JP2022164316A - Heat insulating box body and heat insulating door - Google Patents

Heat insulating box body and heat insulating door Download PDF

Info

Publication number
JP2022164316A
JP2022164316A JP2021069732A JP2021069732A JP2022164316A JP 2022164316 A JP2022164316 A JP 2022164316A JP 2021069732 A JP2021069732 A JP 2021069732A JP 2021069732 A JP2021069732 A JP 2021069732A JP 2022164316 A JP2022164316 A JP 2022164316A
Authority
JP
Japan
Prior art keywords
heat insulating
heat
insulating box
sealing portion
metal plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021069732A
Other languages
Japanese (ja)
Inventor
祐志 新井
Yushi Arai
洋一 塩家
Yoichi Shioya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2021069732A priority Critical patent/JP2022164316A/en
Priority to CN202210147571.2A priority patent/CN115218586A/en
Publication of JP2022164316A publication Critical patent/JP2022164316A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details

Abstract

To provide a heat insulating box body and a heat insulating door in which heat insulating performance and an internal volume are improved to realize energy saving and space saving.SOLUTION: A heat insulating box body or heat insulating door comprises a heat insulating body composed of: a plurality of metal plates arranged oppositely; a sealing unit made of a material different from that of the metal plates, which seals the outer peripheral sides of the plurality of metal plates; and a decompression space surrounded by the plurality of metal plates. Further, it may have an outer box made of a steel plate, the heat insulating body may be arranged so as to face the inner surface of the outer box, and instead of the outer box made of a steel plate, the heat insulating body may be used to form a design surface.SELECTED DRAWING: Figure 5A

Description

本発明は、断熱箱体および断熱扉に関する。 TECHNICAL FIELD The present invention relates to an insulated box body and an insulated door.

従来の断熱箱体として、例えば特許文献1や特許文献2がある。特許文献1には、「外箱と内箱との間に硬質ウレタンフォームと真空断熱材とを備えた冷蔵庫において、前記真空断熱材は、一方の面がアルミ蒸着フィルム、他方の面が金属箔を有するフィルムで構成され」ることが記載されている(請求項8)。また、特許文献2には、「外箱構成体は、凹部を形成した2枚の金属板を突き合わせて固定することで前記凹部によって前記減圧空間を形成し、前記外箱の一部として前記金属板の外周を前記外箱に固定している」ことが記載されている(請求項4)。 For example, Patent Document 1 and Patent Document 2 are known as conventional heat insulating boxes. In Patent Document 1, "In a refrigerator provided with rigid urethane foam and a vacuum insulation material between an outer box and an inner box, the vacuum heat insulating material has an aluminum deposition film on one side and a metal foil on the other side. (Claim 8). In addition, in Patent Document 2, ``The outer box structure is formed by abutting and fixing two metal plates having a recess to form the pressure-reduced space with the recess, and the metal plate as a part of the outer box. The outer circumference of the plate is fixed to the outer case" (Claim 4).

特開2004-20148号公報Japanese Unexamined Patent Application Publication No. 2004-20148 特開2016-80281号公報JP 2016-80281 A

特許文献1に記載の真空断熱材は、従来から一般に利用されているものであり、フィルムを貼り合わせた外皮材中に芯材であるグラスウールなどを挿入し、内部を真空引きして形成される。しかし、このような従来の真空断熱材では、断熱箱体や断熱扉の熱伝導率をさらに向上させたり、断熱箱体や断熱扉の壁厚をさらに薄くしたりするには限界がある。また、特許文献2に記載の外箱構成体は、2枚の金属板を突き合わせる部分において、溶接や加締め等が用いられているため、この部分でヒートブリッジが発生する可能性がある。 The vacuum heat insulating material described in Patent Document 1 has been generally used in the past, and is formed by inserting a core material such as glass wool into a skin material laminated with a film and evacuating the inside. . However, with such a conventional vacuum insulation material, there is a limit to further improving the thermal conductivity of the heat insulating box and the heat insulating door, and further reducing the wall thickness of the heat insulating box and the heat insulating door. Further, in the outer box structure described in Patent Document 2, welding, caulking, or the like is used in the portion where the two metal plates are butted together, so there is a possibility that heat bridging may occur in this portion.

前述の課題に鑑み、本発明の断熱箱体または断熱扉は、対向配置された複数の金属板と、複数の前記金属板の外周側を封止する、前記金属板と異なる材料の封止部と、複数の前記金属板で囲まれた減圧空間と、で構成される断熱体を備えた。 In view of the above problems, the heat insulating box body or the heat insulating door of the present invention includes a plurality of metal plates facing each other, and a sealing portion made of a material different from that of the metal plates, which seals the outer peripheral sides of the plurality of metal plates. and a vacuum space surrounded by the plurality of metal plates.

本実施形態に係る冷蔵庫の正面図。The front view of the refrigerator which concerns on this embodiment. 図1のA-A断面図。AA sectional view of FIG. 本実施形態に係る真空断熱パネルの一例を示す平面模式図。BRIEF DESCRIPTION OF THE DRAWINGS The plane schematic diagram which shows an example of the vacuum insulation panel which concerns on this embodiment. 図3AのA-A’線断面模式図。FIG. 3B is a schematic cross-sectional view taken along line A-A′ of FIG. 3A. 実施例1に係る冷蔵庫の側方視断面図。BRIEF DESCRIPTION OF THE DRAWINGS Side sectional drawing of the refrigerator which concerns on Example 1. FIG. 実施例1に係る冷蔵庫の部分水平断面図。FIG. 2 is a partial horizontal cross-sectional view of the refrigerator according to Embodiment 1; 実施例1の変形例に係る冷蔵庫の部分水平断面図。FIG. 4 is a partial horizontal cross-sectional view of a refrigerator according to a modification of Embodiment 1; 実施例1に係る冷蔵庫の水平断面図。1 is a horizontal sectional view of a refrigerator according to Embodiment 1; FIG. 実施例1の変形例1に係る冷蔵庫の水平断面図。FIG. 4 is a horizontal cross-sectional view of a refrigerator according to Modification 1 of Embodiment 1; 実施例1の変形例2に係る冷蔵庫の水平断面図。FIG. 8 is a horizontal cross-sectional view of a refrigerator according to Modification 2 of Embodiment 1; 実施例1の変形例3に係る冷蔵庫の水平断面図。FIG. 8 is a horizontal cross-sectional view of a refrigerator according to Modification 3 of Embodiment 1; 実施例1の変形例4に係る冷蔵庫の水平断面図。FIG. 8 is a horizontal cross-sectional view of a refrigerator according to Modification 4 of Embodiment 1; 実施例1の変形例5に係る冷蔵庫の水平断面図。FIG. 10 is a horizontal cross-sectional view of a refrigerator according to Modification 5 of Embodiment 1; 実施例1の変形例6に係る冷蔵庫の水平断面図。FIG. 11 is a horizontal cross-sectional view of a refrigerator according to Modification 6 of Embodiment 1; 実施例1の変形例7に係る冷蔵庫の水平断面図。FIG. 11 is a horizontal cross-sectional view of a refrigerator according to Modification 7 of Embodiment 1; 実施例1の変形例8に係る冷蔵庫の水平断面図。FIG. 11 is a horizontal cross-sectional view of a refrigerator according to Modification 8 of Embodiment 1; 実施例1の変形例9に係る冷蔵庫の水平断面図。FIG. 11 is a horizontal cross-sectional view of a refrigerator according to Modification 9 of Embodiment 1; 実施例1の変形例10に係る冷蔵庫の水平断面図。FIG. 11 is a horizontal cross-sectional view of a refrigerator according to Modification 10 of Embodiment 1; 実施例2に係る冷蔵庫の側方視断面図。FIG. 10 is a side cross-sectional view of the refrigerator according to the second embodiment; 実施例2に係る冷蔵庫の水平断面図。The horizontal sectional view of the refrigerator which concerns on Example 2. FIG. 実施例2における真空断熱パネルと放熱パイプの位置関係を示す断面図。FIG. 5 is a cross-sectional view showing the positional relationship between the vacuum insulation panel and the heat radiation pipe in Embodiment 2; 実施例2の変形例に係る冷蔵庫に用いられる真空断熱パネルの断面図。FIG. 10 is a cross-sectional view of a vacuum heat insulating panel used in a refrigerator according to a modification of Example 2; 実施例3に係る断熱扉の側方視断面図。FIG. 11 is a side cross-sectional view of a heat insulating door according to Example 3; 実施例3に係る断熱扉の部分断面図。FIG. 11 is a partial cross-sectional view of a heat insulating door according to Example 3;

以下、本発明の実施形態について、図を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本実施形態に係る冷蔵庫1の全体構成について説明する。図1は、本実施形態に係る冷蔵庫1の正面図、図2は図1のA-A断面図である。図1および図2に示すように、冷蔵庫1は、上から冷蔵室2、製氷室3および上段冷凍室4、下段冷凍室5、野菜室6の順に、貯蔵室を有しており、各室の前面開口部には、これらの開口部を開閉する断熱扉が設けられている。各貯蔵室の配置については、これに限るものではない。 First, the overall configuration of the refrigerator 1 according to this embodiment will be described. FIG. 1 is a front view of a refrigerator 1 according to this embodiment, and FIG. 2 is a sectional view taken along line AA of FIG. As shown in FIGS. 1 and 2, the refrigerator 1 has storage compartments in the order from top to bottom: a refrigerating compartment 2, an ice making compartment 3, an upper freezing compartment 4, a lower freezing compartment 5, and a vegetable compartment 6. The front openings are provided with heat insulating doors for opening and closing these openings. The arrangement of each storage room is not limited to this.

断熱扉は、ヒンジ(図示せず)を中心に回動する回動式の冷蔵室扉2a,2bと、引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aから構成されている。また、各断熱扉の内部には、真空断熱パネル30(図2では省略)が配置されており、この真空断熱パネル30以外の空間には硬質ウレタンフォーム等の発泡断熱材15を充填してある。なお、真空断熱パネル30の構成の詳細については、後述する。 The heat-insulating doors include rotating refrigerating compartment doors 2a and 2b that rotate about hinges (not shown), a drawer-type ice making compartment door 3a, an upper freezing compartment door 4a, a lower freezing compartment door 5a, and a vegetable compartment. It consists of a door 6a. A vacuum heat insulating panel 30 (not shown in FIG. 2) is arranged inside each heat insulating door, and the space other than the vacuum heat insulating panel 30 is filled with foam heat insulating material 15 such as rigid urethane foam. . The details of the configuration of the vacuum insulation panel 30 will be described later.

冷蔵庫1の断熱箱体は、鋼板製の外箱7と、合成樹脂製の内箱8と、を備え、外箱7と内箱8とによって形成される空間に断熱層部を設けて、断熱箱体内の各貯蔵室と外部とを断熱している。外箱7は、天面板7a、左右の側面板7b,7c(図1,2では省略)、背面板7dおよび底面板7eとで構成され、天面板7aと側面板7b,7cは一体的に折り曲げ加工によって形成され、背面板7dと底面板7eは後付けで天面板7aと側面板7b,7cに固定されて一体化されるものである。 The heat insulating box body of the refrigerator 1 includes an outer box 7 made of steel plate and an inner box 8 made of synthetic resin, and a space formed by the outer box 7 and the inner box 8 is provided with a heat insulating layer to provide heat insulation. Each storage room in the box is insulated from the outside. The outer box 7 is composed of a top plate 7a, left and right side plates 7b and 7c (not shown in FIGS. 1 and 2), a rear plate 7d and a bottom plate 7e, and the top plate 7a and the side plates 7b and 7c are integrated. The rear plate 7d and the bottom plate 7e are formed by bending, and are fixed to the top plate 7a and the side plates 7b and 7c afterward to be integrated.

断熱箱体の断熱層部には、硬質ウレタンフォーム等の発泡断熱材15が充填されたり予め断熱箱体外で発泡成形された成形断熱材が充填される。断熱箱体の例えば側面および背面には、真空断熱パネル30が配置される。 The heat insulating layer portion of the heat insulating box is filled with foamed heat insulating material 15 such as rigid urethane foam, or filled with a molded heat insulating material that has been previously foam-molded outside the heat insulating box. Vacuum insulation panels 30 are arranged on, for example, the sides and back of the insulation box.

また、第1断熱仕切り9が、冷蔵室2と製氷室3および上段冷凍室4とを区画し、第2断熱仕切り10が、下段冷凍室5と野菜室6とを区画する。これらの断熱仕切りは、発泡断熱材と、グラスウールを用いた真空断熱材と、で構成されてもよいし、真空断熱パネル30を設けてもよい。 A first heat insulating partition 9 separates the refrigerator compartment 2 from the ice making compartment 3 and the upper freezer compartment 4 , and a second heat insulator partition 10 separates the lower freezer compartment 5 from the vegetable compartment 6 . These heat insulating partitions may be composed of foam heat insulating material and vacuum heat insulating material using glass wool, or vacuum heat insulating panels 30 may be provided.

さらに、冷蔵庫1には、各貯蔵室を所定の温度帯に冷却するための冷却器が設けられている。本実施形態では、冷蔵室2を冷却するための第1冷却器11aと、製氷室3、上段冷凍室4、下段冷凍室5および野菜室6を冷却するための第2冷却器11bと、が設けられているが、冷却器の数や冷却対象の貯蔵室は、これに限るものではない。そして、冷媒を圧縮する圧縮機12、圧縮機12から送られた冷媒を放熱する放熱手段(図示しない凝縮器および放熱パイプ13)、放熱手段から送られた冷媒を減圧する減圧手段(図示しないキャピラリーチューブ)および減圧手段から送られた冷媒が蒸発して空気を冷却する冷却器(蒸発器)が接続され、冷凍サイクルを構成している。また、断熱箱体の背面下部に配置される圧縮機12や凝縮機は発熱の大きい部品であるため、庫内への熱侵入を防止するべく、底面板7eの内側にも真空断熱材や真空断熱パネル30が配置される。 Furthermore, the refrigerator 1 is provided with a cooler for cooling each storage compartment to a predetermined temperature range. In this embodiment, a first cooler 11a for cooling the refrigerator compartment 2 and a second cooler 11b for cooling the ice making compartment 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are provided. However, the number of coolers and the storage chambers to be cooled are not limited to this. Compressor 12 for compressing the refrigerant, heat dissipation means for dissipating heat from the refrigerant sent from the compressor 12 (condenser and heat dissipation pipe 13 not shown), decompression means for decompressing the refrigerant sent from the heat dissipation means (capillary not shown) A refrigerating cycle is configured by connecting a tube) and a cooler (evaporator) in which the refrigerant sent from the decompression means evaporates and cools the air. In addition, since the compressor 12 and the condenser arranged in the lower part of the back surface of the heat insulating box are parts that generate a large amount of heat, the inside of the bottom plate 7e is also provided with a vacuum heat insulating material and a vacuum insulation material in order to prevent heat from entering the chamber. A heat insulating panel 30 is placed.

従来の真空断熱材は、芯材であるグラスウールと、樹脂シートを複数枚貼り合わせて形成される外皮材と、ガスを吸着する吸着剤と、からなるのが一般的である。樹脂シート自体の融点は低く、しかも樹脂シートを貼り合わせる溶着層にはポリエチレンが用いられることから、加熱温度を高くすることが困難であった。また、空隙率を高くするために、繊維径の細いグラスウールが用いられているが、繊維が細くなるほど表面積は大きくなり、表面に付着している水分やガスが抜け難く、真空引き時の排気抵抗が高くなっていた。その結果、グラスウールを用いた真空断熱材は、熱伝導率のさらなる改善には限界があった。そこで、本実施形態では、封止材によって貼着された複数の金属板と、複数の該金属板に囲まれた減圧空間と、を有し、封止材を金属板とは異なる材料とした真空断熱パネル30を用いて、断熱箱体および断熱扉を構成した。 A conventional vacuum heat insulating material generally consists of glass wool as a core material, a skin material formed by pasting a plurality of resin sheets together, and an adsorbent that adsorbs gas. Since the melting point of the resin sheet itself is low and polyethylene is used for the welding layer for bonding the resin sheets together, it has been difficult to raise the heating temperature. In addition, glass wool with a small fiber diameter is used to increase the porosity. was getting higher. As a result, there is a limit to the further improvement in thermal conductivity of vacuum insulation materials using glass wool. Therefore, in the present embodiment, a plurality of metal plates adhered by a sealing material and a pressure-reduced space surrounded by the plurality of metal plates are provided, and the sealing material is made of a material different from that of the metal plate. A heat-insulating box and a heat-insulating door were constructed using the vacuum heat-insulating panel 30 .

[真空断熱パネルの構成]
図3Aは、本実施形態に係る真空断熱パネル30の一例を示す平面模式図であり、図3Bは、図3AのA-A’線断面模式図である。
[Configuration of vacuum insulation panel]
FIG. 3A is a schematic plan view showing an example of the vacuum insulation panel 30 according to this embodiment, and FIG. 3B is a schematic cross-sectional view taken along the line AA' of FIG. 3A.

図3A,図3Bに示したように、本実施形態に係る真空断熱パネル30は、所定の間隔を空けて主表面が対面配置された一対の金属板31,32の周縁領域が、外周封止部33によって封止されて、減圧空間34が形成されている。減圧空間34には、所定の間隔を維持するためのスペーサ35が平面格子の態様で分散配置されている。 As shown in FIGS. 3A and 3B, the vacuum insulation panel 30 according to the present embodiment has a pair of metal plates 31 and 32 whose main surfaces face each other with a predetermined gap. A decompression space 34 is formed by being sealed by the portion 33 . Spacers 35 for maintaining a predetermined interval are distributed in the decompression space 34 in the form of a planar lattice.

また、一対の金属板31,32の少なくとも一方には、減圧空間34を真空排気するための排気口37が形成されており、排気口37は、該排気口37を塞ぐ金属蓋38と蓋封止部36とによって封止されている。 At least one of the pair of metal plates 31 and 32 is formed with an exhaust port 37 for evacuating the decompressed space 34 . It is sealed with a stop portion 36 .

減圧空間34の真空度としては、1×10-1 Pa未満が好ましく、5×10-2 Pa以下がより好ましい。本実施形態では、真空度1×10-1Pa未満を高真空と定義する。なお、従来のグラスウールを用いた真空断熱材の真空度は、10 Paオーダ(1~9Pa)であり、中真空の範疇である。 The degree of vacuum in the reduced pressure space 34 is preferably less than 1×10 −1 Pa, more preferably 5×10 −2 Pa or less. In this embodiment, a vacuum degree of less than 1×10 −1 Pa is defined as high vacuum. Incidentally, the degree of vacuum of a conventional vacuum insulation material using glass wool is on the order of 10 0 Pa (1 to 9 Pa), which is in the category of medium vacuum.

本実施形態に係る真空断熱パネル30は、外包材料である金属板31,32同士が直接接合することなく外周封止部33を介して接合されており、金属板31,32間に形成される減圧空間34が高真空状態であることから、従来のグラスウールを用いた真空断熱材よりも低熱伝導率(常温で2mW/(m・K)未満)を示す。金属板31,32の間隔(減圧空間34の高さ)は、冷蔵庫に要求される熱伝導性を満たすように0.2mm以上18mm以下の範囲で適宜設定すればよい。なお、1枚のみの真空断熱パネル30で、要求される熱伝導性を達成する必然性はなく、真空断熱パネル30を厚さ方向に複数枚積層することによって熱伝導性を調整してもよい。 In the vacuum insulation panel 30 according to the present embodiment, the metal plates 31 and 32, which are outer packaging materials, are not directly joined to each other but are joined through the outer peripheral sealing portion 33, and are formed between the metal plates 31 and 32. Since the decompression space 34 is in a high vacuum state, it exhibits a lower thermal conductivity (less than 2 mW/(m·K) at room temperature) as compared with the conventional vacuum insulation material using glass wool. The interval between the metal plates 31 and 32 (the height of the decompressed space 34) may be appropriately set within the range of 0.2 mm or more and 18 mm or less so as to satisfy the thermal conductivity required for refrigerators. Note that it is not necessary to achieve the required thermal conductivity with only one vacuum insulation panel 30, and the thermal conductivity may be adjusted by stacking a plurality of vacuum insulation panels 30 in the thickness direction.

次に、真空断熱パネル30を構成する各部品について、より詳細に説明する。 Next, each component constituting the vacuum insulation panel 30 will be described in more detail.

(金属板、金属蓋)
金属板31,32および金属蓋38は、大気圧の面圧に耐えられる剛性(外部と減圧空間34との差圧に起因する応力で減圧空間34の高さがゼロにならない程度の剛性)を有する金属材料を用いる必要がある。金属板31,32および金属蓋38の厚さは、剛性および気密性の観点から0.1mm以上が好ましく、真空断熱パネル30の軽量化の観点から1mm以下が好ましい。真空断熱パネル30の剛性は、金属が薄い外被材である真空断熱材18に比して高く、金属板31,32の厚みは、例えば0.3mm以上である。
(metal plate, metal lid)
The metal plates 31 and 32 and the metal lid 38 have rigidity to withstand the surface pressure of the atmospheric pressure (rigidity to the extent that the height of the reduced pressure space 34 does not become zero due to the stress caused by the differential pressure between the outside and the reduced pressure space 34). It is necessary to use a metal material that has The thicknesses of the metal plates 31 and 32 and the metal lid 38 are preferably 0.1 mm or more from the viewpoint of rigidity and airtightness, and preferably 1 mm or less from the viewpoint of reducing the weight of the vacuum insulation panel 30 . The rigidity of the vacuum heat insulating panel 30 is higher than that of the vacuum heat insulating material 18 which is a thin metal covering material, and the thickness of the metal plates 31 and 32 is, for example, 0.3 mm or more.

また、金属板31,32および金属蓋38の材料としては、例えば、合金鋼板、ステンレス鋼板、アルミ合金板を用いることができるが、耐食性や強度の観点からステンレス鋼板を用いるのが好ましい。金属板31,32および金属蓋38は、同一の材料であってもよいし、それぞれが異なる材料の組み合わせで合ってもよい。金属板31,32の主表面サイズ(縦×横)に特段の限定はなく、本実施形態の真空断熱パネル30を利用する冷蔵庫のサイズに適宜合わせればよい。 As materials for the metal plates 31 and 32 and the metal lid 38, for example, alloy steel plate, stainless steel plate, or aluminum alloy plate can be used, but stainless steel plate is preferably used from the viewpoint of corrosion resistance and strength. The metal plates 31, 32 and the metal lid 38 may be made of the same material, or may be a combination of different materials. The main surface size (length x width) of the metal plates 31 and 32 is not particularly limited, and may be appropriately matched to the size of the refrigerator using the vacuum insulation panel 30 of the present embodiment.

なお、排気口37は、減圧空間34を効率良く真空排気できれば、その形状、サイズに特段の限定はないが、例えば、円形状の場合、直径が金属板31,32の厚さ以上で外周封止部33の幅以下となるように制御することが好ましい。排気口37の位置にも特段の限定はないが、真空断熱パネル30の製造性の観点からは、外周封止部33の近傍にある方が便利である。 The shape and size of the exhaust port 37 are not particularly limited as long as the vacuum space 34 can be efficiently evacuated. It is preferable to control the width to be equal to or less than the width of the stopping portion 33 . The position of the exhaust port 37 is also not particularly limited, but from the viewpoint of manufacturability of the vacuum insulation panel 30, it is more convenient to position it in the vicinity of the peripheral sealing portion 33. FIG.

(スペーサ)
スペーサ35は、減圧空間34の高さ(対面配置された一対の金属板31,32の間隔)を維持するために用いられる。接触伝熱量をできるだけ抑制するために、金属よりも熱伝導率が低いガラス材料または樹脂材料からなる球体または柱体でスペーサ35を構成することが好ましい。また、より好ましくは、融点の高いガラスでスペーサ35を構成することにより、真空封止のために金属板31,32を例えば200℃以上に加熱しても、スペーサ35からガスが発生し難く、しかもスペーサ35表面に付着した水分やガスが除去できる。その結果、金属板31,32間に形成される減圧空間34を高真空状態とすることが可能となる。さらに、より好ましくは、金属板31,32との接触面積が小さくなる球体でスペーサ35を構成することにより、接触伝熱量を抑制できる。
(Spacer)
The spacer 35 is used to maintain the height of the depressurized space 34 (the distance between the pair of metal plates 31 and 32 facing each other). In order to suppress contact heat transfer as much as possible, it is preferable to configure the spacer 35 with a spherical body or a columnar body made of a glass material or a resin material having a thermal conductivity lower than that of metal. More preferably, the spacers 35 are made of glass having a high melting point so that even if the metal plates 31 and 32 are heated to, for example, 200° C. or higher for vacuum sealing, the spacers 35 hardly generate gas. Moreover, moisture and gas adhering to the surface of the spacer 35 can be removed. As a result, the decompression space 34 formed between the metal plates 31 and 32 can be brought into a high vacuum state. More preferably, the contact heat transfer amount can be suppressed by configuring the spacer 35 with a spherical body having a small contact area with the metal plates 31 and 32 .

ここで、一対の金属板31,32の間の接触伝熱量をできるだけ抑制する観点から、スペーサ35は、減圧空間34の中で平面格子状に分散配置されることが好ましい。分散配置する平面格子の態様に特段の限定はなく、例えば、正方格子、矩形格子、正三角格子、斜方格子および平行体格子からなる群のうちの一種以上を適宜選択できる。前述した図3Aは、球体のスペーサ35を正方格子の態様に分散配置した例を示している。スペーサ35のサイズは、減圧空間34の所望高さ(対面配置された一対の金属板31,32の所望間隔)に合わせて適宜選択すればよく、例えば、0.2mm以上18mm以下が好ましい。なお、スペーサ35が球体の場合、金属板31,32のいずれか側に接着剤を用いて球体を固定することで、真空断熱パネル30の製造工程時などに球体が移動するのを防止できる。 Here, from the viewpoint of suppressing the amount of contact heat transfer between the pair of metal plates 31 and 32 as much as possible, it is preferable that the spacers 35 are dispersed in the decompression space 34 in a planar grid pattern. There is no particular limitation on the mode of the planar lattices to be dispersedly arranged, and for example, one or more of the group consisting of square lattices, rectangular lattices, equilateral triangular lattices, rhombic lattices and parallel lattices can be appropriately selected. FIG. 3A described above shows an example in which the spherical spacers 35 are distributed in a square lattice manner. The size of the spacer 35 may be appropriately selected according to the desired height of the decompression space 34 (desired distance between the pair of metal plates 31 and 32 facing each other), and is preferably 0.2 mm or more and 18 mm or less, for example. If the spacer 35 is a sphere, it can be prevented from moving during the manufacturing process of the vacuum insulation panel 30 by fixing the sphere to either side of the metal plates 31 and 32 with an adhesive.

(外周封止部33、蓋封止部36)
外周封止部33および蓋封止部36では、スペーサ35と同様に、接触伝熱量を抑制する機能が必要なだけでなく、スペーサ35と異なり、外部からのガス侵入を防止する機能も必要である。このため、外周封止部33および蓋封止部36には、金属板31,32よりも熱伝導率が小さいだけでなく、ガス透過性の低い材料として、ガラス材料や樹脂材料が用いられ、好ましくはガラス材料が用いられる。さらに、外周封止部33で用いるガラス封止材料および金属蓋38を封止するための他のガラス封止材料は、環境負荷の低減および真空断熱パネルの製造性の観点から、軟化点が330℃以下の低融点無鉛ガラス材料が好ましい。ガラス封止材料の軟化点は、300℃以下がより好ましく、270℃以下が更に好ましい。また、他のガラス封止材料は、ガラス封止材料よりも軟化点が50℃以上低いガラス材料であることが好ましい。なお、外周封止部33や蓋封止部36に樹脂材料を用いた場合には、ガラス材料よりも融点が低いため、真空断熱パネル30の真空度は劣るものの製造コストは抑制できる。
(Peripheral sealing portion 33, lid sealing portion 36)
Like the spacer 35, the peripheral sealing portion 33 and the lid sealing portion 36 need not only the function of suppressing contact heat transfer, but also the function of preventing gas from entering from the outside unlike the spacer 35. be. For this reason, the peripheral sealing portion 33 and the lid sealing portion 36 are made of a glass material or a resin material that not only has a lower thermal conductivity than the metal plates 31 and 32, but also has a low gas permeability. A glass material is preferably used. Further, the glass sealing material used for the outer peripheral sealing portion 33 and other glass sealing material for sealing the metal lid 38 have a softening point of 330° C. from the viewpoint of reducing the environmental load and manufacturability of the vacuum insulation panel. A lead-free glass material with a low melting point of 0° C. or less is preferred. The softening point of the glass sealing material is more preferably 300° C. or lower, still more preferably 270° C. or lower. Also, the other glass sealing material is preferably a glass material having a softening point lower than that of the glass sealing material by 50° C. or more. When a resin material is used for the peripheral sealing portion 33 and the lid sealing portion 36, the melting point is lower than that of a glass material, so the vacuum insulation panel 30 is less vacuumed, but the manufacturing cost can be reduced.

真空断熱パネル30の側周には、金属板31,32よりも低熱伝導率の外周封止部33を用いることで、側周でのヒートブリッジを抑制した構造にできる。また、真空断熱パネル30の厚み領域内、すなわち、真空断熱パネル30の側面視で外周封止部33に重なる領域に放熱パイプ13を接触又は近接させて配しても、放熱パイプ13から貯蔵室への熱伝達を抑制できる。 By using the outer peripheral sealing portion 33 having a lower thermal conductivity than the metal plates 31 and 32 on the side periphery of the vacuum heat insulating panel 30, a structure in which heat bridging in the side periphery is suppressed can be achieved. In addition, even if the heat radiation pipe 13 is arranged in contact with or close to the thickness region of the vacuum heat insulation panel 30, that is, the region overlapping the outer peripheral sealing portion 33 in the side view of the vacuum heat insulation panel 30, the heat radiation pipe 13 does not reach the storage chamber. can suppress heat transfer to

[真空断熱パネルの製造方法]
真空断熱パネル30を構成する一対の金属板31,32のうち、一方の金属板における周縁領域に、ガラス封止材料を肉盛り塗布し仮焼付して第1断熱板(例えば金属板31)を用意する。次に、第1断熱板におけるガラス封止材料を仮焼付した面が内側になるように第1断熱板と第2断熱板(例えば金属板32)とを対面配置し、ガラス封止材料の軟化点-10℃の温度以上で該軟化点+20℃以下の温度に昇温して第1断熱板と第2断熱板とを封着して外周封止部33を形成する。その後、排気口37から減圧空間34を真空排気しながら、他のガラス封止材料の軟化点以上かつ該軟化点+20℃以下の温度に昇温して、金属蓋38と他のガラス封止材料(蓋封止部36)とを用いて排気口37を真空封止する。
[Manufacturing method of vacuum insulation panel]
A first heat insulating plate (for example, the metal plate 31) is formed by accumulating and applying a glass sealing material to the peripheral edge region of one of the pair of metal plates 31 and 32 constituting the vacuum heat insulating panel 30 and pre-baking it. prepare. Next, the first heat insulating plate and the second heat insulating plate (for example, the metal plate 32) are placed facing each other so that the surface of the first heat insulating plate to which the glass sealing material is calcined faces the inside, and the glass sealing material is softened. The temperature is raised to a temperature of −10° C. or higher and a softening point of +20° C. or lower, and the first and second heat insulating plates are sealed to form the peripheral sealing portion 33 . After that, while evacuating the decompressed space 34 from the exhaust port 37, the temperature is raised to a temperature higher than the softening point of the other glass sealing material and lower than the softening point +20° C., and the metal lid 38 and the other glass sealing material are heated. The exhaust port 37 is vacuum-sealed using (the lid sealing portion 36).

本実施形態に係る真空断熱パネル30は、グラスウールを用いた真空断熱材と比べて、断熱体としての熱伝導率を悪化させることなく断熱体の厚さを薄くすることができる。このため、本実施形態に係る真空断熱パネル30を冷蔵庫の断熱箱体や断熱扉に利用すれば、断熱性能と内容積を向上でき、省エネルギー化と省スペース化を両立した冷蔵庫の実現が可能となる。 The vacuum insulation panel 30 according to the present embodiment can reduce the thickness of the heat insulator without deteriorating the thermal conductivity of the heat insulator as compared with a vacuum heat insulator using glass wool. Therefore, if the vacuum insulation panel 30 according to the present embodiment is used for the heat insulation box body and the heat insulation door of a refrigerator, the heat insulation performance and the internal volume can be improved, and it is possible to realize a refrigerator that achieves both energy saving and space saving. Become.

実施例1は、冷蔵庫の断熱箱体について、外箱7と内箱8との間に前述の真空断熱パネル30を配置して構成した例であり、以下、図4~6を用いて説明する。 Embodiment 1 is an example in which the above-described vacuum insulation panel 30 is arranged between the outer box 7 and the inner box 8 of the heat insulating box body of a refrigerator, and will be described below with reference to FIGS. .

図4は、実施例1に係る冷蔵庫の側方視断面図であり、図5Aは、実施例1に係る冷蔵庫の部分水平断面図であり、図6は、実施例1に係る冷蔵庫の水平断面図である。図4~図6に示すように、本実施例の断熱箱体は、その左右側面および背面に真空断熱パネル30が配置されている。また、外箱7および内箱8の間には、真空断熱パネル30の他に、圧縮機12が吐出した冷媒が流れ、冷媒の熱を外箱7の外表面から庫外空気に放熱する放熱パイプ13も設けられている。この放熱パイプ13は、鋼板製の外箱7の内面と略接した状態で、側面板7b,7cや背面板7dに沿って上下および前後方向に延び、天面板7aに沿って左右方向に延びる。放熱パイプ13は、図5Aに例示するように、アルミテープ100等によって外箱7の内面に固定され、放熱パイプ13と外箱7とは、接触させた状態が望ましいが、接触せず近接した状態であっても良い。真空断熱パネル30は、外箱7及び/又は内箱8に対して溶接、溶着、接着等されて固定され得る。接着としては、例えば、ホットメルト、ホットメルトに窒素ガス等を導入して発泡させた接着剤、片面テープ又は両面テープ等を用いることができる。 4 is a side cross-sectional view of the refrigerator according to the first embodiment, FIG. 5A is a partial horizontal cross-sectional view of the refrigerator according to the first embodiment, and FIG. 6 is a horizontal cross-sectional view of the refrigerator according to the first embodiment. It is a diagram. As shown in FIGS. 4 to 6, the heat insulating box of this embodiment has vacuum heat insulating panels 30 on its left and right sides and on its rear surface. In addition to the vacuum insulation panel 30, the refrigerant discharged from the compressor 12 flows between the outer casing 7 and the inner casing 8, and the heat of the refrigerant is radiated from the outer surface of the outer casing 7 to the outside air. A pipe 13 is also provided. The heat radiating pipe 13 extends vertically and longitudinally along the side plates 7b, 7c and the rear plate 7d and extends in the left-right direction along the top plate 7a while being substantially in contact with the inner surface of the outer case 7 made of steel. . As illustrated in FIG. 5A, the heat radiation pipe 13 is fixed to the inner surface of the outer case 7 by an aluminum tape 100 or the like. It can be in any state. The vacuum insulation panel 30 may be fixed to the outer box 7 and/or the inner box 8 by welding, fusing, gluing, or the like. As the adhesion, for example, a hot melt, an adhesive obtained by introducing nitrogen gas or the like into a hot melt to foam, a single-sided tape, a double-sided tape, or the like can be used.

さらに、図5Bに示すように、外周封止部33の外端よりも金属板31が突出するように真空断熱パネル30を製造しておき、金属板31が放熱パイプ13に直接略接する構造にしてもよい。こうすると、放熱パイプ13の熱を金属板31を介して庫外に放出できるため放熱性能を改善できる。 Furthermore, as shown in FIG. 5B, the vacuum insulation panel 30 is manufactured so that the metal plate 31 protrudes from the outer end of the outer peripheral sealing portion 33, and the metal plate 31 is structured so as to be in direct contact with the heat dissipation pipe 13. may By doing so, the heat of the heat radiation pipe 13 can be released to the outside through the metal plate 31, so that the heat radiation performance can be improved.

さらに、図5A、図5Bおよび図6に示すように、内箱8の後方角部は、上面視で直線状または曲線状に傾斜しており、内箱8と外箱7との間の空間が広くなっている。そして、この空間には、断熱箱体の組付け時に発泡充填される発泡断熱材15や、予め発泡成形された成形断熱材が設けられる。また、図6に示すように、断熱箱体の左右の前面開口端部では、断熱箱体全体としての強度確保のため、内箱8と外箱7との間に発泡断熱材15が充填されている。強度が確保できれば、発泡断熱材15の代わりに、発泡スチロールなどの成形断熱材を用いても良い。なお、真空断熱パネル30は、外箱7の内面に対して接着剤で固定される。 Furthermore, as shown in FIGS. 5A, 5B, and 6, the rear corner of the inner box 8 is inclined linearly or curvedly when viewed from above, and the space between the inner box 8 and the outer box 7 is is getting wider. This space is provided with a foamed heat insulating material 15 that is foam-filled when the heat insulating box is assembled, or a molded heat insulating material that has been foam-molded in advance. Further, as shown in FIG. 6, at the left and right front opening ends of the heat insulating box, a foam insulating material 15 is filled between the inner box 8 and the outer box 7 in order to secure the strength of the heat insulating box as a whole. ing. A molded heat insulating material such as polystyrene foam may be used instead of the heat insulating foam material 15 as long as the strength can be secured. The vacuum heat insulating panel 30 is fixed to the inner surface of the outer box 7 with an adhesive.

ここで、真空断熱パネル30の外周封止部33がある領域の厚み方向の断熱性能は、真空断熱パネル30の他の領域、すなわちスペーサ35や減圧空間34がある領域と比べて低くなっている。したがって、内箱8と外箱7との間に外周封止部33のみの部分が存在すると、庫内の冷熱が外箱7の外表面に伝わり、部分的に結露が発生する可能性がある。結露が成長すると、外箱7の表面から床面へ滴下したり、カビ等の発生要因となったりする。 Here, the heat insulation performance in the thickness direction of the region where the outer peripheral sealing portion 33 of the vacuum insulation panel 30 is located is lower than that of the other region of the vacuum insulation panel 30, that is, the region where the spacers 35 and the reduced pressure space 34 are located. . Therefore, if only the peripheral sealing portion 33 exists between the inner box 8 and the outer box 7, cold heat in the refrigerator is transmitted to the outer surface of the outer box 7, and dew condensation may occur partially. . As the condensation grows, it may drip from the surface of the outer case 7 onto the floor surface, or cause mold and the like.

そこで、本実施例では、図5A、図5Bおよび図6に示すように、外周封止部33を、内箱8の最大幅領域より後側、かつ、内箱8の最大奥行領域より外側、に位置させた。内箱8の最大幅領域とは、内箱8の左右寸法が最大となる領域における内箱8の前後方向範囲を意味し、内箱8の最大奥行領域とは、内箱8の奥行が最大となる領域における内箱8の左右方向範囲を意味する。内箱8の後方角部に形成される空間は比較的厚い発泡断熱材15または成形断熱材が存在しているため、外周封止部33を介した伝熱が少なくなり、結露が抑制される。さらに、本実施例では、外周封止部33の近傍に、外周封止部33と対向するように、放熱パイプ13が位置しているため、放熱パイプ13からの熱によって外周封止部33が冷え過ぎるのを抑制し、結果的に結露も防止できる。 Therefore, in this embodiment, as shown in FIGS. 5A, 5B, and 6, the outer peripheral sealing portion 33 is positioned behind the maximum width region of the inner box 8 and outside the maximum depth region of the inner box 8. was placed in The maximum width area of the inner box 8 means the front-rear direction range of the inner box 8 in the area where the inner box 8 has the maximum lateral dimension, and the maximum depth area of the inner box 8 means the area where the inner box 8 has the maximum depth. means the lateral range of the inner box 8 in the region where Since the space formed at the rear corner of the inner box 8 contains a relatively thick foamed heat insulating material 15 or molded heat insulating material, heat transfer through the outer peripheral sealing portion 33 is reduced, and dew condensation is suppressed. . Furthermore, in this embodiment, since the heat radiation pipe 13 is positioned near the outer periphery sealing portion 33 so as to face the outer periphery sealing portion 33 , the heat from the heat radiation pipe 13 causes the outer periphery sealing portion 33 to break. It is possible to suppress overcooling and prevent dew condensation as a result.

また、真空断熱パネル30は、グラスウールを用いた真空断熱材と比べ、押し加工や波加工が難しいため、放熱パイプ13のところを回避するような段付き形状や波形状とするのも難しい。しかし、本実施例のように、外箱7の内側であって、真空断熱パネル30の存在しない領域に、放熱パイプ13を配置することで、断熱箱体の壁が厚くなるのを防止し、冷蔵庫の内容積の確保が可能となる。 In addition, since the vacuum insulation panel 30 is difficult to press and corrugate compared to a vacuum insulation material using glass wool, it is also difficult to form a stepped shape or a wave shape that avoids the heat radiation pipe 13 . However, as in the present embodiment, by arranging the heat radiation pipe 13 inside the outer box 7 in a region where the vacuum insulation panel 30 does not exist, it is possible to prevent the wall of the heat insulation box from becoming thick, It becomes possible to secure the internal volume of the refrigerator.

図5Aおよび図5Bに例示するように、外箱7b,7cの接続部分7zには、発泡断熱材15が発泡充填されてもよいし、空気層とされてもよい。 As illustrated in FIGS. 5A and 5B, the connection portion 7z of the outer cases 7b and 7c may be filled with a foam insulation material 15 or may be an air layer.

[実施例1の変形例]
実施例1の変形例について、図7A~図7Jを用いて説明する。図7A~図7Jは、それぞれ変形例1~変形例10に係る冷蔵庫の水平断面図である。
[Modification of Embodiment 1]
A modification of the first embodiment will be described with reference to FIGS. 7A to 7J. 7A to 7J are horizontal sectional views of refrigerators according to modified examples 1 to 10, respectively.

図7Aに示す変形例1は、左右側面に配置される真空断熱パネル30を、断熱箱体の前面開口端部の発泡断熱材15または成形断熱材を設けないことで、前面開口端部まで延ばした構成となっている。真空断熱パネル30は、金属板31,32を対向配置したものであるため、グラスウールを用いた真空断熱材と比べて、剛性が高い。したがって、本変形例のように、真空断熱パネル30を前方へ延ばしてカバー領域を広くでき、結果として、断熱箱体全体の断熱性能を向上させることが可能となる。 In Modification 1 shown in FIG. 7A, the vacuum insulation panels 30 arranged on the left and right sides are extended to the front opening end by not providing the foam insulation material 15 or the molded insulation material at the front opening end of the insulation box. It has a configuration. Since the vacuum insulation panel 30 is made by arranging the metal plates 31 and 32 facing each other, it has higher rigidity than a vacuum insulation material using glass wool. Therefore, as in this modification, the vacuum insulation panel 30 can be extended forward to widen the covered area, and as a result, the insulation performance of the entire insulation box can be improved.

図7Bに示す変形例2は、断熱箱体のうち左右の側壁について、内箱8と外箱7との間に、真空断熱パネル30の他に、発泡断熱材15または成形断熱材を設けた構成となっている。発泡断熱材15または成形断熱材は、真空断熱パネル30よりも内箱8側に設けられているので、内箱8の左右側面に設けられる棚リブやレール部材などの強度を向上させることができる。 Modification 2 shown in FIG. 7B is provided with a foamed heat insulating material 15 or a molded heat insulating material in addition to the vacuum heat insulating panel 30 between the inner box 8 and the outer box 7 on the left and right side walls of the heat insulating box. It is configured. Since the foamed heat insulating material 15 or the molded heat insulating material is provided closer to the inner box 8 than the vacuum heat insulating panel 30, the strength of shelf ribs and rail members provided on the left and right sides of the inner box 8 can be improved. .

図7Cに示す変形例3は、断熱箱体のうち左右の側壁について、内箱8と外箱7との間に、真空断熱パネル30の他に、グラスウールを用いた真空断熱材18を設けた構成となっている。グラスウールを用いた真空断熱材18は、真空断熱パネル30よりも前方へ延設されている。放熱パイプ13のため真空断熱パネル30を延設できない前方領域についても、グラスウールを用いた真空断熱材18でカバーできるため、断熱箱体全体の断熱性能を向上させることが可能である。また、左右の側壁の断熱性能が1枚の真空断熱パネル30だけで足らない場合にも、グラスウールを用いた真空断熱材18と併用することで、断熱性能を満たすようにできる。 In the modification 3 shown in FIG. 7C, a vacuum insulation panel 30 and a vacuum insulation material 18 using glass wool are provided between the inner box 8 and the outer box 7 on the left and right side walls of the heat insulation box. It is configured. The vacuum heat insulating material 18 using glass wool extends forward from the vacuum heat insulating panel 30 . Since the front region where the vacuum insulation panel 30 cannot be extended due to the heat radiation pipe 13 can be covered with the vacuum insulation material 18 using glass wool, the insulation performance of the entire insulation box can be improved. Also, even if the heat insulation performance of the left and right side walls is not sufficient with only one vacuum heat insulation panel 30, the heat insulation performance can be satisfied by using it together with the vacuum heat insulation material 18 using glass wool.

図7Dに示す変形例4は、断熱箱体の後方において、真空断熱パネル30のカバー領域を広げ、特に、左右側方に配置される真空断熱パネル30を後方へ延ばした構成となっている。左右側方の真空断熱パネル30のうち後方の外周封止部33は、内箱8の背面よりも後方に位置しており、断熱箱体の角部における結露が抑制できる。断熱箱体背面の真空断熱パネル30の後方には、発泡断熱材15または成形断熱材を設けた空間があり、さらに放熱パイプ13が這わされている。 Modification 4 shown in FIG. 7D has a configuration in which the area covered by the vacuum insulation panels 30 is widened at the rear of the insulation box, and in particular, the vacuum insulation panels 30 arranged on the left and right sides are extended rearward. The rear peripheral sealing portions 33 of the vacuum insulation panels 30 on the left and right sides are located behind the rear surface of the inner box 8, and can suppress dew condensation at the corners of the insulation box. Behind the vacuum insulation panel 30 on the rear surface of the heat insulation box, there is a space provided with a foam insulation material 15 or a molded heat insulation material, and further a heat radiation pipe 13 is laid.

図7Eに示す変形例5は、断熱箱体の後方において、真空断熱パネル30のカバー領域を広げ、特に、背面に配置される真空断熱パネル30を側方へ延ばした構成となっている。背面の真空断熱パネル30のうち外周封止部33は、内箱8の側面よりも外側に位置しており、断熱箱体の角部における結露が抑制できる。 Modification 5 shown in FIG. 7E has a configuration in which the area covered by the vacuum insulation panel 30 is widened at the rear of the insulation box, and in particular, the vacuum insulation panel 30 arranged on the rear surface is extended sideways. The outer peripheral sealing portion 33 of the vacuum insulation panel 30 on the back side is positioned outside the side surface of the inner box 8, so that dew condensation at the corners of the heat insulation box can be suppressed.

図7Fに示す変形例6は、背面の真空断熱パネル30のうち外周封止部33を、内箱8の側面よりも外側に位置させるとともに、左右側方には真空断熱パネル30の代わりにグラスウールを用いた真空断熱材18を配置した構成となっている。本変形例では、真空断熱パネル30よりも加工しやすい真空断熱材18が左右側方に配置され、真空断熱材18と外箱7との間に放熱パイプ13を設ければ良いため、放熱パイプ13のレイアウトの自由度が高まる。このように、断熱箱体の一部の面には真空断熱パネル30を設け、他の一部の面又は残部の面には真空断熱材18又は発泡断熱材15若しくは成形断熱材を設けながら放熱パイプ13を設けることができる。 In the sixth modification shown in FIG. 7F, the outer peripheral sealing portion 33 of the vacuum insulation panel 30 on the back side is positioned outside the side surfaces of the inner box 8, and glass wool instead of the vacuum insulation panel 30 is provided on the left and right sides. It has a configuration in which a vacuum heat insulating material 18 using In this modification, the vacuum heat insulating materials 18, which are easier to process than the vacuum heat insulating panel 30, are arranged on the left and right sides, and the heat radiating pipes 13 may be provided between the vacuum heat insulating materials 18 and the outer case 7. Therefore, the heat radiating pipes The degree of freedom of the layout of 13 increases. In this way, the vacuum insulation panel 30 is provided on a part of the surface of the heat insulation box, and the other part or the remaining surface is provided with the vacuum insulation material 18, the foam insulation material 15, or the molded insulation material while heat is dissipated. A pipe 13 may be provided.

図7Gに示す変形例7は、左右側面に配置される真空断熱パネル30について、外箱7側に位置する金属板の表面に凹凸を形成した構成となっている。この凹凸に放熱パイプ13を位置させることで、断熱箱体の側面への放熱パイプ13の設置が容易となる。なお、金属板に凹凸を形成する部分は、スペーサ35が存在しない領域とするのが望ましい。 Modification 7 shown in FIG. 7G has a structure in which unevenness is formed on the surface of the metal plate positioned on the outer case 7 side for the vacuum insulation panels 30 arranged on the left and right side surfaces. Positioning the heat radiating pipe 13 on the uneven surface facilitates the installation of the heat radiating pipe 13 on the side surface of the heat insulating box. In addition, it is desirable that the portion where the unevenness is formed on the metal plate be a region where the spacer 35 does not exist.

図7Hに示す変形例8は、背面に配置される真空断熱パネル30について、外箱7側に位置する金属板の表面に凹凸を形成した構成となっている。この凹凸に放熱パイプ13を位置させることで、断熱箱体の背面への放熱パイプ13の設置が容易となる。 Modification 8 shown in FIG. 7H has a configuration in which unevenness is formed on the surface of the metal plate positioned on the outer casing 7 side of the vacuum heat insulating panel 30 arranged on the rear surface. Positioning the heat radiating pipe 13 on the uneven surface facilitates the installation of the heat radiating pipe 13 on the rear surface of the heat insulating box.

図7Iに示す変形例9は、断熱箱体のうち、背面の壁については、真空断熱パネル30を設け、左右の側壁については、グラスウールを用いた真空断熱材18と、発泡断熱材15または成形断熱材と、を設けた構成となっている。このため、放熱パイプ13を外箱7の左右側面と接触させる形で設置しやすく、かつ、内箱8の左右側面に設けられる棚リブやレール部材などの強度を高めることができる。 In the ninth modification shown in FIG. 7I, the back wall of the heat insulation box is provided with a vacuum heat insulation panel 30, and the left and right side walls are a vacuum heat insulation material 18 using glass wool and a foam heat insulation material 15 or molded and a heat insulating material. Therefore, the heat radiation pipe 13 can be easily installed in contact with the left and right side surfaces of the outer case 7, and the strength of shelf ribs and rail members provided on the left and right side surfaces of the inner case 8 can be increased.

図7Jに示す変形例10は、断熱箱体のうち、左右の側壁については、強度確保のための発泡断熱材15または成形断熱材と、断熱性能を高めるための真空断熱パネル30と、を設けつつ、背面の壁については、外箱7との間に放熱パイプ13を設置しやすくするため、グラスウールを用いた真空断熱材18を設けた構成となっている。また、本変形例では、左右側方の真空断熱パネル30のうち後方の外周封止部33は、内箱8の背面よりも後方に位置しており、断熱箱体の角部における結露もさらに抑制できる。 In the modification 10 shown in FIG. 7J, the left and right side walls of the heat insulating box are provided with a foam heat insulating material 15 or molded heat insulating material for securing strength and a vacuum heat insulating panel 30 for enhancing heat insulating performance. On the other hand, the rear wall is provided with a vacuum heat insulating material 18 using glass wool in order to facilitate the installation of the heat radiation pipe 13 between the outer casing 7 and the outer casing 7 . In addition, in this modification, the rear peripheral sealing portions 33 of the vacuum insulation panels 30 on the left and right sides are positioned behind the back surface of the inner box 8, and dew condensation at the corners of the heat insulating box is further prevented. can be suppressed.

これら各変形例は、互いに独立したものではなく、支障しない範囲で適宜組み合わせることができる。 These modifications are not independent of each other, and can be appropriately combined within a range that does not interfere.

実施例2は、冷蔵庫の断熱箱体について、外箱を省略し、主に真空断熱パネル30と内箱8とで構成した例であり、以下、図8~図10を用いて説明する。 Embodiment 2 is an example of a heat insulation box body of a refrigerator in which the outer box is omitted and is mainly composed of a vacuum heat insulation panel 30 and an inner box 8, which will be described below with reference to FIGS. 8 to 10. FIG.

図8は、実施例2に係る冷蔵庫の側方視断面図であり、図9は、実施例2に係る冷蔵庫の水平断面図であり、図10は、実施例2における真空断熱パネルと放熱パイプの位置関係を示す断面図である。グラスウールを用いた真空断熱材は、樹脂シートからなる外皮材で覆われているため、外皮材が擦れや応力などが加わると真空が破壊され、熱伝導率が高くなってしまう可能性があった。しかし、前述の真空断熱パネル30は、金属板31,32を対向配置して構成されているので、擦れや応力に強く、表面の意匠性も高い。したがって、本実施例では、図8および図9に示すように、鋼板製の外箱7を真空断熱パネル30で代用している。 8 is a side sectional view of the refrigerator according to the second embodiment, FIG. 9 is a horizontal sectional view of the refrigerator according to the second embodiment, and FIG. 10 is a vacuum insulation panel and a heat radiation pipe in the second embodiment. is a cross-sectional view showing the positional relationship of. Vacuum insulation using glass wool is covered with a skin material made of a resin sheet, so if the skin material is rubbed or stressed, the vacuum may be broken and the thermal conductivity may increase. . However, since the vacuum insulation panel 30 described above is configured by arranging the metal plates 31 and 32 facing each other, it is resistant to rubbing and stress and has a high surface design. Therefore, in this embodiment, as shown in FIGS. 8 and 9, the outer box 7 made of steel is replaced with a vacuum insulation panel 30. As shown in FIGS.

このように、真空断熱パネル30の外側(庫外側)が使用者から目視観察できる面であり、冷蔵庫の意匠面となる。本実施例では、真空断熱パネル30の内側(貯蔵室側)には内箱8が設けられているため、真空断熱パネル30の内側は、冷蔵庫の意匠面を構成しない。 In this way, the outer side (outer side of the refrigerator) of the vacuum heat insulating panel 30 is a surface that can be visually observed by the user, and serves as a design surface of the refrigerator. In this embodiment, since the inner box 8 is provided inside the vacuum insulation panel 30 (on the storage room side), the inside of the vacuum insulation panel 30 does not constitute the design surface of the refrigerator.

冷蔵庫の外郭全体を真空断熱パネル30が形成する。すなわち、真空断熱パネル30の形状は、長方形に限らず他の多角形となり得、例えば、図8に示すように、断熱箱体の側面に配置される真空断熱パネル30は、圧縮機12が配置される機械室に対応する部分に、短手方向視で凹部30aを有する形状が採用される。 A vacuum insulation panel 30 forms the entire outer shell of the refrigerator. That is, the shape of the vacuum insulation panel 30 is not limited to a rectangle, and may be other polygons. For example, as shown in FIG. A shape having a concave portion 30a when viewed from the short direction is adopted in a portion corresponding to the machine room where the machine chamber is installed.

また、図9に示すように、内箱8内の収納空間に対して、真空断熱パネル30の減圧空間(外周封止部33を除く部分)の前方投影または左右投影が少なくとも一部で重なり、真空断熱パネル30の外周封止部33の前方投影または左右投影が少なくとも一部で重ならない構成となっている。具体的には、まず、左右側方の真空断熱パネル30のうち後方の外周封止部33の少なくとも一部は、内箱8の背面(図9の点線で示す位置)よりも後方に位置しており、断熱箱体の角部における結露が抑制できる。さらに、背面の真空断熱パネル30のうち側方の外周封止部33の少なくとも一部も、内箱8の側面(図9の破線で示す位置)よりも外側に位置しており、断熱箱体の角部における結露がより抑制されている。なお、本実施例の断熱箱体の背面においては、内箱8と真空断熱パネル30の間に、発泡断熱材15または成形断熱材が設けられる。 Further, as shown in FIG. 9, the front projection or left-right projection of the decompressed space of the vacuum insulation panel 30 (the portion excluding the outer peripheral sealing portion 33) at least partially overlaps with the storage space in the inner box 8, The front projection or left-right projection of the outer peripheral sealing portion 33 of the vacuum insulation panel 30 does not overlap at least partially. Specifically, first, at least a part of the rear peripheral sealing portion 33 of the left and right side vacuum insulation panels 30 is positioned behind the rear surface of the inner box 8 (the position indicated by the dotted line in FIG. 9). It is possible to suppress dew condensation at the corners of the heat insulating box. Furthermore, at least a part of the outer peripheral sealing portion 33 on the side of the back vacuum insulation panel 30 is also positioned outside the side surface of the inner box 8 (the position indicated by the broken line in FIG. 9), and the heat insulation box body Condensation at the corners of the A foamed heat insulating material 15 or a molded heat insulating material is provided between the inner box 8 and the vacuum heat insulating panel 30 on the back surface of the heat insulating box body of this embodiment.

放熱パイプ13については、図10に示すように、真空断熱パネル30の内側であって、特に外周封止部33の近傍(外周封止部33と接触または近接するよう)に設置されるのが望ましい。これにより、熱伝導率の比較的高い外周封止部33を介して放熱パイプ13の熱を庫外に放熱しやすくなる。なお、本実施例では、外箱7を省略して断熱箱体を構成した例を説明したが、一部の外箱7は残して、他の部分を真空断熱パネル30で代用するような構成であっても良い。 As for the heat radiation pipe 13, as shown in FIG. 10, it is installed inside the vacuum insulation panel 30, particularly in the vicinity of the outer peripheral sealing portion 33 (so as to be in contact with or close to the outer peripheral sealing portion 33). desirable. Thereby, the heat of the heat radiation pipe 13 can be easily radiated to the outside of the refrigerator through the outer peripheral sealing portion 33 having a relatively high thermal conductivity. In this embodiment, an example in which the outer box 7 is omitted and the heat insulating box body is configured has been described. can be

また、真空断熱パネル30の外側(庫外側)が冷蔵庫の意匠面とすることから、図示していないが、金属蓋38のある面が内側(貯蔵室側)となるように構成される。これにより、意匠性が向上するだけでなく、金属蓋38による封止状態を確実に維持できる。 In addition, since the outer side of the vacuum insulation panel 30 (the outer side of the refrigerator) is the designed surface of the refrigerator, the surface with the metal lid 38 is configured to be the inner side (the storeroom side), although not shown. As a result, not only is the design improved, but the sealed state by the metal lid 38 can be reliably maintained.

[実施例2の変形例]
実施例2の変形例について、図11を用いて説明する。図11は、実施例2の変形例に係る冷蔵庫に用いられる真空断熱パネルの断面図である。前述の通り、真空断熱パネル30は、金属板を用いているため、グラスウールを用いた真空断熱材と比べて表面の意匠性が高い。しかし、真空排気により金属板に多少の凹凸が生じる可能性もある。そこで、本変形例では、冷蔵庫の意匠面となる外側の真空断熱パネル30を形成する金属板31を、内側の金属板32よりも厚くしている。これにより、冷蔵庫の外観意匠性がより向上する。
[Modification of Embodiment 2]
A modification of the second embodiment will be described with reference to FIG. 11 . FIG. 11 is a cross-sectional view of a vacuum insulation panel used in a refrigerator according to a modification of Example 2. FIG. As described above, since the vacuum insulation panel 30 uses a metal plate, it has a higher surface design than a vacuum insulation material using glass wool. However, there is a possibility that the metal plate may become slightly uneven due to the evacuation. Therefore, in this modified example, the metal plate 31 forming the outer vacuum insulation panel 30, which serves as the design surface of the refrigerator, is made thicker than the inner metal plate 32. As shown in FIG. This further improves the exterior design of the refrigerator.

実施例3は、冷蔵庫の断熱扉について、ガラス製や鋼製の外板の代わりに、真空断熱パネル30を用いて構成した例であり、以下、図12および図13を用いて説明する。 Embodiment 3 is an example in which a vacuum insulation panel 30 is used instead of a glass or steel outer panel for an insulation door of a refrigerator, and will be described below with reference to FIGS.

図12は、実施例3に係る断熱扉の側方視断面図であり、図13は、実施例3に係る断熱扉の部分断面図である。図12に示すとおり、本実施例の断熱扉は、表面に位置する真空断熱パネル30と、真空断熱パネル30の周縁から貯蔵室側に延設される枠体14と、真空断熱パネル30と枠体14とで形成された空間に配置された発泡断熱材15と、を備える。 12 is a side cross-sectional view of a heat insulating door according to Example 3, and FIG. 13 is a partial cross-sectional view of the heat insulating door according to Example 3. As shown in FIG. As shown in FIG. 12, the heat insulating door of this embodiment includes a vacuum heat insulating panel 30 located on the surface, a frame body 14 extending from the periphery of the vacuum heat insulating panel 30 toward the storage room, and a vacuum heat insulating panel 30 and the frame. and a foam insulation 15 disposed in the space formed by the body 14 .

また、本実施例の断熱扉は、枠体14の貯蔵室側の左右には、前後方向に延びるレール部材16が固定されており、貯蔵室内の左右側面に設けられた箱側レール(図示せず)に沿って移動可能となっている。本実施例では、引き出し式の断熱扉を例に挙げて説明するため、レール部材16が設けられているが、回動式の断熱扉にも真空断熱パネル30を適用できるのは言うまでもない。 In the heat insulating door of this embodiment, rail members 16 extending in the front-rear direction are fixed to the left and right sides of the frame 14 on the storage room side, and box-side rails (not shown) are provided on the left and right sides of the storage room. It is possible to move along the In the present embodiment, the rail member 16 is provided in order to explain a drawer type heat insulating door as an example, but it goes without saying that the vacuum heat insulating panel 30 can also be applied to a rotating type heat insulating door.

本実施例のように、従来の真空断熱材ではなく、真空断熱パネル30を用いて断熱扉を構成することで、断熱扉の厚さを薄くすることができ、冷蔵庫全体としての外形寸法の省スペース化あるいは内容積の拡大が可能となる。また、真空断熱パネル30を扉の意匠面とすることから、金属蓋38のある面が内側(貯蔵室側)となるように構成される。これにより、意匠性が向上するだけでなく、金属蓋38による封止状態を確実に維持できる。 By constructing the heat insulating door using the vacuum heat insulating panel 30 instead of the conventional vacuum heat insulating material as in this embodiment, the thickness of the heat insulating door can be reduced, and the external dimensions of the refrigerator as a whole can be saved. It is possible to create a space or expand the internal volume. Since the vacuum insulation panel 30 is used as the design surface of the door, the surface with the metal lid 38 is configured to face the inside (the storage room side). As a result, not only is the design improved, but the sealed state by the metal lid 38 can be reliably maintained.

さらに、枠体14の貯蔵室側の面には、貯蔵室の前面開口部の形状に合わせるように、四角形状に周回するパッキン17が設けられている。このパッキン17は、図13に示すように、係止片17aを有しており、枠体14の貯蔵室側の縁部に形成されたパッキン挿入用凹部14aに係止片17aが挿入されることで、パッキン17が枠体14に係止される。なお、パッキン17は、断熱箱体側との密閉性を高めるために、磁石を有したゴム系材料で形成される。 Further, a rectangular packing 17 is provided on the surface of the frame 14 facing the storage compartment so as to match the shape of the front opening of the storage compartment. As shown in FIG. 13, the packing 17 has locking pieces 17a, which are inserted into packing insertion recesses 14a formed in the edge of the frame 14 on the storage chamber side. Thus, the packing 17 is locked to the frame body 14 . In addition, the packing 17 is made of a rubber-based material having a magnet in order to improve the sealing property with the heat insulating box side.

ここで、パッキン17が係止される箇所の枠体14は、パッキン挿入用凹部14aなどが形成されており、発泡断熱材15が他の箇所と比べて薄いため、貯蔵室内の冷熱が断熱扉の外へ伝わりやすい。しかし、本実施例では、真空断熱パネル30のうち外周封止部33(熱伝導率が比較的高い部分)が、パッキン挿入用凹部14aよりも外周側(扉縁部側)に位置している。したがって、パッキン17より内周側(扉中心側)における貯蔵室内の冷熱は、真空断熱パネル30のうち減圧空間(熱伝導率が比較的低い部分)で断熱され、外周封止部33を介して庫外へ伝わるのが防止される。なお、外周封止部33の全体がパッキン挿入用凹部14aより外周側にあるのが望ましいが、外周封止部33の一部だけがパッキン挿入用凹部14aより外周側にあるたけでも一定の効果が期待できる。 Here, the frame 14 at the location where the packing 17 is locked is formed with a packing insertion recess 14a and the like, and the foam insulation material 15 is thinner than other locations, so that the cold heat in the storage chamber is transferred to the heat insulating door. easily transmitted to the outside of However, in the present embodiment, the outer peripheral sealing portion 33 (the portion having relatively high thermal conductivity) of the vacuum insulation panel 30 is located on the outer peripheral side (door edge side) of the packing insertion recess 14a. . Therefore, cold heat in the storage chamber on the inner peripheral side (door center side) of the packing 17 is insulated in the vacuum space (portion with relatively low thermal conductivity) of the vacuum insulation panel 30, and passes through the outer peripheral sealing portion 33. It is prevented from being transmitted to the outside of the refrigerator. Although it is desirable that the entire outer peripheral sealing portion 33 is located on the outer peripheral side of the packing insertion recess 14a, a certain effect can be obtained even if only a part of the outer peripheral sealing portion 33 is located on the outer peripheral side of the packing insertion recess 14a. can be expected.

本実施例では、真空断熱パネル30を断熱扉の表面に位置させる構成であったが、この真空断熱パネル30の外側に、ガラス製や鋼製の外板を設ける構成であっても良い。 In this embodiment, the vacuum insulation panel 30 is positioned on the surface of the heat insulation door, but a glass or steel outer plate may be provided outside the vacuum insulation panel 30 .

本発明は、前述した各実施例に限定されるものではなく、種々の変形が可能である。例えば、前述した実施例1,2では、断熱箱体の左右側方および背面の壁に真空断熱パネル30を用いた構成を説明したが、断熱箱体の天面や底面の壁に真空断熱パネル30を用いても良い。また、前述した実施例は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。さらに、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。 The present invention is not limited to the embodiments described above, and various modifications are possible. For example, in Embodiments 1 and 2 described above, the vacuum insulation panels 30 are used on the left and right side walls and the rear wall of the insulation box, but the vacuum insulation panels are used on the top and bottom walls of the insulation box. 30 may be used. Further, the above-described embodiments are illustrated for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Furthermore, it is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.

1…冷蔵庫、2…冷蔵室、2a…冷蔵室扉、3…製氷室、3a…製氷室扉、4…上段冷凍室、4a…上段冷凍室扉、5…下段冷凍室、5a…下段冷凍室扉、6…野菜室、6a…野菜室扉、7…外箱、7a…天面板、7b,7c…側面板、7d…背面板、8…内箱、9…第1断熱仕切り、10…第2断熱仕切り、11a…第1冷却器、11b…第2冷却器、12…圧縮機、13…放熱パイプ、14…枠体、15…発泡断熱材、16…レール部材、17…パッキン、17a…係止片、18…真空断熱材、30…真空断熱パネル、31,32…金属板、33…外周封止部、34…減圧空間、35…スペーサ、36…蓋封止部、37…排気口、38…金属蓋、100…アルミテープ DESCRIPTION OF SYMBOLS 1... Refrigerator 2... Refrigerating compartment 2a... Refrigerating compartment door 3... Ice-making compartment 3a... Ice-making compartment door 4... Upper freezer compartment 4a... Upper freezer compartment door 5... Lower freezer compartment 5a... Lower freezer compartment Door 6... Vegetable compartment 6a... Vegetable compartment door 7... Outer box 7a... Top plate 7b, 7c... Side plate 7d... Back plate 8... Inner box 9... First insulation partition 10... Second 2 Thermal insulation partition 11a First cooler 11b Second cooler 12 Compressor 13 Radiation pipe 14 Frame 15 Foam insulation material 16 Rail member 17 Packing 17a Locking piece 18 Vacuum heat insulating material 30 Vacuum heat insulating panel 31, 32 Metal plate 33 Peripheral sealing portion 34 Depressurized space 35 Spacer 36 Lid sealing portion 37 Exhaust port , 38... metal lid, 100... aluminum tape

Claims (14)

対向配置された複数の金属板と、
複数の前記金属板の外周側を封止する、前記金属板と異なる材料の封止部と、
複数の前記金属板で囲まれた減圧空間と、で構成される断熱体を備えた断熱箱体。
a plurality of metal plates arranged facing each other;
a sealing portion made of a material different from that of the metal plates, which seals the outer peripheral sides of the plurality of metal plates;
and a vacuum space surrounded by a plurality of the metal plates.
請求項1に記載の断熱箱体であって、
収納空間を形成する内箱を有し、
背面に位置する前記断熱体は、その減圧空間の前方投影が前記収納空間の少なくとも一部と重なり、その封止部の前方投影が前記収納空間の少なくとも一部と重ならない断熱箱体。
The heat insulating box according to claim 1,
having an inner box that forms a storage space,
A heat insulating box body in which the front projection of the depressurized space of the heat insulator located on the back surface overlaps at least a part of the storage space, and the front projection of the sealing portion does not overlap at least a part of the storage space.
請求項1に記載の断熱箱体であって、
収納空間を形成する内箱を有し、
側面に位置する前記断熱体は、その減圧空間の側方投影が前記収納空間の少なくとも一部と重なり、その封止部の側方投影が前記収納空間の少なくとも一部と重ならない断熱箱体。
The heat insulating box according to claim 1,
having an inner box forming a storage space,
A heat insulating box body in which the lateral projection of the depressurized space of the heat insulating body located on the side surface overlaps at least a part of the storage space, and the lateral projection of the sealing portion does not overlap at least a part of the storage space.
請求項1に記載の断熱箱体であって、
圧縮機が吐出した冷媒が流れる放熱パイプが、前記封止部の近傍に配置される断熱箱体。
The heat insulating box according to claim 1,
A heat insulating box in which a heat radiating pipe through which a refrigerant discharged by a compressor flows is arranged near the sealing portion.
請求項1に記載の断熱箱体であって、
前記断熱体は、短手方向視で凹部を有する形状である断熱箱体。
The heat insulating box according to claim 1,
The heat insulating body is a heat insulating box having a shape having a concave portion when viewed from the lateral direction.
請求項1に記載の断熱箱体であって、
鋼板製の外箱を有し、
圧縮機が吐出した冷媒が流れる放熱パイプが、前記外箱の内面の一部に略接して配置され、
前記断熱体が、前記外箱の内面の他の一部に面して配置される断熱箱体。
The heat insulating box according to claim 1,
It has an outer case made of steel plate,
A heat radiating pipe through which the refrigerant discharged by the compressor flows is arranged substantially in contact with a part of the inner surface of the outer case,
A heat insulating box in which the heat insulator is arranged to face another part of the inner surface of the outer box.
請求項1に記載の断熱箱体であって、
前記金属板が前記封止部の外端よりも突出しており、
圧縮機が吐出した冷媒が流れる放熱パイプが、前記金属板に略接する断熱箱体。
The heat insulating box according to claim 1,
The metal plate protrudes from the outer end of the sealing portion,
A heat insulating box body in which a heat radiation pipe through which a refrigerant discharged by a compressor flows is substantially in contact with the metal plate.
請求項1に記載の断熱箱体であって、
前記断熱体が意匠面を形成している断熱箱体。
The heat insulating box according to claim 1,
A heat insulating box body in which the heat insulating body forms a design surface.
請求項8に記載の断熱箱体であって、
前記断熱体は、複数の前記金属板のうち、意匠面を形成しない前記金属板に、前記封止部とは異なる蓋封止部が設けられる断熱箱体。
The heat insulating box according to claim 8,
The heat insulating body is a heat insulating box body in which a lid sealing portion different from the sealing portion is provided on the metal plate, which does not form a design surface, among the plurality of metal plates.
請求項8に記載の断熱箱体であって、
前記断熱体は、意匠面を形成する前記金属板が、意匠面を形成しない前記金属板よりも厚い断熱箱体。
The heat insulating box according to claim 8,
The heat insulating body is a heat insulating box body in which the metal plate forming the design surface is thicker than the metal plate not forming the design surface.
対向配置された複数の金属板と、
複数の前記金属板の外周側を封止する、前記金属板と異なる材料の封止部と、
複数の前記金属板で囲まれた減圧空間と、で構成される断熱体を備えた断熱扉。
a plurality of metal plates arranged facing each other;
a sealing portion made of a material different from that of the metal plates, which seals the outer peripheral sides of the plurality of metal plates;
and a vacuum space surrounded by a plurality of said metal plates.
請求項11に記載の断熱扉であって、
前記断熱体が意匠面を形成している断熱扉。
The insulated door of claim 11, comprising:
A heat insulating door, wherein the heat insulating body forms a design surface.
請求項11に記載の断熱扉であって、
前記断熱体は、複数の前記金属板のうち、意匠面を形成しない前記金属板に、前記封止部とは異なる蓋封止部が設けられる断熱扉。
The insulated door of claim 11, comprising:
The heat insulator is an insulated door in which a cover sealing portion different from the sealing portion is provided on the metal plate, which does not form a design surface, among the plurality of metal plates.
請求項11に記載の断熱扉であって、
前記断熱体は、意匠面を形成する前記金属板が、意匠面を形成しない前記金属板よりも厚い断熱扉。
The insulated door of claim 11, comprising:
In the heat insulator, the metal plate forming the design surface is thicker than the metal plate not forming the design surface.
JP2021069732A 2021-04-16 2021-04-16 Heat insulating box body and heat insulating door Pending JP2022164316A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021069732A JP2022164316A (en) 2021-04-16 2021-04-16 Heat insulating box body and heat insulating door
CN202210147571.2A CN115218586A (en) 2021-04-16 2022-02-17 Heat insulation box and heat insulation door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021069732A JP2022164316A (en) 2021-04-16 2021-04-16 Heat insulating box body and heat insulating door

Publications (1)

Publication Number Publication Date
JP2022164316A true JP2022164316A (en) 2022-10-27

Family

ID=83606959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021069732A Pending JP2022164316A (en) 2021-04-16 2021-04-16 Heat insulating box body and heat insulating door

Country Status (2)

Country Link
JP (1) JP2022164316A (en)
CN (1) CN115218586A (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269177A (en) * 1996-03-29 1997-10-14 Sanyo Electric Co Ltd Refrigerator
JP2003154534A (en) * 2001-11-22 2003-05-27 Asahi Glass Matex Co Ltd Vacuum heat insulator and method for manufacturing fiber-reinforced synthetic resin molding
JP2010145001A (en) * 2008-12-18 2010-07-01 Sharp Corp Heat insulating case body for refrigerator
EP2627957B1 (en) * 2010-10-11 2019-11-06 LG Electronics Inc. Vacuum insulation glass panel and refrigerator having the same
JP5250080B2 (en) * 2011-06-07 2013-07-31 シャープ株式会社 refrigerator
JP2013242100A (en) * 2012-05-22 2013-12-05 Mitsubishi Electric Corp Refrigerator heat-insulation box body
CN102997538A (en) * 2012-12-17 2013-03-27 合肥美的荣事达电冰箱有限公司 Refrigerator
JP2016080281A (en) * 2014-10-20 2016-05-16 日立アプライアンス株式会社 Heat insulation box body and heat insulation door
JP6918671B2 (en) * 2017-10-06 2021-08-11 東芝ライフスタイル株式会社 refrigerator
KR102466446B1 (en) * 2017-12-13 2022-11-11 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
JP6788726B2 (en) * 2019-12-27 2020-11-25 シャープ株式会社 refrigerator

Also Published As

Publication number Publication date
CN115218586A (en) 2022-10-21

Similar Documents

Publication Publication Date Title
JP3478771B2 (en) refrigerator
JP5337681B2 (en) refrigerator
JP5677737B2 (en) refrigerator
KR20030007544A (en) Heat insulation box, and vacuum heat insulation material used therefor
WO2014024601A1 (en) Heat insulating box, and refrigerator with heat insulating box
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP6002641B2 (en) Vacuum insulation and refrigerator
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP6964810B2 (en) refrigerator
JP2008298360A (en) Heat insulation case body for cooling storage
JP2013242100A (en) Refrigerator heat-insulation box body
JP2004125394A (en) Refrigerator
JP6469232B2 (en) refrigerator
JP2022164316A (en) Heat insulating box body and heat insulating door
JPH10253244A (en) Refrigerator
JPH10205994A (en) Heat insulation box body of cooling storage
JPH11159950A (en) Heat insulating box body for refrigerator
JP6191008B2 (en) refrigerator
JP2015148251A (en) Vacuum heat insulation material, refrigerator and process of manufacture of vacuum heat insulation material
JP2004286252A (en) Heat insulation panel
JP2013185735A (en) Refrigerator
JP2012229849A (en) Refrigerator and freezer
JP6000922B2 (en) Vacuum heat insulating material and cooling / heating equipment using the same
JP2015064134A (en) Refrigerator
JP6225324B2 (en) Heat insulation box