal insulating assembly for refrigerator
JP5899395B2 (en) * 2011-09-05 2016-04-06 パナソニックIpマネジメント株式会社 Heat insulation box

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116695A (en) * 2002-09-27 2004-04-15 Nisshinbo Ind Inc Vacuum insulated board, and insulated container using the vacuum insulated board
JP2006046789A (en) * 2004-08-04 2006-02-16 Matsushita Electric Ind Co Ltd Refrigerator
JP2006242497A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Thermal insulation body and method for manufacturing the same
JP2007155279A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Heat insulated case body
JP2007211913A (en) * 2006-02-10 2007-08-23 Matsushita Electric Ind Co Ltd Heat insulating panel
JP2009243742A (en) * 2008-03-31 2009-10-22 Hitachi Appliances Inc Refrigerator
JP2011149624A (en) * 2010-01-22 2011-08-04 Hitachi Appliances Inc Refrigerator
JP2014095499A (en) * 2012-11-08 2014-05-22 Sharp Corp Heat insulation box body and method of manufacturing the same, and equipment with the same
JP2014234898A (en) * 2013-06-04 2014-12-15 日立アプライアンス株式会社 Refrigerator
JP2015200451A (en) * 2014-04-07 2015-11-12 三菱電機株式会社 refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012833A1 (en) * 2017-07-10 2019-01-17 パナソニックIpマネジメント株式会社 Vacuum insulation case
JP2019015476A (en) * 2017-07-10 2019-01-31 パナソニックIpマネジメント株式会社 Vacuum heat insulation housing

Also Published As

Publication number Publication date
JPWO2017168571A1 (en) 2018-09-27
CN207180153U (en) 2018-04-03
JP6683246B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP6192634B2 (en) Insulated box, refrigerator and hot water storage device provided with the insulated box
CN100498158C (en) Refrigerator
JP4111096B2 (en) refrigerator
JP3493009B2 (en) refrigerator
JP5578266B1 (en) refrigerator
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP2015200451A (en) refrigerator
JP2003028562A (en) Refrigerator and method of manufacturing the same
JP6964810B2 (en) refrigerator
JP2013242100A (en) Refrigerator heat-insulation box body
JP2004125394A (en) Refrigerator
WO2017168571A1 (en) Refrigerator and manufacturing method for same
JP2010169302A (en) Refrigerator
JP2008128516A (en) Refrigerator
JP2008095423A (en) Heat insulating panel
JP6191008B2 (en) refrigerator
JP2015064134A (en) Refrigerator
JP6113612B2 (en) Vacuum heat insulating material and refrigerator using the same
JP6000922B2 (en) Vacuum heat insulating material and cooling / heating equipment using the same
CN111721059A (en) Application method of vacuum heat insulation plate and refrigerator
JP2022164316A (en) Heat insulating box body and heat insulating door
JPS61186775A (en) Refrigerator
CN111721058A (en) Application method of vacuum heat insulation plate and refrigerator
JP2013185732A (en) Refrigerator
JP2004286050A (en) Vacuum heat insulation material, heat insulation box, and method for checking recess in vacuum heat insulation material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896791

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896791

Country of ref document: EP

Kind code of ref document: A1