JP2005172307A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2005172307A
JP2005172307A JP2003410061A JP2003410061A JP2005172307A JP 2005172307 A JP2005172307 A JP 2005172307A JP 2003410061 A JP2003410061 A JP 2003410061A JP 2003410061 A JP2003410061 A JP 2003410061A JP 2005172307 A JP2005172307 A JP 2005172307A
Authority
JP
Japan
Prior art keywords
condenser
refrigerator
heat insulating
insulating material
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003410061A
Other languages
Japanese (ja)
Inventor
Shuhei Sugimoto
修平 杉本
Tetsuya Saito
哲哉 斎藤
Kazue Yamato
一恵 大和
Koichi Nishimura
晃一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003410061A priority Critical patent/JP2005172307A/en
Publication of JP2005172307A publication Critical patent/JP2005172307A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maximize the effect of reduction of heat absorbing quantity by a vacuum heat insulating material while sufficiently securing the heat radiating performance of a condenser, with respect to a refrigerator provided with the condenser and the vacuum heat insulating material in an urethane heat insulating material between an outer casing and an inner casing. <P>SOLUTION: This refrigerator comprises the outer casing 202 forming an outer wall, the inner casing 204 forming an inside inner wall, and a heat insulating casing 206 composed of the heat insulating material 204 foamed and packed between the outer casing 202 and the inner casing 203, and the vacuum heat insulating material 205 buried in the heat insulating material 204, the hollow plate-shaped condenser 220 defining an internal flow channel 221 is formed on a part or the whole of the outer casing 202, and the heat radiating performance can be improved as a heat insulating area of the condenser 220 is increased and a heat transfer passage to the outside air is shortened. Further as the vacuum heat insulating material 205 is installed inside of the condenser 220, the intrusion of the heat into the inside from the outside air and the condenser 220 can be inhibited. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、外箱および内箱間に断熱材を発泡充填して成る断熱箱体から構成された冷蔵庫に関するものである。   The present invention relates to a refrigerator composed of a heat insulating box formed by foaming and filling a heat insulating material between an outer box and an inner box.

近年、冷蔵庫の大容量化および設置スペース縮小の需要が高まるにつれて、冷蔵庫断熱壁内には真空断熱材を備えて断熱性能の向上を図っている(例えば、特許文献1参照)。   In recent years, as the demand for increasing the capacity of a refrigerator and reducing the installation space increases, a vacuum heat insulating material is provided in the refrigerator heat insulating wall to improve heat insulating performance (see, for example, Patent Document 1).

以下、図面を参照しながら上記従来の冷蔵庫を説明する。   Hereinafter, the conventional refrigerator will be described with reference to the drawings.

図16は、従来の冷蔵庫の一部切り欠き斜視図を示す。図17は、冷蔵庫の図16におけるE−E' 断面図を示す。図16、17に示すように、従来の冷蔵庫1は、冷蔵庫1の外壁を形成する外箱2と、冷蔵庫の庫内壁を形成する内箱3と、外箱2と内箱3の間に発泡充填させたウレタン断熱材4、ウレタン断熱材4内に配置した真空断熱材5からなる断熱箱体6と、断熱箱体6のウレタン断熱材4内に配置した冷蔵庫冷却装置(図示せず)の凝縮器20により構成され、さらに断熱箱体内6を第一仕切り壁6aおよび第二仕切り壁6bによって上下に区画し、それぞれに冷蔵室6cおよび冷凍室6d、野菜室6eを形成している。   FIG. 16 is a partially cutaway perspective view of a conventional refrigerator. FIG. 17: shows EE 'sectional drawing in FIG. 16 of a refrigerator. As shown in FIGS. 16 and 17, the conventional refrigerator 1 is foamed between the outer box 2 that forms the outer wall of the refrigerator 1, the inner box 3 that forms the inner wall of the refrigerator, and the outer box 2 and the inner box 3. A heat insulating box 6 comprising a filled urethane heat insulating material 4, a vacuum heat insulating material 5 disposed in the urethane heat insulating material 4, and a refrigerator cooling device (not shown) disposed in the urethane heat insulating material 4 of the heat insulating box 6. The heat insulating box 6 is composed of a condenser 20 and is divided into upper and lower parts by a first partition wall 6a and a second partition wall 6b, and a refrigerator compartment 6c, a freezer compartment 6d, and a vegetable compartment 6e are formed respectively.

真空断熱材5は、ガスの透過を阻止する多層ラミネート構造のフィルムから成る外被袋、シリカ・パーライト等の微粉末もしくは無機繊維等からなる芯材により構成され、心材を外被に封入した後、外被袋内のガス(空気)を排気し、真空状態にしてヒートシールで密封している。この真空断熱材5の熱伝導率は、0.008から0.0025W/m・Kと断熱性能が非常に優れているため、特に低温が要求される冷凍室6dの周囲に取り付ければ、断熱箱体6の壁厚を薄くしても、庫内に侵入してくる熱量を有効的に削減することが可能となる。また一般的に真空断熱材5の固定場所は曲面が多い内箱3よりも比較的平面部が多い外箱2の内面側に取り付けられる。   The vacuum heat insulating material 5 is composed of a jacket bag made of a film having a multilayer laminate structure that prevents gas permeation, and a core material made of fine powder such as silica and pearlite or inorganic fibers, and after the core material is sealed in the jacket The gas (air) in the jacket bag is evacuated, vacuumed and sealed with a heat seal. Since the heat conductivity of the vacuum heat insulating material 5 is 0.008 to 0.0025 W / m · K, and the heat insulating performance is very excellent, a heat insulating box is provided if it is mounted around the freezer compartment 6d where particularly low temperature is required. Even if the wall thickness of the body 6 is reduced, the amount of heat entering the interior can be effectively reduced. In general, the vacuum heat insulating material 5 is fixed to the inner surface side of the outer box 2 having a relatively larger number of flat surfaces than the inner box 3 having a larger curved surface.

ウレタン断熱材4内に配置された凝縮器20は一般に銅管で構成され、外箱2の内面側にアルミテープ28等により取り付けられている。この理由として、圧縮機(図示せず)から搬送される高温高圧ガスを凝縮させるべく、外箱2と凝縮器20を接地させ放熱面積を確保する必要があり、また高温になった凝縮器20から庫内へ侵入する熱量を削減するべく、冷蔵庫1内から凝縮器20(銅管)を極力隔離させる必要がある。さらに冷蔵庫1表面の露着き防止のため、外箱2表面温度は庫外の雰囲気温度に対して極力低下させないように、凝縮器20の熱を外箱2へ効果的に伝達させなければならない等が挙げられる。   The condenser 20 disposed in the urethane heat insulating material 4 is generally constituted by a copper tube, and is attached to the inner surface side of the outer box 2 by an aluminum tape 28 or the like. For this reason, in order to condense the high-temperature and high-pressure gas conveyed from the compressor (not shown), it is necessary to ground the outer casing 2 and the condenser 20 to ensure a heat radiation area, and the condenser 20 that has become hot. It is necessary to isolate the condenser 20 (copper tube) from the refrigerator 1 as much as possible in order to reduce the amount of heat entering the interior from the refrigerator. Furthermore, in order to prevent the surface of the refrigerator 1 from being deposited, the heat of the condenser 20 must be effectively transferred to the outer box 2 so that the surface temperature of the outer box 2 does not decrease as much as the ambient temperature outside the refrigerator. Is mentioned.

以上より、真空断熱材5と凝縮器20は双方共に外箱2内面側に配置されるため、図17のように互いの配置位置を阻害しないよう真空断熱材5の周囲に凝縮器20を配置させる構造をとっている。   As described above, since both the vacuum heat insulating material 5 and the condenser 20 are arranged on the inner surface side of the outer box 2, the condenser 20 is arranged around the vacuum heat insulating material 5 so as not to disturb the mutual arrangement positions as shown in FIG. The structure is taken.

また、図18に示すように、真空断熱材5の外箱側の側面部に溝30を成形し、凝縮器20(銅パイプ)を溝30に当接する構造をとっているものがある。(例えば、特許文献2参照)
また、図19に示すように、真空断熱材5を外箱2と内箱3の中間位置に固定部品50を用いて配置させるという方法がある。(例えば、特許文献3参照)
特開平9−269177号公報 実開昭61−21285号公報 特開平03−233285号公報
Further, as shown in FIG. 18, there is a structure in which a groove 30 is formed in a side surface portion on the outer box side of the vacuum heat insulating material 5 and a condenser 20 (copper pipe) is brought into contact with the groove 30. (For example, see Patent Document 2)
Further, as shown in FIG. 19, there is a method in which the vacuum heat insulating material 5 is arranged at a middle position between the outer box 2 and the inner box 3 using a fixing component 50. (For example, see Patent Document 3)
Japanese Patent Laid-Open No. 9-269177 Japanese Utility Model Publication No.61-21285 Japanese Patent Laid-Open No. 03-233285

しかしながら、冷蔵庫の省エネルギー化のため、庫外から庫内への侵入熱量をさらに低減させるべく、真空断熱材5の被覆面積を拡大した場合、従来の方法では、凝縮器20の配置が真空断熱材5の周辺部分だけに制限されるため、凝縮器20である銅管の長さが限定されてしまう。さらに凝縮器20は外箱2とアルミテープ28により接着しているが、管と板の線上接触より接触面積は少ない。また銅管の固定方法は、アルミテープ28により銅管を一時固定した後に、ウレタン発泡により充填固定する方法をとっていたが、アルミテープ28の固定時のばらつきによる浮き発生等により凝縮器20(銅管)と外箱2の間にウレタン断熱材4が回り込んでしまい、接触面積が減少する場合があった。したがって、冷媒を凝縮させるために必要な放熱面積も限定され凝縮温度は充分低下せず、凝縮能力も増加しない。したがって、冷凍サイクル全体において圧縮比が高く維持され、圧縮機の軸動力は高くかつ体積効率も低い状態となり冷凍サイクルのCOPは向上しない。   However, in order to save energy in the refrigerator, when the covering area of the vacuum heat insulating material 5 is increased in order to further reduce the amount of heat entering from the outside to the inside of the refrigerator, in the conventional method, the arrangement of the condenser 20 is the vacuum heat insulating material. Therefore, the length of the copper tube that is the condenser 20 is limited. Further, although the condenser 20 is bonded to the outer box 2 and the aluminum tape 28, the contact area is smaller than the line contact between the tube and the plate. The copper tube is fixed by temporarily fixing the copper tube with the aluminum tape 28 and then filling and fixing with urethane foam. However, the condenser 20 ( In some cases, the urethane heat insulating material 4 wraps around between the copper pipe) and the outer box 2 to reduce the contact area. Therefore, the heat radiation area required for condensing the refrigerant is also limited, the condensation temperature is not sufficiently lowered, and the condensation capacity is not increased. Therefore, the compression ratio is maintained high throughout the entire refrigeration cycle, the axial power of the compressor is high and the volumetric efficiency is low, and the COP of the refrigeration cycle is not improved.

また、従来の解決手段として、図18に示すように、真空断熱材5の材料コスト削減、もしくは高性能化のために真空断熱材5を薄肉化させたり、冷却システム(図示せず)の高効率化のために低凝縮温度化を狙いに凝縮器20である銅管長さを増加させるため、真空断熱材5の溝30を多数成形する必要があるが、真空断熱材5内部は真空状態のため、外部からの応力に弱く破損する可能性があることから溝30の複数成形は困難となる。そして、真空断熱材5における溝30の成形に関して、プレス機導入による溝付け成形コストがかかる。さらに真空断熱材5の取付工程において、溝30と凝縮器(銅パイプ)20との位置合わせの工数が増加するため、取り付け効率も含めた生産コストの高騰という課題があった。   Further, as a conventional solution, as shown in FIG. 18, the vacuum heat insulating material 5 is thinned in order to reduce the material cost of the vacuum heat insulating material 5 or to improve the performance, or the cooling system (not shown) is increased. In order to increase the length of the copper tube that is the condenser 20 for the purpose of lowering the condensing temperature for efficiency, it is necessary to form many grooves 30 of the vacuum heat insulating material 5, but the inside of the vacuum heat insulating material 5 is in a vacuum state. For this reason, it is difficult to form a plurality of grooves 30 because there is a possibility that the grooves 30 are easily damaged by external stress. And, regarding the forming of the groove 30 in the vacuum heat insulating material 5, the cost for forming the groove by introducing a press machine is required. Furthermore, in the process of attaching the vacuum heat insulating material 5, the number of man-hours for aligning the groove 30 and the condenser (copper pipe) 20 is increased, and there is a problem that the production cost including the attachment efficiency increases.

また、従来の解決手段として、図19に示すように、真空断熱材5を外箱2と内箱3の中間位置に固定部品50を用いて配置させるという方法があった。しかし、ウレタン断熱材4の性能を高めて断熱箱体6の壁厚を小さくした場合には、ウレタン断熱材4を発泡充填させるときに、真空断熱材5および固定部品50がウレタン断熱材4の流動を阻害し、真空断熱材5と外箱2もしくは内箱3の間にウレタン未充填部分(ボイド)を発生させてしまうという課題があった。   Further, as a conventional solution, there has been a method in which the vacuum heat insulating material 5 is arranged at an intermediate position between the outer box 2 and the inner box 3 using a fixing component 50 as shown in FIG. However, when the performance of the urethane heat insulating material 4 is improved and the wall thickness of the heat insulating box 6 is reduced, when the urethane heat insulating material 4 is foam-filled, the vacuum heat insulating material 5 and the fixing part 50 are made of the urethane heat insulating material 4. There was a problem that the flow was hindered and a urethane unfilled portion (void) was generated between the vacuum heat insulating material 5 and the outer box 2 or the inner box 3.

本発明は、従来の技術的課題を克服するものであり、真空断熱材に溝を成形する等の加工を施すことなく、かつ容易に冷蔵庫の組立て配置ができ、また凝縮器の放熱能力を増加させると共に、真空断熱材の冷蔵庫への被覆率増加による吸熱量低減の効果を最大限にひきだすことができる構造を備えた冷蔵庫を提供することを目的とする。   The present invention overcomes the conventional technical problems, and can easily assemble and place a refrigerator without processing such as forming a groove in a vacuum heat insulating material, and increase the heat dissipation capacity of the condenser. It is another object of the present invention to provide a refrigerator having a structure capable of maximizing the effect of reducing the amount of heat absorbed by increasing the coverage of the vacuum heat insulating material on the refrigerator.

上記課題を解決するため、本発明の冷蔵庫は、外壁を形成する外箱と、庫内壁を形成する内箱と、前記外箱と前記内箱間に発泡充填した断熱材とからなる断熱箱体とを備え、前記外箱は、内部流路を形成する中空のフ゜レート形状からなる凝縮器を前記外箱の一部もしくは全体に配設しているものであり、凝縮器の放熱面積が従来に比べて増加し、また外気への熱伝達経路が短くなったことから、凝縮器内の凝縮作用が促進され、凝縮器の放熱能力が向上できる。   In order to solve the above-mentioned problems, a refrigerator according to the present invention comprises a heat insulating box comprising an outer box that forms an outer wall, an inner box that forms a warehouse inner wall, and a heat insulating material that is foam-filled between the outer box and the inner box. The outer box is provided with a hollow plate-shaped condenser forming an internal flow path in a part or the whole of the outer box, and the heat dissipation area of the condenser is conventionally Compared to this, the heat transfer path to the outside air is shortened, so that the condensing action in the condenser is promoted, and the heat dissipation capability of the condenser can be improved.

また、本発明の冷蔵庫は、外壁を形成する外箱と、庫内壁を形成する内箱と、前記外箱と前記内箱間に発泡充填した断熱材と前記断熱材内に埋没された真空断熱材からなる断熱箱体とを備え、前記外箱は、内部流路を形成する中空のフ゜レート形状からなる凝縮器を前記外箱の一部もしくは全体に形成したものであり、凝縮器の放熱面積が従来に比べて増加し、また外気への熱伝達経路が短くなったことから、凝縮作用が促進され放熱能力が向上できる。また凝縮器の庫内側に真空断熱材が配設されているため、外気及び凝縮器から庫内への侵入熱を抑制することができる。   The refrigerator of the present invention includes an outer box that forms an outer wall, an inner box that forms an inner wall, a heat insulating material that is foam-filled between the outer box and the inner box, and a vacuum heat insulating material that is buried in the heat insulating material. A heat insulating box made of a material, and the outer box is formed by forming a hollow plate-shaped condenser forming an internal flow path in a part or the whole of the outer box, and the heat dissipation area of the condenser As compared with the prior art, the heat transfer path to the outside air is shortened, so that the condensing action is promoted and the heat dissipation capability can be improved. Moreover, since the vacuum heat insulating material is arrange | positioned inside the store | warehouse | chamber of a condenser, the penetration | invasion heat | fever from outside air and a condenser can be suppressed.

本発明の冷蔵庫によれば、凝縮器の放熱能力を向上できる効果がある。   According to the refrigerator of this invention, there exists an effect which can improve the thermal radiation capability of a condenser.

また、凝縮器及び庫外の雰囲気ガスから庫内への侵入熱量を抑制できる効果がある。   Moreover, there exists an effect which can suppress the heat | fever amount of penetration | invasion from the condenser and atmospheric gas outside a store | warehouse | chamber inside.

請求項1に記載の冷蔵庫の発明は、外壁を形成する外箱と、庫内壁を形成する内箱と、前記外箱と前記内箱間に発泡充填した断熱材とからなる断熱箱体とを備え、前記外箱は、内部流路を形成する中空のフ゜レート形状からなる凝縮器を前記外箱の一部もしくは全体に配設しているものであり、凝縮器の放熱面積が従来に比べて増加し、また外気への熱伝達経路が短くなったことから、凝縮器内の凝縮作用が促進され、凝縮器の放熱能力が向上できる。   The invention of the refrigerator according to claim 1 comprises: an outer box that forms an outer wall; an inner box that forms an inner wall of a warehouse; and a heat insulating box body that includes a foam-filled heat insulating material between the outer box and the inner box. The outer box is provided with a condenser having a hollow plate shape forming an internal flow path in a part or the whole of the outer box, and the heat dissipation area of the condenser is smaller than that of the conventional case. Since the heat transfer path to the outside air is increased and the heat transfer path to the outside air is shortened, the condensing action in the condenser is promoted, and the heat dissipation ability of the condenser can be improved.

請求項2に記載の発明は、外壁を形成する外箱と、庫内壁を形成する内箱と、前記外箱と前記内箱間に発泡充填した断熱材と前記断熱材内に埋没された真空断熱材からなる断熱箱体とを備え、前記外箱は、内部流路を形成する中空のフ゜レート形状からなる凝縮器を前記外箱の一部もしくは全体に形成したものであり、凝縮器の放熱面積が従来に比べて増加し、また外気への熱伝達経路が短くなったことから、凝縮作用が促進され放熱能力が向上できる。また凝縮器の庫内側に真空断熱材が配設されているため、外気及び凝縮器から庫内への侵入熱を抑制することができる。   The invention according to claim 2 includes an outer box that forms an outer wall, an inner box that forms an inner wall of a warehouse, a heat insulating material that is foam-filled between the outer box and the inner box, and a vacuum that is buried in the heat insulating material. A heat insulating box made of a heat insulating material, and the outer box is formed by forming a hollow plate-shaped condenser forming an internal flow path in a part or the whole of the outer box. Since the area is increased compared to the conventional case and the heat transfer path to the outside air is shortened, the condensing action is promoted and the heat radiation capability can be improved. Moreover, since the vacuum heat insulating material is arrange | positioned inside the store | warehouse | chamber of a condenser, the penetration | invasion heat | fever from outside air and a condenser can be suppressed.

請求項3に記載の発明は、請求項2に記載の発明において、前記凝縮器は、冷蔵庫背面部の一部もしくは全体に真空断熱材と併設されるものであり、凝縮器が冷蔵庫背面に集約されるため、その他の外箱部には凝縮器が配置されない。よって、庫内への侵入熱量は、埋設される真空断熱材により低減される。また冷蔵庫背面の凝縮器と真空断熱材は平面部どうしで接地する構造をとることから、冷蔵庫組立て前に事前に一体接着成形でき、組立て時の作業工数が低減できる。   The invention according to claim 3 is the invention according to claim 2, wherein the condenser is provided together with a vacuum heat insulating material on a part or the whole of the refrigerator rear portion, and the condenser is concentrated on the refrigerator rear surface. Therefore, no condenser is arranged in the other outer box. Therefore, the amount of heat entering the cabinet is reduced by the embedded vacuum heat insulating material. Moreover, since the condenser and the vacuum heat insulating material on the back of the refrigerator are grounded between the flat portions, they can be integrally bonded in advance before assembling the refrigerator, and the number of work steps during assembly can be reduced.

請求項4に記載の発明は、請求項2に記載の発明において、前記凝縮器は、冷蔵庫側面部の一部もしくは全体に真空断熱材と併設されるものであり、冷蔵庫を台所設置する際、側面の隙間は、背面と比べ多くなることから、外気の自然対流が促進されやすくなり、その結果放熱量が増加する。また、凝縮器が冷蔵庫側面に集約されるため、その他の外箱部には凝縮器が配置されない。よって、庫内への侵入熱量は、埋設される真空断熱材により抑制される。また冷蔵庫側面の凝縮器と真空断熱材は平面部どうしで接地する構造をとることから、冷蔵庫組立て前に事前に一体接着成形できることから、組立て時の作業工数が低減できる。   The invention according to claim 4 is the invention according to claim 2, wherein the condenser is provided together with a vacuum heat insulating material on a part or the whole of the side surface of the refrigerator, and when installing the refrigerator in the kitchen, Since the gap on the side surface is larger than that on the back surface, natural convection of the outside air is easily promoted, and as a result, the heat radiation amount is increased. In addition, since the condenser is concentrated on the side of the refrigerator, no condenser is arranged in the other outer box. Therefore, the amount of heat entering the cabinet is suppressed by the vacuum heat insulating material to be embedded. Moreover, since the condenser and the vacuum heat insulating material on the side surface of the refrigerator have a structure in which the flat portions are grounded to each other, and can be integrally bonded and formed in advance before assembling the refrigerator, it is possible to reduce the man-hours for assembling.

請求項5に記載の発明は、請求項3または4に記載の発明において、前記凝縮器の前記内部流路は、冷蔵室周辺部に少なくとも一部周設されていることから、冷蔵室の庫内と庫外の温度差は冷凍室に比べ小さくなり、庫外から庫内への侵入熱量が冷凍室の侵入熱量に比べて小さくなる。よって庫外から庫内へのトータルの侵入熱が減少できる。   The invention according to claim 5 is the invention according to claim 3 or 4, wherein the internal flow path of the condenser is provided at least partially around the periphery of the refrigerator compartment. The temperature difference between the inside and the outside of the refrigerator is smaller than that in the freezer compartment, and the amount of heat entering from the outside of the refrigerator into the interior is smaller than the amount of heat entering the freezer compartment. Therefore, the total intrusion heat from the outside to the inside can be reduced.

請求項6に記載の発明は、請求項3または4に記載の発明において、冷凍室周辺部に周設する前記凝縮器の前記内部流路体積に対して冷蔵室周辺部に周設する前記内部流路体積が多いものであり、冷蔵庫背面もしくは側面全体にわたり凝縮器が配設されているため、凝縮面積が確保され放熱能力が充分得られる。また冷蔵室の庫内と庫外の温度差は冷凍室に比べ小さいことから、庫外から庫内への侵入熱量が冷凍室の侵入熱量に比べて小さくできる。   The invention described in claim 6 is the invention described in claim 3 or 4, wherein the internal portion that is provided in the periphery of the refrigerator compartment with respect to the internal flow channel volume of the condenser that is provided in the periphery of the freezer compartment. Since the volume of the flow path is large and the condenser is disposed over the entire rear surface or side surface of the refrigerator, the condensation area is ensured and the heat radiation capability is sufficiently obtained. Moreover, since the temperature difference between the inside and outside of the refrigerator compartment is smaller than that of the freezer compartment, the amount of heat entering from the outside of the refrigerator into the inside of the refrigerator can be made smaller than the amount of heat entering the freezer compartment.

請求項7に記載の発明は、請求項1から6のいずれか一項に記載の発明において、前記凝縮器の庫外側表面形状の一部もしくは全体が凸部となるものであり、冷蔵庫設置の際、凸部が台所壁と接地するため、凝縮器と台所壁の間に十分な隙間が生じる。よって庫外空間において空気の滞留が減少して、外気温度の上昇が抑制された結果、凝縮器から外気への熱伝達量が確保される。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein a part or the whole of the outer surface shape of the condenser is a convex part, and the refrigerator is installed. At this time, since the convex portion contacts the kitchen wall, a sufficient gap is generated between the condenser and the kitchen wall. As a result, the retention of air in the external space is reduced and the increase in the outside air temperature is suppressed, so that the amount of heat transfer from the condenser to the outside air is ensured.

請求項8に記載の発明は、請求項2から7のいずれか一項に記載の発明において、圧縮機から前記凝縮器までの冷媒配管に凝縮器を追加配設するものであり、凝縮器を追加することにより冷媒の温度が低下する。この状態にて前記凝縮器の流路に流入するため、前記凝縮器と併設されている真空断熱材の高温劣化を未然に防止することができる。   The invention according to an eighth aspect is the invention according to any one of the second to seventh aspects, wherein a condenser is additionally provided in a refrigerant pipe from the compressor to the condenser, By adding, the temperature of a refrigerant | coolant falls. Since it flows into the flow path of the condenser in this state, high-temperature deterioration of the vacuum heat insulating material provided together with the condenser can be prevented in advance.

請求項9に記載の発明は、請求項1から8のいずれか一項に記載の発明において、前記凝縮器の表面に放熱塗料を塗布したものであり、凝縮器から外気への熱通過率が向上し、放熱能力が増加できるという作用を有する。   The invention according to claim 9 is the invention according to any one of claims 1 to 8, wherein a heat radiation paint is applied to the surface of the condenser, and the heat passage rate from the condenser to the outside air is high. It has the effect of improving and increasing the heat dissipation capability.

請求項10に記載の発明は、請求項1から9のいずれか一項に記載の発明において、前記凝縮器の表面を隆起させたものであり、凝縮器表面における境界層厚さが従来に比べ薄くなるため、熱通過率が増加し、凝縮器内部流路を流れる冷媒と外気との温度差が大きくなった結果、熱伝達量が増加する。   The invention according to claim 10 is the invention according to any one of claims 1 to 9, wherein the surface of the condenser is raised, and the boundary layer thickness on the condenser surface is larger than the conventional one. Since it becomes thinner, the heat transfer rate increases and the temperature difference between the refrigerant flowing through the condenser internal flow path and the outside air increases, resulting in an increase in the amount of heat transfer.

請求項11に記載の発明は、請求項1から10のいずれか一項に記載の発明において、前記凝縮器の前記内部流路は、冷媒が一旦冷蔵庫上部へ到達し冷蔵庫下方へ流れる構成をとるものであり、冷蔵庫上方において、凝縮器と熱交換した高温空気は、冷蔵庫から大きく離れていくため、空気温度は比較的低く保たれる。また冷蔵庫下方において、庫外の空気はその周辺部からの熱影響を受けず、かつ熱交換による高温空気は常時、冷蔵庫上方へ移動するため常に低温を維持する。したがって、トータルの熱交換量は増加する。   The invention according to claim 11 is the invention according to any one of claims 1 to 10, wherein the internal flow path of the condenser is configured such that the refrigerant once reaches the upper part of the refrigerator and flows downward of the refrigerator. In the upper part of the refrigerator, the high temperature air exchanged with the condenser is greatly separated from the refrigerator, so that the air temperature is kept relatively low. Further, below the refrigerator, the outside air is not affected by the heat from the periphery thereof, and the high temperature air due to heat exchange always moves to the upper side of the refrigerator, so that the low temperature is always maintained. Therefore, the total heat exchange amount increases.

請求項12に記載の発明は、請求項1から11のいずれか一項に記載の発明において、前記凝縮器の前記内部流路は、複数パスにて構成されるものであり、冷媒の流路損失を低減する。   The invention according to claim 12 is the invention according to any one of claims 1 to 11, wherein the internal flow path of the condenser is configured by a plurality of paths, and the flow path of the refrigerant Reduce loss.

請求項13に記載の発明は、請求項1から12のいずれか一項に記載の発明において、前記凝縮器の材料をJIS呼称で1050,1100、5154,5254,5083,5086等のアルミ合金アルミ合金のいずれかで成形するものであり、凝縮器内の作動冷媒の高圧化に対して凝縮器の破損や冷媒もれ等を防止できる。   A thirteenth aspect of the present invention is the invention according to any one of the first to twelfth aspects of the present invention, wherein the condenser material is an aluminum alloy aluminum such as 1050, 1100, 5154, 5254, 5083, 5086 in JIS designation. It is formed from one of the alloys, and can prevent breakage of the condenser, leakage of the refrigerant, and the like against the high pressure of the working refrigerant in the condenser.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。また、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. Further, the present invention is not limited to the embodiments.

(実施の形態1)
図1は同実施の形態による冷蔵庫の外観傾斜図、図2は同実施の形態の冷蔵庫の断熱箱体を構成する外箱分解図、図3は同実施の形態による冷蔵庫の風路構成図、図4は同実施の形態による冷蔵庫の冷凍サイクル図、図5は同実施の形態による冷蔵庫の図2における背面板の庫内側から見た正面図、図6は同実施の形態による冷蔵庫の図5におけるA−A'要部 断面図である。
(Embodiment 1)
FIG. 1 is an external inclination view of the refrigerator according to the embodiment, FIG. 2 is an exploded view of the outer box constituting the heat insulation box of the refrigerator according to the embodiment, and FIG. 3 is an air passage configuration diagram of the refrigerator according to the embodiment. 4 is a refrigeration cycle diagram of the refrigerator according to the embodiment, FIG. 5 is a front view of the refrigerator according to the embodiment as viewed from the inside of the back plate in FIG. 2, and FIG. 6 is a diagram of the refrigerator according to the embodiment. It is AA 'principal part sectional drawing in FIG.

実施の形態1の冷蔵庫101は、前方に開口する鋼板製の外箱102、硬質樹脂製の内箱103、外箱102と内箱103間に発泡充填されたウレタン断熱材104からなる断熱箱体106と、庫内仕切り壁106aにより区分けされた冷蔵室106cおよび冷凍室106dと、冷蔵室ドア106fおよび冷凍室ドア106gと断熱箱体106をシールするガスケット107と、冷蔵室106cの温度を検知する冷蔵室センサ108と、冷凍室106dの温度を検知する冷凍室センサ109と、冷蔵室への冷気を調整する冷蔵室ダンパ110と、冷蔵庫の冷凍サイクルを構成する冷凍室106d背面に配置された冷却器111と、冷蔵庫101背面下側の機械室(図示せず)に配置された圧縮機112と、減圧器であるキャピラリチューブ113と、各部屋に冷気を送る送風ファン114と凝縮器120により構成されている。   The refrigerator 101 according to the first embodiment includes a heat insulating box made of a steel plate outer box 102 that opens forward, a hard resin inner box 103, and a urethane heat insulating material 104 that is foam-filled between the outer box 102 and the inner box 103. 106, the refrigerating room 106c and the freezing room 106d separated by the internal partition wall 106a, the refrigerating room door 106f, the freezing room door 106g, the gasket 107 for sealing the heat insulating box 106, and the temperature of the refrigerating room 106c are detected. Refrigerating room sensor 108, freezing room sensor 109 for detecting the temperature of freezing room 106d, refrigerating room damper 110 for adjusting the cooling air to the refrigerating room, and cooling disposed on the back of freezing room 106d constituting the refrigerating cycle of the refrigerator. 111, a compressor 112 disposed in a machine room (not shown) below the back of the refrigerator 101, and a capillary tube 11 serving as a decompressor 3, and a blower fan 114 that sends cool air to each room and a condenser 120.

図2、5より、外箱102は背面板102a、側面板102b、天面板102c、底面板102dから構成されるが、本実施例の凝縮器120はロールボンド型熱交換器であり、背面板102a全体を共用している。   2 and 5, the outer box 102 is composed of a back plate 102a, a side plate 102b, a top plate 102c, and a bottom plate 102d. The condenser 120 of this embodiment is a roll bond type heat exchanger, and the back plate The entire 102a is shared.

圧縮機112から流出した冷媒が凝縮器120へ流入する際、凝縮器120の内部流路121は、冷媒が一旦背面板102a上方へ冷媒が流れ、その後背面板102a下方へ向かって背面板102a全体領域に流れるような配置に構成されている。   When the refrigerant that has flowed out of the compressor 112 flows into the condenser 120, the refrigerant flows through the internal flow path 121 of the condenser 120 once above the back plate 102 a, and then the entire back plate 102 a toward the bottom of the back plate 102 a. It is configured to flow to the area.

ロールボンドとは、一般的に蒸発器やパネル熱交換器や太陽熱集熱板などに利用されるもので、製造方法としては、表面を清浄にしたアルミニウム板の上にスクリーン印刷により冷媒が流れる流路部分に圧着防止剤を印刷する。次にもう一枚の清浄なアルミニウム板を重ね、高圧力により圧延して一体物に成形します。その後、高圧ガスを圧着防止部に封入し、流路部分を膨出して中空部分を形成する。この内部流路121を形成した中空のプレート形状の厚さは2mmから6mm程度のものが好ましい。   The roll bond is generally used for an evaporator, a panel heat exchanger, a solar heat collecting plate, etc. As a manufacturing method, a flow in which a refrigerant flows by screen printing on an aluminum plate having a cleaned surface. Print anti-bonding agent on the road. Next, another clean aluminum plate is stacked and rolled under high pressure to form a single piece. Thereafter, high-pressure gas is sealed in the pressure-bonding prevention portion, and the flow passage portion is expanded to form a hollow portion. The thickness of the hollow plate shape in which the internal flow path 121 is formed is preferably about 2 mm to 6 mm.

また、凝縮器120である背面板102aの材料として、本実施例を含め一般には1050や1100等の純度99%以上のアルミ合金が加工性や耐食性等の特性の良さから使用される。また、5154、5254,5083,5086等のマグネシウムを添加し強度を高めたアルミ合金を凝縮器120である背面板102aとして用いても良い。   Further, as a material for the back plate 102a which is the condenser 120, an aluminum alloy having a purity of 99% or more such as 1050 or 1100 is generally used in view of good properties such as workability and corrosion resistance. Alternatively, aluminum alloy such as 5154, 5254, 5083, 5086, etc., to which the strength is increased by adding magnesium may be used as the back plate 102a which is the condenser 120.

以上のように構成された本実施の形態の冷蔵庫について、以下その動作を図3,4にて説明する。   The operation of the refrigerator of the present embodiment configured as described above will be described below with reference to FIGS.

冷蔵庫101の運転が開始される条件は、冷蔵室センサ108もしくは冷凍室センサ109温度が起動温度以上の場合であり、また運転が停止する条件は、冷蔵室センサ108および冷凍室センサ109の両方が停止温度以下の場合である。   The condition for starting the operation of the refrigerator 101 is when the temperature of the refrigerator compartment sensor 108 or the freezer compartment sensor 109 is equal to or higher than the starting temperature, and the condition for stopping the operation is that both the refrigerator compartment sensor 108 and the freezer compartment sensor 109 are operated. This is the case of the stop temperature or lower.

まず冷凍室106dの冷却について説明する。冷凍室106dが外気からの侵入熱および冷蔵室ドア106f、冷凍室ドア106gの開閉などにより、庫内温度が上昇して冷凍室センサ109が起動温度以上になった場合に、圧縮機112が起動し冷却が開始される。圧縮機112から吐出された高温高圧の冷媒は、外箱102の背面板102a(凝縮器120)の内部流路121へ流れ込み、背面板102aの庫外側の空気やウレタン断熱材104との熱交換により、冷却されて液化する。さらに液化した冷媒はキャピラリチューブ113で減圧されて、冷却器111に流入し冷却器111周辺の庫内の空気との熱交換により庫内を冷却する。ここで冷媒は加熱されガス化して圧縮器112に戻る。庫内が冷却されて冷凍室センサ109の温度が停止温度以下になり、かつ冷蔵室センサ108の温度が停止温度以下になった場合に圧縮機112の運転が停止する。   First, cooling of the freezer compartment 106d will be described. The compressor 112 is activated when the freezer compartment 106d rises in temperature due to the intrusion heat from the outside air and the open / close of the freezer compartment door 106f and the freezer compartment door 106g and the freezer compartment sensor 109 reaches the starting temperature or higher. Then cooling starts. The high-temperature and high-pressure refrigerant discharged from the compressor 112 flows into the internal flow path 121 of the back plate 102a (condenser 120) of the outer box 102, and exchanges heat with the air outside the back plate 102a and the urethane heat insulating material 104. To cool and liquefy. Further, the liquefied refrigerant is depressurized by the capillary tube 113, flows into the cooler 111, and cools the interior by heat exchange with the air in the warehouse around the cooler 111. Here, the refrigerant is heated and gasified, and returns to the compressor 112. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor 109 becomes equal to or lower than the stop temperature, and the temperature of the refrigerator compartment sensor 108 becomes equal to or lower than the stop temperature, the operation of the compressor 112 is stopped.

つぎに冷蔵室106cの冷却について説明する。冷凍室106dと同様に、庫内温度が上昇して冷蔵室センサ108温度が起動温度以上になった場合に、冷蔵室ダンパ110が開き、圧縮機112の運転が開始される。冷却器111の冷気が送風ファン114により冷蔵室106c内に流入して庫内空気温度が冷却されて、冷蔵室センサ108温度が停止温度以下になり、かつ冷凍室センサ109温度が停止温度以下の場合に圧縮機112の運転が停止する。また冷蔵室106cと冷却器111間の風路にある冷蔵室ダンパ110は、冷蔵室106c温度が停止温度以下で全閉し、仮に冷凍室106dの温度が停止温度以上で圧縮機112の運転が継続しても、冷蔵室106c温度がこの時点の温度よりも低下しないようにして、凍結を防止している。   Next, cooling of the refrigerator compartment 106c will be described. Similar to the freezer compartment 106d, when the internal temperature rises and the temperature of the refrigerating compartment sensor 108 becomes equal to or higher than the starting temperature, the refrigerating compartment damper 110 is opened and the operation of the compressor 112 is started. The cool air from the cooler 111 flows into the refrigerating chamber 106c by the blower fan 114 to cool the internal air temperature, the refrigerating chamber sensor 108 temperature becomes lower than the stop temperature, and the freezer compartment sensor 109 temperature falls below the stop temperature. In this case, the operation of the compressor 112 is stopped. The refrigerator compartment damper 110 in the air path between the refrigerator compartment 106c and the cooler 111 is fully closed when the temperature of the refrigerator compartment 106c is equal to or lower than the stop temperature, and the compressor 112 is operated when the temperature of the freezer compartment 106d is equal to or higher than the stop temperature. Even if the operation is continued, freezing is prevented by preventing the temperature of the refrigerator compartment 106c from dropping below the temperature at this point.

従来の凝縮器である銅管の場合、銅管から庫外の空気までの間に背面板102aに相当する外箱102および接着剤(図示せず)が介在していた。しかし、図2に示すように本実施の形態の凝縮器120は、背面板102aを共用しているため、冷媒から庫外の空気までの熱伝達距離が短縮された。   In the case of a copper tube that is a conventional condenser, an outer box 102 corresponding to the back plate 102a and an adhesive (not shown) are interposed between the copper tube and the air outside the cabinet. However, as shown in FIG. 2, the condenser 120 of the present embodiment shares the back plate 102a, so the heat transfer distance from the refrigerant to the outside air is shortened.

また内部流路121内の冷媒から背面板102aへの伝熱面積は、従来に比べて増加するため、背面板102aから庫外空気への熱伝達面積も増加する。   Further, since the heat transfer area from the refrigerant in the internal flow path 121 to the back plate 102a is increased as compared with the conventional case, the heat transfer area from the back plate 102a to the outside air is also increased.

また、内部流路121の冷媒と熱交換した庫外の雰囲気ガスは、温度上昇してガス密度が小さくなり上方へ移動する。これにより背面板102a下方から上方への空気の流れが形成される。ここで本実施例のように凝縮器120の内部流路121は、主に背面板102a上方から下方へ冷媒が流れる構成をとることにより、冷媒温度の高い背面板102a上方において冷媒と雰囲気ガスの熱交換が行われる。その結果、高温になった雰囲気ガスは冷蔵庫上方へ排除され、凝縮器120付近の雰囲気ガスの温度は低く保たれる。よって雰囲気ガスと冷媒の温度差は充分大きくなる。また、冷媒温度が上方に対して十分低下する背面板102a下方において、雰囲気ガス温度も上方に比べ低いことから、雰囲気ガスと冷媒の温度差は充分大きく保たれる。   In addition, the ambient gas outside the chamber which has exchanged heat with the refrigerant in the internal flow path 121 rises in temperature and the gas density decreases and moves upward. As a result, an air flow from the lower side to the upper side of the back plate 102a is formed. Here, as in the present embodiment, the internal flow path 121 of the condenser 120 mainly has a configuration in which the refrigerant flows from the upper side to the lower side of the back plate 102a, so that the refrigerant and the atmospheric gas are passed above the back plate 102a having a high refrigerant temperature. Heat exchange takes place. As a result, the atmospheric gas that has reached a high temperature is eliminated upward of the refrigerator, and the temperature of the atmospheric gas in the vicinity of the condenser 120 is kept low. Therefore, the temperature difference between the atmospheric gas and the refrigerant becomes sufficiently large. In addition, the atmospheric gas temperature is lower than the upper side below the back plate 102a where the refrigerant temperature is sufficiently lower than the upper side, so that the temperature difference between the atmospheric gas and the refrigerant is kept sufficiently large.

以上の結果より、放熱能力が十分確保され、凝縮温度が低下して冷凍サイクルの圧縮比が減少する。これにより圧縮機112の軸動力が減少、並びに体積効率の増加によって最終的に冷却システムのCOPを増加することができる。   From the above results, sufficient heat dissipation capability is ensured, the condensation temperature is lowered, and the compression ratio of the refrigeration cycle is reduced. As a result, the shaft power of the compressor 112 is reduced, and the COP of the cooling system can be finally increased by increasing the volumetric efficiency.

なお、本実施例の凝縮器120に相当する背面板102aの材料は、加工性のよい1050や1100のアルミ合金を用いたが、5154,5254,5083,5086等のアルミ合金を用いても、同様の放熱効果が得られる。これは、これらの合金がマグネシウムを含有していることから加工性に加え、高強度、高耐食性の特性をもちあわせているためである。   The material of the back plate 102a corresponding to the condenser 120 of the present embodiment is 1050 or 1100 aluminum alloy with good workability, but even if an aluminum alloy such as 5154, 5254, 5083, 5086 is used, A similar heat dissipation effect can be obtained. This is because these alloys contain magnesium and thus have high strength and high corrosion resistance in addition to workability.

なお、本実施例の凝縮器120に相当する背面板102aは、冷蔵庫101背面の一面のみの構成としたが、冷蔵庫101の外箱102の側面板102b、天面板102c、底面板102dに凝縮器120を併用しても同様の効果が得られる。   Note that the back plate 102a corresponding to the condenser 120 of this embodiment is configured only on one side of the back surface of the refrigerator 101, but the side plate 102b, the top plate 102c, and the bottom plate 102d of the outer box 102 of the refrigerator 101 are provided with a condenser. Even if 120 is used in combination, the same effect can be obtained.

(実施の形態2)
図7は本発明の実施の形態2による冷蔵庫の断熱箱体を構成する外箱分解図、図8は同実施の形態による冷蔵庫の横断面図、図9は同実施の形態による冷蔵庫の図7における背面板の庫外側から見た正面図、図10は同実施の形態による側面板を凝縮器で兼用した外箱分解図である。
(Embodiment 2)
7 is an exploded view of the outer box constituting the heat insulation box of the refrigerator according to the second embodiment of the present invention, FIG. 8 is a transverse sectional view of the refrigerator according to the same embodiment, and FIG. 9 is a diagram of the refrigerator according to the same embodiment. FIG. 10 is an exploded view of the outer box in which the side plate according to the embodiment is also used as a condenser.

同実施の形態による波形平板で構成した凝縮器を用いた冷蔵庫の箱体断面図は、図7、8、9、10より、201は冷蔵庫、202は前方に開口する鋼板製の外箱、203は硬質樹脂製の内箱、204は外箱202と内箱203間に発泡充填されたウレタン断熱材、205はウレタン断熱材204の外箱202側へ併設された真空断熱材、206はウレタン断熱材204と真空断熱材205から構成される断熱箱体、220は凝縮器である。   A box cross-sectional view of a refrigerator using a condenser constituted by corrugated flat plates according to the embodiment is shown in FIGS. 7, 8, 9, and 10, 201 is a refrigerator, 202 is a steel plate outer box opened forward, 203 Is an inner box made of hard resin, 204 is a urethane heat insulating material foam filled between the outer box 202 and the inner box 203, 205 is a vacuum heat insulating material provided on the outer box 202 side of the urethane heat insulating material 204, and 206 is urethane heat insulating material. A heat insulating box body 220 composed of the material 204 and the vacuum heat insulating material 205 is a condenser.

ここで、外箱202は背面板202a、側面板202b、天面板202c、底面板202dから構成されるが、本実施の凝縮器220は、背面板202a全体に集約されたロールボンド熱交換器であり、背面板202aを共用している。圧縮機112から流出した冷媒は、図9より凝縮器220の内部流路221へ流入したのち、背面板202a上方へ移動する。その後、冷媒流路は複数に分割され並行に背面板202a下方へ向かって冷媒は流れ、再び集約される。さらに、本実施例では、ロールボンドの平板部223を型押しして凸部225を成型している。   Here, the outer box 202 is composed of a back plate 202a, a side plate 202b, a top plate 202c, and a bottom plate 202d. The condenser 220 of the present embodiment is a roll bond heat exchanger integrated on the entire back plate 202a. Yes, the back plate 202a is shared. The refrigerant flowing out from the compressor 112 flows into the internal flow path 221 of the condenser 220 from FIG. 9, and then moves upward on the back plate 202a. Thereafter, the refrigerant flow path is divided into a plurality of parts, and in parallel, the refrigerant flows toward the lower side of the back plate 202a and is aggregated again. Furthermore, in this embodiment, the convex portion 225 is formed by embossing the flat plate portion 223 of roll bond.

凝縮器220である背面板202aの庫内面側は平面形状であり、本実施例では接着剤230により真空断熱材205と接着してある。またそのほかの外箱と真空断熱材も接着している。また凝縮器220表面全体に放熱塗料270が塗布されている。   The inner surface side of the back plate 202a, which is the condenser 220, has a planar shape, and is bonded to the vacuum heat insulating material 205 with an adhesive 230 in this embodiment. Other outer boxes and vacuum insulation are also bonded. Further, the heat radiation paint 270 is applied to the entire surface of the condenser 220.

以上のように構成された本実施の形態の冷蔵庫について、以下その動作を説明する。   About the refrigerator of this Embodiment comprised as mentioned above, the operation | movement is demonstrated below.

図8に示すように、本実施の形態の凝縮器220は、背面板202aを共用しているため、冷媒から庫外空気への熱伝達距離が短縮される。また内部流路221内の冷媒から背面板202aへの伝熱面積は、従来に比べて増加するため、背面板202aから庫外空気への熱伝達面積も増加する。さらに凝縮器220表面に放熱塗料270を塗布したことから凝縮器220と空気の熱伝達率が大きくなり冷媒から空気までの熱通過率が大幅に向上する。また、冷媒流路を複数経路化することにより、冷媒ガスが凝縮器内を流れる中で生じる圧力降下量を低減できるため、冷媒と庫外雰囲気ガス温度差を大きくできる。   As shown in FIG. 8, the condenser 220 of the present embodiment shares the back plate 202a, so that the heat transfer distance from the refrigerant to the outside air is shortened. Further, since the heat transfer area from the refrigerant in the internal flow path 221 to the back plate 202a is increased as compared with the conventional case, the heat transfer area from the back plate 202a to the outside air is also increased. Further, since the heat radiation paint 270 is applied to the surface of the condenser 220, the heat transfer coefficient between the condenser 220 and the air is increased, and the heat passage ratio from the refrigerant to the air is greatly improved. In addition, by forming a plurality of refrigerant flow paths, the amount of pressure drop that occurs while the refrigerant gas flows through the condenser can be reduced, so that the temperature difference between the refrigerant and the outside atmosphere gas can be increased.

以上より、放熱面積、熱通過率、冷媒と庫外雰囲気ガスの温度差がそれぞれ増加することにより、放熱能力が十分確保され凝縮温度は、最終的に低下して冷凍サイクルの圧縮比が減少する。これにより圧縮機112の軸動力が減少、並びに体積効率の増加によって最終的に冷却システムのCOPを増加することができる。   As described above, the heat dissipation area, the heat transfer rate, and the temperature difference between the refrigerant and the outside atmosphere gas respectively increase, so that the heat dissipation capability is sufficiently ensured, and the condensation temperature is finally lowered to reduce the compression ratio of the refrigeration cycle. . As a result, the shaft power of the compressor 112 is reduced, and the COP of the cooling system can be finally increased by increasing the volumetric efficiency.

また、凝縮器220を背面板202aに集約し、その他の外箱202内面に設置される従来の凝縮器20を廃止したことから、真空断熱材205は、背面板202aも含めた外箱202全領域へ被覆可能となる。よって従来のウレタン断熱材に比べ真空断熱材205の熱伝導率が約0.1〜0.2程度まで低減でき、庫外の雰囲気ガス及び凝縮器220から庫内への熱通過率並びに侵入熱量は大幅に低減できる。その結果、冷蔵庫の冷却運転時間が短縮することにより冷蔵庫の消費電力が大幅に低減できる。   Further, since the condenser 220 is concentrated on the back plate 202a and the conventional condenser 20 installed on the inner surface of the other outer box 202 is abolished, the vacuum heat insulating material 205 is used for the entire outer box 202 including the back plate 202a. The area can be covered. Therefore, the thermal conductivity of the vacuum heat insulating material 205 can be reduced to about 0.1 to 0.2 as compared with the conventional urethane heat insulating material, the ambient gas outside the chamber, the heat passage rate from the condenser 220 into the chamber, and the amount of intrusion heat. Can be greatly reduced. As a result, the power consumption of the refrigerator can be significantly reduced by shortening the cooling operation time of the refrigerator.

さらに、外箱202である背面板202a、側面板202b、天面板202c、底面板202dは、それぞれの平面において真空断熱材205と容易に接着でき、冷蔵庫組み立て前に一体加工しておけることから、冷蔵庫組み立て時の作業工数を低減できる。   Furthermore, the back plate 202a, the side plate 202b, the top plate 202c, and the bottom plate 202d as the outer box 202 can be easily bonded to the vacuum heat insulating material 205 in each plane, and can be integrally processed before assembling the refrigerator. The number of work steps when assembling the refrigerator can be reduced.

なお、本実施の形態において、凝縮器220は、外箱202の背面板202a全体に集約されたロールボンド熱交換器で共用しているが、図10のように、外箱202の側面板202bの一部もしくは全体にロールボンド熱交換器を集約、配設する構成をとる場合においても、同等以上の放熱能力が得られるとともに、庫内への侵入熱量が低減できる。さらに真空断熱材205と外箱202の一体成型品にて冷蔵庫201組み立てが可能になることから組み立て工数が削減できる。   In addition, in this Embodiment, although the condenser 220 is shared by the roll bond heat exchanger concentrated on the whole back plate 202a of the outer box 202, as shown in FIG. 10, the side plate 202b of the outer box 202 is used. Even in the case where the roll bond heat exchanger is aggregated and arranged in a part or the whole, a heat radiation capability equal to or higher than that can be obtained, and the amount of heat entering the cabinet can be reduced. Furthermore, since the refrigerator 201 can be assembled by the integrally molded product of the vacuum heat insulating material 205 and the outer box 202, the number of assembling steps can be reduced.

(実施の形態3)
図11は本発明の実施の形態による冷蔵庫の外観傾斜図、図12は本発明の実施の形態3による冷蔵庫の断熱箱体を構成する外箱分解図、図13は同実施の形態による冷蔵庫の図11におけるB−B'要部断面図、図14は同実施の形態による冷蔵庫の冷凍室周辺に冷媒流路が追加配設された外箱分解図、図15は、同実施の形態による冷蔵庫の背面板に凸部形状の冷蔵庫輸送用取っ手が配設された外箱分解図である。
(Embodiment 3)
FIG. 11 is an external inclination view of the refrigerator according to the embodiment of the present invention, FIG. 12 is an exploded view of the outer box constituting the heat insulation box of the refrigerator according to Embodiment 3 of the present invention, and FIG. 11 is a cross-sectional view of the main part BB ′ in FIG. 11, FIG. 14 is an exploded view of an outer box in which a refrigerant flow path is additionally provided around the freezer compartment of the refrigerator according to the embodiment, and FIG. 15 is a refrigerator according to the embodiment. It is an outer case exploded view by which the convex-shaped refrigerator transport handle was arrange | positioned at the back plate of this.

図11,12、13,14、15において、301は冷蔵庫、302は前方に開口する鋼板製の外箱、、303は硬質樹脂製の内箱、304は外箱302と内箱303間に発泡充填されたウレタン断熱材、305はウレタン断熱材304の外箱302側へ埋設された真空断熱材、306はウレタン断熱材304と真空断熱材305から構成される断熱箱体、320及び326は凝縮器である。   11, 12, 13, 14, and 15, 301 is a refrigerator, 302 is an outer box made of steel plate that opens forward, 303 is an inner box made of hard resin, and 304 is foamed between the outer box 302 and the inner box 303. Filled urethane heat insulating material, 305 is a vacuum heat insulating material embedded in the outer box 302 side of the urethane heat insulating material 304, 306 is a heat insulating box made up of the urethane heat insulating material 304 and the vacuum heat insulating material 305, 320 and 326 are condensed It is a vessel.

ここで、外箱302は背面板302a、側面板302b、天面板302c、底面板302dから構成され、背面板302aは凸部平面302eと斜め平面302fから構成される。本実施の凝縮器320は、背面板302aの斜め平面302fの冷蔵室周辺に内部流路321が配設されたロールボンド熱交換器によって背面板302aを共用している。また、圧縮機112(図示せず)から流出した冷媒は、最初に機械室380内の凝縮器326に流入し、次に背面板302aの斜め平面302fに配設された内部流路321へ流入する。   Here, the outer box 302 includes a back plate 302a, a side plate 302b, a top plate 302c, and a bottom plate 302d, and the back plate 302a includes a convex flat surface 302e and an oblique flat surface 302f. The condenser 320 of the present embodiment shares the back plate 302a with a roll bond heat exchanger in which an internal flow path 321 is disposed around the refrigerating chamber on the oblique plane 302f of the back plate 302a. In addition, the refrigerant that has flowed out of the compressor 112 (not shown) first flows into the condenser 326 in the machine chamber 380, and then flows into the internal flow path 321 disposed on the oblique plane 302f of the back plate 302a. To do.

以上のように構成された本実施の形態の冷蔵庫について、以下その動作を説明する。   About the refrigerator of this Embodiment comprised as mentioned above, the operation | movement is demonstrated below.

図13に示すように、本実施の形態の凝縮器320は、背面板302aを共用しているため、冷媒から庫外空気への熱伝達距離が短縮され、また熱伝達面積も増加する。さらに冷蔵庫設置の際、背面は台所壁と近接させられる可能性があるが、本実施例の凝縮器320ならば台所壁との隙間は充分確保できることから、対流熱伝達を促進させることができ、凝縮器320と空気の熱伝達率は増加する。以上より、放熱能力は十分確保され、最終的に冷却システムのCOPを増加することができる。   As shown in FIG. 13, the condenser 320 of the present embodiment shares the back plate 302a, so the heat transfer distance from the refrigerant to the outside air is shortened, and the heat transfer area is also increased. Furthermore, when the refrigerator is installed, the back surface may be brought close to the kitchen wall. However, if the condenser 320 of this embodiment can sufficiently secure a gap with the kitchen wall, convective heat transfer can be promoted, The heat transfer coefficient between the condenser 320 and the air increases. As described above, sufficient heat dissipation capability is ensured, and finally the COP of the cooling system can be increased.

また図12より、内部流路321は、冷蔵室301周辺の背面板302a領域中心に配設されることから、庫内と庫外雰囲気温度の温度差が約15Kとなり、冷凍室と雰囲気温度の温度差40Kに比べて小さい領域にて放熱させることから庫外から庫内への侵入熱量は、冷凍室周辺に内部流路321を設置した場合に比べて低減する。   12, the internal flow path 321 is disposed in the center of the back plate 302a area around the refrigerator compartment 301, so that the temperature difference between the inside and outside atmosphere temperature is about 15K, and the temperature between the freezer compartment and the atmosphere temperature is about 15K. Since heat is radiated in a region smaller than the temperature difference 40K, the amount of heat entering from the outside to the inside is reduced compared to the case where the internal flow path 321 is installed around the freezer compartment.

図13より、凝縮器320を背面板302aに集約し、その他の外箱302内側の凝縮器320を廃止したことから、背面板302aを含め外箱302全領域に真空断熱材305が被覆可能となる。よって従来のウレタン断熱材304に比べ熱伝導率が約0.1〜0.2程度まで低減できるため、庫外の雰囲気ガスから庫内への熱通過率並びに侵入熱量は低減できる。よって、冷蔵庫の冷却運転時間が減少することにより冷蔵庫の消費電力が大幅に低減できる。   From FIG. 13, the condenser 320 is concentrated on the back plate 302a, and the other condenser 320 inside the outer box 302 is abolished, so that the vacuum heat insulating material 305 can be covered over the entire area of the outer box 302 including the back plate 302a. Become. Therefore, since the thermal conductivity can be reduced to about 0.1 to 0.2 as compared with the conventional urethane heat insulating material 304, the heat passage rate and the intrusion heat amount from the atmospheric gas outside the warehouse to the inside can be reduced. Therefore, the power consumption of the refrigerator can be greatly reduced by reducing the cooling operation time of the refrigerator.

図11,12,13より、冷媒ガスは背面板302aを共用する凝縮器320に流入する前に機械室380にある凝縮器326を通過する。このとき冷媒は熱交換して温度が低下した状態で凝縮器320の内部流路321へ流入する。したがって、凝縮器320と併設される真空断熱材305は、凝縮器320からの熱伝達量が少ないため、真空断熱材の劣化や破壊等を引き起こさない長期断熱性能保証が可能となった。   11, 12, and 13, the refrigerant gas passes through the condenser 326 in the machine chamber 380 before flowing into the condenser 320 sharing the back plate 302a. At this time, the refrigerant exchanges heat and flows into the internal flow path 321 of the condenser 320 in a state where the temperature is lowered. Therefore, since the vacuum heat insulating material 305 provided together with the condenser 320 has a small amount of heat transfer from the condenser 320, it is possible to guarantee long-term heat insulating performance without causing deterioration or destruction of the vacuum heat insulating material.

なお、本実施の形態において、図14にように庫内が低温となる冷凍室側に内部流路321を部分的に設ける場合においても、凝縮器320と真空断熱材305が併設してあれば、同様の放熱効果が得られる。   In the present embodiment, as shown in FIG. 14, even when the internal flow path 321 is partially provided on the side of the freezer compartment where the temperature is low, the condenser 320 and the vacuum heat insulating material 305 are provided. The same heat dissipation effect can be obtained.

なお、本実施の形態において、凝縮器320を背面板302aと共用させたが、その他の外箱302を凝縮器として部分的に共用させる場合においても、同様の放熱効果が得られる。   In the present embodiment, the condenser 320 is shared with the back plate 302a. However, when the other outer box 302 is partially shared as a condenser, the same heat dissipation effect can be obtained.

なお、本実施の形態において、図15のように背面板302aに冷蔵庫輸送用取っ手390が外箱302へ配設されることにより、冷蔵庫301を台所へ設置する際、外箱と台所壁の隙間を確保でき、放熱能力が充分得られる。また、冷蔵庫制御基盤用BOXを外箱302の凸部として設置させても同様の効果が得られる。   In this embodiment, the refrigerator transport handle 390 is disposed on the outer plate 302 on the back plate 302a as shown in FIG. 15, so that when the refrigerator 301 is installed in the kitchen, the gap between the outer box and the kitchen wall. Can be secured, and sufficient heat dissipation capability can be obtained. Further, the same effect can be obtained by installing the refrigerator control board BOX as a convex portion of the outer box 302.

以上のように、本発明にかかる冷蔵庫は、凝縮器及び庫外の雰囲気ガスから庫内への侵入熱量を抑制でき、凝縮器の放熱能力を向上できるので、冷蔵庫に限らず発泡断熱材中に真空断熱材を用いた冷却機器の省エネルギー対策として有用である。   As described above, the refrigerator according to the present invention can suppress the intrusion heat amount from the atmospheric gas outside the condenser and the inside of the box and can improve the heat radiation capacity of the condenser. It is useful as an energy-saving measure for cooling equipment using vacuum insulation.

本発明の実施の形態1による冷蔵庫の外観傾斜図External appearance inclination figure of the refrigerator by Embodiment 1 of this invention 同実施の形態の冷蔵庫の断熱箱体を構成する外箱分解図Outer box exploded view constituting the heat insulation box of the refrigerator of the same embodiment 同実施の形態による冷蔵庫の風路構成図Air passage configuration diagram of refrigerator according to the embodiment 同実施の形態の冷蔵庫の冷凍サイクル図Refrigeration cycle diagram of the refrigerator of the same embodiment 同実施の形態による冷蔵庫の図2における背面板の庫内側から見た正面図The front view seen from the warehouse inner side of the backplate in FIG. 2 of the refrigerator by the same embodiment 同実施の形態による冷蔵庫の図5におけるA−A' 断面図AA 'sectional view in FIG. 5 of the refrigerator according to the embodiment. 本発明の実施の形態2による冷蔵庫の断熱箱体を構成する外箱分解図Outer box exploded view constituting the heat insulation box of the refrigerator according to the second embodiment of the present invention 同実施の形態による冷蔵庫の横断面図Cross-sectional view of the refrigerator according to the embodiment 同実施の形態による冷蔵庫の図7における背面板の庫外側から見た正面図The front view seen from the warehouse outside of the back board in Drawing 7 of the refrigerator by the embodiment 同実施の形態による側面板を凝縮器で兼用した外箱分解図Outer box exploded view with side plate combined with condenser according to the same embodiment 本発明の実施の形態3による冷蔵庫の外観傾斜図Appearance inclination figure of the refrigerator by Embodiment 3 of this invention 本発明の実施の形態3による冷蔵庫の断熱箱体を構成する外箱分解図Outer box exploded view constituting the heat insulation box of the refrigerator according to the third embodiment of the present invention. 同実施の形態による冷蔵庫の図11におけるB−B'要部断面図BB 'principal part sectional drawing in FIG. 11 of the refrigerator by the same embodiment 同実施の形態による冷蔵庫の冷凍室周辺に冷媒流路が配設された外観傾斜図Appearance inclined view in which a refrigerant channel is arranged around the freezer compartment of the refrigerator according to the embodiment 同実施の形態による冷蔵庫の背面板に凸部形状の冷蔵庫輸送用取っ手が配設された外箱分解図Outer box exploded view in which convex-shaped refrigerator transport handles are arranged on the back plate of the refrigerator according to the embodiment 従来の冷蔵庫の一部切り欠き斜視図Partially cutaway perspective view of a conventional refrigerator 従来の冷蔵庫の図1におけるE−E' 断面図EE 'sectional view in FIG. 1 of a conventional refrigerator 他の従来の冷蔵庫断熱箱体断面図Cross section of other conventional refrigerator insulation box 他の従来の冷蔵庫断熱箱体断面図Cross section of other conventional refrigerator insulation box

符号の説明Explanation of symbols

101,201,301 冷蔵庫
102,202,302 外箱
102a,202a,302a 背面板
103,203,303 内箱
104,204,304 ウレタン断熱材
106,206,306 断熱箱体
120,220,320 凝縮器
121,221,321 内部流路
205,305 真空断熱材
222 複数パス
225 凸部
270 放熱塗料
302e 凸部平面
326 凝縮器
101, 201, 301 Refrigerator 102, 202, 302 Outer box 102a, 202a, 302a Back plate 103, 203, 303 Inner box 104, 204, 304 Urethane insulation 106, 206, 306 Insulation box 120, 220, 320 Condenser 121, 221, 321 Internal flow path 205, 305 Vacuum heat insulating material 222 Multiple paths 225 Convex part 270 Heat radiation paint 302 e Convex part plane 326 Condenser

Claims (13)

外壁を形成する外箱と、庫内壁を形成する内箱と、前記外箱と前記内箱間に発泡充填した断熱材とからなる断熱箱体とを備え、前記外箱は、内部流路を形成する中空のプレート形状からなる凝縮器を前記外箱の一部もしくは全体に配設したことを特徴とした冷蔵庫。 An outer box that forms an outer wall, an inner box that forms an inner wall of the cabinet, and a heat insulating box body that is made of a foam-filled heat insulating material between the outer box and the inner box. A refrigerator comprising a formed hollow plate-shaped condenser in a part or the whole of the outer box. 外壁を形成する外箱と、庫内壁を形成する内箱と、前記外箱と前記内箱間に発泡充填した断熱材と前記断熱材内に埋没された真空断熱材からなる断熱箱体とを備え、前記外箱は、内部流路を形成する中空のプレート形状からなる凝縮器を前記外箱の一部もしくは全体に形成したことを特徴とした冷蔵庫。 An outer box that forms an outer wall, an inner box that forms an inner wall of the cabinet, a heat insulating material that is foam-filled between the outer box and the inner box, and a heat insulating box that is made of a vacuum heat insulating material embedded in the heat insulating material. The refrigerator is characterized in that the outer box is formed with a condenser having a hollow plate shape forming an internal flow path in a part or the whole of the outer box. 前記凝縮器は、冷蔵庫背面部の一部もしくは全体に真空断熱材と併設されることを特徴とした請求項2記載の冷蔵庫。 The refrigerator according to claim 2, wherein the condenser is provided together with a vacuum heat insulating material on a part or the whole of a rear surface of the refrigerator. 前記凝縮器は、冷蔵庫側面部の一部もしくは全体に真空断熱材と併設されることを特徴とした請求項2記載の冷蔵庫。 The refrigerator according to claim 2, wherein the condenser is provided with a vacuum heat insulating material on a part or the whole of a side surface of the refrigerator. 前記凝縮器の前記内部流路は、冷蔵室周辺部に少なくとも一部周設することを特徴とした請求項3または4に記載の冷蔵庫。 5. The refrigerator according to claim 3, wherein the internal flow path of the condenser is provided at least partially around the periphery of the refrigerator compartment. 冷凍室周辺部に周設する前記凝縮器の前記内部流路体積に対して冷蔵室周辺部に周設する前記内部流路体積が多くなることを特徴とした請求項3または4記載の冷蔵庫。 5. The refrigerator according to claim 3, wherein the volume of the internal flow path provided in the periphery of the refrigerator compartment is larger than the volume of the internal flow path of the condenser provided around the freezer compartment. 前記凝縮器の庫外側表面形状の一部もしくは全体が凸部となる請求項1から6のいずれか一項に記載の冷蔵庫。 The refrigerator as described in any one of Claim 1 to 6 from which the one part or the whole surface shape of the outer side of the said condenser becomes a convex part. 圧縮機から前記凝縮器までの冷媒配管に凝縮器を配設したことを特徴とした請求項1から7のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 7, wherein a condenser is disposed in a refrigerant pipe from a compressor to the condenser. 前記凝縮器の表面に放熱塗料を塗布したことを特徴とした請求項1から8のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 8, wherein a heat radiation paint is applied to a surface of the condenser. 前記凝縮器の表面が隆起したことを特徴とした請求項1から9のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 9, wherein a surface of the condenser is raised. 前記凝縮器の前記内部流路は、冷媒が一旦冷蔵庫上部へ到達し冷蔵庫下方へ流れる構成をとることを特徴とした請求項1から10のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 10, wherein the internal flow path of the condenser has a configuration in which the refrigerant once reaches the upper part of the refrigerator and flows downward. 前記凝縮器の前記内部流路は、複数パスにて構成されたことを特徴とした請求項1から11のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 11, wherein the internal flow path of the condenser is configured by a plurality of passes. 前記凝縮器の材料をJIS呼称で1050,1100、5154,5254,5083,5086のアルミ合金のいずれかで成形することを特徴とした請求項1から12のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 12, wherein a material of the condenser is formed of any one of aluminum alloys of 1050, 1100, 5154, 5254, 5083, and 5086 according to JIS name.
JP2003410061A 2003-12-09 2003-12-09 Refrigerator Pending JP2005172307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410061A JP2005172307A (en) 2003-12-09 2003-12-09 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410061A JP2005172307A (en) 2003-12-09 2003-12-09 Refrigerator

Publications (1)

Publication Number Publication Date
JP2005172307A true JP2005172307A (en) 2005-06-30

Family

ID=34731239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410061A Pending JP2005172307A (en) 2003-12-09 2003-12-09 Refrigerator

Country Status (1)

Country Link
JP (1) JP2005172307A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986067A (en) * 2009-07-28 2011-03-16 松下电器产业株式会社 Refrigerator
JP2012063043A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator
WO2013084648A1 (en) * 2011-12-06 2013-06-13 株式会社 東芝 Refrigerator
DE102013005061A1 (en) 2012-03-29 2013-10-02 Fanuc Corporation Mass cylinder-protective covering, which covers outer periphery of a mass cylinder, useful for an injection molding machine, comprises heat dissipation coating or -film applied on part of outer surface of mass cylinder-protective covering
JP7391897B2 (en) 2019-11-06 2023-12-05 東芝ライフスタイル株式会社 refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986067A (en) * 2009-07-28 2011-03-16 松下电器产业株式会社 Refrigerator
JP2012063043A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator
WO2013084648A1 (en) * 2011-12-06 2013-06-13 株式会社 東芝 Refrigerator
JP2013139981A (en) * 2011-12-06 2013-07-18 Toshiba Corp Refrigerator
CN103988034A (en) * 2011-12-06 2014-08-13 株式会社东芝 Refrigerator
DE102013005061A1 (en) 2012-03-29 2013-10-02 Fanuc Corporation Mass cylinder-protective covering, which covers outer periphery of a mass cylinder, useful for an injection molding machine, comprises heat dissipation coating or -film applied on part of outer surface of mass cylinder-protective covering
JP7391897B2 (en) 2019-11-06 2023-12-05 東芝ライフスタイル株式会社 refrigerator

Similar Documents

Publication Publication Date Title
JP5677737B2 (en) refrigerator
CN100498158C (en) Refrigerator
JP5903567B2 (en) refrigerator
JP4696906B2 (en) refrigerator
JP5578264B1 (en) refrigerator
JP2008116126A (en) Refrigerator
JP4196851B2 (en) refrigerator
JP3607280B2 (en) refrigerator
JP2005172307A (en) Refrigerator
WO2015025477A1 (en) Refrigerator
JP5945708B2 (en) refrigerator
JP2005164200A (en) Refrigerator
JP2013185730A (en) Refrigerator
JP2005069613A (en) Refrigerator
JP2013185735A (en) Refrigerator
JP3942962B2 (en) refrigerator
JP6504379B2 (en) refrigerator
JP2005201529A (en) Refrigerator
JP4141428B2 (en) Cooling storage
JP2009139070A (en) Refrigerator
JP2005009825A (en) Refrigerator
JP2006112640A (en) Refrigerator
JP2005016879A (en) Refrigerator
JP2013185734A (en) Refrigerator
JP2007198621A (en) Refrigerator and manufacturing method of heat insulating housing for refrigerator