JP5578266B1 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5578266B1
JP5578266B1 JP2013189196A JP2013189196A JP5578266B1 JP 5578266 B1 JP5578266 B1 JP 5578266B1 JP 2013189196 A JP2013189196 A JP 2013189196A JP 2013189196 A JP2013189196 A JP 2013189196A JP 5578266 B1 JP5578266 B1 JP 5578266B1
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
groove
refrigerator
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013189196A
Other languages
Japanese (ja)
Other versions
JP2015007526A (en
Inventor
美桃子 井下
愼一 堀井
和幸 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2013189196A priority Critical patent/JP5578266B1/en
Application granted granted Critical
Publication of JP5578266B1 publication Critical patent/JP5578266B1/en
Publication of JP2015007526A publication Critical patent/JP2015007526A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/061Walls with conduit means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)

Abstract

【課題】真空断熱材に溝を設けた場合でも断熱箱体の外観変形を生じさせず、意匠性の高い冷蔵庫を提供することを目的とする。
【解決手段】真空断熱材103は凹形状の横溝105を有し、横溝105に放熱パイプを配置するとともに、発泡断熱材109を介在して断熱箱体110の外側と横溝105とを連通する連通部材124を備えたことにより、真空断熱材103に凹部形状の横溝105を設けた冷蔵庫において、横溝105内の空気を密閉せず、外気と連通する事ができ、温度変化による圧力変動を抑制が可能となり、真空断熱材103を備えた断熱箱体110の外観変形を抑制することができる。
【選択図】図4
An object of the present invention is to provide a refrigerator having high design without causing external appearance deformation of a heat insulating box even when a groove is provided in a vacuum heat insulating material.
A vacuum heat insulating material (103) has a concave horizontal groove (105), a heat radiating pipe is disposed in the horizontal groove (105), and communication between the outside of the heat insulating box (110) and the horizontal groove (105) is interposed via a foam heat insulating material (109). By providing the member 124, in the refrigerator in which the vacuum heat insulating material 103 is provided with the recessed lateral groove 105, the air in the lateral groove 105 can be communicated with the outside air without being sealed, and pressure fluctuation due to temperature change can be suppressed. It becomes possible, and the external appearance deformation | transformation of the heat insulation box 110 provided with the vacuum heat insulating material 103 can be suppressed.
[Selection] Figure 4

Description

本発明は、断熱箱体に真空断熱材を配設した冷蔵庫に関するものである。   The present invention relates to a refrigerator in which a vacuum heat insulating material is disposed in a heat insulating box.

近年、冷蔵庫の大容量化及び設置スペース縮小の需要が高まるにつれて、冷蔵庫断熱壁を薄肉化する、さらには、真空断熱材を配置挿入させ、且つ省エネの為の放熱パイプからの熱干渉抑制を図り、断熱性能の向上を図っている冷蔵庫が開発されている。(例えば、特許文献1参照)
以下、図面を参照にしながら上記従来の冷蔵庫を説明する。
In recent years, as the demand for larger refrigerators and smaller installation spaces has increased, the refrigerator insulation walls have been made thinner, vacuum insulation has been placed and inserted, and heat interference from the heat radiating pipe has been reduced for energy saving. Refrigerators that improve thermal insulation performance have been developed. (For example, see Patent Document 1)
Hereinafter, the conventional refrigerator will be described with reference to the drawings.

図17には、特許文献1に記載されている従来の冷蔵庫を説明する冷蔵庫横断面図を示す。図17において、外箱31と内箱32間に発泡断熱材41を充填した断熱箱体10と、外箱31の内面側に配される放熱パイプ33と、芯材14を外被材15で覆って内部が減圧されるとともに放熱パイプ33が嵌められる溝部11を設けた真空断熱パネル13とを備えた冷蔵庫において、真空断熱パネル13は、溝部11を形成した面の裏面に溝部11に対向して形成されるとともに溝部11よりも長手方向に垂直な幅が広い凸部12を有することにより断熱性能を向上して省エネルギー化を図ることができる。   In FIG. 17, the refrigerator cross-sectional view explaining the conventional refrigerator described in patent document 1 is shown. In FIG. 17, the heat insulating box 10 in which the foam heat insulating material 41 is filled between the outer box 31 and the inner box 32, the heat radiating pipe 33 disposed on the inner surface side of the outer box 31, and the core material 14 with the outer cover material 15. In the refrigerator including the vacuum heat insulating panel 13 provided with the groove portion 11 in which the inside is reduced in pressure and the heat radiating pipe 33 is fitted, the vacuum heat insulating panel 13 faces the groove portion 11 on the back surface of the surface on which the groove portion 11 is formed. By forming the convex portion 12 having a width perpendicular to the longitudinal direction of the groove portion 11 and wider than the groove portion 11, the heat insulation performance can be improved and energy saving can be achieved.

特開2008−64323号公報JP 2008-64323 A

しかしながら、上記従来の構成では各々における効果はあるものの、近年の冷蔵庫の大容量化及び設置スペース縮小の需要や、省エネに対するニーズに対しては、不十分であった。   However, although the above-described conventional configurations have the respective effects, they are insufficient for the recent demands for increasing the capacity of the refrigerator and reducing the installation space, and the needs for energy saving.

すなわち、冷蔵庫の大容量化を図るには冷蔵庫断熱壁を薄肉化することや、無効スペースを無くすことが有効である。そのため、冷蔵庫断熱壁の薄肉化には真空断熱材を挿入したり、無効スペースを無くすために機械室のコンデンサ(冷蔵庫下部に配置される)を冷蔵庫側面に貼り付けている放熱パイプで置き換える工夫がなされる。   That is, in order to increase the capacity of the refrigerator, it is effective to reduce the thickness of the refrigerator heat insulating wall or eliminate the ineffective space. Therefore, in order to reduce the thickness of the refrigerator heat insulation wall, it is possible to insert a vacuum heat insulating material or to replace the condenser in the machine room (located at the bottom of the refrigerator) with a heat radiating pipe attached to the side of the refrigerator in order to eliminate the ineffective space. Made.

このとき、冷蔵庫本体背面及び側面に貼り付けている真空断熱材に凹状の溝を形成することで放熱パイプを覆い、断熱効果の向上と冷蔵庫断面壁の薄肉化を図る。   At this time, a heat sink is covered by forming a concave groove in the vacuum heat insulating material affixed to the back surface and the side surface of the refrigerator main body, thereby improving the heat insulating effect and thinning the refrigerator cross section wall.

一方、真空断熱材に形成する凹状の溝は直線形状でしか信頼性を保つことができず、冷蔵庫側面の上部や下部における放熱パイプの折り曲げ形状部に対応して、真空断熱材に溝を設けることができないという課題を有していた。   On the other hand, the concave groove formed in the vacuum heat insulating material can be kept reliable only in a linear shape, and the vacuum heat insulating material is provided with a groove corresponding to the bent shape portion of the heat radiating pipe at the upper and lower sides of the refrigerator side. I had the problem that I couldn't.

そのため、冷蔵庫の上部や下部の放熱パイプの折り曲げ形状部まで真空断熱材を貼り付けることができず、また、庫内容量確保のため壁厚を薄くすると外箱強度が低下したり、箱体侵入熱量が増加し、省エネと大容量化の両立が困難で省エネが頭打ちになっているという課題を有していた。   For this reason, it is not possible to apply vacuum insulation to the bent shape of the radiating pipe at the top and bottom of the refrigerator, and if the wall thickness is reduced to secure the storage capacity, the strength of the outer box will decrease or the box will enter. The amount of heat has increased, and it has been difficult to achieve both energy saving and large capacity.

本発明は、上記の課題を解決するもので、冷蔵庫断面壁を薄肉化しても強度確保ができ、小スペースで大容量、かつ省エネ性能の高い冷蔵庫を提供することを目的とする。   An object of the present invention is to solve the above-described problems, and to provide a refrigerator that can secure strength even when the refrigerator cross-sectional wall is thinned, has a small space, a large capacity, and high energy saving performance.

上記従来の課題を解決するために、本発明の冷蔵庫は、外箱と内箱との間に発泡断熱材を充填した断熱箱体と、前記外箱の内側に配設された放熱パイプと、前記放熱パイプの庫内側に、芯材をガスバリア性フィルムで覆い、その内部を減圧し密封した真空断熱材とを
備え、前記真空断熱材は凹形状の溝を有し、前記溝に前記放熱パイプを配置するとともに、前記発泡断熱材を介在して前記断熱箱体の外側と前記溝とを連通する連通部材を備えたもので、前記冷蔵庫側面下部稜線部には補強部材を有し、前記連通部材の一端は前記外箱と前記補強部材の間の外気と連通する空間に配置したものである。
In order to solve the above-described conventional problems, the refrigerator of the present invention includes a heat insulating box body filled with a foam heat insulating material between an outer box and an inner box, a heat radiating pipe disposed inside the outer box, The inside of the heat radiating pipe is provided with a vacuum heat insulating material which covers a core material with a gas barrier film and whose inside is decompressed and sealed. The vacuum heat insulating material has a concave groove, and the heat radiating pipe is disposed in the groove. And a communication member that communicates the outside of the heat insulation box and the groove with the foam heat insulating material interposed therebetween, and has a reinforcing member at the refrigerator side lower ridge line portion, and the communication One end of the member is disposed in a space communicating with the outside air between the outer box and the reinforcing member .

上記構成により、前記溝内の空気を密閉せず、外気と連通する事により、温度変化による圧力変動を抑制することができる。   With the above configuration, pressure fluctuation due to temperature change can be suppressed by communicating with the outside air without sealing the air in the groove.

本発明の冷蔵庫は、上記構成により、真空断熱材に凹部形状の溝を設けた冷蔵庫において、前記溝内の空気を密閉せず、外気と連通する事ができ、温度変化による圧力変動を抑制が可能となり、真空断熱材を備えた断熱箱体の外観変形を抑制することができる。   With the above configuration, the refrigerator according to the present invention is a refrigerator in which a recess-shaped groove is provided in a vacuum heat insulating material, and does not seal the air in the groove and can communicate with the outside air, thereby suppressing pressure fluctuation due to temperature change. It becomes possible and the external appearance deformation | transformation of the heat insulation box provided with the vacuum heat insulating material can be suppressed.

本発明の実施の形態1による冷蔵庫の斜視図The perspective view of the refrigerator by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵庫を説明する側面断面図Side surface sectional drawing explaining the refrigerator by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵庫を説明する側面断面図Side surface sectional drawing explaining the refrigerator by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵庫を説明する側面断面図Side surface sectional drawing explaining the refrigerator by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵庫の図4のD部簡易拡大図The D section simple enlarged view of FIG. 4 of the refrigerator by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵庫に用いる真空断熱材の平面図The top view of the vacuum heat insulating material used for the refrigerator by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵庫に用いる真空断熱材を示す図6のB−B断面図BB sectional drawing of FIG. 6 which shows the vacuum heat insulating material used for the refrigerator by Embodiment 1 of this invention. 本発明の実施の形態1による冷蔵庫に用いられる真空断熱材を示す図6のC−C断面図CC sectional drawing of FIG. 6 which shows the vacuum heat insulating material used for the refrigerator by Embodiment 1 of this invention. 本発明の実施の形態1による冷蔵庫を説明する図1のA−A断面図1 is a cross-sectional view taken along the line AA in FIG. 1 for explaining the refrigerator according to the first embodiment of the present invention. 本発明の参考例における冷蔵庫に用いる真空断熱材の平面図The top view of the vacuum heat insulating material used for the refrigerator in the reference example of this invention 本発明の実施の形態3における冷蔵庫の断面図Sectional drawing of the refrigerator in Embodiment 3 of this invention 同実施の形態の冷蔵庫の真空断熱材と放熱パイプの正面図Front view of vacuum heat insulating material and heat radiating pipe of refrigerator in same embodiment 本発明の実施の形態4における冷蔵庫の断面図Sectional drawing of the refrigerator in Embodiment 4 of this invention 同実施の形態の冷蔵庫の放熱パイプの斜視図The perspective view of the heat radiating pipe of the refrigerator of the embodiment 同実施の形態の冷蔵庫の真空断熱材と放熱パイプの正面図Front view of vacuum heat insulating material and heat radiating pipe of refrigerator in same embodiment 本発明の実施の形態5における冷蔵庫の真空断熱材と放熱パイプの正面図Front view of the vacuum heat insulating material and the heat radiating pipe of the refrigerator in the fifth embodiment of the present invention 従来の冷蔵庫の断熱箱体の側壁水平断面図Side wall horizontal sectional view of a conventional heat insulation box of a refrigerator

請求項1に記載の発明は、外箱と内箱との間に発泡断熱材を充填した断熱箱体と、前記外箱の内側に配設された放熱パイプと、前記放熱パイプの庫内側に、芯材をガスバリア性フィルムで覆い、その内部を減圧し密封した真空断熱材とを備え、前記真空断熱材は凹形状の溝を有し、前記溝に前記放熱パイプを配置するとともに、前記発泡断熱材を介在して前記断熱箱体の外側と前記溝とを連通する連通部材を備えたもので、前記冷蔵庫側面下部稜線部には補強部材を有し、前記連通部材の一端は前記外箱と前記補強部材の間の外気と連通する空間に配置したことにより、真空断熱材に凹部形状の溝を設けた冷蔵庫において、前記溝内の空気を密閉せず、外気と連通する事ができ、温度変化による圧力変動を抑制が可能となり、真空断熱材を備えた断熱箱体の外観変形を抑制することができる。 The invention according to claim 1 is a heat insulating box body filled with a foam heat insulating material between the outer box and the inner box, a heat radiating pipe disposed inside the outer box, and an inner side of the heat radiating pipe. And a vacuum heat insulating material in which the core material is covered with a gas barrier film and the inside thereof is decompressed and sealed. The vacuum heat insulating material has a concave groove, and the heat dissipation pipe is disposed in the groove, and the foam It is provided with a communication member that communicates the outside of the heat insulation box and the groove with a heat insulating material interposed therebetween, and has a reinforcing member at the refrigerator side lower ridge line portion, and one end of the communication member is the outer box In the refrigerator provided with a recess-shaped groove in the vacuum heat insulating material, it is possible to communicate with the outside air without sealing the air in the groove. Pressure fluctuation due to temperature change can be suppressed, and vacuum insulation is provided. And the appearance deformation of the insulating box body can be suppressed.

請求項2に記載の発明は、請求項1に記載の発明において、前記真空断熱材端部は糊面を備えたことにより、発泡断熱材の流入を防止でき、外観変形抑制が可能となる。   According to a second aspect of the present invention, in the first aspect of the invention, the end of the vacuum heat insulating material is provided with a glue surface, so that the inflow of the foam heat insulating material can be prevented, and the appearance deformation can be suppressed.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記真空断熱材は前記断熱箱体の前面側から背面側へ凹形状の横溝を有し、前記連通部材の一端が前記横溝内に埋設されたことにより、連結部材が真空断熱材の溝に覆われた範囲内で屈折部のない形状にすることが可能となり、連結部材の簡素化を図ることができる。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the vacuum heat insulating material has a concave lateral groove from the front side to the back side of the heat insulating box, and one end of the communication member is By being embedded in the lateral groove, the connecting member can be formed into a shape having no refracting portion within a range covered with the groove of the vacuum heat insulating material, and the connecting member can be simplified.

請求項4に記載の発明は、外箱と内箱との間に発泡断熱材を充填した断熱箱体と、前記外箱の内側に配設された放熱パイプと、前記放熱パイプの庫内側に、芯材をガスバリア性フィルムで覆い、その内部を減圧し密封した真空断熱材とを備え、前記真空断熱材は、縦溝と横溝とを備え、前記縦溝と横溝とは互いに交差して前記真空断熱材の端部で開口し、前記真空断熱材の外周縁における前記縦溝と横溝の無い部分を基準壁厚とするとともに、前記発泡断熱材を介在して前記断熱箱体の外側と前記縦溝あるいは横溝と連通する連通部材を備えたことにより、製造工程を安価に抑えながら、放熱パイプの被覆率を高め、真空断熱材周縁の断熱性能向上、曲げ弾性強度向上、真空断熱材のソリの発生を防止でき、断熱性能と断熱箱体の強度と外観品位とを高めることができるとともに、温度変化による圧力変動を抑制が可能となり、真空断熱材を備えた断熱箱体の外観変形を抑制することができる。 Invention of Claim 4 is the heat insulation box body which filled the foam heat insulating material between the outer box and the inner box, the heat radiating pipe arrange | positioned inside the said outer box, and the warehouse inside of the said heat radiating pipe. And a vacuum heat insulating material that covers the core material with a gas barrier film and whose inside is decompressed and sealed, and the vacuum heat insulating material includes a vertical groove and a horizontal groove, and the vertical groove and the horizontal groove intersect each other and Opening at the end of the vacuum heat insulating material, the portion without the vertical groove and the horizontal groove in the outer peripheral edge of the vacuum heat insulating material as a reference wall thickness, and the outside of the heat insulating box body and the above through the foam heat insulating material By providing a communication member that communicates with the vertical or horizontal groove, the manufacturing process is kept inexpensive, while increasing the coverage of the heat radiating pipe, improving the heat insulation performance of the vacuum insulation material periphery, improving the bending elastic strength, and reducing the warpage of the vacuum insulation material. Can be prevented, heat insulation performance and strength and appearance of the heat insulation box It is possible to increase the position, it is possible to suppress the pressure fluctuation due to temperature change can be suppressed appearance deformation of the insulating box body provided with a vacuum heat insulating material.

以下、本発明による真空断熱材の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Embodiments of a vacuum heat insulating material according to the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1による冷蔵庫の斜視図である。図2、3、4は本発明の実施の形態1による冷蔵庫の側面断面図である。図5は本発明の実施の形態1による冷蔵庫の図4のD部簡易拡大図である。図6は本発明の実施の形態1による冷蔵庫に用いられる真空断熱材の平面図である。図7は本発明の実施の形態1による冷蔵庫に用いられる真空断熱材を示す図6のB−B断面図である。図8は本発明の実施の形態1による冷蔵庫に用いられる真空断熱材を示す図6のC−C断面図である。図9は本発明の実施の形態1による冷蔵庫を説明する図1のA−A断面図である。
(Embodiment 1)
FIG. 1 is a perspective view of a refrigerator according to Embodiment 1 of the present invention. 2, 3 and 4 are side sectional views of the refrigerator according to Embodiment 1 of the present invention. FIG. 5 is a simplified enlarged view of part D of FIG. 4 of the refrigerator according to Embodiment 1 of the present invention. FIG. 6 is a plan view of a vacuum heat insulating material used in the refrigerator according to Embodiment 1 of the present invention. 7 is a BB cross-sectional view of FIG. 6 showing a vacuum heat insulating material used in the refrigerator according to Embodiment 1 of the present invention. 8 is a cross-sectional view taken along the line CC of FIG. 6 showing the vacuum heat insulating material used in the refrigerator according to Embodiment 1 of the present invention. FIG. 9 is a cross-sectional view taken along the line AA of FIG. 1 for explaining the refrigerator according to the first embodiment of the present invention.

図1から図9において、冷蔵庫本体112は、前方に開口する金属製(例えば鉄板)の外箱107と硬質樹脂製(例えばABS)の内箱108と、外箱107と内箱108の間に発泡充填された発泡断熱材109からなる断熱箱体で、この本体の上部に設けられた貯蔵室である冷蔵室113と、冷蔵室113の下に設けられて冷凍温度帯から冷蔵、野菜、チルド等の温度帯に切り替え可能な切替室114と、冷蔵室113の下で切替室114に並列に設けられた製氷室115と、本体下部に設けられた野菜室116と、並列に設置された切替室114及び製氷室115と野菜室116の間に設けられた冷凍室117で構成されている。切替室114と製氷室115と野菜室116と冷凍室117の前面部は引き出し式の図示しない扉により開閉自由に閉塞されると共に、冷蔵室113の前面は、例えば観音開き式の図示しない扉により開閉自由に閉塞される。   In FIG. 1 to FIG. 9, the refrigerator main body 112 is formed between a metal (for example, iron plate) outer box 107 and a hard resin (for example, ABS) inner box 108, and between the outer box 107 and the inner box 108. A heat insulating box 109 made of foam heat insulating material 109 filled with foam, a refrigerating room 113 as a storage room provided at the top of the main body, and a refrigerating, vegetable, chilled from the freezing temperature zone provided under the refrigerating room 113 Switching chamber 114 that can be switched to a temperature zone such as, ice making chamber 115 provided in parallel to switching chamber 114 under refrigeration chamber 113, vegetable chamber 116 provided in the lower part of the main body, and switching installed in parallel It is comprised of a freezing room 117 provided between the room 114 and the ice making room 115 and the vegetable room 116. The front portions of the switching chamber 114, the ice making chamber 115, the vegetable chamber 116, and the freezer compartment 117 are freely opened and closed by a drawer-type door (not shown), and the front surface of the refrigerator compartment 113 is opened and closed by a door-opening door (not shown), for example. Freely blocked.

冷蔵庫本体112の背面には冷却室があり、冷気を生成する冷却器118と、冷気を各室に供給する冷気送風ファン119とを有し、庫内の温度検知センサー(図示せず)とダンパ等(図示せず)により庫内温度が制御されている。また、冷却器118下方には除霜手段(図示せず)が設置されている。また、冷却器118の材質は、アルミや銅が用いられる。   There is a cooling chamber on the back of the refrigerator main body 112, and includes a cooler 118 that generates cool air and a cool air blower fan 119 that supplies the cool air to each chamber, and a temperature detection sensor (not shown) and a damper inside the refrigerator. Etc. (not shown), the internal temperature is controlled. Further, a defrosting means (not shown) is installed below the cooler 118. The cooler 118 is made of aluminum or copper.

冷蔵庫本体112は、本体天面奥部に配置された圧縮機120と、コンデンサ(図示せず)と、放熱用の放熱パイプ111と、キャピラリーチューブ121と、冷却器118とを順次環状に接続してなる冷凍サイクルに冷媒を封入し、冷却運転を行う。前記冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。   The refrigerator main body 112 is formed by sequentially connecting a compressor 120, a condenser (not shown), a heat radiating pipe 111, a capillary tube 121, and a cooler 118, which are arranged at the back of the top of the main body, in an annular shape. The refrigerant is sealed in the refrigeration cycle and the cooling operation is performed. In recent years, a flammable refrigerant is often used as the refrigerant for environmental protection.

冷蔵庫本体112の背面及び側面には、放熱用の放熱パイプ111が配設されており、一本のパイプを例えばU字に折り曲げることで放熱長さを確保し、外箱107にアルミテープ等で固定し、貼り付けられている。放熱パイプ111は通常、冷蔵庫本体の外箱各表
面に分割されて貼り付けてあり、機械室にて各面のパイプを溶接し、接続している。
A heat radiating pipe 111 is disposed on the back and side surfaces of the refrigerator main body 112, and a heat radiating length is secured by bending one pipe into, for example, a U-shape, and the outer box 107 is secured with aluminum tape or the like. Fixed and pasted. The heat radiating pipe 111 is usually divided and attached to each surface of the outer box of the refrigerator main body, and pipes on each surface are welded and connected in the machine room.

そして、冷蔵庫側面には配設してある放熱パイプ111に真空断熱材103が貼り付けてある。真空断熱材103の上端部は内箱108の天面部より上方に延出して配置し、下端部は内箱108の底面部より下方に延出して配置されている。真空断熱材103が内箱108から延出している部分は真空断熱材の一部分でも良い。また、真空断熱材103の最上下端のどちらか一方が内箱108の上下端面より延出して配置してもよい。   And the vacuum heat insulating material 103 is affixed on the thermal radiation pipe 111 arrange | positioned at the refrigerator side surface. The upper end portion of the vacuum heat insulating material 103 is arranged to extend upward from the top surface portion of the inner box 108, and the lower end portion is arranged to extend downward from the bottom surface portion of the inner box 108. The part where the vacuum heat insulating material 103 extends from the inner box 108 may be a part of the vacuum heat insulating material. Further, either one of the upper and lower ends of the vacuum heat insulating material 103 may extend from the upper and lower end surfaces of the inner box 108.

真空断熱材103には、放熱パイプ埋め込み溝があり、放熱パイプ埋め込み溝は、縦溝104と横溝105とを備え、縦溝104と横溝105とは互いに直行してほぼ90°で交差し、縦溝104と横溝105は少なくとも前記真空断熱材の表面において互いに交差するとともに、真空断熱材103の上下左右の端面まで溝を形成し端部で開口した構造としている。また、真空断熱材103は矩形状に形成され、縦溝104は真空断熱材103の長手方向に沿って所定間隔をおいて複数形成し、横溝105は真空断熱材103の短手方向に沿って上部および下部に形成している。   The vacuum heat insulating material 103 has a heat radiating pipe embedded groove, and the heat radiating pipe embedded groove includes a vertical groove 104 and a horizontal groove 105, and the vertical groove 104 and the horizontal groove 105 are orthogonal to each other and intersect at approximately 90 °. The grooves 104 and the lateral grooves 105 intersect each other at least on the surface of the vacuum heat insulating material, and have a structure in which grooves are formed to the upper, lower, left and right end surfaces of the vacuum heat insulating material 103 and are opened at the end portions. Further, the vacuum heat insulating material 103 is formed in a rectangular shape, a plurality of vertical grooves 104 are formed at predetermined intervals along the longitudinal direction of the vacuum heat insulating material 103, and the lateral grooves 105 are formed along the short direction of the vacuum heat insulating material 103. Formed at the top and bottom.

具体的には、縦溝104の溝幅は4.2mm、溝深さ4.0mmとし、放熱パイプ111の外径4.0mmよりやや大きく形成している。なお、真空断熱材103は外箱107に接着剤等で固定される。   Specifically, the longitudinal groove 104 has a groove width of 4.2 mm and a groove depth of 4.0 mm, which is slightly larger than the outer diameter of the heat radiating pipe 111 of 4.0 mm. The vacuum heat insulating material 103 is fixed to the outer box 107 with an adhesive or the like.

また、本実施の形態では、縦溝104と横溝105がほぼ直角に交わっており、縦溝の幅より横溝の幅の方が広く形成されている。   In the present embodiment, the vertical groove 104 and the horizontal groove 105 intersect at a substantially right angle, and the width of the horizontal groove is wider than the width of the vertical groove.

具体的には、横溝は天面壁のウレタン充填部より下方の貯蔵室側に位置しており、例えば内箱上部端部から55mmの位置から溝幅70mmで形成されている。   Specifically, the lateral groove is located on the storage chamber side below the urethane filling portion of the top wall, and is formed, for example, with a groove width of 70 mm from a position 55 mm from the upper end of the inner box.

また、縦溝104および横溝105はそれぞれ複数本形成し、縦溝104の本数は横溝105の本数より多く形成されている。   A plurality of vertical grooves 104 and horizontal grooves 105 are formed, and the number of vertical grooves 104 is larger than the number of horizontal grooves 105.

放熱パイプ111は最下段の野菜室116部分、および最上段の冷蔵室113部分の冷蔵温度帯で屈曲部127を配置しており、被覆率が大きくできる真空断熱材を貼り付けている。すなわち、放熱パイプ111は、内箱108の天面部より下方で、かつ内箱108の底面部より上方に配置している。また、冷蔵庫背面方向には、冷却室があるため放熱パイプ111は冷却室の前面までの配設としているがこの限りではない。   The heat radiating pipe 111 has a bent portion 127 arranged in the refrigeration temperature zone of the lowermost vegetable compartment 116 portion and the uppermost refrigerated compartment 113 portion, and is attached with a vacuum heat insulating material capable of increasing the coverage. That is, the heat radiating pipe 111 is disposed below the top surface portion of the inner box 108 and above the bottom surface portion of the inner box 108. In addition, since there is a cooling chamber in the rear side of the refrigerator, the heat radiating pipe 111 is arranged up to the front surface of the cooling chamber, but this is not restrictive.

冷蔵室113は冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されている。野菜室116は冷蔵室113と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。低温にすれば葉野菜の鮮度を長期間維持することが可能である。冷凍室117は冷凍保存のために通常−22から−18℃で設定されているが、冷凍保存状態の向上のために、たとえば−30から−25℃の低温で設定されることもある。   The refrigerator compartment 113 is normally set at 1 to 5 ° C. with the temperature not frozen for refrigerated storage as the lower limit. The vegetable room 116 is often set to 2 ° C. to 7 ° C., which is the same or slightly higher temperature setting as the refrigerator room 113. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time. The freezer compartment 117 is normally set at −22 to −18 ° C. for frozen storage, but may be set at a low temperature of −30 to −25 ° C., for example, to improve the frozen storage state.

冷蔵室113や野菜室116は庫内をプラス温度で設定されるので、冷蔵温度帯を呼ばれる。また、冷凍室117や製氷室115は庫内をマイナス温度で設定されるので、冷凍温度帯を呼ばれる。   The refrigerator compartment 113 and the vegetable compartment 116 are called a refrigerator temperature zone because the inside is set at a plus temperature. Moreover, since the freezer compartment 117 and the ice making compartment 115 are set at a minus temperature in the interior, they are called freezing temperature zones.

また、冷蔵庫本体112の側面下部稜線部には強度向上の為の補強部材200を有している。補強部材200は外箱107の底面から背面に立ち上がって形成され、補強部材200と外箱107には外気と連通する部品間空間201を備えている。   In addition, a reinforcing member 200 for improving the strength is provided on the lower side ridge line portion of the refrigerator main body 112. The reinforcing member 200 is formed to rise from the bottom surface of the outer box 107 to the back surface, and the reinforcing member 200 and the outer box 107 are provided with an inter-component space 201 that communicates with the outside air.

また、冷蔵庫本体112の側面には、放熱用の放熱パイプサイド111Sが配設されて
おり、一本のパイプを例えばU字に折り曲げることで放熱長さを確保し、外箱107に貼り付けられている。また、冷蔵庫本体112の前面にも同様に放熱パイプフロント111FがU字に折り曲げられ各貯蔵室の仕切り(図示せず)に配設されている。放熱パイプフロント111Fは各貯蔵室の仕切りを経て機械室126へ接続される。
Further, a heat radiating pipe side 111S for heat radiating is provided on the side surface of the refrigerator main body 112, and a heat radiating length is secured by bending one pipe into, for example, a U-shape, which is attached to the outer box 107. ing. Similarly, a heat radiating pipe front 111F is bent in a U shape on the front surface of the refrigerator main body 112, and is disposed in a partition (not shown) of each storage chamber. The heat radiating pipe front 111F is connected to the machine room 126 through the partition of each storage room.

また、冷蔵庫側面には配設してある放熱パイプサイド111Sに真空断熱材103が貼り付けてある。真空断熱材103には、放熱パイプサイド111Sを設置する縦溝104と横溝105とからなり、縦溝104は真空断熱材103の長手方向(つまり冷蔵庫の上下方向)に沿って真空断熱材103の上下端面部106まで形成された溝であり、複数の縦溝104が互いに平行に配設されている。   Moreover, the vacuum heat insulating material 103 is affixed on the heat radiating pipe side 111S provided on the side of the refrigerator. The vacuum heat insulating material 103 includes a vertical groove 104 and a horizontal groove 105 in which the heat radiating pipe side 111S is installed. The vertical groove 104 extends along the longitudinal direction of the vacuum heat insulating material 103 (that is, the vertical direction of the refrigerator). The grooves are formed up to the upper and lower end surface portions 106, and a plurality of vertical grooves 104 are arranged in parallel to each other.

横溝105は、真空断熱材103の短手方向(つまり冷蔵庫の前後方向)に沿って延びる凹溝であり、縦溝104の上下方向に1本ずつ配設されており、互いに交差するように形成されている。また、下側の横溝105は少なくとも冷蔵庫本体112の底面仕切壁の上端より下部に配置されている。   The horizontal grooves 105 are concave grooves extending along the short direction of the vacuum heat insulating material 103 (that is, the front-rear direction of the refrigerator), and are arranged one by one in the vertical direction of the vertical grooves 104 so as to intersect each other. Has been. Further, the lower lateral groove 105 is disposed at least below the upper end of the bottom partition wall of the refrigerator main body 112.

上下の横溝105面には、放熱パイプサイド111Sの上下端で屈曲形成された屈曲部127が配置されている。   Bending portions 127 bent at the upper and lower ends of the heat radiating pipe side 111S are arranged on the upper and lower horizontal grooves 105.

また、横溝105の上下のいずれか一方の溝部(本実施形態では、下側の横溝105)は放熱パイプサイド111Sまたは放熱パイプフロント111Fの少なくとも一方は下側の横溝105の一部である導入溝122に連結されている。   In addition, either one of the upper and lower grooves (in this embodiment, the lower horizontal groove 105) of the horizontal groove 105 is an introduction groove in which at least one of the heat radiating pipe side 111S or the heat radiating pipe front 111F is a part of the lower horizontal groove 105. 122.

そして、放熱パイプサイド111Sは、真空断熱材103の周縁から放熱パイプサイド111Sの導入溝122を通って、横溝105に導入され、縦溝104に直線部が配置され、横溝105に屈曲部127が配置され、横溝105の上部に形成される縦溝104の放熱パイプサイド111Sの出口溝125を通るように配置されることで、上下に蛇行する放熱パイプサイド111Sのほぼ全体が、真空断熱材103の上下端面部106より飛び出ることなく真空断熱材と外箱側板との間に配置される。   The heat radiating pipe side 111S is introduced from the peripheral edge of the vacuum heat insulating material 103 through the introduction groove 122 of the heat radiating pipe side 111S into the horizontal groove 105, a straight portion is disposed in the vertical groove 104, and a bent portion 127 is provided in the horizontal groove 105. Arranged so as to pass through the outlet groove 125 of the heat radiating pipe side 111S of the vertical groove 104 formed in the upper part of the horizontal groove 105, almost the whole of the heat radiating pipe side 111S meandering up and down is made up of the vacuum heat insulating material 103. It arrange | positions between a vacuum heat insulating material and an outer-box side board, without jumping out from the upper-lower-end surface part 106. FIG.

さらに、上下の横溝105には外箱107と放熱パイプサイド111Sとの間に形成された空間部123と外気とを連通する連通部材124の一端が配置される。連通部材124の他端は外箱107の底面から背面に立ち上がって形成された補強部材200に設けられた連通部材124の径より大きな径とした穴へ配置され、補強部材200と外箱107の部品間に構成された部品間空間201は外気と連通し、横溝内の空気を放出させている。   Further, one end of a communication member 124 that communicates the outside air with the space 123 formed between the outer box 107 and the heat radiating pipe side 111S is disposed in the upper and lower horizontal grooves 105. The other end of the communication member 124 is disposed in a hole having a diameter larger than the diameter of the communication member 124 provided on the reinforcing member 200 formed so as to rise from the bottom surface of the outer box 107 to the rear surface. The inter-part space 201 formed between the parts communicates with the outside air and discharges air in the lateral grooves.

すなわち、本実施の形態の連通部材124は、横溝105に沿ってほぼ直線的に外気と連通する構成としている。これは、発泡断熱材を介在して補強部材200を利用し、外気と連通する構成としたことにより可能となるものである。   That is, the communication member 124 of the present embodiment is configured to communicate with the outside air substantially linearly along the lateral groove 105. This can be achieved by using a reinforcing member 200 with a foam heat insulating material interposed therebetween and communicating with the outside air.

次に冷蔵庫の冷却について説明する。庫内温度が上昇して冷凍室センサ(図示せず)が起動温度以上になった場合に、圧縮機120が起動し冷却が開始される。圧縮機120から吐出された高温高圧の冷媒は、最終的に機械室126に配置されたドライヤ(図示せず)まで到達する間、特に外箱107に設置される放熱パイプサイド111Sにおいて、外箱107の外側の空気や庫内の発泡断熱材109との熱交換により、冷却されて液化する。   Next, cooling of the refrigerator will be described. When the internal temperature rises and a freezer compartment sensor (not shown) reaches or exceeds the starting temperature, the compressor 120 is started and cooling is started. While the high-temperature and high-pressure refrigerant discharged from the compressor 120 finally reaches a dryer (not shown) disposed in the machine chamber 126, particularly in the heat radiating pipe side 111S installed in the outer box 107, the outer box It is cooled and liquefied by heat exchange with the air outside 107 and the foam heat insulating material 109 in the warehouse.

次に液化した冷媒はキャピラリーチューブ121で減圧されて、冷却器118に流入し冷却器118周辺の庫内空気と熱交換する。熱交換された冷気は、近傍の冷気送風ファン
119により庫内に冷気が送風され庫内を冷却する。この後、冷媒は加熱されガス化して圧縮機120に戻る。庫内が冷却されて冷凍室センサ(図示せず)の温度が停止温度以下になった場合に圧縮機120の運転が停止する。
Next, the liquefied refrigerant is depressurized by the capillary tube 121, flows into the cooler 118, and exchanges heat with the internal air around the cooler 118. The cold air that has been heat-exchanged is blown into the cabinet by a nearby cool air blower fan 119 to cool the inside of the cabinet. Thereafter, the refrigerant is heated and gasified, and returns to the compressor 120. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 120 is stopped.

以上のように構成された冷蔵庫及び冷蔵庫に取り付けられる真空断熱材において、以下その動作、作用について説明する。   The operation and action of the refrigerator configured as described above and the vacuum heat insulating material attached to the refrigerator will be described below.

本実施の形態のように、野菜室116が下方に設置され、冷蔵室113が上方に設置された冷蔵庫のレイアウト構成が使い勝手の観点からよく用いられている。また、圧縮機を天面奥部に配設した構成の冷蔵庫も、使い勝手の観点と庫内容量向上の点から用いられる。   As in the present embodiment, a refrigerator layout configuration in which the vegetable compartment 116 is installed below and the refrigerator compartment 113 is installed above is often used from the viewpoint of usability. Moreover, the refrigerator of the structure which has arrange | positioned the compressor in the top | upper surface back part is also used from the point of a user-friendliness point and the point of the improvement of storage capacity.

そして、従来、真空断熱材は、放熱パイプ埋め込み用溝を直線以外の曲げ形状で作成することは困難であるため、放熱パイプの折り曲げ部近傍までしか真空断熱材を貼り付けることができなかったが、本実施の形態では、真空断熱材103に形成した溝は、縦溝104と横溝105とを備え、縦溝104と横溝105とは互いに交差し、縦溝104と横溝105は真空断熱材103の端部で開口したものであり、直線部と屈曲部127とで折り返し形成した放熱パイプ111の直線部を縦溝104に、屈曲部127を横溝105に配置することで、放熱パイプ111の屈曲部127を含めて放熱パイプ111全体を真空断熱材103で覆うことができる。   And conventionally, since it is difficult to create a heat radiation pipe embedding groove in a bent shape other than a straight line, the vacuum heat insulating material can only be applied to the vicinity of the bent portion of the heat radiation pipe. In this embodiment, the groove formed in the vacuum heat insulating material 103 includes the vertical groove 104 and the horizontal groove 105, the vertical groove 104 and the horizontal groove 105 intersect each other, and the vertical groove 104 and the horizontal groove 105 are formed in the vacuum heat insulating material 103. The straight portion of the heat radiating pipe 111 formed by folding the straight portion and the bent portion 127 is disposed in the vertical groove 104, and the bent portion 127 is disposed in the horizontal groove 105, whereby the heat radiating pipe 111 is bent. The entire heat radiating pipe 111 including the portion 127 can be covered with the vacuum heat insulating material 103.

すなわち、真空断熱材103の上端部は内箱108の天面部より上方に延出して配置し、下端部は内箱108の底面部より下方に延出して配置することができるので、真空断熱材103の被覆率が向上し、外部あるいは放熱パイプ111からの侵入熱を低減でき、省エネを図ることができる。   That is, since the upper end portion of the vacuum heat insulating material 103 can be arranged to extend upward from the top surface portion of the inner box 108 and the lower end portion can be arranged to extend downward from the bottom surface portion of the inner box 108, the vacuum heat insulating material can be arranged. The coverage ratio of 103 is improved, the intrusion heat from the outside or the heat radiating pipe 111 can be reduced, and energy saving can be achieved.

さらに、発泡断熱材109より曲げ弾性強度の高い真空断熱材103の外箱107に対する被覆率が向上することで、断熱箱体の強度も高めることができ、冷蔵庫本体112に荷重が掛かった場合でも、断熱箱体の変形を低減することができる。   Furthermore, by improving the coverage of the vacuum heat insulating material 103 with higher bending elastic strength than the foam heat insulating material 109 to the outer box 107, the strength of the heat insulating box can be increased and even when a load is applied to the refrigerator main body 112. The deformation of the heat insulation box can be reduced.

したがって、例えば市場ニーズの高い大容量を実現する為、外形寸法を変えず実現する為には、壁厚の薄肉化が必須となるが、その際の外箱の強度を確保することが可能となる。   Therefore, for example, in order to realize a large capacity with high market needs and to realize without changing the external dimensions, it is essential to reduce the wall thickness, but it is possible to ensure the strength of the outer box at that time Become.

また、本実施の形態では、真空断熱材103に形成した縦溝104と横溝105とは互いに交差し、縦溝104と横溝105は真空断熱材103の端部で開口した構成としたことにより、真空断熱材103の上下方向における放熱パイプ111の屈曲部127の外側に位置する真空断熱材103の厚みを溝の無い基準壁厚とすることができ、例えば、真空断熱材の外周縁端面を溝として外側端面を開口したものに比べて真空断熱材周縁の断熱性を高めることができる利点がある。   In the present embodiment, the vertical groove 104 and the horizontal groove 105 formed in the vacuum heat insulating material 103 intersect each other, and the vertical groove 104 and the horizontal groove 105 are configured to be opened at the end of the vacuum heat insulating material 103. The thickness of the vacuum heat insulating material 103 positioned outside the bent portion 127 of the heat radiating pipe 111 in the vertical direction of the vacuum heat insulating material 103 can be a reference wall thickness without a groove. As compared with the case where the outer end face is opened, there is an advantage that the heat insulating property of the periphery of the vacuum heat insulating material can be enhanced.

さらに、外周縁端面を溝として外側端面を開口した真空断熱材の場合は、外周縁端面全体の壁厚が溝の無い基準壁厚より薄くなるので、薄くなった部分の曲げ弾性強度が低くなったり、真空断熱材のソリが発生しやすくなるが、本実施の形態の真空断熱材103では、縦溝104と横溝105とは互いに交差し、縦溝104と横溝105は真空断熱材103の端部で開口した構成としたことにより、真空断熱材103の外周縁の大半は溝の無い部分の基準壁厚とすることができ、曲げ弾性強度の低減抑制、真空断熱材のソリの発生を防止することができる利点もある。したがって、真空断熱材103の外箱107からの剥がれを防止でき、外箱107の変形防止、断熱箱体の構造強度確保が可能となる。   Furthermore, in the case of a vacuum heat insulating material having an outer peripheral end face as a groove and an outer end face opened, the wall thickness of the entire outer peripheral end face becomes thinner than the reference wall thickness without the groove, so that the bending elastic strength of the thinned portion is lowered. In the vacuum heat insulating material 103 of the present embodiment, the vertical groove 104 and the horizontal groove 105 intersect each other, and the vertical groove 104 and the horizontal groove 105 are the ends of the vacuum heat insulating material 103. With the configuration that is open at the part, the majority of the outer periphery of the vacuum heat insulating material 103 can be the reference wall thickness of the part without the groove, suppressing the reduction of bending elastic strength, and preventing the warpage of the vacuum heat insulating material There is also an advantage that can be done. Therefore, peeling of the vacuum heat insulating material 103 from the outer box 107 can be prevented, the deformation of the outer box 107 can be prevented, and the structural strength of the heat insulating box can be ensured.

また、本実施の形態では、真空断熱材103に形成した縦溝104と横溝105とは互いに交差し、縦溝104と横溝105は真空断熱材103の端部で開口した構成としているので、断熱箱体の一面の外箱に貼り付けられる、直線部と屈曲部とで折り返し形成した放熱パイプ111の入口部と出口部の他の面との繋ぎ配管の設計自由度を高めることができる。   In the present embodiment, the vertical groove 104 and the horizontal groove 105 formed in the vacuum heat insulating material 103 intersect with each other, and the vertical groove 104 and the horizontal groove 105 are open at the end of the vacuum heat insulating material 103. The degree of freedom in designing the connecting pipe between the inlet portion and the other portion of the outlet portion of the heat radiating pipe 111, which is affixed to the outer box on one surface of the box body and folded back by the straight portion and the bent portion, can be increased.

例えば、右側面と左側面とは放熱パイプ111の配管設計が異なっても、縦溝104と横溝105の開口端部を利用して、真空断熱材103の兼用化も可能となる。さらに、真空断熱材103の長手方向に沿って形成した縦溝104を複数形成して放熱パイプ111の直線部のピッチが異なる機種でも兼用化することも可能となる。   For example, even if the piping design of the heat radiating pipe 111 is different between the right side surface and the left side surface, it is possible to use the vacuum heat insulating material 103 by using the opening ends of the vertical groove 104 and the horizontal groove 105. Furthermore, a plurality of vertical grooves 104 formed along the longitudinal direction of the vacuum heat insulating material 103 can be formed, and it is also possible to use a model in which the pitch of the straight portion of the heat radiating pipe 111 is different.

また、縦溝104と横溝105を真空断熱材103に形成する方法としては、真空断熱材103を均等な厚みに成形したあとで、プレス、あるいはローラで移動させながら縦溝104と横溝105を形成する方法が考えられるが、縦溝104と横溝105は真空断熱材103の端部で開口した構成とする場合、比較的製造工程が安価で変更が容易なローラを選定することができるという利点もある。   As a method of forming the vertical groove 104 and the horizontal groove 105 in the vacuum heat insulating material 103, after forming the vacuum heat insulating material 103 to an equal thickness, the vertical groove 104 and the horizontal groove 105 are formed while being moved by a press or a roller. However, when the vertical groove 104 and the horizontal groove 105 are opened at the end of the vacuum heat insulating material 103, it is possible to select a roller that is relatively inexpensive to manufacture and can be easily changed. is there.

また、真空断熱材103の短手方向に沿って形成した横溝105の溝幅は、真空断熱材103の長手方向に沿って形成した縦溝104の溝幅より広く形成したことにより、放熱パイプ111の屈曲部127を大きく設計しても確実に溝に収納することができる。さらに屈曲部127の曲げRを大きく設定することで、放熱パイプ111の曲げ工程における不具合の発生も低減でき、冷却システム設計の信頼性も向上する。   Further, the groove width of the lateral groove 105 formed along the short direction of the vacuum heat insulating material 103 is formed wider than the groove width of the vertical groove 104 formed along the longitudinal direction of the vacuum heat insulating material 103, so that the heat radiating pipe 111. Even if the bent portion 127 is designed to be large, it can be securely stored in the groove. Furthermore, by setting the bending R of the bent portion 127 to be large, it is possible to reduce the occurrence of problems in the bending process of the heat radiating pipe 111 and to improve the reliability of the cooling system design.

また、横溝105には、放熱パイプ111の屈曲部127だけでなく、放熱パイプ111の入口部と出口部の他の面との繋ぎ配管も配置することができ、真空断熱材103に対する放熱パイプ111の配管集約率を高めることができる。なお、本実施の形態では横溝105に配設する放熱パイプ111は2本としたが、その限りではなく、横溝105が縦溝104より広く形成したことにより、放熱パイプ111を3本以上埋設してもよい。   Further, not only the bent portion 127 of the heat radiating pipe 111 but also a connecting pipe between the inlet portion and the other surface of the heat radiating pipe 111 can be arranged in the lateral groove 105, and the heat radiating pipe 111 with respect to the vacuum heat insulating material 103 can be arranged. The pipe concentration rate can be increased. In this embodiment, the number of the heat radiating pipes 111 disposed in the horizontal grooves 105 is two. However, the number of the heat radiating pipes 111 is not limited to this, and three or more heat radiating pipes 111 are embedded by forming the horizontal grooves 105 wider than the vertical grooves 104. May be.

また、冷蔵庫本体側面に貼り付けている放熱パイプ111の屈曲部127の位置が野菜室116および冷蔵室113に対応して配置したことにより、放熱パイプ111の屈曲部127の外側に位置する真空断熱材103の厚みを溝の無い基準壁厚とすることができ、真空断熱材周縁の断熱性を高めることができる。   In addition, since the position of the bent portion 127 of the heat radiating pipe 111 attached to the side surface of the refrigerator main body is arranged corresponding to the vegetable compartment 116 and the refrigerator compartment 113, the vacuum heat insulation is located outside the bent portion 127 of the heat radiating pipe 111. The thickness of the material 103 can be set to a reference wall thickness without a groove, and the heat insulating property at the periphery of the vacuum heat insulating material can be improved.

また、最下段の野菜室116の下部まで真空断熱材103を貼り付け可能なため、冷蔵庫全体の重心を低くすることができ、転倒防止を図ることができる。さらに冷凍室117の内箱底面の外側に真空断熱材103を貼り付けると更に野菜室116の侵入熱の低減となり省エネを図ることができる。   Moreover, since the vacuum heat insulating material 103 can be affixed to the lower part of the lowermost vegetable compartment 116, the center of gravity of the entire refrigerator can be lowered, and the fall can be prevented. Furthermore, if the vacuum heat insulating material 103 is affixed to the outside of the bottom of the inner box of the freezer compartment 117, the intrusion heat of the vegetable compartment 116 is further reduced and energy saving can be achieved.

以上のように、本実施の形態の冷蔵庫は、真空断熱材103に形成した縦溝104と横溝105とは互いに交差し、縦溝104と横溝105は真空断熱材103の端部で開口したものであり、直線部と屈曲部127とで折り返し形成した放熱パイプ111の直線部を縦溝104に、屈曲部127を横溝105に配置することで、放熱パイプ111の屈曲部127を含めて放熱パイプ111全体を真空断熱材103で覆うことができ、真空断熱材103の被覆率が向上し、外部あるいは放熱パイプ111からの侵入熱を低減でき、省エネを図ることができる。   As described above, in the refrigerator of this embodiment, the vertical groove 104 and the horizontal groove 105 formed in the vacuum heat insulating material 103 intersect each other, and the vertical groove 104 and the horizontal groove 105 are opened at the end of the vacuum heat insulating material 103. By disposing the straight part of the heat radiating pipe 111 folded back between the straight part and the bent part 127 in the vertical groove 104 and arranging the bent part 127 in the horizontal groove 105, the heat radiating pipe including the bent part 127 of the heat radiating pipe 111 is arranged. The whole 111 can be covered with the vacuum heat insulating material 103, the coverage of the vacuum heat insulating material 103 can be improved, the intrusion heat from the outside or the heat radiating pipe 111 can be reduced, and the energy can be saved.

さらに、発泡断熱材109より曲げ弾性強度の高い真空断熱材103の外箱107に対する被覆率が向上することで、断熱箱体の強度も高めることができ、冷蔵庫本体112に荷重が掛かった場合でも、断熱箱体の変形を低減することができる。   Furthermore, by improving the coverage of the vacuum heat insulating material 103 with higher bending elastic strength than the foam heat insulating material 109 to the outer box 107, the strength of the heat insulating box can be increased and even when a load is applied to the refrigerator main body 112. The deformation of the heat insulation box can be reduced.

また、本実施の形態では、真空断熱材103上下端面部106に凹部形状で外箱107の前面から背面に横断する横溝105を設けることにより、放熱パイプ111を横溝105で三方から覆う事が可能となり、断熱性能向上することができる。   Further, in this embodiment, the heat radiation pipe 111 can be covered from the three sides with the horizontal groove 105 by providing the upper and lower end surface portion 106 of the vacuum heat insulating material 103 with the concave groove shape and the transverse groove 105 that crosses from the front surface to the rear surface. Thus, the heat insulation performance can be improved.

また、真空断熱材103を貼り付け被覆率を大きく取るためには、侵入熱を低減するため冷蔵庫断面壁を厚くしなければならず、庫内容量を低下させねばならなかったが、冷蔵庫側面の放熱パイプサイド111Sまたは放熱パイプフロント111Fの屈曲部127に横溝105を形成したことによりに真空断熱材103の上下端面部106を内箱108端部より延出することが可能となり、被覆率を高くして貼り付けことができ更に、また、横溝105の幅が縦溝104の幅よりも広く配設されており、放熱パイプサイド111Sの折り曲げ径を大きく設計することが可能となり、放熱パイプサイド111Sの信頼性確保が可能となる。   Moreover, in order to attach the vacuum heat insulating material 103 and increase the coverage rate, the refrigerator cross-section wall had to be thickened to reduce intrusion heat, and the internal capacity had to be reduced. By forming the lateral groove 105 in the bent portion 127 of the heat radiating pipe side 111S or the heat radiating pipe front 111F, the upper and lower end surface portions 106 of the vacuum heat insulating material 103 can be extended from the end portion of the inner box 108, and the covering rate is increased. Further, the width of the horizontal groove 105 is wider than the width of the vertical groove 104, and it is possible to design the bent diameter of the heat radiating pipe side 111S so that the heat radiating pipe side 111S. It is possible to ensure reliability.

以上のように、本実施の形態においては、芯材101をガスバリア性フィルム102で覆い、その内部を減圧し密封した板状の真空断熱材103の表面に長手方向に形成した溝を有する縦溝104と短手方向に形成した溝を有する横溝105を真空断熱材103の上下端面部106まで形成したもので、縦溝104と横溝105は、少なくとも板状の表面において互いに交差するように形成したことにより、放熱パイプサイド111Sの庫内側に真空断熱材103が設けられた冷蔵庫本体112において、放熱パイプサイド111Sを突出させることなく、放熱パイプサイド111Sの折り返し部分を真空断熱材103内に配設することができ、さらなる断熱性能を向上させることができる。   As described above, in the present embodiment, a longitudinal groove having a groove formed in the longitudinal direction on the surface of a plate-like vacuum heat insulating material 103 in which the core material 101 is covered with the gas barrier film 102 and the inside thereof is decompressed and sealed. 104 and a transverse groove 105 having a groove formed in the short direction are formed up to the upper and lower end surface portions 106 of the vacuum heat insulating material 103. The longitudinal groove 104 and the transverse groove 105 are formed so as to intersect each other at least on a plate-like surface. Thus, in the refrigerator main body 112 provided with the vacuum heat insulating material 103 inside the heat radiating pipe side 111S, the folded portion of the heat radiating pipe side 111S is disposed in the vacuum heat insulating material 103 without protruding the heat radiating pipe side 111S. And further heat insulation performance can be improved.

さらに、縦溝104は、真空断熱材103の上下端面部106まで配設されていることにより、真空断熱材103の上下端面部106の強度が向上し、真空断熱材103のそり、変形等も最小となり、冷蔵庫本体112への貼り付けが容易となり工数削減が可能となる。   Furthermore, since the vertical grooves 104 are arranged up to the upper and lower end surface portions 106 of the vacuum heat insulating material 103, the strength of the upper and lower end surface portions 106 of the vacuum heat insulating material 103 is improved, and warpage, deformation, and the like of the vacuum heat insulating material 103 are also prevented. It becomes the minimum, and it becomes easy to attach to the refrigerator main body 112, and the number of man-hours can be reduced.

また、横溝105と上下端面部106の間には外箱107との貼り付け用糊面を設けることにより、発泡断熱材109を充填する際の流入を防ぐことが可能となり、発泡圧力での外観変形を防ぐことが可能となる。   Further, by providing a paste surface for pasting with the outer box 107 between the lateral groove 105 and the upper and lower end surface portions 106, it becomes possible to prevent inflow when filling the foam heat insulating material 109, and appearance at the foaming pressure. It becomes possible to prevent deformation.

また、矩形状に形成され、縦溝104の数は横溝105の数より多く設けたことにより、冷蔵庫本体112の要求性能に応じて容易に放熱パイプサイド111Sの長さを設定することが可能となる。   In addition, the length of the heat radiating pipe side 111S can be easily set according to the required performance of the refrigerator main body 112 by forming the rectangular shape and providing the vertical grooves 104 more than the horizontal grooves 105. Become.

また、矩形状に形成され、横溝105の溝の幅は縦溝104の幅より広くしたことにより、埋没させる放熱パイプサイド111Sのターン部曲げ径を大きく設計することが可能となり、放熱パイプサイド111S若しくは放熱パイプフロント111Fの信頼性確保が可能となる。   Further, since the lateral groove 105 is formed in a rectangular shape and the width of the groove is wider than the width of the vertical groove 104, it is possible to design a large bending diameter of the turn part of the heat radiating pipe side 111S to be buried, and to radiate the heat radiating pipe side 111S. Alternatively, the reliability of the heat radiating pipe front 111F can be ensured.

また、真空断熱材103には縦溝104、横溝105と外箱107と放熱パイプサイド111Sまたは放熱パイプフロント111Fとの間に形成された空間部123を有し、2と外気とを連通する連通部材124の一端を横溝105に備えたことにより、放熱パイプサイド111Sまたは放熱パイプフロント111F近傍及び溝内の空気を密閉せずに外気と容易に通気することができ、周囲の温度変化等による圧力変化を抑制し、外箱107の外観変形を抑制することが可能となる。   Further, the vacuum heat insulating material 103 has a space 123 formed between the vertical groove 104, the horizontal groove 105, the outer box 107, and the heat radiating pipe side 111S or the heat radiating pipe front 111F, and the communication that communicates 2 and the outside air. By providing one end of the member 124 in the horizontal groove 105, the air in the vicinity of the heat radiating pipe side 111S or the heat radiating pipe front 111F and the air in the groove can be easily ventilated with the outside air, and the pressure due to the ambient temperature change or the like It is possible to suppress the change and to suppress the external deformation of the outer box 107.

そのうえ、縦溝104より溝幅の大きい、すなわち流路抵抗の小さい横溝105に連通部材124を設けることで、複数の縦溝104に滞留している空気が横溝105側に短時
間で流通することになる。さらに、縦溝104だけでなく横溝105にも放熱パイプサイド111S若しくは放熱パイプフロント111Fの少なくとも一方の配置が可能となるため、溝内空気の温度自体も高くなり滞留している空気をより容易に流通することが可能となり、スムーズな空気の排出を実現する。
In addition, by providing the communication member 124 in the lateral groove 105 having a groove width larger than that of the longitudinal groove 104, that is, having a small flow resistance, air staying in the plurality of longitudinal grooves 104 can flow to the lateral groove 105 side in a short time. become. Furthermore, since it is possible to dispose at least one of the heat radiating pipe side 111S or the heat radiating pipe front 111F not only in the vertical groove 104 but also in the horizontal groove 105, the temperature of the air in the groove itself becomes high and the staying air can be more easily It becomes possible to circulate and realize smooth air discharge.

さらに、真空断熱材103の横溝105に備えられた連通部材124を補強部材200の穴へ挿入したことにより、横溝105内空気を外箱107と補強部材200に設けられた部品間空間201を通り、外気へ空気を排出する事ができるので、部品点数も少なくかつ連結部材の形状を簡素化することが可能となる。例えば、ストレート形状で、材料を樹脂とし、押し出し成型加工を可能とする事で、材料費の抑制を図ることができる。   Furthermore, by inserting the communication member 124 provided in the horizontal groove 105 of the vacuum heat insulating material 103 into the hole of the reinforcing member 200, the air in the horizontal groove 105 passes through the space 201 between the parts provided in the outer box 107 and the reinforcing member 200. Since air can be discharged to the outside air, the number of parts is small and the shape of the connecting member can be simplified. For example, the material cost can be reduced by using a straight shape, using a resin as a material, and enabling extrusion molding.

また、断熱箱体110の外箱107と内箱108との間に充填する発泡断熱材109は、充填性を高めるために、断熱箱体110の前面開口部を底面に向けて断熱箱体110の背面に備えた開口部から下方に向けて発泡断熱材109の材料を注入し、下方(前面開口部側)から徐々に上方(断熱箱体110の背面側)に向けて発泡断熱材109が発泡充填される方法がとられるが、本実施の形態では、真空断熱材103の横溝105に沿って連通部材124の一端を配置し、他端を断熱箱体110の背面側の外気に連通しているので、発泡断熱材109が発泡充填される方向と同方向に連通部材124を介して空気が抜けることになり、発泡充填時の溝内の空気抜きの効率向上を図る事ができる。   In addition, the foam heat insulating material 109 filled between the outer box 107 and the inner box 108 of the heat insulating box 110 has the front opening portion of the heat insulating box 110 facing the bottom surface in order to improve the filling property. The material of the foam heat insulating material 109 is injected downward from the opening provided on the back surface of the foam, and the foam heat insulating material 109 is gradually moved from the lower side (front opening side) toward the upper side (back side of the heat insulating box 110). In this embodiment, one end of the communication member 124 is disposed along the lateral groove 105 of the vacuum heat insulating material 103 and the other end communicates with the outside air on the back side of the heat insulating box 110. Therefore, air escapes through the communication member 124 in the same direction as the foam insulation material 109 is foam-filled, and the efficiency of air venting in the groove at the time of foam-filling can be improved.

参考例
図10は本発明の参考例における冷蔵庫に用いられる真空断熱材の平面図である。なお、実施の形態1と同一構成、同一技術思想については本参考例でも適用可能である。
( Reference example )
FIG. 10 is a plan view of a vacuum heat insulating material used in the refrigerator in the reference example of the present invention. The same configuration and the same technical idea as those of the first embodiment can be applied to this reference example .

冷蔵庫側面には配設してある放熱パイプサイド111Sに真空断熱材103が貼り付けてある。真空断熱材103には、放熱パイプサイド111Sを設置する縦溝104と横溝105とからなり、縦溝104は真空断熱材103の長手方向(つまり冷蔵庫の上下方向)に沿って真空断熱材103の上下端面部106まで形成された溝であり、複数の縦溝104が互いに平行に配設されている。   A vacuum heat insulating material 103 is attached to the heat radiating pipe side 111S disposed on the side of the refrigerator. The vacuum heat insulating material 103 includes a vertical groove 104 and a horizontal groove 105 in which the heat radiating pipe side 111S is installed. The vertical groove 104 extends along the longitudinal direction of the vacuum heat insulating material 103 (that is, the vertical direction of the refrigerator). The grooves are formed up to the upper and lower end surface portions 106, and a plurality of vertical grooves 104 are arranged in parallel to each other.

横溝105は、真空断熱材103の短手方向(つまり冷蔵庫の前後方向)に沿って延び、端面に糊面のない横溝105であり、縦溝104の上下方向に1本ずつ配設されており、互いに交差するように形成されている。また、下方向に形勢された横溝105は少なくとも冷蔵庫本体112の底面仕切壁の上端より下部に配置されている。   The horizontal grooves 105 extend along the short direction of the vacuum heat insulating material 103 (that is, the front-rear direction of the refrigerator), are the horizontal grooves 105 having no glue surface on the end surface, and are arranged one by one in the vertical direction of the vertical grooves 104. Are formed so as to cross each other. Further, the lateral groove 105 formed in the downward direction is disposed at least below the upper end of the bottom partition wall of the refrigerator main body 112.

上下の横溝105面には、放熱パイプサイド111Sの上下端で屈曲形成された屈曲部127が配置されている。   Bending portions 127 bent at the upper and lower ends of the heat radiating pipe side 111S are arranged on the upper and lower horizontal grooves 105.

また、横溝105の上下のいずれか一方の溝部(本実施形態では、下側の横溝105)は放熱パイプサイド111Sまたは放熱パイプフロント111Fの少なくとも一方は下側の横溝105に連結されている。   Further, at least one of the upper and lower grooves (in this embodiment, the lower horizontal groove 105 in this embodiment) of the horizontal groove 105 is connected to the lower horizontal groove 105 at least one of the heat radiating pipe side 111S or the heat radiating pipe front 111F.

そして、放熱パイプサイド111Sは、真空断熱材103の周縁から放熱パイプサイド111Sの下側の横溝105を通って、縦溝104に直線部が配置され、横溝105に屈曲部127が配置され、横溝105の上部に形成される縦溝104の放熱パイプサイド111Sの出口溝を通るように配置されることで、上下に蛇行する放熱パイプサイド111Sのほぼ全体が、真空断熱材103の上下端面部106より飛び出ることなく真空断熱材と外箱側板との間に配置される。   The heat radiating pipe side 111S passes from the peripheral edge of the vacuum heat insulating material 103 through the horizontal groove 105 on the lower side of the heat radiating pipe side 111S, the straight portion is arranged in the vertical groove 104, the bent portion 127 is arranged in the horizontal groove 105, and the horizontal groove The upper and lower end face portions 106 of the vacuum heat insulating material 103 are almost entirely disposed in the upper and lower portions of the heat-dissipating pipe side 111S meandering up and down. It arrange | positions between a vacuum heat insulating material and an outer case side board, without jumping out more.

さらに、横溝105に外箱107と放熱パイプサイド111Sとの間に形成された空間部123と外気とを連通する連通部材124が配置されており、外箱107の外気と連通する空間から横溝内の空気を放出させている。   Further, a communication member 124 is provided in the lateral groove 105 to communicate the space 123 formed between the outer box 107 and the heat radiating pipe side 111S and the outside air. The air is released.

連通部材124は、横溝105と平行な部分と折れ曲がって立ち上がった部分とから構成されて外気と連通する構造としている。これは、外箱107と内箱108との間に発泡断熱材109を充填する際に発泡圧力による変形を防止するために発泡冶具を用いるが、外箱に固定された放熱パイプや連通部材124が発泡冶具の邪魔にならないように、逃がしのためのL字状やU字状の折り曲げ部を構成したものである。これにより、断熱箱体110に発泡断熱材109を充填した後に、放熱パイプや連通部材124を引っ張り出して所定の位置に配置するための自由度を持たせることができる。   The communication member 124 includes a portion parallel to the lateral groove 105 and a bent and raised portion, and is configured to communicate with the outside air. This uses a foaming jig to prevent deformation due to foaming pressure when the foam heat insulating material 109 is filled between the outer box 107 and the inner box 108. However, a heat radiating pipe or a communication member 124 fixed to the outer box is used. Is configured to have an L-shaped or U-shaped bent portion for escape so as not to interfere with the foaming jig. Thereby, after filling the heat insulation box body 110 with the foam heat insulating material 109, the heat radiation pipe or the communication member 124 can be pulled out and provided with a degree of freedom to be arranged at a predetermined position.

これは、真空断熱材103の短手方向(つまり冷蔵庫の前後方向)に沿って延び、端面に糊面のない横溝105としたことにより、放熱パイプや連通部材124の自由度(放熱パイプや連通部材124の引っ張り出し等)を持たせることが可能となるものである。   This is because the transverse grooves 105 extending along the short direction of the vacuum heat insulating material 103 (that is, the front-rear direction of the refrigerator) and having no glue surface on the end surface are used. The member 124 can be pulled out).

以上のように構成された冷蔵庫及び冷蔵庫に取り付けられる真空断熱材において、以下その動作、作用について説明する。   The operation and action of the refrigerator configured as described above and the vacuum heat insulating material attached to the refrigerator will be described below.

本実施の形態では、真空断熱材103上下端面部106に糊面のない外箱107の前面から背面に横断する横溝105を設けることにより、ウレタンの充填方向と同方向に連通部材124を配置することとなり、ウレタンの発泡圧力により加圧され、空気抜きのスピード向上が可能となるので、縦溝104、横溝105内の空気抜きの効率性向上を図る事ができる。   In the present embodiment, the communication member 124 is arranged in the same direction as the filling direction of the urethane by providing the transverse groove 105 that traverses from the front surface to the back surface of the outer box 107 having no glue surface on the upper and lower end surface portion 106 of the vacuum heat insulating material 103. In other words, the pressure is increased by the foaming pressure of urethane, and the speed of air venting can be improved. Therefore, the efficiency of air venting in the vertical grooves 104 and the horizontal grooves 105 can be improved.

また、連通部材124は、横溝105と平行な部分と折れ曲がって立ち上がった部分とから構成されて外気と連通する構造としているので、放熱パイプや連通部材124を引っ張り出して所定の位置に配置するための自由度を持たせることができる。   Further, since the communication member 124 is composed of a portion parallel to the lateral groove 105 and a bent and raised portion and communicates with the outside air, the heat radiating pipe and the communication member 124 are pulled out and arranged at a predetermined position. The degree of freedom can be given.

(実施の形態3)
図11は本発明の実施の形態3における冷蔵庫の断面図である。図12は同実施の形態の冷蔵庫の真空断熱材と放熱パイプの正面図である。なお、実施の形態1、2と同一構成、同一技術思想については本実施の形態でも適用可能である。
(Embodiment 3)
FIG. 11 is a cross-sectional view of the refrigerator according to Embodiment 3 of the present invention. FIG. 12 is a front view of the vacuum heat insulating material and the heat radiating pipe of the refrigerator according to the embodiment. The same configuration and the same technical idea as those of the first and second embodiments can be applied to this embodiment.

図11及び図12において、冷却システム(図示せず)の凝縮器の一部である放熱パイプ312は、複数の直線部を形成するよう蛇行し、入口部313と出口部314が冷蔵庫301背面下部に形成された機械室315内に突出しており、他の放熱パイプ(図示せず)と連結している。真空断熱材316は、放熱パイプ312の直径よりも厚みが大きく、真空断熱材316の端部まで形成された長手方向の複数の縦溝317と、短手方向の複数の横溝318を有しており、縦溝317及び横溝318は互いに十字状に交差している。   11 and 12, the heat radiating pipe 312 that is a part of the condenser of the cooling system (not shown) meanders so as to form a plurality of straight portions, and the inlet portion 313 and the outlet portion 314 are the lower rear portion of the refrigerator 301. It protrudes in the machine room 315 formed in this, and is connected with another heat radiating pipe (not shown). The vacuum heat insulating material 316 has a thickness larger than the diameter of the heat radiating pipe 312 and has a plurality of longitudinal grooves 317 formed to the end of the vacuum heat insulating material 316 and a plurality of transverse grooves 318 in the short direction. The vertical groove 317 and the horizontal groove 318 cross each other in a cross shape.

ここで、放熱パイプ312の複数の横方向の直線部において、冷蔵庫上側に位置する上側直線部319及び冷蔵庫下側に位置する下側直線部320は、それぞれ、ほぼ同一直線上に形成しており、それぞれが一本の横溝318内に配置している。   Here, in the plurality of lateral straight portions of the heat radiating pipe 312, the upper straight portion 319 located on the upper side of the refrigerator and the lower straight portion 320 located on the lower side of the refrigerator are respectively formed on substantially the same straight line. , Each is disposed in one transverse groove 318.

また、真空断熱材316は、外箱302側の面の縦溝317及び横溝318以外の面に接着剤を塗布した後に、放熱パイプ312と縦溝317及び横溝318で複層するように外箱302に貼り付けられている。   Further, the vacuum heat insulating material 316 is formed so that the heat radiation pipe 312, the vertical groove 317, and the horizontal groove 318 are multilayered after an adhesive is applied to a surface other than the vertical groove 317 and the horizontal groove 318 on the surface on the outer box 302 side. 302 is attached.

以上のように構成された冷蔵庫について、以下その動作を説明する。   About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below.

冷蔵庫301の製造時、まず外箱302に放熱パイプ312を金属箔テープ(図示せず)などにより貼り付け、その上から真空断熱材316を貼り付ける。その後、内箱303を外箱302の中に嵌め込み、外箱302と内箱303の間に発泡ウレタンなどの発泡断熱材304を充填し断熱箱体306を形成する。   When manufacturing the refrigerator 301, first, the heat radiating pipe 312 is attached to the outer box 302 with a metal foil tape (not shown) or the like, and the vacuum heat insulating material 316 is attached thereon. Thereafter, the inner box 303 is fitted into the outer box 302, and a foam heat insulating material 304 such as urethane foam is filled between the outer box 302 and the inner box 303 to form a heat insulating box body 306.

この時、発泡断熱材304を充填する前には、縦溝317及び横溝318と外箱302と放熱パイプ312に囲まれた空間には、空気が存在している。ここで、縦溝317及び横溝318が真空断熱材316の端部まで形成されてない場合、断熱材充填後、この空間に空気層が形成される。この空気層は、外箱302表面や貯蔵室308内の温度が変化すると膨張、収縮し、結果として外箱302が変形し、見栄えの悪い冷蔵庫となってしまう。   At this time, air is present in the space surrounded by the vertical grooves 317 and the horizontal grooves 318, the outer box 302, and the heat radiating pipe 312 before filling with the foam heat insulating material 304. Here, when the vertical groove 317 and the horizontal groove 318 are not formed up to the end of the vacuum heat insulating material 316, an air layer is formed in this space after the heat insulating material is filled. This air layer expands and contracts when the surface of the outer box 302 or the temperature in the storage chamber 308 changes, and as a result, the outer box 302 is deformed, resulting in a refrigerator that does not look good.

また、縦溝317または横溝318内に接着剤を塗布した場合にも、空気が抜けず、同様に外箱302が変形してしまう。   In addition, when an adhesive is applied in the vertical groove 317 or the horizontal groove 318, air does not escape and the outer box 302 is similarly deformed.

これに対し、本発明の冷蔵庫301は、縦溝317と横溝318は連通し、さらに縦溝317または横溝318が真空断熱材316の端部まで形成されているとともに、接着剤は真空断熱材316の外箱302側の面の縦溝317及び横溝318以外の面に塗布されていることにより、断熱材が縦溝317及び横溝318に充填され、空気を追い出すことができ、空気層が形成されることはない。   On the other hand, in the refrigerator 301 of the present invention, the vertical groove 317 and the horizontal groove 318 communicate with each other, and the vertical groove 317 or the horizontal groove 318 is formed up to the end of the vacuum heat insulating material 316, and the adhesive is the vacuum heat insulating material 316. By being applied to the surface other than the vertical grooves 317 and the horizontal grooves 318 on the surface of the outer box 302, the heat insulating material is filled in the vertical grooves 317 and the horizontal grooves 318, so that air can be expelled and an air layer is formed. Never happen.

従って、外箱302の変形を防止することができ、見栄えが良くデザイン性の高い冷蔵庫とすることができる。   Therefore, deformation of the outer box 302 can be prevented, and a refrigerator with good appearance and high design can be obtained.

また、縦溝317または横溝318を真空断熱材316の端部に形成した場合、真空断熱材316の外縁が溝になるため、接着剤を塗布できない。これにより、断熱材を充填した時に、真空断熱材316と外箱302の間に断熱材が侵入、発泡し、膨張するため、外箱302が膨張圧力により変形する恐れがある。   In addition, when the vertical groove 317 or the horizontal groove 318 is formed at the end of the vacuum heat insulating material 316, the outer edge of the vacuum heat insulating material 316 becomes a groove, so that the adhesive cannot be applied. As a result, when the heat insulating material is filled, the heat insulating material penetrates between the vacuum heat insulating material 316 and the outer box 302, expands, and expands, so that the outer box 302 may be deformed by the expansion pressure.

これに対し、本発明の冷蔵庫301は、真空断熱材316の端部を外箱302と接着するため、断熱材が侵入する恐れがない。   On the other hand, since the refrigerator 301 of the present invention bonds the end of the vacuum heat insulating material 316 to the outer box 302, the heat insulating material does not enter.

従って、外箱302の変形を防止することができ、見栄えが良くデザイン性の高い冷蔵庫とすることができる。   Therefore, deformation of the outer box 302 can be prevented, and a refrigerator with good appearance and high design can be obtained.

また、本発明の冷蔵庫301は、縦溝317と横溝318を十字交差させ、溝に合うような放熱パイプ312の形状としており、放熱パイプ312の複数の横方向の直線部において、冷蔵庫上側に位置する上側直線部319及び冷蔵庫下側に位置する下側直線部320は、それぞれ、ほぼ同一直線上に形成しており、それぞれが一本の横溝318内に配置しているので、少ない溝の数で真空断熱材と放熱パイプを複層することで、真空断熱材の断熱性能劣化を抑制することができ、冷蔵庫の断熱性能を向上し、効率の高い冷蔵庫とすることができる。   Further, the refrigerator 301 of the present invention has a shape of the heat radiating pipe 312 that crosses the vertical groove 317 and the horizontal groove 318 so as to fit the groove, and is positioned above the refrigerator in a plurality of horizontal straight portions of the heat radiating pipe 312. The upper straight portion 319 and the lower straight portion 320 located on the lower side of the refrigerator are formed on substantially the same straight line, and are disposed in one horizontal groove 318, so the number of grooves is small. Thus, by multilayering the vacuum heat insulating material and the heat radiating pipe, deterioration of the heat insulating performance of the vacuum heat insulating material can be suppressed, the heat insulating performance of the refrigerator can be improved, and a highly efficient refrigerator can be obtained.

すなわち、真空断熱材316に溝を形成すると、溝の部分は厚さが薄くなる。一般的に、真空断熱材を通過する熱量は、断熱材の厚さに比例するため、溝の部分は断熱性能が低くなってしまう。   That is, when a groove is formed in the vacuum heat insulating material 316, the thickness of the groove portion is reduced. In general, the amount of heat passing through the vacuum heat insulating material is proportional to the thickness of the heat insulating material, so that the heat insulating performance of the groove portion becomes low.

従って、溝の数を減らすことにより、真空断熱材316に溝を形成することによる断熱性能劣化を抑制することができ、断熱性能が高く、効率の高い冷蔵庫とすることができる
Therefore, by reducing the number of grooves, it is possible to suppress deterioration of heat insulation performance due to the formation of grooves in the vacuum heat insulating material 316, and it is possible to provide a refrigerator with high heat insulation performance and high efficiency.

尚、本実施の形態において、溝の中の空気は断熱材が充填されることにより溝の外側に押し出されるとして説明したが、溝の内部と断熱材の外部、例えば機械室315を連通する空気抜き部材を設けることにより、さらに確実に溝の中の空気を抜くことができる。   In the present embodiment, the air in the groove has been described as being pushed out of the groove by being filled with the heat insulating material. However, the air vent that communicates the inside of the groove and the outside of the heat insulating material, for example, the machine room 315, is described. By providing the member, the air in the groove can be extracted more reliably.

また、本実施の形態において、放熱パイプ312は冷蔵庫301の側面に貼り付ける構成として説明したが、冷蔵庫301の背面においても、同様の構成とすることで同様の効果が得られる。   Further, in the present embodiment, the heat radiating pipe 312 is described as being configured to be affixed to the side surface of the refrigerator 301, but the same effect can be obtained by using the same configuration on the back surface of the refrigerator 301.

また、本実施の形態において、放熱パイプ312に入口部313及び出口部314を定義して説明したが、冷媒の流れる方向に関係なく、どちらが入口部313と出口部314が逆になっても同様の効果を得られる。   Further, in the present embodiment, the inlet portion 313 and the outlet portion 314 are defined in the heat radiating pipe 312. However, regardless of the direction in which the refrigerant flows, it is the same regardless of which of the inlet portion 313 and the outlet portion 314 is reversed. The effect of.

また、本実施の形態においては、縦溝317を真空断熱材316の長手方向、横溝318を真空断熱材316の短手方向として説明したが、これは冷蔵庫301の形状に合わせて縦長の真空断熱材316を用いた場合であり、横長の真空断熱材316を用いた場合は長手方向と短手方向が逆となる。   In the present embodiment, the vertical groove 317 is described as the longitudinal direction of the vacuum heat insulating material 316, and the horizontal groove 318 is described as the short direction of the vacuum heat insulating material 316. This is the case where the material 316 is used, and when the horizontally long vacuum heat insulating material 316 is used, the longitudinal direction and the short direction are reversed.

また、放熱パイプ312の複数の直線部と複層する溝の部分は、放熱パイプ312の成形誤差及び貼り付け誤差を考慮して、十分な幅とすることにより、確実に複層させることができる。   In addition, the groove portions that are multilayered with the plurality of straight portions of the heat radiating pipe 312 can be surely multilayered by setting a sufficient width in consideration of a molding error and a pasting error of the heat radiating pipe 312. .

また、本実施の形態においては、放熱パイプ312は外箱302に貼り付ける構成として説明したが、放熱パイプを真空断熱材316に貼り付ける構成とすることにより、放熱パイプ312の貼り付け誤差による放熱パイプ312と溝のズレをより確実に防ぐことができ、溝の幅を狭くすることができる。   Further, in the present embodiment, the heat radiating pipe 312 is described as being configured to be affixed to the outer box 302, but by adopting a structure in which the heat radiating pipe is affixed to the vacuum heat insulating material 316, heat dissipation due to a bonding error of the heat radiating pipe 312 is performed. Misalignment between the pipe 312 and the groove can be prevented more reliably, and the width of the groove can be reduced.

(実施の形態4)
図13は本発明の実施の形態4における冷蔵庫の断面図である。図14は同実施の形態の冷蔵庫の放熱パイプの斜視図である。図15は同実施の形態の冷蔵庫の真空断熱材と放熱パイプの正面図である。なお、実施の形態1ないし3と同一構成、同一技術思想については本実施の形態でも適用可能である。
(Embodiment 4)
FIG. 13 is a cross-sectional view of the refrigerator in the fourth embodiment of the present invention. FIG. 14 is a perspective view of the heat radiating pipe of the refrigerator according to the embodiment. FIG. 15 is a front view of the vacuum heat insulating material and the heat radiating pipe of the refrigerator according to the embodiment. Note that the same configuration and the same technical idea as in the first to third embodiments can be applied to this embodiment.

図13ないし図15において、321は放熱パイプであり、放熱効率向上を狙い、長さを確保するために、外箱302の左右に貼り付けるべく連結部322により冷蔵庫301天面で左右のパイプを繋げる構成としている。   13 to 15, reference numeral 321 denotes a heat radiating pipe. In order to improve the heat radiating efficiency and secure the length, the left and right pipes on the top surface of the refrigerator 301 are attached to the top surface of the refrigerator 301 to be attached to the left and right of the outer box 302. The structure is connected.

ここで、連結部322は、冷蔵庫301の最背面または最前面で繋ぐ構成とすれば、できるだけ放熱パイプ321の長さを長くしつつ縦溝317をそのまま使い放熱パイプ321を連結部322と繋ぐことができる。しかしながら、冷蔵庫301は、天面の最前面に断熱扉307を回動自在に軸支するヒンジ部(図示せず)を設けていると共に、最背面には冷蔵庫301を運搬する際に手をかける取手部(図示せず)を設けているため、その部分に連結部を設けることは困難である。   Here, if the connecting part 322 is connected at the rearmost or frontmost side of the refrigerator 301, the length of the heat radiating pipe 321 is made as long as possible and the vertical groove 317 is used as it is to connect the heat radiating pipe 321 to the connecting part 322. Can do. However, the refrigerator 301 is provided with a hinge portion (not shown) for pivotally supporting the heat insulating door 307 on the frontmost surface of the top surface, and the rearmost surface is used when carrying the refrigerator 301. Since a handle portion (not shown) is provided, it is difficult to provide a connecting portion at that portion.

従って、連結部322を冷蔵庫1天面の前後方向の略中央部に構成するため、放熱パイプ321は、蛇行した後、背面上部で一旦冷蔵庫301の前方向に曲げられ、前後方向の略中央部で且つ蛇行した放熱パイプ321の縦方向の直線部とほぼ一直線上の位置で上方向へと曲げられ連結部322と接続する構成となっている。   Therefore, in order to configure the connecting portion 322 at the substantially central portion in the front-rear direction of the refrigerator 1 top surface, the heat radiating pipe 321 is meandered and then bent in the front upper direction of the refrigerator 301 once at the upper part of the back surface. In addition, the meandering heat radiating pipe 321 is bent upward and is connected to the connecting portion 322 at a position substantially in line with the longitudinal straight portion.

このような構成とすることにより、真空断熱材316に縦溝317及び横溝318を設け、縦溝317と横溝318を十字交差させているため、連結部322と繋がる上方向へ伸びるパイプとほぼ一直線上にある縦方向の放熱パイプ321は、同一の縦溝317と複層でき、連結部322と繋ぐことができる。   With such a configuration, the vertical heat insulation 316 and the horizontal groove 318 are provided in the vacuum heat insulating material 316, and the vertical groove 317 and the horizontal groove 318 are crossed so that the pipe extending upward and connected to the connecting portion 322 is almost straight. The vertical heat radiating pipe 321 on the line can be multilayered with the same vertical groove 317 and can be connected to the connecting portion 322.

従って、放熱パイプ321を冷蔵庫301の左右に設け、天面で連結した場合にも、溝の数を増やすことなく真空断熱材316と放熱パイプ321を複層することができ、真空断熱材316に溝を形成することによる断熱性能劣化を抑制することができ、断熱性能が高く、効率の高い冷蔵庫とすることができる。   Therefore, even when the heat radiating pipes 321 are provided on the left and right sides of the refrigerator 301 and connected on the top surface, the vacuum heat insulating material 316 and the heat radiating pipe 321 can be multilayered without increasing the number of grooves. The heat insulation performance deterioration due to the formation of the grooves can be suppressed, and the refrigerator can have a high heat insulation performance and high efficiency.

尚、本実施の形態では、連結部322を冷蔵庫301天面としたが、放熱パイプ321を蛇行した後背面側に曲げて横溝318と複層させることにより、連結部322を背面に構成して同様の効果を得ることができる。   In the present embodiment, the connecting portion 322 is the top surface of the refrigerator 301. However, the connecting portion 322 is formed on the back surface by bending the heat radiating pipe 321 to the back side and bending it to the back side to form a multilayered groove 318. Similar effects can be obtained.

(実施の形態5)
図16は本発明の実施の形態5における冷蔵庫の真空断熱材と放熱パイプの正面図である。なお、実施の形態1ないし4と同一構成、同一技術思想については本実施の形態でも適用可能である。
(Embodiment 5)
FIG. 16: is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in Embodiment 5 of this invention. The same configuration and the same technical idea as in the first to fourth embodiments can also be applied to this embodiment.

図16において、真空断熱材323には、縦溝317及び横溝318の一部が十字状に交差するように設けられている。すなわち、蛇行した形状の放熱パイプ324と複層する部分のみに、縦溝317及び横溝318を形状した構造となっている。   In FIG. 16, the vacuum heat insulating material 323 is provided so that a part of the vertical groove 317 and the horizontal groove 318 intersect in a cross shape. In other words, the vertical groove 317 and the horizontal groove 318 are formed only in a portion that is multilayered with the meandering heat radiation pipe 324.

ここで、真空断熱材323の縦溝317及び横溝318は、例えばプレス加工など、自由な形状で溝を形成する加工方法で加工されており、放熱パイプ324と複層する位置のみが溝形状となっている。   Here, the vertical groove 317 and the horizontal groove 318 of the vacuum heat insulating material 323 are processed by a processing method of forming a groove in a free shape such as press processing, and only the position where the heat radiating pipe 324 is multilayered is a groove shape. It has become.

これにより、実施の形態3及び4のように、放熱パイプ324が通らない位置に溝が無いことにより、より溝の数を少なくすることができる。   Thereby, like Embodiment 3 and 4, since there is no groove | channel in the position where the heat radiating pipe 324 does not pass, the number of grooves can be reduced more.

従って、溝の数を増やすことなく真空断熱材323と放熱パイプ324を複層することができ、真空断熱材323に溝を形成することによる断熱性能劣化を抑制することができ、断熱性能が高く、効率の高い冷蔵庫とすることができる。   Therefore, the vacuum heat insulating material 323 and the heat radiating pipe 324 can be multilayered without increasing the number of grooves, deterioration of heat insulating performance due to the formation of grooves in the vacuum heat insulating material 323 can be suppressed, and the heat insulating performance is high. , Can be a highly efficient refrigerator.

本発明の冷蔵庫は、冷蔵庫の外観変形を抑制することができるので、真空断熱材に凹部形状の溝を設けた冷却機器全般に適用可能である。   Since the refrigerator of the present invention can suppress external deformation of the refrigerator, it can be applied to all cooling devices provided with a recess-shaped groove in a vacuum heat insulating material.

101 芯材
102 ガスバリア性フィルム
103、316、323 真空断熱材
104、317 縦溝
105、318 横溝
106 上下端面部
107、302 外箱
108、303 内箱
109、304 発泡断熱材
110、306 断熱箱体
111、312、321、324 放熱パイプ
111S 放熱パイプサイド
111F 放熱パイプフロント
112 冷蔵庫本体
113 冷蔵室
114 切替室
115 製氷室
116 野菜室
117 冷凍室
118 冷却器
119 冷気送風ファン
120 圧縮機
121 キャピラリーチューブ
123 空間部
124 連通部材
125 出口溝
126、315 機械室
127 屈曲部
200 補強部材
201 部品間空間
101 Core material 102 Gas barrier film 103, 316, 323 Vacuum heat insulating material 104, 317 Longitudinal groove 105, 318 Horizontal groove 106 Upper / lower end surface portion 107, 302 Outer box 108, 303 Inner box 109, 304 Foam heat insulating material 110, 306 111, 312, 321 and 324 Radiation pipe 111S Radiation pipe side 111F Radiation pipe front 112 Refrigerator body 113 Refrigeration room 114 Switching room 115 Ice making room 116 Vegetable room 117 Freezing room 118 Cooler 119 Cold air blower fan 120 Compressor 121 Capillary tube 123 Space Portion 124 Communication member 125 Outlet groove 126, 315 Machine room 127 Bending portion 200 Reinforcing member 201 Space between parts

Claims (4)

外箱と内箱との間に発泡断熱材を充填した断熱箱体と、前記外箱の内側に配設された放熱パイプと、前記放熱パイプの庫内側に、芯材をガスバリア性フィルムで覆い、その内部を減圧し密封した真空断熱材とを備え、前記真空断熱材は凹形状の溝を有し、前記溝に前記放熱パイプを配置するとともに、前記発泡断熱材を介在して前記断熱箱体の外側と前記溝とを連通する連通部材を備えたもので、前記冷蔵庫側面下部稜線部には補強部材を有し、前記連通部材の一端は前記外箱と前記補強部材の間の外気と連通する空間に配置したことを特徴とする冷蔵庫。 Cover the core with a gas barrier film on the inside of the heat-dissipating pipe, the heat-insulating box filled with the foam heat-insulating material between the outer box and the inner box, the heat-dissipating pipe disposed inside the outer box And a vacuum heat insulating material whose inside is depressurized and sealed, the vacuum heat insulating material having a concave groove, the heat radiating pipe is disposed in the groove, and the foam heat insulating material is interposed between the heat insulating boxes. A communication member that communicates between the outside of the body and the groove , the refrigerator side surface lower ridge line has a reinforcing member, one end of the communication member is the outside air between the outer box and the reinforcing member A refrigerator characterized by being arranged in a communicating space . 前記真空断熱材端部は糊面を備えたことを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the end of the vacuum heat insulating material has a glue surface. 前記真空断熱材は前記断熱箱体の前面側から背面側へ凹形状の横溝を有し、前記連通部材の一端が前記横溝内に埋設されたことを特徴とする請求項1または2に記載の冷蔵庫。 The said vacuum heat insulating material has a concave lateral groove from the front side of the said heat insulation box to the back side, The one end of the said communication member was embed | buried in the said horizontal groove, The Claim 1 or 2 characterized by the above-mentioned. refrigerator. 外箱と内箱との間に発泡断熱材を充填した断熱箱体と、前記外箱の内側に配設された放熱パイプと、前記放熱パイプの庫内側に、芯材をガスバリア性フィルムで覆い、その内部を減圧し密封した真空断熱材とを備え、前記真空断熱材は、縦溝と横溝とを備え、前記縦溝と横溝とは互いに交差して前記真空断熱材の端部で開口し、前記真空断熱材の外周縁における前記縦溝と横溝の無い部分を基準壁厚とするとともに、前記発泡断熱材を介在して前記断熱箱体の外側と前記縦溝あるいは横溝と連通する連通部材を備えたことを特徴とする冷蔵庫。Cover the core with a gas barrier film on the inside of the heat-dissipating pipe, the heat-insulating box filled with the foam heat-insulating material between the outer box and the inner box, the heat-dissipating pipe disposed inside the outer box A vacuum heat insulating material whose inside is depressurized and sealed, and the vacuum heat insulating material includes a vertical groove and a horizontal groove, and the vertical groove and the horizontal groove intersect each other and open at the end of the vacuum heat insulating material. And a communicating member that communicates with the outside of the heat insulating box and the vertical groove or the horizontal groove with the foamed heat insulating material interposed between the outer peripheral edge of the vacuum heat insulating material without the vertical groove and the horizontal groove as a reference wall thickness. A refrigerator characterized by comprising.
JP2013189196A 2012-12-27 2013-09-12 refrigerator Active JP5578266B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013189196A JP5578266B1 (en) 2012-12-27 2013-09-12 refrigerator

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2012284177 2012-12-27
JP2012284177 2012-12-27
JP2013082735 2013-04-11
JP2013082735 2013-04-11
JP2013106875 2013-05-21
JP2013106875 2013-05-21
JP2013113713 2013-05-30
JP2013113713 2013-05-30
JP2013189196A JP5578266B1 (en) 2012-12-27 2013-09-12 refrigerator

Publications (2)

Publication Number Publication Date
JP5578266B1 true JP5578266B1 (en) 2014-08-27
JP2015007526A JP2015007526A (en) 2015-01-15

Family

ID=51020307

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2013189197A Active JP5641115B1 (en) 2012-12-27 2013-09-12 refrigerator
JP2013189195A Active JP5578265B1 (en) 2012-12-27 2013-09-12 refrigerator
JP2013189193A Active JP5578263B1 (en) 2012-12-27 2013-09-12 refrigerator
JP2013189194A Active JP5578264B1 (en) 2012-12-27 2013-09-12 refrigerator
JP2013189196A Active JP5578266B1 (en) 2012-12-27 2013-09-12 refrigerator

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2013189197A Active JP5641115B1 (en) 2012-12-27 2013-09-12 refrigerator
JP2013189195A Active JP5578265B1 (en) 2012-12-27 2013-09-12 refrigerator
JP2013189193A Active JP5578263B1 (en) 2012-12-27 2013-09-12 refrigerator
JP2013189194A Active JP5578264B1 (en) 2012-12-27 2013-09-12 refrigerator

Country Status (4)

Country Link
JP (5) JP5641115B1 (en)
CN (1) CN205119635U (en)
DE (1) DE212013000262U1 (en)
WO (1) WO2014103179A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104344654A (en) * 2013-09-27 2015-02-11 海尔集团公司 Assembling method for refrigerator
CN104344653A (en) * 2013-09-27 2015-02-11 海尔集团公司 Refrigerator
JP6404684B2 (en) * 2014-11-06 2018-10-10 ホシザキ株式会社 Thermal insulation panel
JP7164286B2 (en) * 2016-04-27 2022-11-01 東芝ライフスタイル株式会社 refrigerator
CN109564054A (en) * 2016-08-10 2019-04-02 松下知识产权经营株式会社 Freezer
JP2019207043A (en) * 2018-05-28 2019-12-05 東芝ライフスタイル株式会社 refrigerator
WO2020003587A1 (en) * 2018-06-25 2020-01-02 シャープ株式会社 Refrigerator
JP7287642B2 (en) * 2018-12-27 2023-06-06 アクア株式会社 refrigerator
JP2021032522A (en) * 2019-08-28 2021-03-01 パナソニックIpマネジメント株式会社 refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221616A (en) * 1990-12-21 1992-08-12 Sharp Corp Degassing method and heat insulation box body manufactured by use of same
JPH0611248A (en) * 1992-06-29 1994-01-21 Sharp Corp Box body structure of storage case
JP2002508495A (en) * 1997-12-18 2002-03-19 ザ ダウ ケミカル カンパニー Exhausted insulation panel with wrinkle-free surface
JP2011102599A (en) * 2009-11-10 2011-05-26 Toshiba Corp Vacuum insulation panel and refrigerator using the same
JP2012063039A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator
WO2012169520A1 (en) * 2011-06-07 2012-12-13 シャープ株式会社 Refrigerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098637A (en) * 2003-09-26 2005-04-14 Hitachi Home & Life Solutions Inc Refrigerator, vacuum heat insulating material and its manufacturing method
JP4196851B2 (en) * 2004-02-19 2008-12-17 三菱電機株式会社 refrigerator
JP3823993B2 (en) * 2004-10-06 2006-09-20 松下電器産業株式会社 refrigerator
JP2007178077A (en) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd Refrigerator
JP4545126B2 (en) 2006-09-04 2010-09-15 シャープ株式会社 Vacuum insulation panel and refrigerator using the same
JP2010145002A (en) * 2008-12-18 2010-07-01 Sharp Corp Heat insulating case body for refrigerator and method of manufacturing the same
JP2012083068A (en) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp Refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221616A (en) * 1990-12-21 1992-08-12 Sharp Corp Degassing method and heat insulation box body manufactured by use of same
JPH0611248A (en) * 1992-06-29 1994-01-21 Sharp Corp Box body structure of storage case
JP2002508495A (en) * 1997-12-18 2002-03-19 ザ ダウ ケミカル カンパニー Exhausted insulation panel with wrinkle-free surface
JP2011102599A (en) * 2009-11-10 2011-05-26 Toshiba Corp Vacuum insulation panel and refrigerator using the same
JP2012063039A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator
WO2012169520A1 (en) * 2011-06-07 2012-12-13 シャープ株式会社 Refrigerator

Also Published As

Publication number Publication date
JP5578265B1 (en) 2014-08-27
WO2014103179A1 (en) 2014-07-03
JP5641115B1 (en) 2014-12-17
JP5578264B1 (en) 2014-08-27
DE212013000262U1 (en) 2015-08-07
JP2015007526A (en) 2015-01-15
JP5578263B1 (en) 2014-08-27
JP2015007523A (en) 2015-01-15
JP2015007524A (en) 2015-01-15
JP2015007527A (en) 2015-01-15
JP2015007525A (en) 2015-01-15
CN205119635U (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5578266B1 (en) refrigerator
JP5677737B2 (en) refrigerator
JP4696906B2 (en) refrigerator
JP2008116126A (en) Refrigerator
JP6002641B2 (en) Vacuum insulation and refrigerator
JP4196851B2 (en) refrigerator
JP6200742B2 (en) refrigerator
JP5503478B2 (en) refrigerator
AU2019427660A1 (en) Refrigerator
WO2015025477A1 (en) Refrigerator
TWI622747B (en) Refrigerator
JP6558874B2 (en) Manufacturing method of vacuum insulation
JP2013185730A (en) Refrigerator
JP2015064134A (en) Refrigerator
JP6504379B2 (en) refrigerator
JP4141428B2 (en) Cooling storage
JP4984783B2 (en) refrigerator
JP6402352B2 (en) refrigerator
JP6314311B2 (en) refrigerator
JP6379348B2 (en) refrigerator
JP6398073B2 (en) refrigerator
JP6113612B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2005172307A (en) Refrigerator
JP2013185734A (en) Refrigerator
JP2014134282A (en) Vacuum heat insulation material and refrigerator using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5578266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151