WO2013084648A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2013084648A1
WO2013084648A1 PCT/JP2012/078843 JP2012078843W WO2013084648A1 WO 2013084648 A1 WO2013084648 A1 WO 2013084648A1 JP 2012078843 W JP2012078843 W JP 2012078843W WO 2013084648 A1 WO2013084648 A1 WO 2013084648A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
convex portion
outer member
heat
radiating pipe
Prior art date
Application number
PCT/JP2012/078843
Other languages
French (fr)
Japanese (ja)
Inventor
石橋 郁夫
佐伯 友康
昌則 安部
勝志 住廣
Original Assignee
株式会社 東芝
東芝コンシューマエレクトロニクス・ホールディングス株式会社
東芝ホームアプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝コンシューマエレクトロニクス・ホールディングス株式会社, 東芝ホームアプライアンス株式会社 filed Critical 株式会社 東芝
Priority to CN201280060382.6A priority Critical patent/CN103988034B/en
Priority to EP12856505.8A priority patent/EP2789938B1/en
Publication of WO2013084648A1 publication Critical patent/WO2013084648A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/061Walls with conduit means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Definitions

  • Embodiment of this invention is related with a refrigerator.
  • the refrigerator of the present embodiment includes a storage room, a heat insulating box having an opening connected to the storage room, and a refrigeration cycle for cooling the storage room.
  • the wall part which comprises the said heat insulation box has a heat insulation member between an inner member and an outer member, and is comprised. At least one wall portion of the wall portions has a convex portion protruding outward of the storage chamber or a concave portion recessed inward of the storage chamber in the outer member.
  • a heat radiating pipe constituting a part of the refrigeration cycle is provided between the outer member and the inner member so as to be in contact with the convex portion or the concave portion.
  • FIG. 2 The perspective view from the right front which shows the refrigerator by 1st embodiment Perspective view from front right showing insulation box Fig. 2 is a cross-sectional view taken along line AA in Fig. 2
  • Fig. 3 is a cross-sectional view showing the periphery of the intermediate protrusion in an enlarged manner
  • FIG. 3 is a cross-sectional view showing an enlarged periphery of the front peripheral convex portion
  • the perspective view from the right rear which shows the heat insulation box of the refrigerator by 5th embodiment Cross-sectional view taken along line BB in FIG.
  • FIG. 12 is a cross-sectional view taken along the line CC of FIG.
  • the refrigerator 10 is mainly composed of a heat insulating box 11.
  • the refrigerator 10 incorporates a refrigeration cycle (not shown).
  • the refrigeration cycle has a compressor, a condenser, a cooler, etc. (not shown).
  • the heat insulating box 11 is formed in a rectangular box shape with one surface opened. In the following description, the opening side of the heat insulating box 11 is defined as the front side of the refrigerator 10.
  • the inside of the heat insulation box 11 is divided into a storage room in a refrigeration temperature zone and a storage room in a freezing temperature zone. Specifically, as shown in FIG. 1, inside the heat insulation box 11, a refrigerator compartment 12 is provided at the top, and a vegetable compartment 13 is provided therebelow. An ice making chamber 14 and a small freezer compartment 15 are provided side by side on the lower side of the vegetable compartment 13, and a freezer compartment 16 is provided below, that is, at the bottom.
  • the refrigerated room 12 and the vegetable room 13 are both storage rooms in the refrigerated temperature range, that is, the plus temperature range, and the refrigerated room 12 and the vegetable room 13 are usually set at different temperatures.
  • the maintenance temperature of the refrigerator compartment 12 is set to 1 to 5 ° C.
  • the maintenance temperature of the vegetable compartment 13 is set to 2 to 6 ° C. that is slightly higher than that.
  • the ice making chamber 14, the small freezer compartment 15, and the freezer compartment 16 are all storage rooms in a freezing temperature zone, that is, a minus temperature zone, and are set to ⁇ 10 to ⁇ 20 ° C., for example.
  • These refrigerator compartment 12, vegetable compartment 13, ice making compartment 14, small freezer compartment 15, and freezer compartment 16 are cooled to their respective temperature zones by a refrigerating cycle (not shown).
  • the opening on the front surface of the heat insulation box 11 is connected to each of the storage rooms 12-16. Stored material is fed into each of the storage chambers 12-16 through this opening.
  • a plurality of heat insulation doors are provided on the front side of the heat insulation box 11 in order to open and close the front opening.
  • the double door type refrigerating room heat insulating doors 17 and 18 are provided on the front side of the refrigerating room 12.
  • the refrigerator doors 17 and 18 rotate in the left and right directions around the left and right hinges 171 and 181, respectively, to open and close the refrigerator compartment 12.
  • a drawer-type heat insulation door 19 for the vegetable room is provided on the front side of the vegetable room 13.
  • the vegetable room heat insulation door 19 has a vegetable storage container (not shown) attached to the back side thereof, and opens and closes the vegetable room 13.
  • a drawer-type heat insulating door 20 for ice making chamber is provided on the front side of the ice making chamber 14.
  • An ice making container (not shown) is attached to the back side of the ice making room heat insulating door 20 to open and close the ice making room 14.
  • a heat insulating door 21 for the small freezer compartment is provided on the front side of the small freezer compartment 15.
  • the small freezer compartment door 21 has a container (not shown) attached to the back side thereof, and opens and closes the small freezer compartment 15.
  • a heat insulating door 22 for the freezer compartment is provided on the front side of the freezer compartment 16.
  • the freezer compartment heat insulating door 22 has a container (not shown) attached to the back side thereof, and opens and closes the freezer compartment 16.
  • the heat insulation box 11 is formed in a box shape having an open front by combining a plurality of divided heat insulation walls.
  • the heat insulating box 11 includes a left heat insulating wall 23, a right heat insulating wall 24, a ceiling heat insulating wall 25, a bottom heat insulating wall 26, and a back heat insulating wall 27.
  • the left heat insulating wall 23 forms a left wall.
  • the right heat insulating wall 24 forms a right wall.
  • the ceiling heat insulating wall 25 forms a wall on the ceiling side.
  • the bottom heat insulating wall 26 forms a bottom wall.
  • the back heat insulating wall 27 forms a back wall.
  • the heat insulating walls 23 to 27 are connected and fixed by fixing members 28 and 29 and the like.
  • the ceiling heat insulating wall 25 is formed in a shape in which the rear part is one step lower than the front part.
  • the machine room 30 is formed in a portion surrounded by the lower portion of the ceiling heat insulating wall 25 and the left heat insulating wall 23 and the right heat insulating wall 24.
  • a compressor or the like constituting a part of the refrigeration cycle is accommodated.
  • the wall portion constituting the heat insulating box 11, that is, each of the heat insulating walls 23 to 27, has a heat insulating member between the inner member and the outer member.
  • the inner member constitutes the inner surface of the heat insulating box 11
  • the outer member constitutes the outer surface of the heat insulating box 11.
  • the right and left heat insulating walls 23 and 24 will be described as a representative of the right heat insulating wall 24.
  • the left heat insulating wall 23 is configured in substantially the same manner except that it is symmetrical with the right heat insulating wall 24.
  • the right heat insulating wall 24 is configured by sandwiching a vacuum heat insulating panel 33 as a heat insulating member between the inner member 31 and the outer member 32.
  • the inner member 31 is made of, for example, a synthetic resin such as ABS resin, and is formed in a substantially flat plate shape.
  • the external material 32 is formed by processing a steel plate, for example, and is formed in a plate shape as a whole. As shown in FIGS. 1 and 2, the external member 32 has a plurality of convex portions 34 and 35. Further, the outer peripheral portion of the outer member 32 is bent toward the storage chambers 12 to 16 as shown in FIG. Inside the right heat insulating wall 24, a heat radiating pipe 36 is provided in contact with the convex portions 34 and 35. The heat radiating pipe 36 constitutes a part of the refrigeration cycle.
  • the outer member 32 is formed with a circumferential convex portion 34 and an intermediate convex portion 35.
  • the circumferential convex portion 34 and the intermediate convex portion 35 function as convex portions.
  • the circumferential convex portion 34 and the intermediate convex portion 35 protrude outward from the storage chambers 12 to 16, that is, to the side opposite to the inner member 31.
  • the circumferential protrusion 34 is formed along the peripheral edge of the outer member 32 and surrounds the outer peripheral edge of the outer member 32.
  • the circumferential convex portion 34 includes a front circumferential convex portion 341, a rear circumferential convex portion 342, an upper circumferential convex portion 343, and a lower circumferential convex portion 344.
  • the intermediate convex portion 35 is connected to the lower peripheral convex portion 344 of the peripheral convex portion 34 and is formed in a rectangular shape having the vertical direction as the longitudinal direction.
  • the intermediate convex portion 35 is located on the side of the storage chambers 14 to 16 in the freezing temperature zone, in this case, on the right side.
  • the circumferential convex portion 34 and the intermediate convex portion 35 are formed by press-drawing a plate-like outer member 32, in this case, a steel plate. Further, the protruding amount of the circumferential protruding portion 34 and the intermediate protruding portion 35 is substantially the same. In the present embodiment, the protruding amount is set to about 3 to 5 mm, for example.
  • the width dimension of the rectangular intermediate convex portion 35 that is, the dimension in the front-rear direction is set to about one third of the width dimension of the right heat insulating wall 24, that is, the dimension in the front-rear direction of the refrigerator 10.
  • the heat radiating pipe 36 is provided inside the right heat insulating wall 24, that is, between the inner member 31 and the outer member 32 and in contact with the circumferential convex portion 34 and the intermediate convex portion 35.
  • the heat radiating pipe 36 constitutes a part of a refrigeration cycle (not shown).
  • the heat radiating pipe 36 constitutes a part or all of a condenser provided between the compressor and the cooler of the refrigeration cycle.
  • the heat radiating pipe 36 is composed of, for example, a single continuous copper pipe, and radiates the heat of the refrigerant by flowing the refrigerant discharged from the compressor.
  • the heat radiating pipe 36 is provided meandering around the right heat insulating wall 24.
  • the heat radiating pipe 36 extends from a compressor (not shown) provided in the machine room 30 and enters the inside of the right heat insulating wall 24 from the upper rear end of the right heat insulating wall 24.
  • the heat radiating pipe 36 extends downward along the rear circumferential convex portion 342 of the circumferential convex portion 34, then bends forward at the lower end of the rear circumferential convex portion 342, and further extends forward along the lower circumferential convex portion 344 of the circumferential convex portion 34.
  • the heat radiating pipe 36 extends along the peripheral edge of the intermediate convex portion 35 in the middle thereof, and again extends forward along the lower peripheral convex portion 344 of the peripheral convex portion 34.
  • the heat radiating pipe 36 bends upward at the front end of the lower circumferential convex portion 344 and further extends upward along the front circumferential convex portion 341. Thereafter, the heat radiating pipe 36 bends backward at the upper end of the front peripheral convex portion 341 and extends rearward along the upper peripheral convex portion 343.
  • the heat radiating pipe 36 After the heat radiating pipe 36 circulates the inside of the right heat insulating wall 24 as described above, the heat radiating pipe 36 exits from the upper part of the rear end of the right heat insulating wall 24 to the machine room 30 side. Thereafter, although not shown in detail, the heat dissipating pipe 36 has the same configuration as that of the heat dissipating pipe 36 and is connected to one end of the heat dissipating pipe provided on the left heat insulating wall 23 by welding or the like. The other end of the heat radiating pipe provided on the left heat insulating wall 23 is connected to a cooler (not shown).
  • the heat radiating pipes 361 to 364 described below indicate the heat radiating pipes 36 at positions having different cross-sections, and they constitute one continuous heat radiating pipe 36.
  • the rear peripheral convex portion 342 is located between the vacuum heat insulating panel 33 and the outer member 32 and inside the rear peripheral convex portion 342.
  • a heat radiating pipe 361 extending downward along the line passes therethrough.
  • a space 38 is formed in the rear portion of the right heat insulating wall 24 behind the heat radiating pipe 361 and the vacuum heat insulating panel 33 and at a connection portion between the right heat insulating wall 24 and the back heat insulating wall 27. . In this space 38, two suction pipes 39 are provided.
  • the suction pipe 39 is a part of piping connecting a cooler (not shown) to the compressor, and a cold refrigerant discharged from the cooler is flowed through the suction pipe 39.
  • the two suction pipes 39 are in contact with the inside of the rear peripheral convex portion 342 of the peripheral convex portion 34 and are fixed by a metal tape 40 such as an aluminum tape.
  • a heat insulating material such as sponge or urethane foam may be provided in the space 38 and the suction pipe 39 may be fixed thereby.
  • the heat radiation pipes 362 and 363 pass between the vacuum heat insulating panel 33 and the outer member 32 and inside the intermediate convex portion 35.
  • the heat radiating pipe 362 extends upward along the rear portion of the intermediate convex portion 35.
  • the heat radiating pipe 363 extends downward along the front portion of the intermediate convex portion.
  • a heat radiating pipe 364 passes between the vacuum heat insulating panel 33 and the outer member 32 and inside the front peripheral convex portion 341.
  • the heat radiating pipe 364 extends upward along the front peripheral convex portion 341.
  • the heat radiating pipe 364 is provided in contact with the inner side of the front peripheral convex portion 341.
  • the heat radiating pipes 361 to 364 are fixed to the outer member 32 by a metal tape 41 such as an aluminum tape as shown in FIGS.
  • a housing portion 42 surrounded by the inner member 31, the outer member 32, and the vacuum heat insulating panel 33 is formed in the front portion of the right heat insulating wall 24.
  • the accommodating portion 42 is connected to a space formed between the vacuum heat insulating panel 33 and the inner side of the front peripheral convex portion 341.
  • the accommodating part 42 has an insertion port 421 formed between the inner member 31 and the outer member 32.
  • the dew-proof pipe 37 and the reinforcing member 43 are accommodated, and a seal member 44 is provided so as to close the insertion port 421. In this case, the dew proof pipe 37 is inserted into the accommodating portion 42 through the insertion port 421.
  • the dew-proof pipe 37 is a part of piping connecting between the compressor and the heat radiating pipe 36 or between the heat radiating pipe 36 and the cooler.
  • the dew proof pipe 37 is composed of parts different from the heat radiating pipe 36.
  • the dew proof pipe 37 is supplied with a refrigerant that has been compressed by the compressor and brought to a high temperature state. Thereby, the opening periphery of the heat insulation box 11 is heated, and the dew condensation around the opening is suppressed.
  • the reinforcing member 43 is made of, for example, a steel plate, and reinforces the front end edge portion of the right heat insulating wall 24.
  • the reinforcing member 43 is formed in a so-called U-shape that is bent along the inner surface of the front end portion of the outer member 32 and the rear side is opened.
  • the reinforcing member 43 extends in the vertical direction along the front edge of the right heat insulating wall 24.
  • the reinforcing member 43 is fixed to the outer member 32 by bonding or screws (not shown).
  • the seal member 44 is formed by pultrusion molding or extrusion molding using a material having a lower thermal conductivity than the outer member 32, for example, a synthetic resin or hard rubber.
  • the seal member 44 is configured so that substantially the same cross-sectional shape continues in the vertical direction.
  • the seal member 44 holds the dew proof pipe 37 and closes the insertion port 421 to connect the inner member 31 and the outer member 32.
  • the seal member 44 has a holding portion 441 at one end.
  • the holding part 441 holds the dew proof pipe 37 so as to hold it.
  • a part of the dew proof pipe 37 is exposed from the holding portion 441 and is in contact with the reinforcing member 43. That is, the dew proof pipe 37 is in direct contact with the reinforcing member 43 and is also indirectly in contact with the outer member 32 via the reinforcing member 43. For this reason, the heat of the dew proof pipe 37 is transmitted to the outer member 32 via the reinforcing member 43. Thereby, the dew prevention pipe 37 can heat the outer member 32 indirectly.
  • the seal member 44 has a blocking portion 442 and claw portions 443 and 444 on the side opposite to the holding portion 441.
  • the seal member 44 is fixed to the inner member 31 and the outer member 32 by sandwiching the inner member 31 between the closing portion 442 and the claw portion 443 and sandwiching the outer member 32 between the closing portion 442 and the claw portion 444.
  • the seal member 44 has an elastic deformation portion 445 between the holding portion 441 and the closing portion 442.
  • the elastic deformation portion 445 elastically deforms in the thickness direction of the vacuum heat insulating panel 33. Thereby, the seal member 44 can tolerate an error in the thickness dimension of the vacuum heat insulation panel 33 that occurs when the vacuum heat insulation panel 33 is manufactured.
  • the vacuum heat insulating panel 33 is formed in a plate shape, and is bonded and fixed to the inner member 31 and the outer member 32 by a resin adhesive such as hot melt. In this case, as shown in FIG. 3, the vacuum heat insulating panel 33 is bonded and fixed to the outer member 32 in a form separated from the circumferential convex portion 34 and the intermediate convex portion 35.
  • the vacuum heat insulating panel 33 is provided apart from the heat radiating pipe 36 and the metal tape 41, and is not in contact with the heat radiating pipe 36 and the metal tape 41.
  • the vacuum heat insulation panel 33 is configured by housing a core material 45 in a bag body 46 and evacuating the inside thereof to seal it under reduced pressure.
  • the core material 45 is configured by, for example, a laminated material of inorganic fibers such as glass wool, which is previously formed into a plate shape.
  • the bag body 46 is formed in a bag shape by superimposing two laminated films having gas barrier performance and welding the periphery thereof.
  • the bag body 46 is composed of two types of laminated films having different characteristics, in this case, an inner laminated film 461 and an outer laminated film 462.
  • the inner laminated film 461 and the outer laminated film 462 are configured by sandwiching a layer for obtaining gas barrier performance, in this case, a metal layer between resin films, and further laminating a plurality of types of resin films.
  • the inner laminated film 461 and the outer laminated film 462 exhibit different characteristics depending on whether the metal layer for obtaining the gas barrier performance is an aluminum foil layer or an aluminum vapor deposition layer.
  • the difference between the aluminum foil layer and the aluminum vapor deposition layer will be described.
  • an aluminum vapor deposition layer deposits aluminum in a vacuum with respect to a film serving as a base material, and thus can be made thinner than an aluminum foil layer.
  • the aluminum vapor deposition layer has a lower thermal conductivity than the aluminum foil layer and is excellent in heat insulation performance.
  • the aluminum foil layer is formed by laminating and laminating an aluminum foil formed by rolling, for example, between two films, so that the film thickness is larger than that of the aluminum vapor deposition layer. For this reason, an aluminum foil layer is excellent in gas barrier performance compared with an aluminum vapor deposition layer, and is also excellent in durability performance.
  • the inner laminated film 461 located on the inner member 31 side has an aluminum vapor deposition layer as a metal layer for obtaining gas barrier performance.
  • the outer laminated film 462 located on the outer member 32 side has an aluminum foil layer as a metal layer for obtaining gas barrier performance.
  • the surface of the vacuum heat insulating panel 33 on the side of the heat radiating pipe 36 has an aluminum foil layer excellent in durability performance. Therefore, damage to the vacuum heat insulating panel 33 due to contact with the heat radiating pipe 36 is reduced.
  • the surface of the vacuum heat insulation panel 33 on the side of the storage chambers 12 to 16 has an aluminum vapor deposition layer having low heat conductivity and excellent heat insulation performance. For this reason, the so-called heat bridge in which the cool air in the storage chambers 12 to 16 travels along the surface of the bag body 46 of the vacuum heat insulation panel 33 from the inner member 31 side to the outer member 32 side is suppressed.
  • the bag body 46 is formed in a bag shape by overlapping the inner laminated film 461 and the outer laminated film 462 and welding the periphery thereof.
  • a welding ear portion 463 is formed on the outer edge portion of the vacuum heat insulating panel 33 in a form in which the periphery of the bag body 46 protrudes from the core material 45.
  • the ear portion 463 is folded back toward the outer member 32 and is accommodated inside the front peripheral convex portion 341 that becomes the front end edge of the right heat insulating wall 24.
  • the ear portion 463 is fixed along the surface of the outer laminated film 462 on the outer member 32 side by an adhesive, a metal tape, or the like.
  • the ear portion 463 is separated from the heat radiating pipe 36 and the metal tape 41. Further, the ear portion 463 is also separated from the outer member 32. Accordingly, the stepped portion 464 generated by folding the ear portion 463 is not in contact with the outer member 32.
  • Reference numerals 23 and 24 denote outer convex portions 34 and intermediate convex portions 35 which are located on the outer member 32 and project outward from the storage chambers 12 to 16.
  • a heat radiating pipe 36 is provided inside this right and left heat insulation wall 23 and 24, between the outer member 32 and the inner member 31, it contacts the inner side of the circumferential convex part 34 and the intermediate
  • a heat radiating pipe 36 is provided.
  • the outer side surface of the right heat insulating wall 24 in this case when the right side surface of the refrigerator 10, for example, the outer side surface of the right heat insulating wall 24 in this case is installed in contact with the wall of the room, the circumferential convex part 34 and the intermediate convex part 35 are in contact with the wall of the room, A space is formed between the part where the circumferential convex part 34 and the intermediate convex part 35 do not exist and the wall of the room. That is, the entire outer surface of the right heat insulating wall 24 of the refrigerator 10 does not come into contact with the wall of the room, so that a space for radiating heat around the heat radiating pipe 36 is secured.
  • the refrigerator 10 includes a vacuum heat insulating panel 33 as a heat insulating member of the right heat insulating wall 24.
  • the vacuum heat insulation panel 33 is adhered and fixed to the outer member 32 in a form separated from the circumferential convex portion 34 and the intermediate convex portion 35. According to this, it is suppressed that the vacuum heat insulation panel 33 contacts the thermal radiation pipe 36 provided in contact with the circumferential convex part 34 and the intermediate
  • the heat radiating pipe 36 is located between the vacuum heat insulating panel 33, the circumferential convex portion 34 and the intermediate convex portion 35, and is fixed to the outer member 32 with a metal tape 41.
  • the vacuum heat insulating panel 33 is provided away from the heat radiating pipe 36 and the metal tape 41. According to this, it can suppress that the heat which arises in the thermal radiation pipe 36 is transmitted to the vacuum heat insulation panel 33 directly or via the metal tape 41. FIG. Therefore, it is possible to suppress the inflow of heat into the storage chambers 12 to 16 due to the so-called heat bridge, in which the heat generated in the heat radiating pipe 36 is transmitted to the storage chambers 12 to 16 side through the surface of the vacuum heat insulation panel 33.
  • the heat radiating pipe 36 is provided along the inside of the circumferential convex portion 34 and the intermediate convex portion 35. Therefore, when the refrigerator 10 is manufactured, the heat radiating pipe 36 can be disposed along the circumferential convex portion 34 and the intermediate convex portion 35. According to this, compared with the case where the outer member 32 does not have the circumferential convex portion 34 and the intermediate convex portion 35 and is simply a flat plate shape, it is easy to attach the heat radiating pipe 36 to the outer member 32 and the workability is improved. To do.
  • the circumferential convex portion 34 and the intermediate convex portion 35 are formed by press-drawing the plate-like outer member 32. Therefore, the strength of the outer member 32 is increased by work hardening by drawing at the peripheral portions of the circumferential convex portion 34 and the intermediate convex portion 35. Further, the outer member 32 is formed with the circumferential convex portion 34 and the intermediate convex portion 35, whereby the secondary moment of the entire outer member 32 is increased. As a result, the strength of the outer member 32 as a whole increases in the bending direction.
  • a front peripheral convex portion 341 that is a part of the peripheral convex portion 34 is provided on the edge portion on the opening side of the heat insulating box 11, that is, the front end edge portion of the right heat insulating wall 24. According to this, the strength of the end edge portion on the opening side of the heat insulating box 11 that is not connected to other heat insulating walls and particularly requires strength, in this case, the front edge portion of the right heat insulating wall 24 is increased in strength. Can be increased.
  • a reinforcing member 43 is provided inside the front peripheral convex portion 341 along the front end edge of the right heat insulating wall 24. According to this, the intensity
  • the vacuum heat insulating panel 33 includes a core material 45 and a bag body 46 that accommodates the core material 45.
  • the bag body 46 has an adhesive ear 463 that protrudes around the core member 45.
  • the ear portion 463 is folded back toward the outer member 32 and is accommodated in the front peripheral convex portion 341 of the peripheral convex portion 34.
  • the stepped portion 464 generated by folding the ear portion 463 is not in contact with the outer member 32.
  • a gap does not occur between the outer member 32 and the vacuum heat insulation panel 33 due to the step portion 464. Therefore, the adhesiveness between the outer member 32 and the vacuum heat insulating panel 33 can be kept good.
  • the shape of the stepped portion 464 is not raised on the outer member 32 when the stepped portion 464 contacts the outer member 32. For this reason, the external appearance of the outer member 32, that is, the design of the refrigerator 10 can be kept good.
  • the vacuum heat insulating panel 33 is provided with the inner laminated film 461 including the aluminum vapor deposition layer on the inner member 31 side and the outer laminated film 462 including the aluminum foil layer on the outer member 32 side. According to this, the so-called heat bridge in which the cool air in the storage chambers 12 to 16 wraps around toward the outer member 32 can be effectively suppressed by the inner laminated film 461 having excellent heat insulation performance. Moreover, the vacuum insulation panel 33 can be effectively protected from damage due to contact of the heat radiating pipe 36 or the like by the outer laminated film 462 having excellent durability.
  • the heat radiating pipe 36 is also provided inside the intermediate convex portion 35 located on the side of the storage chambers 14 to 16 in the freezing temperature zone. According to this, the sides of the storage chambers 14 to 16 in the freezing temperature zone where the cooling temperature is lower can be heated by the heat of the radiating pipe 35. Therefore, even if the vacuum heat insulating panel 33 is damaged and its heat insulating performance is deteriorated, the outer member 32 is cooled by the cool air in the storage chambers 14 to 16 in the freezing temperature zone, and dew condensation is generated around the outer member 32. It is possible to suppress the occurrence.
  • the above-described effects are particularly effective when the thickness of the heat insulating walls 23 and 24 on both the left and right sides is 35 mm or less.
  • the thickness of the vacuum heat insulation panel 33 is about 20 mm, and the total thickness of the inner member 31 and the outer member 32 is about 1.5 mm.
  • the height is 21.5 mm.
  • the heat insulating walls 23 and 24 on both the left and right sides are configured with a more effective thickness dimension of 25 mm or less.
  • the outer member 32 is provided with a first intermediate protrusion 47 and a second intermediate protrusion 48 instead of the intermediate protrusion 35 of the first embodiment.
  • the first intermediate convex portion 47 and the second intermediate convex portion 48 are set such that the width dimension, that is, the dimension in the front-rear direction is slightly larger than the outer diameter of the heat radiating pipe 36.
  • a heat radiating pipe 362 extending upward is passed inside the first intermediate convex portion 47
  • a heat radiating pipe 363 extending downward is passed inside the second intermediate convex portion 48.
  • the same effect as the first embodiment can be obtained. Furthermore, for example, when the outer surface of the right heat insulating wall 24 of the refrigerator 10 is installed in contact with the wall of the room, a space is also formed between the first intermediate protrusion 47 and the second intermediate protrusion 48. For this reason, the radiation space of the radiation pipes 364 and 365 can be further increased. Therefore, even when the wall portion of the heat insulating box 11 is arranged close to or in contact with the wall of the room, it is more effectively suppressed that heat is trapped around the heat radiating pipe 36 and the heat radiating efficiency is lowered. can do.
  • the outer member 32 is formed with a circumferential concave portion 49 and an intermediate concave portion 50 as concave portions, instead of the circumferential convex portion 34 and the intermediate convex portion 35 of the first embodiment.
  • the circumferential recess 49 and the intermediate recess 50 are formed in the outer member 32 so as to be recessed inward of the storage chambers 12 to 16, that is, toward the inner member 31 side.
  • the circumferential recess 49 includes a front circumferential recess 491 and a rear circumferential recess 492, and an upper circumferential recess and a lower circumferential recess (not shown).
  • the front peripheral recess 491, the rear peripheral recess 492, the upper collecting recess and the lower peripheral recess are provided along the peripheral edge of the outer member 32 so as to surround the outer member 32, similarly to the peripheral protrusion 34.
  • the intermediate concave portion 50 is connected to the lower peripheral concave portion of the peripheral concave portion 49 and is formed in a rectangular shape having the vertical direction as the longitudinal direction.
  • This intermediate recess 50 is also located on the side of the storage chambers 14 to 16 in the freezing temperature zone, in this case, on the right side.
  • the vacuum heat insulation panel 33 is formed with a peripheral escape portion 51 and an intermediate escape portion 52 in a form in which the surface on the outer member 32 side is recessed.
  • the circumferential relief portion 51 and the intermediate relief portion 52 are formed simultaneously with the molding of the core material 45 by a mold, for example.
  • the circumferential relief 51 is formed along the shape of the circumferential recess 49, and includes a front circumferential relief 511 and a rear circumferential relief 512, and an upper circumferential relief and a lower circumferential relief (not shown). It is configured.
  • the intermediate escape portion 52 is formed along the shape of the intermediate recess 50.
  • the heat radiating pipe 361 is provided between the rear circumferential recess 512 of the vacuum heat insulation panel 33 and the rear circumferential recess 492 of the outer member 32 and is in contact with the inner side of the rear circumferential recess 492. Further, the heat radiating pipe 362 is provided between the intermediate escape portion 52 of the vacuum heat insulating panel 33 and the intermediate concave portion 50 of the outer member 32, and is in contact with the inner side of the rear portion of the intermediate concave portion 50. Further, the heat radiating pipe 363 is provided between the intermediate escape portion 52 of the vacuum heat insulating panel 33 and the intermediate concave portion 50 of the outer member 32, and is in contact with the inside of the front portion of the intermediate concave portion 50. The heat radiating pipe 364 is provided between the front peripheral recess 491 of the vacuum heat insulating panel 33 and the front peripheral recess 491 of the outer member 32 and in contact with the inside of the front peripheral recess 491.
  • the heat radiating pipe 36 is fixed by a metal tape 41 such as an aluminum tape as in the first embodiment. Further, the vacuum heat insulating panel 33 is bonded and fixed to the inner member 31 and the outer member 32 in a form separated from the circumferential recess 49 and the intermediate recess 50. The vacuum heat insulating panel 33 is separated from the heat radiating pipe 36 and the metal tape 41.
  • the same effect as in the first embodiment can be obtained. Further, it is not necessary to provide the outer member 32 with a protruding portion that protrudes outward from the storage chambers 12 to 16. Therefore, even if it is the structure which arrange
  • the outer member 32 is formed with a first intermediate recess 53 and a second intermediate recess 54 in place of the intermediate recess 50 of the third embodiment.
  • the first intermediate recess 53 and the second intermediate recess 54 are set such that the width dimension, that is, the dimension in the front-rear direction is slightly larger than the outer diameter of the heat radiating pipe 36.
  • a heat radiating pipe 362 is passed inside the first intermediate recess 53.
  • a heat radiating pipe 363 is passed inside the second intermediate recess 54.
  • the vacuum heat insulation panel 33 is formed with a first intermediate escape portion 55 and a second intermediate escape portion 56 instead of the intermediate escape portion 52 in the third embodiment.
  • the first intermediate relief portion 55 and the second intermediate relief portion 56 are formed along the first intermediate recess portion 53 and the second intermediate recess portion 54, respectively.
  • the vacuum heat insulation panel 33 is separated from the heat radiating pipe 36 and the metal tape 41, and is also separated from the circumferential recess 49, the first intermediate recess 53, and the second intermediate recess 54.
  • the same effect as that of the third embodiment can be obtained. Furthermore, the space between the first intermediate recess 53 and the second intermediate recess 54 inside the right heat insulating wall 24 is filled with the vacuum heat insulating panel 33. Therefore, even when a recess is formed in the vacuum heat insulation panel 33, the portion where the vacuum heat insulation panel 33 becomes thin can be suppressed as much as possible. As a result, it is possible to suppress a decrease in the heat insulation performance of the right heat insulation wall 24 as a whole.
  • the heat insulation box 11 of the refrigerator 10 has the back side convex part 60 as a convex part.
  • the back convex portion 60 is provided along the peripheral edge portion of the back heat insulating wall 27 in the back wall portion that does not form the opening of the heat insulating box 11, that is, the back heat insulating wall 27.
  • the back side convex part 60 is comprised from the 1st back side convex part 601 and the 2nd back side convex part 602, as shown in FIG.
  • the first back convex portion 601 is provided on each of the left and right edges of the back heat insulating wall 27 and extends downward from the machine room 30 side.
  • the second back side convex part 602 is provided in the lower part of the back part heat insulation wall 27, extends in the left-right direction, and connects the lower ends of the left and right first back side convex parts 601.
  • the back heat insulating wall 27 is a vacuum heat insulating panel 63 as a heat insulating member between the inner member 61 and the outer member 62 in the same manner as the left and right heat insulating walls 23 and 24 of the above embodiments. have.
  • the vacuum heat insulation panel 63 is bonded and fixed to the inner member 61 and the outer member 62 by a resin adhesive such as hot melt.
  • the inner member 61, the outer member 62, and the vacuum heat insulation panel 63 are configured in substantially the same manner as the inner member 31, the outer member 32, and the vacuum heat insulation panel 33 in each of the above embodiments except for the shape.
  • the back-side convex portion 60 is formed on the outer member 62 so as to protrude outward from the storage chambers 12 to 16.
  • the back convex part 60 is formed in a rectangular shape, specifically a trapezoidal shape.
  • the back projection 60 is formed by press drawing the outer member 62.
  • the vacuum heat insulation panel 63 is provided at a position that does not overlap the back-side convex portion 60.
  • a soft tape 64 is provided on the side of the vacuum heat insulation panel 63 and between the inner member 61 and the outer member 62 so as to be located in front of the back-side convex portion 60.
  • the soft tape 64 is made of, for example, an open-cell synthetic rubber and is excellent in flexibility, stretchability, heat insulation, and waterproofness.
  • a heat radiating pipe 65 is provided in contact with the inside of the back-side convex portion 60.
  • the heat radiating pipe 65 is fixed to the outer member 62 by a metal tape 66 such as an aluminum tape.
  • the protruding amount of the back convex portion 60 is set smaller than the diameter of the heat radiating pipe 65. Therefore, the heat radiating pipe 65 is pressed against the soft tape 64 via the metal tape 66.
  • the width dimension of the back convex portion 60 is set to be slightly larger than the diameter of the heat radiating pipe 65.
  • the heat radiating pipe 65 and the metal tape 66 are separated from the vacuum heat insulating panel 63. That is, the heat radiating pipe 65 and the metal tape 66 are not in contact with the vacuum heat insulating panel 63.
  • This heat radiating pipe 65 also constitutes a part of the refrigeration cycle in the same manner as the heat radiating pipe 36 of each of the above embodiments. As shown in FIG. 9, the heat radiating pipe 65 enters the back heat insulating wall 27 from the machine room 30, travels around the periphery of the back heat insulating wall 27 along the back convex portion 60, and then passes from the back heat insulating wall 27 to the machine. It is provided so as to go into the chamber 30. Both ends of the heat radiating pipe 65 are connected to a compressor in the machine room 30 or connected to the heat radiating pipe 36 and the like, although details are not shown.
  • the back heat insulating wall 27 of the refrigerator 10 it is possible to obtain mainly the same functions and effects as those of the first embodiment with respect to the back heat insulating wall 27 of the refrigerator 10. That is, even when the back surface of the refrigerator 10, that is, the outer surface of the back heat insulating wall 27 is installed in contact with the wall of the room, the back convex portion 60 is brought into contact with the wall of the room. A space is formed between the part that does not exist and the wall of the room. Therefore, the entire outer surface of the back heat insulating wall 27 of the refrigerator 10 does not contact the wall of the room, and a space for heat dissipation of the heat radiating pipe 65 is secured.
  • the heat radiating pipe 65 is accommodated inside the back convex portion 60. Therefore, when the refrigerator 10 is manufactured, the heat radiating pipe 65 can be disposed along the back-side convex portion 60. According to this, compared with the case where the outer member 62 does not have the back side convex part 60 and is only a flat structure, attachment of the heat radiating pipe 65 with respect to the outer member 62 becomes easy, and workability
  • the back convex portion 60 is formed by press-drawing a plate-like outer member 62. Therefore, the strength of the outer member 62 is increased by work hardening by drawing at the periphery of the back convex portion 60. Further, the formation of the back-side convex portion 60 increases the sectional moment of the entire outer member 62, and as a result, the strength of the outer member 62 as a whole in the bending direction increases.
  • the back side convex part 60 is formed in the trapezoid shape. Therefore, a larger heat radiation area of the heat radiating pipe 65 can be secured, and as a result, the heat radiating efficiency of the heat radiating pipe 65 can be improved.
  • the outer member 62 may have a concave portion that is recessed toward the inner member 61 instead of the back convex portion 60.
  • the shape of the back-side convex portion 60 is different from that of the fifth embodiment. That is, the back-side convex portion 60 of the sixth embodiment is not a trapezoidal shape, but is formed in a substantially semicircular shape along a part of the outer diameter of the heat radiating pipe 65. According to this, it is easy to arrange
  • the machine room 30 is provided in the lower rear portion of the heat insulation box 11. Although details are not shown, the machine room 30 is provided with a compressor that constitutes a part of the refrigeration cycle as in the above embodiments.
  • the 1st back side convex part 601 is in the both right and left edge parts of the back part heat insulation wall 27, respectively, and is extended upwards from the machine room 30 side.
  • the second back side convex part 602 is in the upper part of the back heat insulating wall 27 and extends in the left-right direction to connect the upper ends of the left and right first back side convex parts 601.
  • a heat radiating pipe 65 is disposed in the back convex portion 60.
  • the convex portion 60 is provided on the back heat insulating wall 27 that does not form the opening of the heat insulating box 11, but the convex portion and the concave portion are formed on the wall portion that forms the opening of the heat insulating box 11. Is not provided. That is, in the seventh embodiment, the left and right heat insulating walls 23, 24 are not provided with the convex portions 34, 35, 47, 48 or the concave portions 49, 50, 53, 54 as in the above embodiments.
  • the outer members 32 of the left and right heat insulating walls 23 and 24 are substantially flat without having a convex portion or a concave portion.
  • the outer member 32 of the vacuum heat insulating panel 33 is replaced with the convex portions 34, 35, 47, 48 or the concave portions 49, 50, 53, 54 in the above embodiments.
  • a recess 331 is formed on the side.
  • the heat radiating pipe 36 is disposed along the recess 331.
  • the machine room 30 is provided in the lower rear side of the heat insulation box 11. According to this, the heat radiated from the compressor disposed in the machine room 30 passes through the space between the back heat insulating wall 27 formed by the back-side convex part 60 and the wall surface of the room, and from the machine room 30. It flows upward and dissipates heat. Therefore, according to this configuration, it is possible to effectively dissipate heat generated in the compressor without providing a new member for heat dissipation of the compressor.
  • the left and right side surfaces of the refrigerator 10 that is, the outer side surfaces of the left and right heat insulating walls 23 and 24, are configured to have a flat appearance. Therefore, the appearance of the left and right side surfaces in the installed state of the refrigerator 10 can be improved.
  • the left heat insulating wall 23 is configured in substantially the same manner except that it is symmetrical with the right heat insulating wall 24.
  • the left heat insulating wall 23 is also provided with a heat radiating pipe corresponding to the heat radiating pipe 36.
  • the heat insulation box 11 is not limited to the one having an opening on the front surface, and may have a structure having an opening on the upper surface, for example.
  • the heat radiating pipe and the convex portion or the concave portion may be provided on the heat insulating walls on the four sides surrounding the opening on the upper surface.
  • the heat insulation box 11 is not limited to a combination of the divided heat insulation walls 23 to 27.
  • the heat insulating box 11 may have a structure in which an inner box forming a surface on the storage chambers 12 to 16 side is formed in an integral box shape, and a heat insulating member and an outer box are provided on the outer side.
  • the inner laminated film 461 may have an aluminum foil layer.
  • the outer laminated film 462 may have a configuration including an aluminum vapor deposition layer.
  • the inner laminated film 461 and the outer laminated film 462 may be configured to have either an aluminum deposited layer or an aluminum foil layer, or may be configured by stacking a plurality of aluminum deposited layers and aluminum foil layers.
  • the metal layer for obtaining the gas barrier performance is preferably aluminum in consideration of economy and the like, but is not limited thereto, and for example, titanium, chromium, copper, gold or the like can be used.
  • the formation of the metal layer is not limited to the lamination and vapor deposition of the metal foil, and can be formed by plating, for example.
  • the layer for obtaining the gas barrier performance is not limited to the above metal layer, and for example, a layer on which an oxide such as silica or alumina is deposited can be used.
  • the convex portion exists because the convex portion contacts the wall of the room.
  • a space is formed between the unoccupied part and the wall of the room. Therefore, the entire side surface of the refrigerator does not come into contact with the wall of the room, and a space for radiating heat around the heat radiating pipe is secured. Therefore, even when the wall portion of the heat insulating box is disposed close to or in contact with the wall of the room, it is possible to suppress the heat radiation from being accumulated around the heat radiating pipe and the heat radiation efficiency from being lowered.

Abstract

A refrigerator is provided with: a thermal insulation box having a storage chamber and an opening connected to the storage chamber; and a refrigeration cycle for refrigerating the storage chamber. The walls configuring the thermal insulation box are configured so as to have a thermal insulation member sandwiched between an interior member and an exterior member. The exterior member of at least one of the walls has a projection projecting outward from the storage chamber or a recess sinking inward into the storage chamber. A heat-dissipating pipe that configures a section of the refrigeration cycle is positioned so as to contact the projection or recess at a location between the exterior member and the interior member.

Description

冷蔵庫refrigerator
 本発明の実施形態は、冷蔵庫に関する。 Embodiment of this invention is related with a refrigerator.
 近年、冷凍サイクルの一部を構成する放熱パイプを、断熱箱体の壁部内に配置した冷蔵庫が開示されている。 Recently, a refrigerator in which a heat radiating pipe constituting a part of a refrigeration cycle is arranged in a wall portion of a heat insulating box has been disclosed.
特開2011-80692号公報JP 2011-80692 A
 しかし、このような冷蔵庫は、例えば断熱箱体の壁部が部屋の壁などに近接して設置されると、放熱パイプの周囲に熱がこもって放熱効率が低下するおそれがある。
 そこで、断熱箱体の壁部内に放熱パイプが配置されたものにおいて、断熱箱体の壁部が部屋の壁などに近接して配置された場合であっても、放熱パイプの放熱効率の低下を抑制することができる冷蔵庫を提供する。
However, in such a refrigerator, for example, when the wall portion of the heat insulating box is installed close to the wall of the room, the heat is trapped around the heat radiating pipe and the heat radiation efficiency may be lowered.
Therefore, in the case where the heat radiating pipe is arranged in the wall portion of the heat insulating box, even if the wall portion of the heat insulating box is arranged close to the wall of the room, the heat radiating efficiency of the heat radiating pipe is reduced. A refrigerator capable of being suppressed is provided.
 本実施形態の冷蔵庫は、貯蔵室およびこの貯蔵室に繋がる開口を有する断熱箱体と、前記貯蔵室を冷却する冷凍サイクルと、を備える。前記断熱箱体を構成する壁部は、内部材と外部材との間に断熱部材を有して構成されている。前記壁部のうち少なくとも一の壁部は、前記外部材にあって前記貯蔵室の外方へ突出する凸部または前記貯蔵室の内方へ窪む凹部を有する。前記冷凍サイクルの一部を構成する放熱パイプは、前記外部材と前記内部材との間において前記凸部または前記凹部に接して設けられている。 The refrigerator of the present embodiment includes a storage room, a heat insulating box having an opening connected to the storage room, and a refrigeration cycle for cooling the storage room. The wall part which comprises the said heat insulation box has a heat insulation member between an inner member and an outer member, and is comprised. At least one wall portion of the wall portions has a convex portion protruding outward of the storage chamber or a concave portion recessed inward of the storage chamber in the outer member. A heat radiating pipe constituting a part of the refrigeration cycle is provided between the outer member and the inner member so as to be in contact with the convex portion or the concave portion.
第一実施形態による冷蔵庫を示す右前方からの斜視図The perspective view from the right front which shows the refrigerator by 1st embodiment 断熱箱体を示す右前方からの斜視図Perspective view from front right showing insulation box 図2のA-A線に沿って示す横断面図Fig. 2 is a cross-sectional view taken along line AA in Fig. 2 図3における中間凸部周辺を拡大して示す横断面図Fig. 3 is a cross-sectional view showing the periphery of the intermediate protrusion in an enlarged manner 図3における前側周凸部周辺を拡大して示す横断面図FIG. 3 is a cross-sectional view showing an enlarged periphery of the front peripheral convex portion 第二実施形態による図3相当図FIG. 3 equivalent diagram according to the second embodiment 第三実施形態による図3相当図FIG. 3 equivalent diagram according to the third embodiment 第四実施形態による図3相当図FIG. 3 equivalent diagram according to the fourth embodiment 第五実施形態による冷蔵庫の断熱箱体を示す右後方からの斜視図The perspective view from the right rear which shows the heat insulation box of the refrigerator by 5th embodiment 図9のB-B線に沿って示す横断面図Cross-sectional view taken along line BB in FIG. 第六実施形態による図10相当図FIG. 10 equivalent diagram according to the sixth embodiment 第七実施形態による図9相当図FIG. 9 equivalent diagram according to the seventh embodiment 図12のC-C線に沿って示す横断面図FIG. 12 is a cross-sectional view taken along the line CC of FIG.
 以下、複数の実施形態による冷蔵庫を、図面を参照して説明する。なお、各実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。 Hereinafter, refrigerators according to a plurality of embodiments will be described with reference to the drawings. In addition, in each embodiment, the same code | symbol is attached | subjected to the substantially same component, and description is abbreviate | omitted.
 (第一実施形態)
 まず、第一実施形態について、図1から図5を参照して説明する。
 図1に示すように、冷蔵庫10は、断熱箱体11を主体として構成されている。冷蔵庫10には、図示しない冷凍サイクルが組み込まれている。冷凍サイクルは、図示しない圧縮機、凝縮器、冷却器などを有している。断熱箱体11は、図2に示すように、一面が開口した矩形の箱状に形成されている。なお、以下の説明において、断熱箱体11の開口側を冷蔵庫10の前側と定義する。
(First embodiment)
First, a first embodiment will be described with reference to FIGS.
As shown in FIG. 1, the refrigerator 10 is mainly composed of a heat insulating box 11. The refrigerator 10 incorporates a refrigeration cycle (not shown). The refrigeration cycle has a compressor, a condenser, a cooler, etc. (not shown). As shown in FIG. 2, the heat insulating box 11 is formed in a rectangular box shape with one surface opened. In the following description, the opening side of the heat insulating box 11 is defined as the front side of the refrigerator 10.
 断熱箱体11の内部は、冷蔵温度帯の貯蔵室と冷凍温度帯の貯蔵室とに区分されている。具体的には、図1に示すように、断熱箱体11の内部には、最上部に冷蔵室12が設けられ、その下方に野菜室13が設けられている。そして、野菜室13の下方に製氷室14および小冷凍室15が左右に並べて設けられ、その下方すなわち最下部に冷凍室16が設けられている。 The inside of the heat insulation box 11 is divided into a storage room in a refrigeration temperature zone and a storage room in a freezing temperature zone. Specifically, as shown in FIG. 1, inside the heat insulation box 11, a refrigerator compartment 12 is provided at the top, and a vegetable compartment 13 is provided therebelow. An ice making chamber 14 and a small freezer compartment 15 are provided side by side on the lower side of the vegetable compartment 13, and a freezer compartment 16 is provided below, that is, at the bottom.
 冷蔵室12および野菜室13は、いずれも冷蔵温度帯すなわちプラス温度帯の貯蔵室であり、通常、冷蔵室12および野菜室13は、異なる温度に設定されている。例えば、冷蔵室12の維持温度は1~5℃に設定されており、野菜室13の維持温度はそれよりやや高い2~6℃に設定されている。また、製氷室14、小冷凍室15、および冷凍室16は、いずれも冷凍温度帯すなわちマイナス温度帯の貯蔵室であり、例えば-10~-20℃に設定されている。これら冷蔵室12、野菜室13、製氷室14、小冷凍室15、および冷凍室16は、図示しない冷凍サイクルによってそれぞれの温度帯に冷却される。 The refrigerated room 12 and the vegetable room 13 are both storage rooms in the refrigerated temperature range, that is, the plus temperature range, and the refrigerated room 12 and the vegetable room 13 are usually set at different temperatures. For example, the maintenance temperature of the refrigerator compartment 12 is set to 1 to 5 ° C., and the maintenance temperature of the vegetable compartment 13 is set to 2 to 6 ° C. that is slightly higher than that. The ice making chamber 14, the small freezer compartment 15, and the freezer compartment 16 are all storage rooms in a freezing temperature zone, that is, a minus temperature zone, and are set to −10 to −20 ° C., for example. These refrigerator compartment 12, vegetable compartment 13, ice making compartment 14, small freezer compartment 15, and freezer compartment 16 are cooled to their respective temperature zones by a refrigerating cycle (not shown).
 断熱箱体11の前面の開口は各貯蔵室12~16に繋がっている。貯蔵物は、この開口を通して各貯蔵室12~16へ投入される。断熱箱体11の前面側には、この前面の開口を開閉するために、複数の断熱扉が設けられている。具体的には、冷蔵室12の前側には、観音開き式の冷蔵室用断熱扉17、18が設けられている。冷蔵室用断熱扉17、18は、それぞれ左右のヒンジ171、181を回転軸として左右方向へ回転し、冷蔵室12を開閉する。 The opening on the front surface of the heat insulation box 11 is connected to each of the storage rooms 12-16. Stored material is fed into each of the storage chambers 12-16 through this opening. A plurality of heat insulation doors are provided on the front side of the heat insulation box 11 in order to open and close the front opening. Specifically, on the front side of the refrigerating room 12, the double door type refrigerating room heat insulating doors 17 and 18 are provided. The refrigerator doors 17 and 18 rotate in the left and right directions around the left and right hinges 171 and 181, respectively, to open and close the refrigerator compartment 12.
 野菜室13の前側には、引出し式の野菜室用断熱扉19が設けられている。野菜室用断熱扉19は、その裏側に図示しない野菜収納容器が取付けられ、野菜室13を開閉する。製氷室14の前側には、引出し式の製氷室用断熱扉20が設けられている。製氷室用断熱扉20は、その裏側に図示しない製氷容器が取付けられ、製氷室14を開閉する。小冷凍室15の前側には、小冷凍室用断熱扉21が設けられている。小冷凍室用扉21は、その裏側に図示しない収容容器が取付けられ、小冷凍室15を開閉する。冷凍室16の前側には、冷凍室用断熱扉22が設けられている。冷凍室用断熱扉22は、その裏側に図示しない収容容器が取付けられ、冷凍室16を開閉する。 A drawer-type heat insulation door 19 for the vegetable room is provided on the front side of the vegetable room 13. The vegetable room heat insulation door 19 has a vegetable storage container (not shown) attached to the back side thereof, and opens and closes the vegetable room 13. On the front side of the ice making chamber 14, a drawer-type heat insulating door 20 for ice making chamber is provided. An ice making container (not shown) is attached to the back side of the ice making room heat insulating door 20 to open and close the ice making room 14. On the front side of the small freezer compartment 15, a heat insulating door 21 for the small freezer compartment is provided. The small freezer compartment door 21 has a container (not shown) attached to the back side thereof, and opens and closes the small freezer compartment 15. On the front side of the freezer compartment 16, a heat insulating door 22 for the freezer compartment is provided. The freezer compartment heat insulating door 22 has a container (not shown) attached to the back side thereof, and opens and closes the freezer compartment 16.
 断熱箱体11は、分割された複数の断熱壁を組み合せることによって、前面が開口した箱状に形成されている。具体的には、図2に示すように、断熱箱体11は、左部断熱壁23と、右部断熱壁24と、天井部断熱壁25と、底部断熱壁26と、背部断熱壁27とが組み合わされて構成されている。この場合、左部断熱壁23は、左側の壁を形成する。右部断熱壁24は、右側の壁を形成する。天井部断熱壁25は、天井側の壁を形成する。底部断熱壁26は、底側の壁を形成する。背部断熱壁27は、背側の壁を形成する。 The heat insulation box 11 is formed in a box shape having an open front by combining a plurality of divided heat insulation walls. Specifically, as shown in FIG. 2, the heat insulating box 11 includes a left heat insulating wall 23, a right heat insulating wall 24, a ceiling heat insulating wall 25, a bottom heat insulating wall 26, and a back heat insulating wall 27. Are combined. In this case, the left heat insulating wall 23 forms a left wall. The right heat insulating wall 24 forms a right wall. The ceiling heat insulating wall 25 forms a wall on the ceiling side. The bottom heat insulating wall 26 forms a bottom wall. The back heat insulating wall 27 forms a back wall.
 各断熱壁23~27は、固定部材28、29などによって連結固定されている。この場合、天井部断熱壁25は、図9に示すように、後部が前部に比べて一段低くなった形状に形成されている。そして、天井部断熱壁25の一段低くなった部分と、左部断熱壁23および右部断熱壁24とで囲まれた部分に機械室30が形成される。機械室30には、詳細は図示しないが、冷凍サイクルの一部を構成する圧縮機などが収容される。 The heat insulating walls 23 to 27 are connected and fixed by fixing members 28 and 29 and the like. In this case, as shown in FIG. 9, the ceiling heat insulating wall 25 is formed in a shape in which the rear part is one step lower than the front part. The machine room 30 is formed in a portion surrounded by the lower portion of the ceiling heat insulating wall 25 and the left heat insulating wall 23 and the right heat insulating wall 24. Although not shown in detail in the machine room 30, a compressor or the like constituting a part of the refrigeration cycle is accommodated.
 また、断熱箱体11を構成する壁部すなわち各断熱壁23~27は、内部材と外部材との間に断熱部材を有して構成されている。この場合、前記内部材は断熱箱体11の内側面を構成し、前記外部材は断熱箱体11の外側面を構成している。ここで、左右両側の断熱壁23、24について、右部断熱壁24を代表して説明する。なお、本実施形態において、左部断熱壁23は、右部断熱壁24と左右対称であることを除いてほぼ同様に構成されている。 Further, the wall portion constituting the heat insulating box 11, that is, each of the heat insulating walls 23 to 27, has a heat insulating member between the inner member and the outer member. In this case, the inner member constitutes the inner surface of the heat insulating box 11, and the outer member constitutes the outer surface of the heat insulating box 11. Here, the right and left heat insulating walls 23 and 24 will be described as a representative of the right heat insulating wall 24. In the present embodiment, the left heat insulating wall 23 is configured in substantially the same manner except that it is symmetrical with the right heat insulating wall 24.
 右部断熱壁24は、図3に示すように、内部材31と外部材32との間に、断熱部材としての真空断熱パネル33を挟んで構成されている。内部材31は、例えばABS樹脂などの合成樹脂で構成され、ほぼ平坦な板状に形成されている。外部材32は、例えば鋼板を加工することによって構成され、全体として板状に形成されている。外部材32は、図1および図2にも示すように、複数の凸部34、35を有している。また、外部材32の外周部分は、図3に示すように、貯蔵室12~16側へ折り曲げられている。右部断熱壁24の内部には、凸部34、35に接した形態で放熱パイプ36が設けられている。放熱パイプ36は、冷凍サイクルの一部を構成する。 As shown in FIG. 3, the right heat insulating wall 24 is configured by sandwiching a vacuum heat insulating panel 33 as a heat insulating member between the inner member 31 and the outer member 32. The inner member 31 is made of, for example, a synthetic resin such as ABS resin, and is formed in a substantially flat plate shape. The external material 32 is formed by processing a steel plate, for example, and is formed in a plate shape as a whole. As shown in FIGS. 1 and 2, the external member 32 has a plurality of convex portions 34 and 35. Further, the outer peripheral portion of the outer member 32 is bent toward the storage chambers 12 to 16 as shown in FIG. Inside the right heat insulating wall 24, a heat radiating pipe 36 is provided in contact with the convex portions 34 and 35. The heat radiating pipe 36 constitutes a part of the refrigeration cycle.
 外部材32には、図2および図3に示すように、周凸部34および中間凸部35が形成されている。周凸部34および中間凸部35は、凸部として機能する。周凸部34および中間凸部35は、各貯蔵室12~16の外方つまり内部材31とは反対側へ突出している。図2に示すように、周凸部34は、外部材32の周縁部に沿って形成され、外部材32の外周縁部を囲っている。周凸部34は、前側周凸部341、後側周凸部342、上側周凸部343、および下側周凸部344から構成されている。中間凸部35は、周凸部34の下側周凸部344に繋がり、上下方向を長手とする矩形に形成されている。中間凸部35は、冷凍温度帯の貯蔵室14~16の側方、この場合、右方に位置している。 As shown in FIGS. 2 and 3, the outer member 32 is formed with a circumferential convex portion 34 and an intermediate convex portion 35. The circumferential convex portion 34 and the intermediate convex portion 35 function as convex portions. The circumferential convex portion 34 and the intermediate convex portion 35 protrude outward from the storage chambers 12 to 16, that is, to the side opposite to the inner member 31. As shown in FIG. 2, the circumferential protrusion 34 is formed along the peripheral edge of the outer member 32 and surrounds the outer peripheral edge of the outer member 32. The circumferential convex portion 34 includes a front circumferential convex portion 341, a rear circumferential convex portion 342, an upper circumferential convex portion 343, and a lower circumferential convex portion 344. The intermediate convex portion 35 is connected to the lower peripheral convex portion 344 of the peripheral convex portion 34 and is formed in a rectangular shape having the vertical direction as the longitudinal direction. The intermediate convex portion 35 is located on the side of the storage chambers 14 to 16 in the freezing temperature zone, in this case, on the right side.
 ちなみに、周凸部34および中間凸部35は、板状の外部材32この場合鋼板をプレス絞り加工することによって形成される。また、周凸部34および中間凸部35の突出量はほぼ同じで、本実施形態の場合、その突出量は、例えば3~5mm程度に設定されている。そして、矩形の中間凸部35の幅寸法すなわち前後方向の寸法は、右部断熱壁24の幅寸法すなわち冷蔵庫10の前後方向の寸法の3分の1程度に設定されている。 Incidentally, the circumferential convex portion 34 and the intermediate convex portion 35 are formed by press-drawing a plate-like outer member 32, in this case, a steel plate. Further, the protruding amount of the circumferential protruding portion 34 and the intermediate protruding portion 35 is substantially the same. In the present embodiment, the protruding amount is set to about 3 to 5 mm, for example. The width dimension of the rectangular intermediate convex portion 35, that is, the dimension in the front-rear direction is set to about one third of the width dimension of the right heat insulating wall 24, that is, the dimension in the front-rear direction of the refrigerator 10.
 放熱パイプ36は、図3に示すように、右部断熱壁24の内部、すなわち内部材31と外部材32との間にあって、周凸部34および中間凸部35に接して設けられている。この放熱パイプ36は、図示しない冷凍サイクルの一部を構成するものである。本実施形態の場合、放熱パイプ36は、冷凍サイクルの圧縮機から冷却器までの間に設けられる凝縮器の一部または全部を構成している。放熱パイプ36は、例えば連続する一本の銅管で構成されており、圧縮機から吐出された冷媒を流すことによってその冷媒の熱を放熱する。 As shown in FIG. 3, the heat radiating pipe 36 is provided inside the right heat insulating wall 24, that is, between the inner member 31 and the outer member 32 and in contact with the circumferential convex portion 34 and the intermediate convex portion 35. The heat radiating pipe 36 constitutes a part of a refrigeration cycle (not shown). In the case of this embodiment, the heat radiating pipe 36 constitutes a part or all of a condenser provided between the compressor and the cooler of the refrigeration cycle. The heat radiating pipe 36 is composed of, for example, a single continuous copper pipe, and radiates the heat of the refrigerant by flowing the refrigerant discharged from the compressor.
 放熱パイプ36は、図2に示すように、右部断熱壁24の内部を巡るように蛇行して設けられている。具体的には、放熱パイプ36は、機械室30に設けられた図示しない圧縮機から延びて、右部断熱壁24の後端上部から右部断熱壁24の内部に入る。そして、放熱パイプ36は、周凸部34の後側周凸部342に沿って下方へ延び、その後、後側周凸部342の下端で前方へ折れ曲がり、さらに周凸部34の下側周凸部344に沿って前方へ延びる。そして、放熱パイプ36は、その途中部分において、中間凸部35の周縁部に沿って延び、再び周凸部34の下側周凸部344に沿って前方へ延びる。そして、放熱パイプ36は、下側周凸部344の前端で上方へ折れ曲がり、さらに前側周凸部341に沿って上方へ延びる。その後、放熱パイプ36は、前側周凸部341の上端で後方へ折れ曲がり、上側周凸部343に沿って後方へ延びる。 As shown in FIG. 2, the heat radiating pipe 36 is provided meandering around the right heat insulating wall 24. Specifically, the heat radiating pipe 36 extends from a compressor (not shown) provided in the machine room 30 and enters the inside of the right heat insulating wall 24 from the upper rear end of the right heat insulating wall 24. The heat radiating pipe 36 extends downward along the rear circumferential convex portion 342 of the circumferential convex portion 34, then bends forward at the lower end of the rear circumferential convex portion 342, and further extends forward along the lower circumferential convex portion 344 of the circumferential convex portion 34. The heat radiating pipe 36 extends along the peripheral edge of the intermediate convex portion 35 in the middle thereof, and again extends forward along the lower peripheral convex portion 344 of the peripheral convex portion 34. The heat radiating pipe 36 bends upward at the front end of the lower circumferential convex portion 344 and further extends upward along the front circumferential convex portion 341. Thereafter, the heat radiating pipe 36 bends backward at the upper end of the front peripheral convex portion 341 and extends rearward along the upper peripheral convex portion 343.
 放熱パイプ36は、このように右部断熱壁24の内部を巡った後、右部断熱壁24の後端上部から機械室30側へ出る。その後、詳細は図示しないが、放熱パイプ36と同様の構成であって左部断熱壁23に設けられた放熱パイプの一方の端に溶接などによって接続される。そして、この左部断熱壁23に設けられた放熱パイプの他方の端は、図示しない冷却器に接続される。 After the heat radiating pipe 36 circulates the inside of the right heat insulating wall 24 as described above, the heat radiating pipe 36 exits from the upper part of the rear end of the right heat insulating wall 24 to the machine room 30 side. Thereafter, although not shown in detail, the heat dissipating pipe 36 has the same configuration as that of the heat dissipating pipe 36 and is connected to one end of the heat dissipating pipe provided on the left heat insulating wall 23 by welding or the like. The other end of the heat radiating pipe provided on the left heat insulating wall 23 is connected to a cooler (not shown).
 次に、右部断熱壁24の内部の構成について図4および図5も参照して説明する。なお、以下で説明する放熱パイプ361~364は、それぞれ横断面が異なる位置の放熱パイプ36を示すものであって、これらは連続した一本の放熱パイプ36を構成している。 Next, the internal configuration of the right heat insulating wall 24 will be described with reference to FIGS. Note that the heat radiating pipes 361 to 364 described below indicate the heat radiating pipes 36 at positions having different cross-sections, and they constitute one continuous heat radiating pipe 36.
 まず、右部断熱壁24の後側部分について見ると、図3に示すように、真空断熱パネル33と外部材32との間であって、後側周凸部342の内側には、後側周凸部342に沿って下方へ延びる放熱パイプ361が通っている。また、右部断熱壁24の後側部分には、放熱パイプ361および真空断熱パネル33の後方であって、右部断熱壁24と背部断熱壁27との接続部分に空間38が形成されている。この空間38には、二本のサクションパイプ39が設けられている。サクションパイプ39は、図示しない冷却器から圧縮機までを接続する配管の一部であり、冷却器から吐出された冷たい冷媒が流される。この場合、二本のサクションパイプ39は、周凸部34の後側周凸部342の内側に接して、例えばアルミテープなどの金属テープ40によって固定されている。なお、空間38内にスポンジや発泡ウレタンなどの断熱材を設け、これによりサクションパイプ39を固定する構成でもよい。 First, when viewing the rear portion of the right heat insulating wall 24, as shown in FIG. 3, the rear peripheral convex portion 342 is located between the vacuum heat insulating panel 33 and the outer member 32 and inside the rear peripheral convex portion 342. A heat radiating pipe 361 extending downward along the line passes therethrough. In addition, a space 38 is formed in the rear portion of the right heat insulating wall 24 behind the heat radiating pipe 361 and the vacuum heat insulating panel 33 and at a connection portion between the right heat insulating wall 24 and the back heat insulating wall 27. . In this space 38, two suction pipes 39 are provided. The suction pipe 39 is a part of piping connecting a cooler (not shown) to the compressor, and a cold refrigerant discharged from the cooler is flowed through the suction pipe 39. In this case, the two suction pipes 39 are in contact with the inside of the rear peripheral convex portion 342 of the peripheral convex portion 34 and are fixed by a metal tape 40 such as an aluminum tape. Note that a heat insulating material such as sponge or urethane foam may be provided in the space 38 and the suction pipe 39 may be fixed thereby.
 次に、右部断熱壁24の中間部分について見ると、真空断熱パネル33と外部材32との間であって中間凸部35の内側には、放熱パイプ362、363が通っている。放熱パイプ362は、中間凸部35の後部に沿って上方へ延びている。放熱パイプ363は、中間凸部の前部に沿って下方へ延びている。これら放熱パイプ362、363は、それぞれ中間凸部35の内側に接して設けられている。 Next, looking at the intermediate portion of the right heat insulating wall 24, the heat radiation pipes 362 and 363 pass between the vacuum heat insulating panel 33 and the outer member 32 and inside the intermediate convex portion 35. The heat radiating pipe 362 extends upward along the rear portion of the intermediate convex portion 35. The heat radiating pipe 363 extends downward along the front portion of the intermediate convex portion. These heat radiating pipes 362 and 363 are provided in contact with the inside of the intermediate convex portion 35, respectively.
 右部断熱壁24の前側部分について見ると、真空断熱パネル33と外部材32との間であって前側周凸部341の内側には、放熱パイプ364が通っている。放熱パイプ364は、前側周凸部341に沿って上方へ延びている。放熱パイプ364は、前側周凸部341の内側に接して設けられている。この場合、放熱パイプ361~364は、図4および図5にも示すように、例えばアルミテープなどの金属テープ41によって外部材32に固定されている。 Looking at the front side portion of the right heat insulating wall 24, a heat radiating pipe 364 passes between the vacuum heat insulating panel 33 and the outer member 32 and inside the front peripheral convex portion 341. The heat radiating pipe 364 extends upward along the front peripheral convex portion 341. The heat radiating pipe 364 is provided in contact with the inner side of the front peripheral convex portion 341. In this case, the heat radiating pipes 361 to 364 are fixed to the outer member 32 by a metal tape 41 such as an aluminum tape as shown in FIGS.
 また、右部断熱壁24の前側部分には、図5にも示すように、内部材31と外部材32と真空断熱パネル33とによって囲まれた収容部42が形成されている。収容部42は、真空断熱パネル33と前側周凸部341の内側との間に形成される空間に繋がっている。また、収容部42は、内部材31と外部材32との間に形成された挿入口421を有している。収容部42の内部には、防露パイプ37および補強部材43が収容されているとともに、挿入口421を塞ぐようにしてシール部材44が設けられている。この場合、防露パイプ37は、挿入口421を通して収容部42内に挿入される。 Further, as shown in FIG. 5, a housing portion 42 surrounded by the inner member 31, the outer member 32, and the vacuum heat insulating panel 33 is formed in the front portion of the right heat insulating wall 24. The accommodating portion 42 is connected to a space formed between the vacuum heat insulating panel 33 and the inner side of the front peripheral convex portion 341. The accommodating part 42 has an insertion port 421 formed between the inner member 31 and the outer member 32. Inside the accommodating part 42, the dew-proof pipe 37 and the reinforcing member 43 are accommodated, and a seal member 44 is provided so as to close the insertion port 421. In this case, the dew proof pipe 37 is inserted into the accommodating portion 42 through the insertion port 421.
 防露パイプ37は、圧縮機から放熱パイプ36に至るまでの間、または放熱パイプ36から冷却器に至るまでの間を繋ぐ配管の一部である。防露パイプ37は、放熱パイプ36とは異なる部品で構成されている。防露パイプ37には、放熱パイプ36と同様に、圧縮機で圧縮されて高温状態となった冷媒が流される。これにより、断熱箱体11の開口周辺が加温されて、開口周辺の結露の抑制が図られる。 The dew-proof pipe 37 is a part of piping connecting between the compressor and the heat radiating pipe 36 or between the heat radiating pipe 36 and the cooler. The dew proof pipe 37 is composed of parts different from the heat radiating pipe 36. Like the heat radiating pipe 36, the dew proof pipe 37 is supplied with a refrigerant that has been compressed by the compressor and brought to a high temperature state. Thereby, the opening periphery of the heat insulation box 11 is heated, and the dew condensation around the opening is suppressed.
 補強部材43は、例えば鋼板などで構成されており、右部断熱壁24の前端縁部を補強している。補強部材43は、外部材32の前端部の内側面に沿って曲げられて後側が開放されたいわゆるU字状に形成されている。また、補強部材43は、右部断熱壁24の前端縁部に沿って上下方向へ延びている。そして、補強部材43は、外部材32に対して接着または図示しないねじなどによって固定されている。 The reinforcing member 43 is made of, for example, a steel plate, and reinforces the front end edge portion of the right heat insulating wall 24. The reinforcing member 43 is formed in a so-called U-shape that is bent along the inner surface of the front end portion of the outer member 32 and the rear side is opened. The reinforcing member 43 extends in the vertical direction along the front edge of the right heat insulating wall 24. The reinforcing member 43 is fixed to the outer member 32 by bonding or screws (not shown).
 シール部材44は、外部材32よりも熱伝導率が低い材料、例えば合成樹脂や硬質ゴムなどを材料として引抜成形または押出成形されたものである。シール部材44は、上下方向へほぼ同一の断面形状が連続するように構成されている。シール部材44は、防露パイプ37を保持するとともに、挿入口421を閉塞して内部材31と外部材32とを連結している。 The seal member 44 is formed by pultrusion molding or extrusion molding using a material having a lower thermal conductivity than the outer member 32, for example, a synthetic resin or hard rubber. The seal member 44 is configured so that substantially the same cross-sectional shape continues in the vertical direction. The seal member 44 holds the dew proof pipe 37 and closes the insertion port 421 to connect the inner member 31 and the outer member 32.
 具体的には、シール部材44は、一方の端部に、保持部441を有している。保持部441は、防露パイプ37を咥えこむようにして保持している。この場合、防露パイプ37は、その一部が保持部441から露出して補強部材43に接触している。つまり、防露パイプ37は、補強部材43に直接接触しているとともに、外部材32に対しても補強部材43を介して間接的に接触している。このため、防露パイプ37の熱は、補強部材43を介して外部材32に伝わる。これにより、防露パイプ37は、外部材32を間接的に加温することができる。 Specifically, the seal member 44 has a holding portion 441 at one end. The holding part 441 holds the dew proof pipe 37 so as to hold it. In this case, a part of the dew proof pipe 37 is exposed from the holding portion 441 and is in contact with the reinforcing member 43. That is, the dew proof pipe 37 is in direct contact with the reinforcing member 43 and is also indirectly in contact with the outer member 32 via the reinforcing member 43. For this reason, the heat of the dew proof pipe 37 is transmitted to the outer member 32 via the reinforcing member 43. Thereby, the dew prevention pipe 37 can heat the outer member 32 indirectly.
 また、シール部材44は、保持部441と反対側に、閉塞部442、および爪部443、444を有している。シール部材44は、閉塞部442と爪部443とで内部材31を挟み込むとともに、閉塞部442と爪部444とで外部材32を挟み込むことで、内部材31および外部材32に固定されている。さらに、シール部材44は、保持部441と閉塞部442との間に弾性変形部445を有している。弾性変形部445は、真空断熱パネル33の厚み方向へ弾性変形する。これにより、シール部材44は、真空断熱パネル33の製造時に生じる真空断熱パネル33の厚み寸法の誤差を許容することができる。 Further, the seal member 44 has a blocking portion 442 and claw portions 443 and 444 on the side opposite to the holding portion 441. The seal member 44 is fixed to the inner member 31 and the outer member 32 by sandwiching the inner member 31 between the closing portion 442 and the claw portion 443 and sandwiching the outer member 32 between the closing portion 442 and the claw portion 444. . Further, the seal member 44 has an elastic deformation portion 445 between the holding portion 441 and the closing portion 442. The elastic deformation portion 445 elastically deforms in the thickness direction of the vacuum heat insulating panel 33. Thereby, the seal member 44 can tolerate an error in the thickness dimension of the vacuum heat insulation panel 33 that occurs when the vacuum heat insulation panel 33 is manufactured.
 真空断熱パネル33は、板状に形成され、ホットメルトなどの樹脂接着剤によって内部材31および外部材32に接着固定されている。この場合、真空断熱パネル33は、図3に示すように、周凸部34および中間凸部35から離間した形態で外部材32に接着固定されている。また、真空断熱パネル33は、放熱パイプ36および金属テープ41から離間して設けられており、放熱パイプ36および金属テープ41とは接していない。 The vacuum heat insulating panel 33 is formed in a plate shape, and is bonded and fixed to the inner member 31 and the outer member 32 by a resin adhesive such as hot melt. In this case, as shown in FIG. 3, the vacuum heat insulating panel 33 is bonded and fixed to the outer member 32 in a form separated from the circumferential convex portion 34 and the intermediate convex portion 35. The vacuum heat insulating panel 33 is provided apart from the heat radiating pipe 36 and the metal tape 41, and is not in contact with the heat radiating pipe 36 and the metal tape 41.
 真空断熱パネル33は、図4および図5に示すように、芯材45を袋体46に収容し、その内部を真空排気して減圧密封させて構成されている。芯材45は、例えばグラスウールなどの無機繊維の積層材を予め板状に成型されたもので構成されている。また、袋体46は、ガスバリア性能を有する二枚の積層フィルムを重ね合せ、その周囲を溶着することで、袋状に構成されている。袋体46は、特性の異なる二種類の積層フィルム、この場合、内側積層フィルム461および外側積層フィルム462から構成されている。 As shown in FIGS. 4 and 5, the vacuum heat insulation panel 33 is configured by housing a core material 45 in a bag body 46 and evacuating the inside thereof to seal it under reduced pressure. The core material 45 is configured by, for example, a laminated material of inorganic fibers such as glass wool, which is previously formed into a plate shape. The bag body 46 is formed in a bag shape by superimposing two laminated films having gas barrier performance and welding the periphery thereof. The bag body 46 is composed of two types of laminated films having different characteristics, in this case, an inner laminated film 461 and an outer laminated film 462.
 内側積層フィルム461および外側積層フィルム462は、ガスバリア性能を得るための層、この場合、金属層を樹脂フィルムで挟み込み、さらに複数種類の樹脂フィルムを積層して構成されている。内側積層フィルム461および外側積層フィルム462は、ガスバリア性能を得るための金属層がアルミ箔層であるかアルミ蒸着層であるかによって、それぞれ異なった特性を発揮する。ここで、アルミ箔層とアルミ蒸着層との相違について説明する。一般に、アルミ蒸着層は、母材となるフィルムに対して真空中でアルミを蒸着するため、アルミ箔層に比べて膜厚を薄くすることができる。そのため、アルミ蒸着層は、アルミ箔層に比べて熱伝導率が低く、断熱性能に優れている。これに対し、アルミ箔層は、例えば圧延によって形成したアルミ箔を二枚のフィルムで挟んでラミネートすることにより構成されるため、アルミ蒸着層に比べてその膜厚が厚くなる。このため、アルミ箔層は、アルミ蒸着層に比べてガスバリア性能に優れ、また、耐久性能にも優れている。 The inner laminated film 461 and the outer laminated film 462 are configured by sandwiching a layer for obtaining gas barrier performance, in this case, a metal layer between resin films, and further laminating a plurality of types of resin films. The inner laminated film 461 and the outer laminated film 462 exhibit different characteristics depending on whether the metal layer for obtaining the gas barrier performance is an aluminum foil layer or an aluminum vapor deposition layer. Here, the difference between the aluminum foil layer and the aluminum vapor deposition layer will be described. Generally, an aluminum vapor deposition layer deposits aluminum in a vacuum with respect to a film serving as a base material, and thus can be made thinner than an aluminum foil layer. Therefore, the aluminum vapor deposition layer has a lower thermal conductivity than the aluminum foil layer and is excellent in heat insulation performance. On the other hand, the aluminum foil layer is formed by laminating and laminating an aluminum foil formed by rolling, for example, between two films, so that the film thickness is larger than that of the aluminum vapor deposition layer. For this reason, an aluminum foil layer is excellent in gas barrier performance compared with an aluminum vapor deposition layer, and is also excellent in durability performance.
 本実施形態では、内部材31側に位置する内側積層フィルム461は、ガスバリア性能を得るための金属層としてアルミ蒸着層を有している。一方、外部材32側に位置する外側積層フィルム462は、ガスバリア性能を得るための金属層としてアルミ箔層を有している。この場合、真空断熱パネル33の放熱パイプ36側の面は、耐久性能に優れるアルミ箔層を有している。そのため、放熱パイプ36との接触によって真空断熱パネル33が損傷することが低減される。また、真空断熱パネル33の貯蔵室12~16側の面は、熱伝導率が低く断熱性能に優れるアルミ蒸着層を有している。そのため、貯蔵室12~16の冷気が、真空断熱パネル33の袋体46の表面を伝わって内部材31側から外部材32側へ回り込むいわゆるヒートブリッジが抑制される。 In this embodiment, the inner laminated film 461 located on the inner member 31 side has an aluminum vapor deposition layer as a metal layer for obtaining gas barrier performance. On the other hand, the outer laminated film 462 located on the outer member 32 side has an aluminum foil layer as a metal layer for obtaining gas barrier performance. In this case, the surface of the vacuum heat insulating panel 33 on the side of the heat radiating pipe 36 has an aluminum foil layer excellent in durability performance. Therefore, damage to the vacuum heat insulating panel 33 due to contact with the heat radiating pipe 36 is reduced. Further, the surface of the vacuum heat insulation panel 33 on the side of the storage chambers 12 to 16 has an aluminum vapor deposition layer having low heat conductivity and excellent heat insulation performance. For this reason, the so-called heat bridge in which the cool air in the storage chambers 12 to 16 travels along the surface of the bag body 46 of the vacuum heat insulation panel 33 from the inner member 31 side to the outer member 32 side is suppressed.
 袋体46は、内側積層フィルム461および外側積層フィルム462を重ね合せて、その周囲を溶着して袋状に構成されている。この場合、真空断熱パネル33の外縁部には、袋体46の周囲が芯材45からはみ出す形態で、溶着用の耳部463が形成される。耳部463は、外部材32側へ折り返されて、右部断熱壁24の前端縁部となる前側周凸部341の内側に収容されている。そして、詳細は図示しないが、耳部463は、接着剤や金属テープなどによって、外部材32側の外側積層フィルム462の面に沿って固定されている。この場合、耳部463は、放熱パイプ36、および金属テープ41から離間している。また、耳部463は、外部材32からも離間している。したがって、耳部463を折り返したことにより生じた段差部464は、外部材32に接していない。 The bag body 46 is formed in a bag shape by overlapping the inner laminated film 461 and the outer laminated film 462 and welding the periphery thereof. In this case, a welding ear portion 463 is formed on the outer edge portion of the vacuum heat insulating panel 33 in a form in which the periphery of the bag body 46 protrudes from the core material 45. The ear portion 463 is folded back toward the outer member 32 and is accommodated inside the front peripheral convex portion 341 that becomes the front end edge of the right heat insulating wall 24. Although not shown in detail, the ear portion 463 is fixed along the surface of the outer laminated film 462 on the outer member 32 side by an adhesive, a metal tape, or the like. In this case, the ear portion 463 is separated from the heat radiating pipe 36 and the metal tape 41. Further, the ear portion 463 is also separated from the outer member 32. Accordingly, the stepped portion 464 generated by folding the ear portion 463 is not in contact with the outer member 32.
 この構成によれば、断熱箱体11の開口を形成する断熱壁、すなわち左部断熱壁23と右部断熱壁24と天井部断熱壁25と底部断熱壁26とのうち、少なくとも左右の断熱壁23、24は、外部材32にあって各貯蔵室12~16の外方へ突出する周凸部34および中間凸部35を有している。そして、この左右の断熱壁23、24の内部にあって、外部材32と内部材31との間には、周凸部34および中間凸部35の内側に接して、冷凍サイクルの一部を構成する放熱パイプ36が設けられている。 According to this configuration, at least the left and right heat insulating walls among the heat insulating walls forming the opening of the heat insulating box 11, that is, the left heat insulating wall 23, the right heat insulating wall 24, the ceiling heat insulating wall 25, and the bottom heat insulating wall 26. Reference numerals 23 and 24 denote outer convex portions 34 and intermediate convex portions 35 which are located on the outer member 32 and project outward from the storage chambers 12 to 16. And inside this right and left heat insulation wall 23 and 24, between the outer member 32 and the inner member 31, it contacts the inner side of the circumferential convex part 34 and the intermediate | middle convex part 35, and comprises a part of refrigerating cycle. A heat radiating pipe 36 is provided.
 これによれば、例えば冷蔵庫10の右側面、この場合右部断熱壁24の外側面を部屋の壁などに接して設置した場合、周凸部34および中間凸部35が部屋の壁に接することによって、周凸部34および中間凸部35が存していない部分と部屋の壁との間に空間が形成される。つまり、冷蔵庫10の右部断熱壁24の外側面全体が部屋の壁に接することがなく、これにより、放熱パイプ36の周囲に放熱するための空間が確保される。したがって、冷蔵庫10は、その右側面を形成する右部断熱壁24が部屋の壁などに近接または接して配置された場合であっても、放熱パイプ36の周囲に熱がこもって放熱効率が低下することを抑制することができる。そして、右部断熱壁24と同様の構成である左部断熱壁23についても、上記と同様の作用効果を得ることができる。 According to this, when the right side surface of the refrigerator 10, for example, the outer side surface of the right heat insulating wall 24 in this case is installed in contact with the wall of the room, the circumferential convex part 34 and the intermediate convex part 35 are in contact with the wall of the room, A space is formed between the part where the circumferential convex part 34 and the intermediate convex part 35 do not exist and the wall of the room. That is, the entire outer surface of the right heat insulating wall 24 of the refrigerator 10 does not come into contact with the wall of the room, so that a space for radiating heat around the heat radiating pipe 36 is secured. Therefore, in the refrigerator 10, even when the right heat insulating wall 24 forming the right side surface thereof is disposed close to or in contact with the wall of the room or the like, heat is trapped around the heat radiating pipe 36 and the heat radiating efficiency is lowered. Can be suppressed. The same effects as described above can be obtained with respect to the left heat insulating wall 23 having the same configuration as the right heat insulating wall 24.
 冷蔵庫10は、右部断熱壁24の断熱部材として真空断熱パネル33を備えている。そして、この真空断熱パネル33は、周凸部34および中間凸部35から離間した形態で、外部材32に接着され固定されている。これによれば、真空断熱パネル33は、周凸部34および中間凸部35に接して設けられた放熱パイプ36と接触することが抑制される。そのため、真空断熱パネル33は、放熱パイプ36との接触によって損傷することが抑制される。その結果、真空断熱パネル33は、高い断熱性能を維持することができる。 The refrigerator 10 includes a vacuum heat insulating panel 33 as a heat insulating member of the right heat insulating wall 24. The vacuum heat insulation panel 33 is adhered and fixed to the outer member 32 in a form separated from the circumferential convex portion 34 and the intermediate convex portion 35. According to this, it is suppressed that the vacuum heat insulation panel 33 contacts the thermal radiation pipe 36 provided in contact with the circumferential convex part 34 and the intermediate | middle convex part 35. FIG. Therefore, damage to the vacuum heat insulating panel 33 due to contact with the heat radiating pipe 36 is suppressed. As a result, the vacuum heat insulation panel 33 can maintain high heat insulation performance.
 放熱パイプ36は、真空断熱パネル33と、周凸部34および中間凸部35との間にあって、外部材32に金属テープ41によって固定されている。そして、真空断熱パネル33は、放熱パイプ36および金属テープ41から離間して設けられている。これによれば、放熱パイプ36に生じる熱が、直接または金属テープ41を介して真空断熱パネル33に伝達されることを抑制することができる。そのため、放熱パイプ36に生じた熱が真空断熱パネル33の表面を伝わって貯蔵室12~16側へ回り込む、いわゆるヒートブリッジによる貯蔵室12~16内への熱の流入を抑制することができる。 The heat radiating pipe 36 is located between the vacuum heat insulating panel 33, the circumferential convex portion 34 and the intermediate convex portion 35, and is fixed to the outer member 32 with a metal tape 41. The vacuum heat insulating panel 33 is provided away from the heat radiating pipe 36 and the metal tape 41. According to this, it can suppress that the heat which arises in the thermal radiation pipe 36 is transmitted to the vacuum heat insulation panel 33 directly or via the metal tape 41. FIG. Therefore, it is possible to suppress the inflow of heat into the storage chambers 12 to 16 due to the so-called heat bridge, in which the heat generated in the heat radiating pipe 36 is transmitted to the storage chambers 12 to 16 side through the surface of the vacuum heat insulation panel 33.
 放熱パイプ36は、周凸部34および中間凸部35の内側に沿って設けられている。そのため、冷蔵庫10の製造の際に、放熱パイプ36を周凸部34および中間凸部35に沿って配置することができる。これによれば、外部材32が周凸部34および中間凸部35を有さずに単に平坦な板状である場合に比べて、外部材32に対する放熱パイプ36の取り付けが容易となり、作業性が向上する。 The heat radiating pipe 36 is provided along the inside of the circumferential convex portion 34 and the intermediate convex portion 35. Therefore, when the refrigerator 10 is manufactured, the heat radiating pipe 36 can be disposed along the circumferential convex portion 34 and the intermediate convex portion 35. According to this, compared with the case where the outer member 32 does not have the circumferential convex portion 34 and the intermediate convex portion 35 and is simply a flat plate shape, it is easy to attach the heat radiating pipe 36 to the outer member 32 and the workability is improved. To do.
 周凸部34および中間凸部35は、板状の外部材32をプレス絞り加工することによって形成される。そのため、外部材32は、周凸部34および中間凸部35周辺部分において、絞り加工による加工硬化によって強度が増す。また、外部材32は、周凸部34および中間凸部35が形成されることにより、外部材32全体の断面二次モーメントが増大する。その結果、外部材32は、全体として曲げ方向に対する強度が増大する。 The circumferential convex portion 34 and the intermediate convex portion 35 are formed by press-drawing the plate-like outer member 32. Therefore, the strength of the outer member 32 is increased by work hardening by drawing at the peripheral portions of the circumferential convex portion 34 and the intermediate convex portion 35. Further, the outer member 32 is formed with the circumferential convex portion 34 and the intermediate convex portion 35, whereby the secondary moment of the entire outer member 32 is increased. As a result, the strength of the outer member 32 as a whole increases in the bending direction.
 右部断熱壁24であって断熱箱体11の開口側の端縁部すなわち前端縁部には、周凸部34の一部である前側周凸部341が設けられている。これによれば、他の断熱壁と接続されておらず特に強度が必要となる断熱箱体11の開口側の端縁部、この場合、右部断熱壁24の前端縁部について、その強度を増大させることができる。 A front peripheral convex portion 341 that is a part of the peripheral convex portion 34 is provided on the edge portion on the opening side of the heat insulating box 11, that is, the front end edge portion of the right heat insulating wall 24. According to this, the strength of the end edge portion on the opening side of the heat insulating box 11 that is not connected to other heat insulating walls and particularly requires strength, in this case, the front edge portion of the right heat insulating wall 24 is increased in strength. Can be increased.
 前側周凸部341の内側には、右部断熱壁24の前端縁部に沿って補強部材43が設けられている。これによれば、右部断熱壁24の前端縁部の強度をさらに増大させることができる。 A reinforcing member 43 is provided inside the front peripheral convex portion 341 along the front end edge of the right heat insulating wall 24. According to this, the intensity | strength of the front-end edge part of the right part heat insulation wall 24 can further be increased.
 真空断熱パネル33は、芯材45と、芯材45を収容する袋体46とを有して構成されている。袋体46は、芯材45の周囲にはみ出す接着用の耳部463を有している。耳部463は、外部材32側へ折り返されて、周凸部34の前側周凸部341に収容されている。この場合、耳部463を折り返したことにより生じた段差部464は、外部材32に接していない。このため、外部材32と真空断熱パネル33との間に、段差部464によって隙間が生じることがない。したがって、外部材32と真空断熱パネル33との接着性を良好に保つことができる。さらに、外部材32には、段差部464が外部材32に接することによって段差部464の形状が浮き出ることがない。このため、外部材32の外観つまり冷蔵庫10の意匠を良好に保つことができる。 The vacuum heat insulating panel 33 includes a core material 45 and a bag body 46 that accommodates the core material 45. The bag body 46 has an adhesive ear 463 that protrudes around the core member 45. The ear portion 463 is folded back toward the outer member 32 and is accommodated in the front peripheral convex portion 341 of the peripheral convex portion 34. In this case, the stepped portion 464 generated by folding the ear portion 463 is not in contact with the outer member 32. For this reason, a gap does not occur between the outer member 32 and the vacuum heat insulation panel 33 due to the step portion 464. Therefore, the adhesiveness between the outer member 32 and the vacuum heat insulating panel 33 can be kept good. Further, the shape of the stepped portion 464 is not raised on the outer member 32 when the stepped portion 464 contacts the outer member 32. For this reason, the external appearance of the outer member 32, that is, the design of the refrigerator 10 can be kept good.
 真空断熱パネル33は、アルミ蒸着層を含む内側積層フィルム461を内部材31側にし、アルミ箔層を含む外側積層フィルム462を外部材32側にして設けられている。これによれば、断熱性能に優れる内側積層フィルム461によって、貯蔵室12~16の冷気が外部材32側へ回り込むいわゆるヒートブリッジを効果的に抑制することができる。また、耐久性に優れる外側積層フィルム462によって、放熱パイプ36の接触などによる損傷から真空断熱パネル33を効果的に保護することができる。 The vacuum heat insulating panel 33 is provided with the inner laminated film 461 including the aluminum vapor deposition layer on the inner member 31 side and the outer laminated film 462 including the aluminum foil layer on the outer member 32 side. According to this, the so-called heat bridge in which the cool air in the storage chambers 12 to 16 wraps around toward the outer member 32 can be effectively suppressed by the inner laminated film 461 having excellent heat insulation performance. Moreover, the vacuum insulation panel 33 can be effectively protected from damage due to contact of the heat radiating pipe 36 or the like by the outer laminated film 462 having excellent durability.
 放熱パイプ36は、冷凍温度帯の貯蔵室14~16の側方に位置する中間凸部35の内側にも設けられている。これによれば、より冷却温度の低い冷凍温度帯の貯蔵室14~16の側方を、放熱パイプ35の熱によって加温することができる。そのため、仮に真空断熱パネル33が損傷して、その断熱性能が低下した場合であっても、冷凍温度帯の貯蔵室14~16の冷気によって外部材32が冷やされて外部材32周辺に結露が生じることを抑制することができる。 The heat radiating pipe 36 is also provided inside the intermediate convex portion 35 located on the side of the storage chambers 14 to 16 in the freezing temperature zone. According to this, the sides of the storage chambers 14 to 16 in the freezing temperature zone where the cooling temperature is lower can be heated by the heat of the radiating pipe 35. Therefore, even if the vacuum heat insulating panel 33 is damaged and its heat insulating performance is deteriorated, the outer member 32 is cooled by the cool air in the storage chambers 14 to 16 in the freezing temperature zone, and dew condensation is generated around the outer member 32. It is possible to suppress the occurrence.
 そして、上述した効果は、左右両側の断熱壁23、24の厚さが35mm以下の場合に特に有効である。本実施形態では、真空断熱パネル33の厚さが約20mmであり、内部材31および外部材32の厚さの合計が約1.5mmであることから、その合計つまり断熱壁23、24の厚さは21.5mmである。このように、左右両側の断熱壁23、24は、さらに有効な25mm以下の厚さ寸法で構成されている。 The above-described effects are particularly effective when the thickness of the heat insulating walls 23 and 24 on both the left and right sides is 35 mm or less. In this embodiment, the thickness of the vacuum heat insulation panel 33 is about 20 mm, and the total thickness of the inner member 31 and the outer member 32 is about 1.5 mm. The height is 21.5 mm. Thus, the heat insulating walls 23 and 24 on both the left and right sides are configured with a more effective thickness dimension of 25 mm or less.
 (第二実施形態)
 次に、第二実施形態について図6を参照して説明する。
 第二実施形態において、外部材32には、第一実施形態の中間凸部35に換えて、第一中間凸部47および第二中間凸部48が形成されている。これら第一中間凸部47および第二中間凸部48は、その幅寸法すなわち前後方向の寸法が、放熱パイプ36の外径よりもやや大きい寸法に設定されている。そして、この場合、第一中間凸部47の内側には、上方へ延びる放熱パイプ362が通され、第二中間凸部48の内側には、下方へ延びる放熱パイプ363が通されている。
(Second embodiment)
Next, a second embodiment will be described with reference to FIG.
In the second embodiment, the outer member 32 is provided with a first intermediate protrusion 47 and a second intermediate protrusion 48 instead of the intermediate protrusion 35 of the first embodiment. The first intermediate convex portion 47 and the second intermediate convex portion 48 are set such that the width dimension, that is, the dimension in the front-rear direction is slightly larger than the outer diameter of the heat radiating pipe 36. In this case, a heat radiating pipe 362 extending upward is passed inside the first intermediate convex portion 47, and a heat radiating pipe 363 extending downward is passed inside the second intermediate convex portion 48.
 これによれば、第一実施形態と同様の効果が得られる。さらに、例えば冷蔵庫10の右部断熱壁24の外側面を部屋の壁などに接して設置した場合、第一中間凸部47と第二中間凸部48との間にも空間が形成される。このため、放熱パイプ364、365の放熱空間をさらに大きく確保することができる。したがって、断熱箱体11の壁部が部屋の壁などに近接または接して配置された場合であっても、放熱パイプ36の周囲に熱がこもって放熱効率が低下することをより効果的に抑制することができる。 According to this, the same effect as the first embodiment can be obtained. Furthermore, for example, when the outer surface of the right heat insulating wall 24 of the refrigerator 10 is installed in contact with the wall of the room, a space is also formed between the first intermediate protrusion 47 and the second intermediate protrusion 48. For this reason, the radiation space of the radiation pipes 364 and 365 can be further increased. Therefore, even when the wall portion of the heat insulating box 11 is arranged close to or in contact with the wall of the room, it is more effectively suppressed that heat is trapped around the heat radiating pipe 36 and the heat radiating efficiency is lowered. can do.
 (第三実施形態)
 次に、第三実施形態について図7を参照して説明する。
 第三実施形態において、外部材32には、第一実施形態の周凸部34および中間凸部35に換えて、凹部としての周凹部49および中間凹部50が形成されている。これら周凹部49および中間凹部50は、外部材32にあって、各貯蔵室12~16の内方つまり内部材31側へ窪むようにして形成されている。この場合、周凹部49は、前側周凹部491と後側周凹部492、および図示しない上側周凹部と下側周凹部とから構成されている。これら前側周凹部491、後側周凹部492、上側集凹部、および下側周凹部は、周凸部34と同様に、外部材32を囲むように外部材32の周縁部に沿って設けられている。また、中間凹部50は、中間凸部35と同様に、周凹部49の下側周凹部に繋がって、上下方向を長手とする矩形に形成されている。この中間凹部50も、冷凍温度帯の貯蔵室14~16の側方、この場合、右方に位置している。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG.
In the third embodiment, the outer member 32 is formed with a circumferential concave portion 49 and an intermediate concave portion 50 as concave portions, instead of the circumferential convex portion 34 and the intermediate convex portion 35 of the first embodiment. The circumferential recess 49 and the intermediate recess 50 are formed in the outer member 32 so as to be recessed inward of the storage chambers 12 to 16, that is, toward the inner member 31 side. In this case, the circumferential recess 49 includes a front circumferential recess 491 and a rear circumferential recess 492, and an upper circumferential recess and a lower circumferential recess (not shown). The front peripheral recess 491, the rear peripheral recess 492, the upper collecting recess and the lower peripheral recess are provided along the peripheral edge of the outer member 32 so as to surround the outer member 32, similarly to the peripheral protrusion 34. Similarly to the intermediate convex portion 35, the intermediate concave portion 50 is connected to the lower peripheral concave portion of the peripheral concave portion 49 and is formed in a rectangular shape having the vertical direction as the longitudinal direction. This intermediate recess 50 is also located on the side of the storage chambers 14 to 16 in the freezing temperature zone, in this case, on the right side.
 また、真空断熱パネル33には、外部材32側の面を窪ませた形態で、周逃げ部51および中間逃げ部52が形成されている。周逃げ部51および中間逃げ部52は、例えば型によって芯材45の成型と同時に形成される。この場合、周逃げ部51は、周凹部49の形状に沿って形成されており、前側周逃げ部511と後側周逃げ部512、および図示しない上側周逃げ部と下側周逃げ部とから構成されている。また、中間逃げ部52は、中間凹部50の形状に沿って形成されている。 Further, the vacuum heat insulation panel 33 is formed with a peripheral escape portion 51 and an intermediate escape portion 52 in a form in which the surface on the outer member 32 side is recessed. The circumferential relief portion 51 and the intermediate relief portion 52 are formed simultaneously with the molding of the core material 45 by a mold, for example. In this case, the circumferential relief 51 is formed along the shape of the circumferential recess 49, and includes a front circumferential relief 511 and a rear circumferential relief 512, and an upper circumferential relief and a lower circumferential relief (not shown). It is configured. Further, the intermediate escape portion 52 is formed along the shape of the intermediate recess 50.
 放熱パイプ361は、真空断熱パネル33の後側周逃げ部512と外部材32の後側周凹部492との間にあって、後側周凹部492の内側に接して設けられている。また、放熱パイプ362は、真空断熱パネル33の中間逃げ部52と外部材32の中間凹部50との間にあって、中間凹部50の後部内側に接して設けられている。さらに、放熱パイプ363は、真空断熱パネル33の中間逃げ部52と外部材32の中間凹部50との間にあって、中間凹部50の前部内側に接して設けられている。そして、放熱パイプ364は、真空断熱パネル33の前側周逃げ部511と外部材32の前側周凹部491との間にあって、前側周凹部491の内側に接して設けられている。 The heat radiating pipe 361 is provided between the rear circumferential recess 512 of the vacuum heat insulation panel 33 and the rear circumferential recess 492 of the outer member 32 and is in contact with the inner side of the rear circumferential recess 492. Further, the heat radiating pipe 362 is provided between the intermediate escape portion 52 of the vacuum heat insulating panel 33 and the intermediate concave portion 50 of the outer member 32, and is in contact with the inner side of the rear portion of the intermediate concave portion 50. Further, the heat radiating pipe 363 is provided between the intermediate escape portion 52 of the vacuum heat insulating panel 33 and the intermediate concave portion 50 of the outer member 32, and is in contact with the inside of the front portion of the intermediate concave portion 50. The heat radiating pipe 364 is provided between the front peripheral recess 491 of the vacuum heat insulating panel 33 and the front peripheral recess 491 of the outer member 32 and in contact with the inside of the front peripheral recess 491.
 放熱パイプ36は、第一実施形態と同様に、アルミテープなどの金属テープ41によって固定されている。また、真空断熱パネル33は、周凹部49および中間凹部50から離間した形態で、内部材31および外部材32に接着され固定されている。そして、真空断熱パネル33は、放熱パイプ36および金属テープ41から離間している。 The heat radiating pipe 36 is fixed by a metal tape 41 such as an aluminum tape as in the first embodiment. Further, the vacuum heat insulating panel 33 is bonded and fixed to the inner member 31 and the outer member 32 in a form separated from the circumferential recess 49 and the intermediate recess 50. The vacuum heat insulating panel 33 is separated from the heat radiating pipe 36 and the metal tape 41.
 この構成によれば、第一実施形態と同様の効果を得ることができる。さらに、外部材32に、貯蔵室12~16の外方へ突出する凸部を設ける必要がない。そのため、放熱パイプ36を右部断熱壁24の内部に配置する構成であっても、右部断熱壁24の厚み寸法の増大を抑制することができる。その結果、冷蔵庫10全体としての省スペース化が図られる。 According to this configuration, the same effect as in the first embodiment can be obtained. Further, it is not necessary to provide the outer member 32 with a protruding portion that protrudes outward from the storage chambers 12 to 16. Therefore, even if it is the structure which arrange | positions the thermal radiation pipe 36 inside the right part heat insulation wall 24, the increase in the thickness dimension of the right part heat insulation wall 24 can be suppressed. As a result, space saving as the whole refrigerator 10 is achieved.
 (第四実施形態)
 次に、第四実施形態について図8を参照して説明する。
 第四実施形態において、外部材32には、第三実施形態の中間凹部50に換えて第一中間凹部53および第二中間凹部54が形成されている。これら第一中間凹部53および第二中間凹部54は、その幅寸法すなわち前後方向の寸法が、放熱パイプ36の外径よりもやや大きい寸法に設定されている。この場合、第一中間凹部53の内側には、放熱パイプ362が通されている。また、第二中間凹部54の内側には、放熱パイプ363が通されている。そして、真空断熱パネル33には、第三実施形態における中間逃げ部52に換えて、第一中間逃げ部55および第二中間逃げ部56が形成されている。これら第一中間逃げ部55および第二中間逃げ部56は、それぞれ第一中間凹部53および第二中間凹部54に沿って形成されている。そして、真空断熱パネル33は、放熱パイプ36および金属テープ41から離間しているとともに、周凹部49、第一中間凹部53、および第二中間凹部54からも離間している。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG.
In the fourth embodiment, the outer member 32 is formed with a first intermediate recess 53 and a second intermediate recess 54 in place of the intermediate recess 50 of the third embodiment. The first intermediate recess 53 and the second intermediate recess 54 are set such that the width dimension, that is, the dimension in the front-rear direction is slightly larger than the outer diameter of the heat radiating pipe 36. In this case, a heat radiating pipe 362 is passed inside the first intermediate recess 53. Further, a heat radiating pipe 363 is passed inside the second intermediate recess 54. The vacuum heat insulation panel 33 is formed with a first intermediate escape portion 55 and a second intermediate escape portion 56 instead of the intermediate escape portion 52 in the third embodiment. The first intermediate relief portion 55 and the second intermediate relief portion 56 are formed along the first intermediate recess portion 53 and the second intermediate recess portion 54, respectively. The vacuum heat insulation panel 33 is separated from the heat radiating pipe 36 and the metal tape 41, and is also separated from the circumferential recess 49, the first intermediate recess 53, and the second intermediate recess 54.
 この構成によれば、第三実施形態と同様の効果を得ることができる。さらに、右部断熱壁24の内部であって第一中間凹部53と第二中間凹部54との間は、真空断熱パネル33で埋まっている。そのため、真空断熱パネル33に凹部を形成する場合であっても、真空断熱パネル33が薄くなる部分を極力抑制することができる。その結果、右部断熱壁24全体としての断熱性能の低下を極力抑えることができる。 According to this configuration, the same effect as that of the third embodiment can be obtained. Furthermore, the space between the first intermediate recess 53 and the second intermediate recess 54 inside the right heat insulating wall 24 is filled with the vacuum heat insulating panel 33. Therefore, even when a recess is formed in the vacuum heat insulation panel 33, the portion where the vacuum heat insulation panel 33 becomes thin can be suppressed as much as possible. As a result, it is possible to suppress a decrease in the heat insulation performance of the right heat insulation wall 24 as a whole.
 (第五実施形態)
 次に、第五実施形態について図9および図10を参照して説明する。
 第五実施形態において、冷蔵庫10の断熱箱体11は、凸部としての背側凸部60を有している。背側凸部60は、断熱箱体11の開口を形成しない背側の壁部すなわち背部断熱壁27において、背部断熱壁27の周縁部に沿って設けられている。背側凸部60は、図9に示すように、第一背側凸部601と第二背側凸部602とから構成されている。第一背側凸部601は、背部断熱壁27の左右の両縁部にそれぞれ設けられ、機械室30側から下方向へ延びている。第二背側凸部602は、背部断熱壁27の下部に設けられ、左右方向へ延びて左右の第一背側凸部601の下端部を接続している。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. 9 and 10.
In 5th embodiment, the heat insulation box 11 of the refrigerator 10 has the back side convex part 60 as a convex part. The back convex portion 60 is provided along the peripheral edge portion of the back heat insulating wall 27 in the back wall portion that does not form the opening of the heat insulating box 11, that is, the back heat insulating wall 27. The back side convex part 60 is comprised from the 1st back side convex part 601 and the 2nd back side convex part 602, as shown in FIG. The first back convex portion 601 is provided on each of the left and right edges of the back heat insulating wall 27 and extends downward from the machine room 30 side. The second back side convex part 602 is provided in the lower part of the back part heat insulation wall 27, extends in the left-right direction, and connects the lower ends of the left and right first back side convex parts 601.
 また、背部断熱壁27は、図10に示すように、上記各実施形態の左右の断熱壁23、24と同様に、内部材61と外部材62との間に断熱部材としての真空断熱パネル63を有している。真空断熱パネル63は、ホットメルトなどの樹脂接着剤によって内部材61および外部材62に接着され固定されている。内部材61、外部材62、および真空断熱パネル63は、それぞれ形状を除いて上記各実施形態の内部材31、外部材32、および真空断熱パネル33とほぼ同様に構成されている。 Further, as shown in FIG. 10, the back heat insulating wall 27 is a vacuum heat insulating panel 63 as a heat insulating member between the inner member 61 and the outer member 62 in the same manner as the left and right heat insulating walls 23 and 24 of the above embodiments. have. The vacuum heat insulation panel 63 is bonded and fixed to the inner member 61 and the outer member 62 by a resin adhesive such as hot melt. The inner member 61, the outer member 62, and the vacuum heat insulation panel 63 are configured in substantially the same manner as the inner member 31, the outer member 32, and the vacuum heat insulation panel 33 in each of the above embodiments except for the shape.
 背側凸部60は、外部材62にあって各貯蔵室12~16の外方へ突出するように形成されている。この場合、背側凸部60は、矩形状、具体的には台形状に形成されている。背側凸部60は、外部材62をプレス絞り加工することによって形成される。真空断熱パネル63は、背側凸部60と重ならない位置に設けられている。真空断熱パネル63の側方にあって内部材61と外部材62との間には、背側凸部60の前側に位置してソフトテープ64が設けられている。ソフトテープ64は、例えば連続気泡体の合成ゴムで構成されており、柔軟性、伸縮性、断熱性、防水性に優れている。 The back-side convex portion 60 is formed on the outer member 62 so as to protrude outward from the storage chambers 12 to 16. In this case, the back convex part 60 is formed in a rectangular shape, specifically a trapezoidal shape. The back projection 60 is formed by press drawing the outer member 62. The vacuum heat insulation panel 63 is provided at a position that does not overlap the back-side convex portion 60. A soft tape 64 is provided on the side of the vacuum heat insulation panel 63 and between the inner member 61 and the outer member 62 so as to be located in front of the back-side convex portion 60. The soft tape 64 is made of, for example, an open-cell synthetic rubber and is excellent in flexibility, stretchability, heat insulation, and waterproofness.
 内部材61と外部材62との間には、背側凸部60の内側に接して放熱パイプ65が設けられている。放熱パイプ65は、アルミテープなどの金属テープ66によって外部材62に固定されている。この場合、背側凸部60の突出量は、放熱パイプ65の直径よりも小さく設定されている。そのため、放熱パイプ65は、金属テープ66を介してソフトテープ64に押圧されている。また、背側凸部60の幅寸法は、放熱パイプ65の直径よりもやや大きい程度に設定されている。そして、放熱パイプ65および金属テープ66は、真空断熱パネル63から離間している。つまり、放熱パイプ65および金属テープ66は、真空断熱パネル63と接していない。 Between the inner member 61 and the outer member 62, a heat radiating pipe 65 is provided in contact with the inside of the back-side convex portion 60. The heat radiating pipe 65 is fixed to the outer member 62 by a metal tape 66 such as an aluminum tape. In this case, the protruding amount of the back convex portion 60 is set smaller than the diameter of the heat radiating pipe 65. Therefore, the heat radiating pipe 65 is pressed against the soft tape 64 via the metal tape 66. Further, the width dimension of the back convex portion 60 is set to be slightly larger than the diameter of the heat radiating pipe 65. The heat radiating pipe 65 and the metal tape 66 are separated from the vacuum heat insulating panel 63. That is, the heat radiating pipe 65 and the metal tape 66 are not in contact with the vacuum heat insulating panel 63.
 この放熱パイプ65も、上記各実施形態の放熱パイプ36と同様に冷凍サイクルの一部を構成している。放熱パイプ65は、図9に示すように、機械室30から背部断熱壁27内に入り、背側凸部60に沿って背部断熱壁27の周縁内部を巡り、その後、背部断熱壁27から機械室30へ出るようにして設けられている。そして、放熱パイプ65の両端部は、詳細は図示しないが、機械室30内の圧縮機に接続されるか放熱パイプ36などに接続されている。 This heat radiating pipe 65 also constitutes a part of the refrigeration cycle in the same manner as the heat radiating pipe 36 of each of the above embodiments. As shown in FIG. 9, the heat radiating pipe 65 enters the back heat insulating wall 27 from the machine room 30, travels around the periphery of the back heat insulating wall 27 along the back convex portion 60, and then passes from the back heat insulating wall 27 to the machine. It is provided so as to go into the chamber 30. Both ends of the heat radiating pipe 65 are connected to a compressor in the machine room 30 or connected to the heat radiating pipe 36 and the like, although details are not shown.
 本実施形態によれば、冷蔵庫10の背部断熱壁27についても、主に上記第一実施形態と同様の作用効果を得ることができる。つまり、冷蔵庫10の背面すなわち背部断熱壁27の外側面を部屋の壁などに接して設置した場合であっても、背側凸部60が部屋の壁に接することによって、背側凸部60が存していない部分と部屋の壁との間に空間が形成される。そのため、冷蔵庫10の背部断熱壁27の外側面全体が部屋の壁に接することがなく、放熱パイプ65の放熱のための空間が確保される。したがって、冷蔵庫10は、その背面を形成する背部断熱壁27が部屋の壁などに近接また接して配置された場合であっても、放熱パイプ65の周囲に熱がこもって放熱効率が低下することを抑制することができる。 According to this embodiment, it is possible to obtain mainly the same functions and effects as those of the first embodiment with respect to the back heat insulating wall 27 of the refrigerator 10. That is, even when the back surface of the refrigerator 10, that is, the outer surface of the back heat insulating wall 27 is installed in contact with the wall of the room, the back convex portion 60 is brought into contact with the wall of the room. A space is formed between the part that does not exist and the wall of the room. Therefore, the entire outer surface of the back heat insulating wall 27 of the refrigerator 10 does not contact the wall of the room, and a space for heat dissipation of the heat radiating pipe 65 is secured. Therefore, in the refrigerator 10, even when the back heat insulating wall 27 that forms the back surface of the refrigerator 10 is disposed close to or in contact with the wall of the room, the heat is trapped around the heat radiating pipe 65 and the heat radiating efficiency is lowered. Can be suppressed.
 また、放熱パイプ65は、背側凸部60の内側に収容されている。そのため、冷蔵庫10の製造の際に、放熱パイプ65を背側凸部60に沿って配置することができる。これによれば、外部材62が背側凸部60を有さずに単に平坦な構成である場合に比べて、外部材62に対する放熱パイプ65の取り付けが容易となり、作業性が向上する。 Further, the heat radiating pipe 65 is accommodated inside the back convex portion 60. Therefore, when the refrigerator 10 is manufactured, the heat radiating pipe 65 can be disposed along the back-side convex portion 60. According to this, compared with the case where the outer member 62 does not have the back side convex part 60 and is only a flat structure, attachment of the heat radiating pipe 65 with respect to the outer member 62 becomes easy, and workability | operativity improves.
 また、背側凸部60は、板状の外部材62をプレス絞り加工することによって形成される。そのため、外部材62は、背側凸部60周辺部分において、絞り加工による加工硬化によって強度が増す。また、背側凸部60が形成されることにより、外部材62全体の断面二次モーメントが増大し、その結果、外部材62全体として曲げ方向に対する強度が増大する。 Further, the back convex portion 60 is formed by press-drawing a plate-like outer member 62. Therefore, the strength of the outer member 62 is increased by work hardening by drawing at the periphery of the back convex portion 60. Further, the formation of the back-side convex portion 60 increases the sectional moment of the entire outer member 62, and as a result, the strength of the outer member 62 as a whole in the bending direction increases.
 そして、背側凸部60は、台形形状に形成されている。そのため、放熱パイプ65の放熱面積をより大きく確保することができ、その結果、放熱パイプ65の放熱効率を向上させることができる。 And the back side convex part 60 is formed in the trapezoid shape. Therefore, a larger heat radiation area of the heat radiating pipe 65 can be secured, and as a result, the heat radiating efficiency of the heat radiating pipe 65 can be improved.
 なお、本実施形態において、外部材62は、背側凸部60に換えて内部材61側へ窪んだ凹部を有していてもよい。 In this embodiment, the outer member 62 may have a concave portion that is recessed toward the inner member 61 instead of the back convex portion 60.
 (第六実施形態)
 次に、第六実施形態について図11を参照して説明する。
 第六実施形態では、上記第五実施形態に対して背側凸部60の形状が異なる。すなわち、第六実施形態の背側凸部60は、台形形状ではなく、放熱パイプ65の外径の一部に沿ったほぼ半円形状に形成されている。これによれば、放熱パイプ65を背側凸部60の内側に配置し易く、また、配置後の位置がずれ難い。そのため、外部材62に対する放熱パイプ65の取り付けが容易となり、その結果、作業性がさらに向上する。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIG.
In the sixth embodiment, the shape of the back-side convex portion 60 is different from that of the fifth embodiment. That is, the back-side convex portion 60 of the sixth embodiment is not a trapezoidal shape, but is formed in a substantially semicircular shape along a part of the outer diameter of the heat radiating pipe 65. According to this, it is easy to arrange | position the thermal radiation pipe 65 inside the back side convex part 60, and the position after arrangement | positioning is hard to shift | deviate. Therefore, it is easy to attach the heat radiating pipe 65 to the outer member 62, and as a result, workability is further improved.
 (第七実施形態)
 次に、第七実施形態について図12および図13を参照して説明する。
 第七実施形態において、機械室30は、断熱箱体11の後側下部に設けられている。詳細は図示しないが、機械室30には、上記各実施形態と同様に冷凍サイクルの一部を構成する圧縮機が設けられる。この場合、第一背側凸部601は、それぞれ背部断熱壁27の左右の両縁部にあって、機械室30側から上方向へ延びている。第二背側凸部602は、背部断熱壁27の上部にあって、左右方向へ延びて左右の第一背側凸部601の上端部を接続している。背側凸部60内には、放熱パイプ65が配置されている。
(Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIGS.
In the seventh embodiment, the machine room 30 is provided in the lower rear portion of the heat insulation box 11. Although details are not shown, the machine room 30 is provided with a compressor that constitutes a part of the refrigeration cycle as in the above embodiments. In this case, the 1st back side convex part 601 is in the both right and left edge parts of the back part heat insulation wall 27, respectively, and is extended upwards from the machine room 30 side. The second back side convex part 602 is in the upper part of the back heat insulating wall 27 and extends in the left-right direction to connect the upper ends of the left and right first back side convex parts 601. A heat radiating pipe 65 is disposed in the back convex portion 60.
 また、第七実施形態において、断熱箱体11の開口を形成しない背部断熱壁27には凸部60が設けられているが、断熱箱体11の開口を形成する壁部には凸部および凹部が設けられていない。つまり、第七実施形態において、左右の断熱壁23、24には、上記各実施形態のような凸部34、35、47、48または凹部49、50、53、54などは設けられていない。 In the seventh embodiment, the convex portion 60 is provided on the back heat insulating wall 27 that does not form the opening of the heat insulating box 11, but the convex portion and the concave portion are formed on the wall portion that forms the opening of the heat insulating box 11. Is not provided. That is, in the seventh embodiment, the left and right heat insulating walls 23, 24 are not provided with the convex portions 34, 35, 47, 48 or the concave portions 49, 50, 53, 54 as in the above embodiments.
 そのため、第七実施形態において左右の断熱壁23、24の外部材32は、凸部または凹部を有さずにほぼ平坦に構成されている。この場合、本実施形態では、図13に示すように、上記各実施形態における凸部34、35、47、48または凹部49、50、53、54に換えて、真空断熱パネル33の外部材32側には窪み部331が形成されている。放熱パイプ36は、窪み部331に沿って配置されている。 Therefore, in the seventh embodiment, the outer members 32 of the left and right heat insulating walls 23 and 24 are substantially flat without having a convex portion or a concave portion. In this case, in this embodiment, as shown in FIG. 13, the outer member 32 of the vacuum heat insulating panel 33 is replaced with the convex portions 34, 35, 47, 48 or the concave portions 49, 50, 53, 54 in the above embodiments. A recess 331 is formed on the side. The heat radiating pipe 36 is disposed along the recess 331.
 この構成によれば、上記第五実施形態と同様の作用効果を得ることができる。さらに、本実施形態において、機械室30は断熱箱体11の後側下部に設けられている。これによれば、機械室30に配置された圧縮機から放熱される熱は、背側凸部60によって形成される背部断熱壁27と部屋の壁面との間の空間を通り、機械室30から上方へ流れて放熱される。したがって、この構成によれば、圧縮機の放熱の為に新たに部材を設けることなく、圧縮機で生じる熱を効果的に放熱することができる。さらに、冷蔵庫10の左右の側面すなわち左右の断熱壁23、24の外側面は、その外観が平坦に構成されている。そのため、冷蔵庫10の設置状態における左右側面の外観を良好なものとすることができる。 根据 该 结构 , 能 得 る 得到 与 上述 第 5 实施 方式 相同 的 作用 效果Furthermore, in this embodiment, the machine room 30 is provided in the lower rear side of the heat insulation box 11. According to this, the heat radiated from the compressor disposed in the machine room 30 passes through the space between the back heat insulating wall 27 formed by the back-side convex part 60 and the wall surface of the room, and from the machine room 30. It flows upward and dissipates heat. Therefore, according to this configuration, it is possible to effectively dissipate heat generated in the compressor without providing a new member for heat dissipation of the compressor. Further, the left and right side surfaces of the refrigerator 10, that is, the outer side surfaces of the left and right heat insulating walls 23 and 24, are configured to have a flat appearance. Therefore, the appearance of the left and right side surfaces in the installed state of the refrigerator 10 can be improved.
 なお、詳細は図示しないが、各実施形態において、左部断熱壁23は、右部断熱壁24と左右対称であることを除いてほぼ同様に構成されている。そして、左部断熱壁23にも、放熱パイプ36に相当する放熱パイプが設けられている。 Although not shown in detail, in each embodiment, the left heat insulating wall 23 is configured in substantially the same manner except that it is symmetrical with the right heat insulating wall 24. The left heat insulating wall 23 is also provided with a heat radiating pipe corresponding to the heat radiating pipe 36.
 天井部断熱壁25に凸部または凹部を設け、これら凸部または凹部の内側に放熱パイプを配置する構成としてもよい。この場合、冷蔵庫10の上面すなわち天井部断熱壁25の外側面と部屋の天井との間に空間が確保される。そのため、使用者は、放熱パイプについて放熱空間の確保を意識することなく冷蔵庫10を配置することができる。 It is good also as a structure which provides a convex part or a recessed part in the ceiling part heat insulation wall 25, and arrange | positions a thermal radiation pipe inside these convex part or a recessed part. In this case, a space is secured between the upper surface of the refrigerator 10, that is, the outer surface of the ceiling heat insulating wall 25, and the ceiling of the room. Therefore, the user can arrange | position the refrigerator 10 without being conscious of ensuring of thermal radiation space about a thermal radiation pipe.
 断熱箱体11は、前面に開口を有するものに限られず、例えば上面に開口を有する構成であってもよい。この場合、放熱パイプ、および凸部または凹部は、上面の開口を構成する周囲四方の断熱壁に設けてもよい。 The heat insulation box 11 is not limited to the one having an opening on the front surface, and may have a structure having an opening on the upper surface, for example. In this case, the heat radiating pipe and the convex portion or the concave portion may be provided on the heat insulating walls on the four sides surrounding the opening on the upper surface.
 各断熱壁23~27の断熱部材には、真空断熱パネルに換えて発泡ウレタンなどを用いてもよいし、真空断熱パネルと発泡ウレタンとを併用してもよい。
 断熱箱体11は、分割された断熱壁23~27を組み合わせて構成されるものに限られない。例えば、断熱箱体11は、貯蔵室12~16側の面を構成する内箱を一体の箱状に形成し、その外側に断熱部材および外箱を設ける構成でもよい。
For the heat insulating members of the heat insulating walls 23 to 27, urethane foam or the like may be used instead of the vacuum heat insulating panel, or a vacuum heat insulating panel and urethane foam may be used in combination.
The heat insulation box 11 is not limited to a combination of the divided heat insulation walls 23 to 27. For example, the heat insulating box 11 may have a structure in which an inner box forming a surface on the storage chambers 12 to 16 side is formed in an integral box shape, and a heat insulating member and an outer box are provided on the outer side.
 各実施形態における真空断熱パネル33の袋体46について、内側積層フィルム461は、アルミ箔層を有する構成としてもよい。同様に、外側積層フィルム462は、アルミ蒸着層を有する構成としてもよい。さらに、内側積層フィルム461および外側積層フィルム462は、アルミ蒸着層またはアルミ箔層のいずれか一方を有する構成でもよいし、アルミ蒸着層およびアルミ箔層を複数層重ねて構成してもよい。 In the bag body 46 of the vacuum heat insulating panel 33 in each embodiment, the inner laminated film 461 may have an aluminum foil layer. Similarly, the outer laminated film 462 may have a configuration including an aluminum vapor deposition layer. Furthermore, the inner laminated film 461 and the outer laminated film 462 may be configured to have either an aluminum deposited layer or an aluminum foil layer, or may be configured by stacking a plurality of aluminum deposited layers and aluminum foil layers.
 袋体46について、ガスバリア性能を得るための金属層は、経済性などを考慮すればアルミが好適であるが、これに限られず、例えばチタン、クロム、銅、金などを用いることもできる。この場合、金属層の形成は、金属箔のラミネートや蒸着に限られず、例えばメッキなどによって形成することもできる。そして、ガスバリア性能を得るための層は、上記の金属層に限られず、例えばシリカやアルミナなどの酸化物を蒸着したものを用いることもできる。 For the bag 46, the metal layer for obtaining the gas barrier performance is preferably aluminum in consideration of economy and the like, but is not limited thereto, and for example, titanium, chromium, copper, gold or the like can be used. In this case, the formation of the metal layer is not limited to the lamination and vapor deposition of the metal foil, and can be formed by plating, for example. The layer for obtaining the gas barrier performance is not limited to the above metal layer, and for example, a layer on which an oxide such as silica or alumina is deposited can be used.
 以上説明した実施形態の構成によれば、例えば断熱箱体の側面を形成する壁部を部屋の壁などに接して設置した場合、凸部が部屋の壁に接することによって、凸部が存していない部分と部屋の壁との間に空間が形成される。そのため、冷蔵庫の側面全体が部屋の壁に接することがなく、放熱パイプの周囲に放熱するための空間が確保される。したがって、断熱箱体の壁部が部屋の壁などに近接または接して配置された場合であっても、放熱パイプの周囲に熱がこもって放熱効率が低下することを抑制することができる。 According to the configuration of the embodiment described above, for example, when the wall portion that forms the side surface of the heat insulating box is installed in contact with the wall of the room, the convex portion exists because the convex portion contacts the wall of the room. A space is formed between the unoccupied part and the wall of the room. Therefore, the entire side surface of the refrigerator does not come into contact with the wall of the room, and a space for radiating heat around the heat radiating pipe is secured. Therefore, even when the wall portion of the heat insulating box is disposed close to or in contact with the wall of the room, it is possible to suppress the heat radiation from being accumulated around the heat radiating pipe and the heat radiation efficiency from being lowered.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変更は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

Claims (10)

  1.  貯蔵室およびこの貯蔵室に繋がる開口を有する断熱箱体と、
     前記貯蔵室を冷却する冷凍サイクルと、を備え、
     前記断熱箱体を構成する壁部は、内部材と外部材との間に断熱部材を有して構成され、
     前記壁部のうち少なくとも一の壁部は、前記外部材にあって前記貯蔵室の外方へ突出する凸部または前記貯蔵室の内方へ窪む凹部を有し、
     前記外部材と前記内部材との間において前記凸部または前記凹部に接して前記冷凍サイクルの一部を構成する放熱パイプが設けられている冷蔵庫。
    A heat insulating box having a storage room and an opening connected to the storage room;
    A refrigeration cycle for cooling the storage chamber,
    The wall portion constituting the heat insulating box is configured to have a heat insulating member between the inner member and the outer member,
    At least one wall portion of the wall portions has a convex portion projecting outward of the storage chamber in the outer member or a concave portion recessed inward of the storage chamber,
    The refrigerator provided with the heat radiating pipe which comprises the said refrigeration cycle in contact with the said convex part or the said recessed part between the said outer member and the said inner member.
  2.  前記断熱部材として真空断熱パネルを備え、
     前記真空断熱パネルは、前記凸部または前記凹部から離間した形態で前記外部材に接着され固定されている請求項1記載の冷蔵庫。
    A vacuum insulation panel is provided as the insulation member,
    The refrigerator according to claim 1, wherein the vacuum heat insulation panel is bonded and fixed to the outer member in a form spaced from the convex portion or the concave portion.
  3.  前記放熱パイプは、前記凸部または前記凹部と前記真空断熱パネルとの間にあって前記外部材に金属テープによって固定され、
     前記真空断熱パネルは、前記放熱パイプおよび前記金属テープから離間している請求項2記載の冷蔵庫。
    The heat radiating pipe is between the convex part or the concave part and the vacuum heat insulation panel and is fixed to the outer member by a metal tape,
    The refrigerator according to claim 2, wherein the vacuum heat insulation panel is separated from the heat radiating pipe and the metal tape.
  4.  前記凸部は、少なくとも前記開口を形成する前記壁部のうち一の壁部に設けられている請求項1から3いずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the convex portion is provided on at least one of the wall portions forming the opening.
  5.  前記凸部は、少なくとも前記壁部の端縁部に設けられている請求項4記載の冷蔵庫。 The refrigerator according to claim 4, wherein the convex portion is provided at least at an edge portion of the wall portion.
  6.  前記端縁部の前記凸部には、前記端縁部に沿って補強部材が設けられている請求項5記載の冷蔵庫。 The refrigerator according to claim 5, wherein a reinforcing member is provided along the end edge portion on the convex portion of the end edge portion.
  7.  前記真空断熱パネルは、芯材と、この芯材を収容する袋体とを有して構成され、
     前記袋体は、前記芯材の周囲にはみ出す接着用の耳部を有し、
     前記耳部は、前記外部材側へ折り返されて前記端縁部の前記凸部に収容されている請求項5または6記載の冷蔵庫。
    The vacuum heat insulation panel includes a core material and a bag body that accommodates the core material,
    The bag body has an adhesive ear that protrudes around the core,
    The refrigerator according to claim 5 or 6, wherein the ear portion is folded back toward the outer member and is accommodated in the convex portion of the end edge portion.
  8.  前記凸部は、前記開口を形成しない背側の壁部に設けられている請求項1から7いずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 7, wherein the convex portion is provided on a back wall portion that does not form the opening.
  9.  前記凸部は、前記開口を形成しない背側の壁部に設けられ、前記開口を形成する壁部に設けられていない請求項1から3いずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the convex portion is provided on a back wall portion that does not form the opening and is not provided on the wall portion that forms the opening.
  10.  前記断熱箱体の下部に、前記冷凍サイクルの一部を構成する圧縮機が設けられる機械室を備えている請求項8または9記載の冷蔵庫。 The refrigerator according to claim 8 or 9, further comprising a machine room provided with a compressor constituting a part of the refrigeration cycle at a lower portion of the heat insulating box.
PCT/JP2012/078843 2011-12-06 2012-11-07 Refrigerator WO2013084648A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280060382.6A CN103988034B (en) 2011-12-06 2012-11-07 Refrigerator
EP12856505.8A EP2789938B1 (en) 2011-12-06 2012-11-07 Refrigerator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-266791 2011-12-06
JP2011266791 2011-12-06
JP2012063636A JP6091762B2 (en) 2011-12-06 2012-03-21 refrigerator
JP2012-063636 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013084648A1 true WO2013084648A1 (en) 2013-06-13

Family

ID=48574027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078843 WO2013084648A1 (en) 2011-12-06 2012-11-07 Refrigerator

Country Status (5)

Country Link
EP (1) EP2789938B1 (en)
JP (1) JP6091762B2 (en)
CN (1) CN103988034B (en)
TW (1) TWI519749B (en)
WO (1) WO2013084648A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251589A (en) * 2013-06-25 2014-12-31 株式会社东芝 Refrigerator
US20150300725A1 (en) * 2014-04-17 2015-10-22 Samsung Electronics Co., Ltd. Refrigerator and method of manufacturing inner cabinet of refrigerator
JP2021009010A (en) * 2019-07-03 2021-01-28 シャープ株式会社 refrigerator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021321B2 (en) * 2011-12-07 2016-11-09 東芝ライフスタイル株式会社 refrigerator
JP2015052401A (en) * 2013-09-05 2015-03-19 日立アプライアンス株式会社 Refrigerator
JP6603017B2 (en) * 2014-11-28 2019-11-06 東芝ライフスタイル株式会社 refrigerator
JP2016186316A (en) * 2015-03-27 2016-10-27 パナソニックIpマネジメント株式会社 Vacuum insulation housing
WO2018080473A1 (en) * 2016-10-26 2018-05-03 Whirlpool Corporation Skin condenser design integrated in the refrigerator back
JP7285093B2 (en) * 2019-02-28 2023-06-01 日立グローバルライフソリューションズ株式会社 Insulation box body and refrigerator provided with the same
DE102019213217A1 (en) * 2019-09-02 2021-03-04 BSH Hausgeräte GmbH Refrigeration device, refrigerator and / or freezer and method for producing the refrigeration device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2728318B2 (en) 1991-02-15 1998-03-18 シャープ株式会社 Manufacturing method of vacuum insulation box
JP2005172307A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Refrigerator
JP2006284172A (en) * 2006-04-28 2006-10-19 Matsushita Electric Ind Co Ltd Refrigerator
JP2010145001A (en) * 2008-12-18 2010-07-01 Sharp Corp Heat insulating case body for refrigerator
JP2011080692A (en) 2009-10-07 2011-04-21 Toshiba Corp Refrigerator
JP2011122739A (en) * 2009-12-08 2011-06-23 Toshiba Corp Refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116271A (en) * 1984-11-12 1986-06-03 株式会社日立製作所 Refrigerator
JPS6363680U (en) * 1986-10-17 1988-04-27
JP2001012841A (en) * 1999-06-29 2001-01-19 Matsushita Refrig Co Ltd Refrigerator
JP2006336722A (en) * 2005-06-01 2006-12-14 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
DE102007048830A1 (en) * 2007-10-11 2009-04-16 BSH Bosch und Siemens Hausgeräte GmbH Device for producing a refrigeration device
CN101921069A (en) * 2010-09-13 2010-12-22 徐林波 Novel heat-insulation sound-insulation glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2728318B2 (en) 1991-02-15 1998-03-18 シャープ株式会社 Manufacturing method of vacuum insulation box
JP2005172307A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Refrigerator
JP2006284172A (en) * 2006-04-28 2006-10-19 Matsushita Electric Ind Co Ltd Refrigerator
JP2010145001A (en) * 2008-12-18 2010-07-01 Sharp Corp Heat insulating case body for refrigerator
JP2011080692A (en) 2009-10-07 2011-04-21 Toshiba Corp Refrigerator
JP2011122739A (en) * 2009-12-08 2011-06-23 Toshiba Corp Refrigerator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251589A (en) * 2013-06-25 2014-12-31 株式会社东芝 Refrigerator
JP2015007499A (en) * 2013-06-25 2015-01-15 株式会社東芝 Refrigerator
US20150300725A1 (en) * 2014-04-17 2015-10-22 Samsung Electronics Co., Ltd. Refrigerator and method of manufacturing inner cabinet of refrigerator
US9506686B2 (en) * 2014-04-17 2016-11-29 Samsung Electronics Co., Ltd. Refrigerator and method of manufacturing inner cabinet of refrigerator
JP2021009010A (en) * 2019-07-03 2021-01-28 シャープ株式会社 refrigerator
JP7291557B2 (en) 2019-07-03 2023-06-15 シャープ株式会社 refrigerator

Also Published As

Publication number Publication date
CN103988034A (en) 2014-08-13
TWI519749B (en) 2016-02-01
EP2789938A1 (en) 2014-10-15
JP6091762B2 (en) 2017-03-08
EP2789938B1 (en) 2018-03-21
JP2013139981A (en) 2013-07-18
EP2789938A4 (en) 2015-08-05
CN103988034B (en) 2017-04-12
TW201341739A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2013084648A1 (en) Refrigerator
JP5998360B2 (en) refrigerator
KR101147779B1 (en) A refrigerator comprising a vaccum space
JP6005341B2 (en) refrigerator
JP2007003067A (en) Refrigerator
JP6854106B2 (en) refrigerator
JP6002641B2 (en) Vacuum insulation and refrigerator
JP4158814B2 (en) refrigerator
JP5868152B2 (en) refrigerator
JP2013242100A (en) Refrigerator heat-insulation box body
AU2019427660A1 (en) Refrigerator
JP2004125394A (en) Refrigerator
JP6200742B2 (en) refrigerator
JP5343351B2 (en) refrigerator
JP2013185735A (en) Refrigerator
JP2013185730A (en) Refrigerator
JP2015007499A (en) Refrigerator
JP2005172307A (en) Refrigerator
JP2005164200A (en) Refrigerator
JP5881392B2 (en) refrigerator
JP2005009825A (en) Refrigerator
JP2015203510A (en) refrigerator
JP2016001063A (en) refrigerator
JP2006112639A (en) Refrigerator
JP2016186379A (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012856505

Country of ref document: EP