WO2014103179A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2014103179A1
WO2014103179A1 PCT/JP2013/007066 JP2013007066W WO2014103179A1 WO 2014103179 A1 WO2014103179 A1 WO 2014103179A1 JP 2013007066 W JP2013007066 W JP 2013007066W WO 2014103179 A1 WO2014103179 A1 WO 2014103179A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
groove
refrigerator
vacuum heat
Prior art date
Application number
PCT/JP2013/007066
Other languages
French (fr)
Japanese (ja)
Inventor
美桃子 井下
愼一 堀井
濱田 和幸
吉英 中島
西村 晃一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201390001020.XU priority Critical patent/CN205119635U/en
Priority to DE212013000262.9U priority patent/DE212013000262U1/en
Publication of WO2014103179A1 publication Critical patent/WO2014103179A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/061Walls with conduit means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Definitions

  • the present invention relates to a refrigerator in which a vacuum heat insulating material is disposed in a heat insulating box.
  • FIG. 17 is a cross-sectional view of an essential part of a refrigerator for explaining a conventional refrigerator.
  • the conventional refrigerator includes a heat insulating box 10 filled with a foam heat insulating material 41 between an outer box 31 and an inner box 32, and a heat radiating pipe 33 disposed on the inner surface side of the outer box 31.
  • the conventional refrigerator includes a vacuum heat insulating panel 13 in which the core member 14 is covered with an outer cover material 15 and the inside of the refrigerator is decompressed and the groove portion 11 into which the heat radiating pipe 33 is fitted is formed.
  • the vacuum heat insulation panel 13 has a convex portion 12 formed on the back surface of the surface on which the groove portion 11 is formed so as to be opposed to the groove portion 11 and wider than the groove portion 11 in the longitudinal direction. With this configuration, the refrigerator having the vacuum heat insulation panel 13 has improved heat insulation performance and can save energy.
  • a concave groove is formed in the vacuum heat insulating material affixed to the back and side surfaces of the refrigerator body to cover the heat radiating pipe, thereby improving the heat insulating effect and thinning the refrigerator cross section wall.
  • the concave groove formed in the vacuum heat insulating material can be kept reliable only in a linear shape, and the vacuum heat insulating material is provided with a groove corresponding to the bent shape portion of the heat radiating pipe at the upper and lower sides of the refrigerator side. I had the problem that I could't.
  • the vacuum heat insulating material cannot be pasted up to the bent shape part of the heat radiating pipe at the top and bottom of the refrigerator. Further, when the wall thickness is reduced to secure the internal capacity, the outer box strength is reduced and the amount of heat entering the box is increased, which makes it difficult to achieve both energy saving and large capacity.
  • the present invention provides a refrigerator that can secure strength even when the refrigerator cross-section wall is thinned, has a small space, a large capacity, and high energy saving performance.
  • the heat insulation box constituting the refrigerator has an outer box, an inner box, and a heat radiating pipe attached to the outer box.
  • the heat insulating box includes a vacuum heat insulating material that forms a groove that covers the heat radiating pipe and is attached to the outer box, and a foam heat insulating material that is filled between the outer box and the inner box.
  • a vacuum heat insulating material is arrange
  • the coverage of the vacuum heat insulating material in the heat insulating box can be improved, the intrusion heat from the heat radiating pipe can be reduced, and the enlarged vacuum heat insulating material can be applied to the heat insulating box. Furthermore, it is possible to improve the strength of the heat insulating box and save energy.
  • FIG. 1 is a perspective view of a refrigerator main body of the refrigerator according to the first embodiment of the present invention.
  • FIG. 2 is a side cross-sectional view for explaining the refrigerator in the first embodiment of the present invention.
  • FIG. 3 is a side cross-sectional view of the refrigerator in the first embodiment of the present invention.
  • FIG. 4 is a side cross-sectional view for explaining the refrigerator in the first embodiment of the present invention.
  • FIG. 5 is a simplified enlarged view of a portion D in FIG.
  • FIG. 6 is a plan view of a vacuum heat insulating material used for the refrigerator in the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along line 9-9 of FIG.
  • FIG. 10 is a plan view of a vacuum heat insulating material used for the refrigerator in the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of the refrigerator in the third embodiment of the present invention.
  • FIG. 12 is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 3rd Embodiment of this invention.
  • FIG. 13 is sectional drawing of the refrigerator in the 4th Embodiment of this invention.
  • FIG. 14 is a perspective view of the heat radiating pipe of the refrigerator in the fourth embodiment of the present invention.
  • FIG. 15 is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 4th Embodiment of this invention.
  • FIG. 16 is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 5th Embodiment of this invention.
  • FIG. 17 is a horizontal sectional view of a side wall of a heat-insulating box of a conventional refrigerator.
  • FIG. 1 is a perspective view of the refrigerator main body of the refrigerator according to the first embodiment of the present invention.
  • 2, 3 and 4 are side cross-sectional views of the refrigerator according to the first embodiment of the present invention.
  • FIG. 5 is a simplified enlarged view of a portion D in FIG.
  • FIG. 6 is a plan view of a vacuum heat insulating material used in the refrigerator according to the first embodiment of the present invention.
  • 7 is a cross-sectional view taken along line 7-7 of FIG. 8 is a cross-sectional view taken along the line 8-8 in FIG. 9 is a cross-sectional view taken along line 9-9 of FIG.
  • the refrigerator main body 112 has a metal (for example, iron plate) outer box 107 and a hard resin (for example, ABS) inner box 108 that open forward. And the refrigerator main body 112 comprises the foam insulation material 109 foam-filled between the outer box 107 and the inner box 108, and comprises a heat insulation box.
  • a refrigerator compartment 113 as a storage room is provided in the upper part of the refrigerator main body 112.
  • a switching chamber 114 that can be switched from a freezing temperature zone to a temperature zone such as refrigeration, vegetables, and chilled, and an ice making chamber 115 are provided at the same height.
  • a vegetable room 116 is provided at the lowermost part of the refrigerator main body 112, and a freezing room 117 is provided between the switching room 114, the ice making room 115, and the vegetable room 116. Front portions of the switching chamber 114, the ice making chamber 115, the vegetable chamber 116, and the freezing chamber 117 are freely opened and closed by a pull-out door (not shown). The front surface of the refrigerator compartment 113 is closed freely by, for example, a double door (not shown).
  • cooling chamber 130 there is a cooling chamber 130 at the rear of the refrigerator main body 112, and includes a cooler 118 that generates cool air and a cool air blower fan 119 that supplies the cool air to each storage chamber.
  • the internal temperature is controlled by an internal temperature sensor (not shown), a damper, etc. (not shown). Further, a defrosting means (not shown) is installed below the cooler 118.
  • the material of the cooler 118 is aluminum or copper.
  • a compressor 120 is disposed at the top of the refrigerator main body 112.
  • the compressor 120, a condenser (not shown), a heat radiating pipe 111, a capillary tube 121, and a cooler 118 are sequentially connected in an annular shape, and a refrigerant is enclosed to constitute a refrigeration cycle.
  • a flammable refrigerant is often used as a refrigerant for environmental protection.
  • a heat radiating pipe 111 is disposed on the back and side surfaces of the refrigerator main body 112.
  • the heat radiating pipe 111 secures a heat radiating length by bending one pipe into, for example, a U-shape, and is fixed to the outer box 107 with aluminum tape or the like and attached.
  • the heat radiating pipe 111 is usually divided and attached to each surface of the outer box of the refrigerator main body, and pipes on each surface are welded and connected in the machine room.
  • the vacuum heat insulating material 103 is affixed on the heat radiating pipe 111 (The heat radiating pipe side 111S, the heat radiating pipe front 111F) arrange
  • the upper end portion of the vacuum heat insulating material 103 is disposed to extend upward from the top surface portion of the inner box 108, and the lower end portion is disposed to extend downward from the bottom surface portion of the inner box 108.
  • the part where the vacuum heat insulating material 103 extends from the inner box 108 may be a part of the vacuum heat insulating material. Further, either one of the uppermost end and the lowermost end of the vacuum heat insulating material 103 may extend from the upper and lower end surfaces of the inner box 108.
  • the vacuum heat insulating material 103 has a groove for embedding the heat radiating pipe, and the groove for embedding the heat radiating pipe includes a vertical groove 104 and a horizontal groove 105 as shown in FIG.
  • the vertical groove 104 and the horizontal groove 105 are orthogonal to each other and intersect at approximately 90 °, and the vertical groove 104 and the horizontal groove 105 intersect each other at least on the surface of the vacuum heat insulating material 103.
  • the vertical groove 104 and the horizontal groove 105 are formed up to the upper, lower, left and right end surfaces of the vacuum heat insulating material 103, and the vertical groove 104 and the horizontal groove 105 are open at the end of the vacuum heat insulating material 103.
  • the vacuum heat insulating material 103 is formed in a rectangular shape, a plurality of vertical grooves 104 are formed at predetermined intervals along the longitudinal direction of the vacuum heat insulating material 103, and the lateral grooves 105 are formed along the short direction of the vacuum heat insulating material 103. Formed at the top and bottom.
  • the groove width of the longitudinal groove 104 is 4.2 mm
  • the groove depth is 4.0 mm
  • the outer diameter of the heat radiating pipe 111 is slightly larger than 4.0 mm.
  • the vacuum heat insulating material 103 is fixed to the outer box 107 with an adhesive or the like.
  • the vertical groove 104 and the horizontal groove 105 intersect at a substantially right angle, and the width of the horizontal groove 105 is wider than the width of the vertical groove 104.
  • the lateral groove 105 is located on the storage chamber side below the urethane filling portion of the top wall, and is formed with a groove width of 70 mm from a position 55 mm below the upper end of the inner box 108, for example.
  • a plurality of vertical grooves 104 and horizontal grooves 105 are formed, and the number of vertical grooves 104 is larger than the number of horizontal grooves 105.
  • the heat dissipating pipe 111 is provided with a bent portion 127b in the refrigeration temperature zone at the position of the lowermost vegetable chamber 116 and the position of the uppermost refrigerated chamber 113, and is attached with a vacuum heat insulating material capable of increasing the coverage. That is, the heat radiating pipe 111 is disposed below the top surface portion of the inner box 108 and above the bottom surface portion of the inner box 108. Moreover, in this Embodiment, since there exists a cooling chamber in the refrigerator back direction, the thermal radiation pipe 111 is arrange
  • the refrigerator compartment 113 is normally set at 1 to 5 ° C. with the lower limit of the temperature at which it does not freeze for refrigerated storage.
  • the vegetable room 116 is often set to 2 ° C. to 7 ° C., which is set to a temperature that is the same as or slightly higher than that of the refrigerator room 113. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time.
  • the freezer compartment 117 is normally set at ⁇ 22 to ⁇ 18 ° C. for frozen storage, but may be set at a low temperature of ⁇ 30 to ⁇ 25 ° C., for example, to improve the frozen storage state.
  • the refrigerator compartment 113 and the vegetable compartment 116 are called refrigeration temperature zones because the interior is set at a plus temperature.
  • the freezer compartment 117 and the ice making compartment 115 are called freezing temperature zones because the interior is set at a minus temperature.
  • a reinforcing member 200 for improving the strength is provided on the lower side ridge portion of the side surface of the refrigerator main body 112.
  • the reinforcing member 200 is formed to rise from the bottom surface of the outer box 107 to the back surface, and the reinforcing member 200 and the outer box 107 are provided with an inter-component space 201 that communicates with the outside air.
  • a heat radiating pipe side 111S for heat radiating is provided on the side surface of the refrigerator main body 112, and a heat radiating length is secured by bending one pipe into, for example, a U-shape, which is attached to the outer box 107. ing.
  • a heat radiating pipe front 111F is bent in a U shape on the front surface of the refrigerator main body 112, and is disposed in a partition (not shown) of each storage chamber. The heat radiating pipe front 111F is connected to the machine room 126 through partitions of the storage rooms.
  • the vacuum heat insulating material 103 is affixed on the heat radiating pipe side 111S provided on the side of the refrigerator.
  • the vacuum heat insulating material 103 includes a vertical groove 104 and a horizontal groove 105 in which the heat radiating pipe side 111S is installed.
  • the vertical groove 104 extends along the longitudinal direction of the vacuum heat insulating material 103 (that is, the vertical direction of the refrigerator). It is a groove
  • the horizontal grooves 105 are concave grooves that extend along the short direction of the vacuum heat insulating material 103 (that is, the front-rear direction of the refrigerator), and are arranged one by one in the vertical direction of the vertical groove 104.
  • the vertical groove 104 and the horizontal groove 105 are formed so as to intersect each other.
  • the lower lateral groove 105 is disposed at least above the upper end of the bottom partition wall of the refrigerator main body 112.
  • bent portions 127b that are bent at the upper and lower ends of the heat radiating pipe side 111S are arranged.
  • either one of the upper and lower horizontal grooves 105 is the introduction groove 122 in which at least one of the heat radiating pipe side 111S or the heat radiating pipe front 111F is a part of the lower horizontal groove 105. It is connected to.
  • the heat radiating pipe front 111F is introduced into the lateral groove 105 from the peripheral edge of the vacuum heat insulating material 103 through the introduction groove 122 of the heat radiating pipe front 111F.
  • a straight portion 127a of the heat radiating pipe side 111S is disposed in the vertical groove 104, and a bent portion 127b of the heat radiating pipe side 111S is disposed in the horizontal groove 105.
  • the vertical groove 104 formed in the upper part of the horizontal groove 105 is disposed so as to pass through the outlet groove 125 of the heat radiating pipe side 111S, almost the entire heat radiating pipe side 111S meandering up and down is made of the vacuum heat insulating material 103. It arrange
  • one end of a communication member 124 that communicates the space 123 formed between the outer box 107 and the heat radiating pipe side 111S and the outside air is disposed in the lateral groove 105.
  • the other end of the communication member 124 is disposed in a hole having an inner diameter larger than the outer diameter of the communication member 124 formed in the reinforcing member 200 formed to rise from the bottom surface of the outer box 107 to the back surface.
  • An inter-component space 201 formed between the components of the reinforcing member 200 and the outer box 107 communicates with the outside air and discharges the air inside the lateral groove 105.
  • the communication member 124 constituting the refrigerator in the present embodiment is configured to communicate with the outside air substantially linearly along the lateral groove 105.
  • This configuration is realized by positioning the communication member 124 with the lateral groove 105 of the vacuum heat insulating material 103 and fixing the end of the communication member 124 using the reinforcing member 200.
  • the cooling of the refrigerator will be described.
  • a freezer compartment sensor not shown
  • the compressor 120 is started and cooling is started.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 120 finally reaches a dryer (not shown) disposed in the machine chamber 126.
  • the refrigerant is cooled and liquefied by exchanging heat with the air outside the outer box 107 and the foam heat insulating material 109 in the warehouse.
  • the liquefied refrigerant is depressurized by the capillary tube 121, flows into the cooler 118, and exchanges heat with the internal air around the cooler 118.
  • the cold air that has been heat-exchanged is blown into the cabinet by a nearby cool air blower fan 119 to cool the inside of the cabinet.
  • the refrigerant is heated and gasified, and returns to the compressor 120.
  • the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 120 is stopped.
  • a layout configuration of a refrigerator in which the vegetable compartment 116 is installed downward and the refrigerator compartment 113 is installed upward is often used from the viewpoint of usability.
  • upper surface back part is also used from the point of a user-friendliness point and the point of the improvement of storage capacity.
  • the vacuum heat insulating material can only be attached to the vicinity of the bent portion of the heat radiating pipe.
  • the groove formed in the vacuum heat insulating material 103 includes the vertical groove 104 and the horizontal groove 105, the vertical groove 104 and the horizontal groove 105 intersect each other, and the vertical groove 104 and the horizontal groove 105 are the vacuum heat insulating material. 103 is opened at the end.
  • the straight portion 127a is arranged in the vertical groove 104 and the bent portion 127b is arranged in the horizontal groove 105.
  • the entire heat radiating pipe 111 including the bent portion 127 b of the heat radiating pipe 111 can be covered with the vacuum heat insulating material 103.
  • the upper end portion of the vacuum heat insulating material 103 can be disposed to extend upward from the top surface portion of the inner box 108, and the lower end portion can be disposed to extend downward from the bottom surface portion of the inner box 108. With this configuration, the coverage of the vacuum heat insulating material 103 is improved, and heat entering from the outside or the heat radiating pipe 111 into the cabinet can be reduced, thereby saving energy.
  • the strength of the heat insulating box can be increased by improving the coverage of the vacuum heat insulating material 103 having higher bending elastic strength than the foam heat insulating material 109 to the outer box 107. Therefore, even when a load is applied to the refrigerator main body 112, deformation of the heat insulating box can be reduced. In order to realize a large capacity with high market needs without changing the external dimensions, it is essential to reduce the wall thickness. However, with the configuration of the present embodiment, the strength of the outer box at that time is ensured. It becomes possible to do.
  • the vertical groove 104 and the horizontal groove 105 formed in the vacuum heat insulating material 103 intersect with each other, and the vertical groove 104 and the horizontal groove 105 are open at the end of the vacuum heat insulating material 103.
  • the thickness of the vacuum heat insulating material 103 positioned outside the bent portion 127b of the heat radiating pipe 111 in the vertical direction of the vacuum heat insulating material 103 can be set to a reference wall thickness without a groove. Therefore, the heat insulating property of the peripheral edge of the vacuum heat insulating material 103 used in the present embodiment can be improved as compared with the vacuum heat insulating material having the outer peripheral end surface as a groove and the outer end surface opened.
  • the wall thickness of the entire outer peripheral end face becomes thinner than the reference wall thickness without the groove. For this reason, the bending elastic strength of the thinned portion is lowered, and warpage of the vacuum heat insulating material is likely to occur.
  • the vacuum heat insulating material 103 of the present embodiment most of the outer peripheral edge can be set to the reference wall thickness of a portion without a groove, and the bending elastic strength can be suppressed from being reduced, and the warpage of the vacuum heat insulating material can be prevented. . Therefore, peeling of the vacuum heat insulating material 103 from the outer box 107 can be prevented, the deformation of the outer box 107 can be prevented, and the structural strength of the heat insulating box can be ensured.
  • the vertical groove 104 and the horizontal groove 105 formed in the vacuum heat insulating material 103 intersect with each other, and the vertical groove 104 and the horizontal groove 105 are open at the end of the vacuum heat insulating material 103.
  • the piping design of the heat radiating pipe 111 is different between the right side surface and the left side surface of the refrigerator main body 112, it may be dealt with by using the open end portions of the vertical groove 104 and the horizontal groove 105. Therefore, since one vacuum heat insulating material 103 can respond to various piping designs, the vacuum heat insulating material 103 can be shared. Furthermore, by forming a plurality of vertical grooves 104 formed along the longitudinal direction of the vacuum heat insulating material 103, it is possible to cope with models with different pitches of the linear portion 127a of the heat radiating pipe 111, and the dual use of the vacuum heat insulating material 103 is further expanded. .
  • the vertical groove 104 and the horizontal groove 105 are formed while being moved by a press or a roller.
  • a press or a roller A way to do this is conceivable.
  • the vertical groove 104 and the horizontal groove 105 are configured to open at the end of the vacuum heat insulating material 103, it is possible to select a roller that is relatively inexpensive to manufacture and can be easily changed.
  • the groove width of the lateral groove 105 formed along the short direction of the vacuum heat insulating material 103 is formed wider than the groove width of the vertical groove 104 formed along the longitudinal direction of the vacuum heat insulating material 103.
  • the lateral groove 105 not only the bent portion 127b of the heat radiating pipe 111 but also a connecting pipe between the inlet portion and the other surface of the heat radiating pipe 111 can be arranged.
  • the pipe concentration rate can be increased.
  • the number of the heat radiating pipes 111 disposed in the horizontal groove 105 is two.
  • the number of the heat radiating pipes 111 is not limited to two. Three or more may be embedded.
  • the bent portion 127b of the heat radiating pipe 111 attached to the side surface of the refrigerator main body 112 is disposed corresponding to the vegetable compartment 116 and the refrigerator compartment 113.
  • the thickness of the vacuum heat insulating material 103 positioned outside the bent portion 127b of the heat radiating pipe 111 can be set to a reference wall thickness without a groove, and the heat insulating property at the periphery of the vacuum heat insulating material can be enhanced.
  • the vacuum heat insulating material 103 can be attached to the lower part of the lowermost vegetable room 116, the center of gravity of the entire refrigerator can be lowered, and the fall can be prevented. Furthermore, if the vacuum heat insulating material 103 is affixed to the outside of the bottom surface of the inner box 108 of the freezer compartment 117, the heat entering the vegetable compartment 116 is further reduced, and energy saving can be achieved.
  • the straight portion of the heat radiating pipe 111 formed by folding the straight portion 127a and the bent portion 127b is arranged in the vertical groove 104, and the bent portion 127b is arranged in the horizontal groove 105.
  • the entire heat radiation pipe 111 including the bent portion 127b of the heat radiation pipe 111 can be covered with the vacuum heat insulating material 103, and the coverage of the vacuum heat insulating material 103 is improved. For this reason, heat entering from the outside or the heat radiating pipe 111 into the cabinet can be reduced, and energy saving can be achieved.
  • the strength of the heat insulating box 110 can be increased by improving the coverage of the vacuum heat insulating material 103 having a higher bending elastic strength than the foam heat insulating material 109 to the outer box 107. Therefore, even when a load is applied to the refrigerator main body 112, deformation of the heat insulating box 110 can be reduced.
  • the upper and lower end surface portion 106 of the vacuum heat insulating material 103 is provided with a lateral groove 105 that crosses from the front surface to the back surface of the outer box 107 in a concave shape.
  • the heat radiating pipe 111 can be covered with the lateral groove 105 from three directions, and the heat insulation performance can be improved.
  • the refrigerator cross-section wall had to be thickened to reduce the intrusion heat, and the internal capacity had to be reduced.
  • the upper and lower end surface portions 106 of the vacuum heat insulating material 103 can be extended from the end portion of the inner box 108 by forming the lateral grooves 105 in the bent portion 127b of the heat radiating pipe side 111S or the heat radiating pipe front 111F on the side surface of the refrigerator. became. Further, it can be applied with a high coverage, and the width of the lateral groove 105 is wider than the width of the vertical groove 104. This makes it possible to design a large bent diameter of the heat radiating pipe side 111S, and to ensure the reliability of the heat radiating pipe side 111S.
  • the upper and lower end surfaces of the vacuum heat insulating material 103 include the vertical groove 104 having a groove formed in the longitudinal direction on the surface of the vacuum heat insulating material 103 and the horizontal groove 105 having a groove formed in the short direction. Part 106 was formed. And the vertical groove 104 and the horizontal groove 105 were formed so that it might mutually cross
  • the upper and lower end surface portions 106 of the vacuum heat insulating material 103 are formed with the reference wall thickness, the strength of the upper and lower end surface portions 106 of the vacuum heat insulating material 103 is improved. Therefore, warpage and deformation of the vacuum heat insulating material 103 are minimized, and it is easy to attach the vacuum heat insulating material 103 to the refrigerator main body 112, and man-hours can be reduced.
  • the vacuum heat insulating material 103 is formed in a rectangular shape and the vertical grooves 104 are provided more than the horizontal grooves 105, the length of the heat radiating pipe side 111S can be easily set according to the required performance of the refrigerator main body 112. It becomes.
  • the vacuum heat insulating material 103 is formed in a rectangular shape and the width of the lateral groove 105 is made wider than the width of the vertical groove 104, it is possible to design a large bending diameter of the radiating pipe side 111S to be buried. Therefore, it is possible to ensure the reliability of the heat radiating pipe side 111S or the heat radiating pipe front 111F.
  • a space portion 123 is formed between the vertical groove 104 and the horizontal groove 105 of the vacuum heat insulating material 103, the outer box 107, and the heat radiating pipe side 111S or the heat radiating pipe front 111F. Then, one end of a communication member 124 that communicates the space 123 with the outside air is provided in the lateral groove 105.
  • the air in the vertical groove 104 and the horizontal groove 105 can be easily ventilated with the outside air without being sealed, the pressure change due to the ambient temperature change or the like can be suppressed, and the external deformation of the outer box 107 can be suppressed. It becomes possible.
  • the communication member 124 in the horizontal groove 105 having a groove width larger than that of the vertical groove 104, that is, having a small flow resistance air staying in the plurality of vertical grooves 104 can flow to the horizontal groove 105 side in a short time. become. Further, since at least one of the heat radiating pipe side 111S and the heat radiating pipe front 111F can be arranged not only in the vertical groove 104 but also in the horizontal groove 105, the temperature of the air in the groove itself is also increased. Therefore, the air staying in the groove can be circulated more easily, and the smooth stay air can be discharged.
  • the air in the horizontal groove 105 passes through the space 201 between the parts provided in the outer box 107 and the reinforcing member 200.
  • the air can be discharged to the outside air. Therefore, the number of parts is small and the shape of the connecting member can be simplified. For example, the material cost can be reduced by using a straight shape, using a resin as a material, and enabling extrusion molding.
  • the foam heat insulating material 109 filled between the outer box 107 and the inner box 108 of the heat insulating box 110 has the front opening portion of the heat insulating box 110 facing the bottom surface in order to improve the filling property.
  • the material of the foam heat insulating material 109 is injected downward from an opening provided on the back surface of the foam. Then, a method is employed in which the foam heat insulating material 109 is foam-filled from the lower side (front opening side) toward the upper side (back side of the heat insulating box 110) gradually.
  • one end of the communication member 124 is disposed along the lateral groove 105 of the vacuum heat insulating material 103, and the other end communicates with the outside air on the back side of the heat insulating box 110. For this reason, air escapes through the communication member 124 in the same direction as the foam insulation material 109 is foam-filled, and the efficiency of air venting in the groove at the time of foam-filling can be improved.
  • FIG. 10 is a plan view of a vacuum heat insulating material used in the refrigerator according to the second embodiment of the present invention.
  • the same configuration and the same technical idea as those of the first embodiment can also be applied to this embodiment.
  • the vacuum heat insulating material 103 is affixed on the heat radiating pipe side 111S provided on the refrigerator side.
  • the vacuum heat insulating material 103 is formed with a vertical groove 104 and a horizontal groove 105 for installing the heat radiating pipe side 111S.
  • the vertical groove 104 is a groove formed to the upper and lower end surface portions 106 of the vacuum heat insulating material 103 along the longitudinal direction of the vacuum heat insulating material 103 (that is, the vertical direction of the refrigerator), and a plurality of vertical grooves 104 are arranged in parallel to each other. ing.
  • the lateral groove 105 extends along the short side direction of the vacuum heat insulating material 103 (that is, the front-rear direction of the refrigerator), and has no glue surface on the end surface. Further, one horizontal groove 105 is provided above and below the vertical groove 104, and the horizontal groove 105 and the vertical groove 104 are formed so as to intersect each other. Further, the horizontal groove 105 formed downward is disposed at least below the upper end of the bottom partition wall of the refrigerator main body 112 shown in FIG.
  • bent portions 127b that are bent at the upper and lower ends of the heat radiating pipe side 111S are arranged.
  • At least one of the heat radiating pipe side 111S or the heat radiating pipe front 111F is connected to the lower lateral groove 105.
  • the heat radiating pipe front 111F is introduced from the periphery of the vacuum heat insulating material 103 to the lower side of the heat radiating pipe side 111S of the lower lateral groove 105.
  • the straight portion 127 a is arranged in the vertical groove 104
  • the bent portion 127 b is arranged in the horizontal groove 105.
  • the upper end part of the heat radiating pipe side 111S is arrange
  • the space 123 formed between the outer box 107 and the heat radiating pipe side 111S is communicated with the outside air in the lateral groove 105 as in the first embodiment.
  • the communicating member 124 is disposed, and the air in the lateral groove 105 is released from the space communicating with the outside air of the outer box 107.
  • the communication member 124 includes a portion parallel to the lateral groove 105 and a bent and raised portion, and has a structure communicating with the outside air.
  • a foaming jig is used to prevent deformation due to foaming pressure when the foam insulation material 109 is filled between the outer box 107 and the inner box 108.
  • the portion of the communication member 124 that is bent and rises is formed for escape so that the heat radiating pipe 111 and the communication member 124 fixed to the outer box do not interfere with the foaming jig. Thereby, after filling the heat insulating box body 110 with the foam heat insulating material 109, the heat radiation pipe 111 and the communication member 124 can be pulled out and provided with a degree of freedom to be arranged at a predetermined position.
  • the lateral heat insulation pipe 111 and the communication member 124 can be freely pulled out by forming the lateral groove 105 extending along the short direction of the vacuum heat insulating material 103 (that is, the front-rear direction of the refrigerator) and having no glue surface on the end face. It is possible to have a degree.
  • the upper and lower end surface portion 106 of the vacuum heat insulating material 103 does not have a glue surface, and a lateral groove 105 that crosses from the front surface to the back surface of the outer box 107 shown in FIG. 3 is provided.
  • the communication member 124 is arranged in the same direction as the urethane filling direction, and the pressure is increased by the foaming pressure of the urethane, so that the air venting speed can be improved. Therefore, the air venting efficiency in the vertical grooves 104 and the horizontal grooves 105 is improved. Improvements can be made.
  • the communication member 124 is composed of a portion parallel to the lateral groove 105 and a bent and raised portion, the communication member 124 has a degree of freedom for pulling out the heat radiating pipe 111 and the communication member 124 and disposing them at a predetermined position. Can be made.
  • FIG. 11 is a sectional view of a refrigerator in the third embodiment of the present invention.
  • FIG. 12 is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 3rd Embodiment of this invention.
  • the same configuration and the same technical idea as those of the first embodiment and the second embodiment can also be applied to this embodiment.
  • the heat radiating pipe 312 which is a part of the condenser of the cooling system (not shown) meanders so as to form a plurality of straight portions.
  • An inlet portion 313 and an outlet portion 314 of the heat radiating pipe 312 protrude into a machine room 315 formed at the lower back of the refrigerator 301 and are connected to another heat radiating pipe (not shown).
  • the vacuum heat insulating material 316 has a thickness larger than the diameter of the heat radiating pipe 312 and has a plurality of longitudinal grooves 317 formed to the end of the vacuum heat insulating material 316 and a plurality of transverse grooves 318 in the short direction, The vertical groove 317 and the horizontal groove 318 cross each other in a cross shape.
  • the upper straight portion 319 located on the upper side of the refrigerator and the lower straight portion 320 located on the lower side of the refrigerator are respectively formed on substantially the same straight line.
  • Each is disposed in one transverse groove 318.
  • the vacuum heat insulating material 316 is applied to the outer box 302 so that the heat radiating pipe 312, the vertical groove 317, and the horizontal groove 318 are multilayered after an adhesive is applied to the surface on the outer box 302 side other than the vertical groove 317 and the horizontal groove 318. It is pasted.
  • the heat radiating pipe 312 is attached to the outer box 302 with a metal foil tape (not shown) or the like, and the vacuum heat insulating material 316 is attached thereon. Thereafter, the inner box 303 is fitted into the outer box 302, and a foam heat insulating material 304 such as urethane foam is filled between the outer box 302 and the inner box 303 to form a heat insulating box body 306.
  • a foam heat insulating material 304 such as urethane foam is filled between the outer box 302 and the inner box 303 to form a heat insulating box body 306.
  • the vertical groove 317 and the horizontal groove 318 communicate with each other, and the vertical groove 317 or the horizontal groove 318 is formed to the end of the vacuum heat insulating material 316.
  • the adhesive is applied to a surface other than the vertical groove 317 and the horizontal groove 318 on the surface of the vacuum heat insulating material 316 on the outer box 302 side.
  • the foam heat insulating material 304 is filled in the vertical grooves 317 and the horizontal grooves 318, and air can be expelled, and no air layer is formed.
  • the outer edge of the vacuum heat insulating material 316 becomes a groove, so that the adhesive cannot be applied.
  • the foam heat insulating material 304 is filled, the foam heat insulating material 304 enters, expands, and expands between the vacuum heat insulating material 316 and the outer box 302, so that the outer box 302 may be deformed by the expansion pressure.
  • the refrigerator 301 in the present embodiment bonds the end of the vacuum heat insulating material 316 to the outer box 302, there is no possibility that the foam heat insulating material 304 enters. Therefore, deformation of the outer box 302 can be prevented, and a refrigerator with good appearance and high design can be obtained.
  • the refrigerator 301 in the present embodiment has a shape of the heat radiating pipe 312 that fits the crossed vertical groove 317 and the horizontal groove 318.
  • the upper straight portion 319 of the heat radiating pipe 312 located on the upper side of the refrigerator and the lower straight portion 320 of the heat radiating pipe 312 located on the lower side of the refrigerator are formed on substantially the same straight line. Since each of the upper straight portion 319 and the lower straight portion 320 is disposed in one horizontal groove 318, the vacuum heat insulating material 316 is formed by stacking the vacuum heat insulating material 316 and the heat radiating pipe 312 with a small number of grooves. The deterioration of the heat insulation performance can be suppressed. As a result, the heat insulation performance of the refrigerator can be improved and a highly efficient refrigerator can be obtained.
  • the thickness of the groove portion is reduced.
  • the amount of heat passing through the vacuum heat insulating material is proportional to the thickness of the heat insulating material, so that the heat insulating performance of the groove portion becomes low.
  • the refrigerator having high heat insulating performance and high efficiency can be obtained.
  • the air in the groove is pushed out of the groove by being filled with the foam heat insulating material 304.
  • the air vent member that communicates the inside and the outside of the groove for example, the machine room 315, is provided, the air in the groove can be more reliably vented.
  • the heat radiating pipe 312 has been described as being configured to be attached to the side surface of the refrigerator 301.
  • the same effect can be obtained by using the same configuration also on the back surface of the refrigerator 301.
  • the inlet portion 313 and the outlet portion 314 are defined in the heat radiating pipe 312. However, the same is true even if the inlet portion 313 and the outlet portion 314 are reversed regardless of the refrigerant flow direction. The effect can be obtained.
  • the vertical groove 317 is described as the longitudinal direction of the vacuum heat insulating material 316
  • the horizontal groove 318 is described as the short direction of the vacuum heat insulating material 316.
  • the vertically long vacuum heat insulating material 316 is used in accordance with the shape of the refrigerator 301.
  • the horizontally long vacuum heat insulating material 316 is used, the longitudinal direction and the short direction are reversed.
  • the groove portions that are multilayered with the plurality of straight portions of the heat radiating pipe 312 can be surely multilayered by setting a sufficient width in consideration of a molding error and a pasting error of the heat radiating pipe 312. .
  • the heat radiating pipe 312 has been described as being configured to be attached to the outer box 302.
  • the heat radiating pipe is attached to the vacuum heat insulating material 316, it is possible to more surely prevent the gap between the heat radiating pipe 312 and the groove due to the attachment error of the heat radiating pipe 312 and to reduce the width of the groove. it can.
  • FIG. 13 is a cross-sectional view of the refrigerator in the fourth embodiment of the present invention.
  • FIG. 14 is a perspective view of the heat radiating pipe of the refrigerator in the fourth embodiment of the present invention.
  • FIG. 15 is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 4th Embodiment of this invention. The same configuration and the same technical idea as those of the first to third embodiments can be applied to this embodiment.
  • the heat radiating pipe 321 aims to improve heat radiating efficiency, and in order to secure the length, the connecting portion 322 is attached to the left and right of the outer box 302 so It is configured to connect pipes.
  • the refrigerator 301 is provided with a hinge portion (not shown) that pivotally supports the heat insulating door 307 on the front surface of the top surface.
  • a handle portion (not shown) is provided on the backmost surface for handling the refrigerator 301 when it is transported. For this reason, it is difficult to provide a connecting portion on the backmost surface or the frontmost surface of the refrigerator 301.
  • connection part 322 is provided in the substantially center part of the front-back direction of the refrigerator 1 top surface.
  • the heat radiating pipe 321 meanders up and down, and is once bent toward the front of the refrigerator 301 at the upper part of the back surface. Then, it is bent upward at a position substantially in line with the longitudinal straight portion of the meandering heat radiation pipe 321 at the substantially central portion in the front-rear direction of the refrigerator 301 and connected to the connecting portion 322.
  • the vertical grooves 317 and the horizontal grooves 318 are provided in the vacuum heat insulating material 316 so as to cross each other, the vertically extending heat radiating pipe 321 connected to the connecting portion 322 and the vertically extending heat radiating pipe 321 are in the same vertical direction.
  • the groove 317 can be multilayered, and the connection portion 322 can be connected.
  • the vacuum heat insulating material 316 and the heat radiating pipe 321 can be formed in multiple layers without increasing the number of grooves. Therefore, the heat insulation performance deterioration by forming a groove
  • channel in the vacuum heat insulating material 316 can be suppressed, and it can be set as a highly efficient refrigerator with high heat insulation performance.
  • the connecting portion 322 is the top surface of the refrigerator 301.
  • the connecting portion 322 is attached to the back surface of the refrigerator 301 by bending the heat radiating pipe 321 to the back side and bending the heat sink pipe 321 to the back surface side. Even if configured, the same effect can be obtained.
  • FIG. 16 is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 5th Embodiment of this invention.
  • the same configuration and technical idea as those in the first to fourth embodiments can also be applied to this embodiment.
  • the vacuum heat insulating material 323 is provided so that a part of the vertical groove 317 and the horizontal groove 318 intersect in a cross shape. That is, the vertical groove 317 and the horizontal groove 318 are formed only in a portion that is multilayered with the meandering heat radiation pipe 324.
  • the vertical groove 317 and the horizontal groove 318 of the vacuum heat insulating material 323 are processed by a processing method of forming a groove in a free shape such as press processing, and only the position where the heat radiating pipe 324 is multilayered is a groove shape. It has become.
  • the vacuum heat insulating material 323 and the heat radiating pipe 324 can be multilayered without increasing the number of grooves, deterioration of the heat insulating performance due to the formation of grooves in the vacuum heat insulating material 323 can be suppressed, and the heat insulating performance is high. , Can be a highly efficient refrigerator.
  • the heat insulating box constituting the refrigerator has the outer box, the inner box, and the heat radiating pipe attached to the outer box.
  • the heat insulating box includes a vacuum heat insulating material that forms a groove that covers the heat radiating pipe and is attached to the outer box, and a foam heat insulating material that is filled between the outer box and the inner box. And it arrange
  • This configuration improves the coverage of the vacuum heat insulating material and reduces the intrusion heat from the top surface heat radiating pipe, thereby saving energy. Furthermore, the strength of the outer box can be ensured even if the vacuum heat insulating material is expanded and the refrigerator sectional wall is thinned to increase the internal capacity.
  • the groove formed in the vacuum heat insulating material includes a vertical groove and a horizontal groove, the vertical groove and the horizontal groove intersect each other, and the vertical groove and the horizontal groove may be opened at the end of the vacuum heat insulating material.
  • the entire heat-dissipating pipe including the bent part of the heat-dissipating pipe can be covered with the vacuum heat insulating material. . Furthermore, the heat insulation property of the vacuum heat insulating material located outside the bent portion of the heat radiating pipe can be enhanced.
  • the vacuum heat insulating material may be formed in a rectangular shape, the vertical groove may be formed along the longitudinal direction of the vacuum heat insulating material, and the lateral groove may be formed along the short direction of the vacuum heat insulating material.
  • the width of the lateral groove may be wider than the width of the vertical groove.
  • the heat radiating pipe may be disposed below the top surface portion of the inner box and above the bottom surface portion of the inner box.
  • the thickness of the vacuum heat insulating material located outside the bent portion of the heat radiating pipe can be set to a reference wall thickness without a groove, and the heat insulating property of the vacuum heat insulating material periphery can be enhanced.
  • the refrigerator of the present invention can suppress external deformation of the refrigerator, it can be applied to all cooling devices provided with a recess-shaped groove in a vacuum heat insulating material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)

Abstract

A heat-insulated box body (110) forming this refrigerator has an inner box (108), an outer box (107), and heat dissipation pipes attached to the outer box (107). Furthermore, the heat-insulated box body (110) is equipped with: a vacuum insulating material (103) that forms grooves covering the heat dissipation pipes and is attached to the outer box (107); and a foam insulation material (109) filling the interval between the outer box (107) and the inner box (108). The vacuum insulating material (103) is arranged such that the upper end part of the vacuum insulating material (103) extends to higher than the top surface of the inner box (108).

Description

冷蔵庫refrigerator
 本発明は、断熱箱体に真空断熱材を配設した冷蔵庫に関するものである。 The present invention relates to a refrigerator in which a vacuum heat insulating material is disposed in a heat insulating box.
 近年、冷蔵庫の大容量化及び設置スペース縮小の需要が高まっている。そこで、断熱壁を薄肉化した冷蔵庫、さらには、真空断熱材を冷蔵庫断熱壁に配置挿入させた冷蔵庫が開発されている。加えて、省エネルギーのための放熱パイプからの熱干渉抑制を図り、断熱性能の向上を図る冷蔵庫が開発されている(例えば、特許文献1参照)。 In recent years, there is an increasing demand for large refrigerators and reduced installation space. In view of this, a refrigerator having a thin heat insulating wall and a refrigerator in which a vacuum heat insulating material is arranged and inserted in the refrigerator heat insulating wall have been developed. In addition, a refrigerator has been developed that suppresses thermal interference from a heat radiating pipe for energy saving and improves heat insulation performance (see, for example, Patent Document 1).
 以下、図面を参照にしながら従来の冷蔵庫について説明する。 Hereinafter, a conventional refrigerator will be described with reference to the drawings.
 図17は、従来の冷蔵庫を説明する冷蔵庫の要部横断面図である。図17に示すように、従来の冷蔵庫は、外箱31と内箱32間に発泡断熱材41を充填した断熱箱体10と、外箱31の内面側に配される放熱パイプ33を備える。また、従来の冷蔵庫は、芯材14を外被材15で覆って内部が減圧されるとともに放熱パイプ33が嵌められる溝部11を形成した真空断熱パネル13を備える。真空断熱パネル13は、溝部11を形成した面の裏面に、溝部11に対向して凸状に形成されるとともに、溝部11よりも長手方向に垂直な幅が広い凸部12を有する。この構成により、真空断熱パネル13を有する冷蔵庫は断熱性能が向上して省エネルギー化を図ることができる。 FIG. 17 is a cross-sectional view of an essential part of a refrigerator for explaining a conventional refrigerator. As shown in FIG. 17, the conventional refrigerator includes a heat insulating box 10 filled with a foam heat insulating material 41 between an outer box 31 and an inner box 32, and a heat radiating pipe 33 disposed on the inner surface side of the outer box 31. In addition, the conventional refrigerator includes a vacuum heat insulating panel 13 in which the core member 14 is covered with an outer cover material 15 and the inside of the refrigerator is decompressed and the groove portion 11 into which the heat radiating pipe 33 is fitted is formed. The vacuum heat insulation panel 13 has a convex portion 12 formed on the back surface of the surface on which the groove portion 11 is formed so as to be opposed to the groove portion 11 and wider than the groove portion 11 in the longitudinal direction. With this configuration, the refrigerator having the vacuum heat insulation panel 13 has improved heat insulation performance and can save energy.
 しかしながら、上記従来の構成では各々における効果はあるものの、近年の冷蔵庫の大容量化及び設置スペース縮小の需要や、省エネルギーに対するニーズに対しては、不十分であった。 However, although the conventional configurations described above are effective in each case, they are not sufficient for the recent demands for increasing the capacity of the refrigerator, reducing the installation space, and the need for energy saving.
 すなわち、冷蔵庫の大容量化を図るには冷蔵庫断熱壁を薄肉化することや、無効スペースを無くすことが有効である。そのため、冷蔵庫断熱壁の薄肉化には真空断熱材を挿入している。また、無効スペースを無くすために通常冷蔵庫下部に配置される機械室のコンデンサを冷蔵庫側面に貼り付けている放熱パイプで置き換える工夫がなされる。 That is, to increase the capacity of the refrigerator, it is effective to reduce the thickness of the refrigerator heat insulation wall and eliminate the invalid space. For this reason, a vacuum heat insulating material is inserted into the refrigerator heat insulating wall. Further, in order to eliminate the ineffective space, a contrivance is made to replace the condenser in the machine room, which is usually arranged at the lower part of the refrigerator, with a heat radiating pipe attached to the side of the refrigerator.
 このとき、冷蔵庫本体背面及び側面に貼り付けている真空断熱材に凹状の溝を形成することで放熱パイプを覆い、断熱効果の向上と冷蔵庫断面壁の薄肉化を図っている。 At this time, a concave groove is formed in the vacuum heat insulating material affixed to the back and side surfaces of the refrigerator body to cover the heat radiating pipe, thereby improving the heat insulating effect and thinning the refrigerator cross section wall.
 一方、真空断熱材に形成する凹状の溝は直線形状でしか信頼性を保つことができず、冷蔵庫側面の上部や下部における放熱パイプの折り曲げ形状部に対応して、真空断熱材に溝を設けることができないという課題を有していた。 On the other hand, the concave groove formed in the vacuum heat insulating material can be kept reliable only in a linear shape, and the vacuum heat insulating material is provided with a groove corresponding to the bent shape portion of the heat radiating pipe at the upper and lower sides of the refrigerator side. I had the problem that I couldn't.
 そのため、冷蔵庫の上部や下部の放熱パイプの折り曲げ形状部まで真空断熱材を貼り付けることができない。また、庫内容量確保のため壁厚を薄くすると外箱強度が低下したり、箱体侵入熱量が増加したりして、省エネルギーと大容量化の両立が困難という課題を有していた。 Therefore, the vacuum heat insulating material cannot be pasted up to the bent shape part of the heat radiating pipe at the top and bottom of the refrigerator. Further, when the wall thickness is reduced to secure the internal capacity, the outer box strength is reduced and the amount of heat entering the box is increased, which makes it difficult to achieve both energy saving and large capacity.
 本発明は、冷蔵庫断面壁を薄肉化しても強度確保ができ、小スペースで大容量、かつ省エネルギー性能の高い冷蔵庫を提供する。 DETAILED DESCRIPTION OF THE INVENTION The present invention provides a refrigerator that can secure strength even when the refrigerator cross-section wall is thinned, has a small space, a large capacity, and high energy saving performance.
特開2008-64323号公報JP 2008-64323 A
 本発明の冷蔵庫は、冷蔵庫を構成する断熱箱体が外箱と、内箱と、外箱に貼り付けられる放熱パイプとを有する。また、断熱箱体が放熱パイプを覆う溝を形成し外箱に貼り付けられる真空断熱材と、外箱と内箱間に充填される発泡断熱材とを備える。そして、真空断熱材の上端部が内箱の天面部より上方に延出するように真空断熱材を配置する。 In the refrigerator of the present invention, the heat insulation box constituting the refrigerator has an outer box, an inner box, and a heat radiating pipe attached to the outer box. Further, the heat insulating box includes a vacuum heat insulating material that forms a groove that covers the heat radiating pipe and is attached to the outer box, and a foam heat insulating material that is filled between the outer box and the inner box. And a vacuum heat insulating material is arrange | positioned so that the upper end part of a vacuum heat insulating material may be extended upwards from the top | upper surface part of an inner box.
 これによって、断熱箱体における真空断熱材の被覆率が向上し、放熱パイプからの侵入熱を低減することができるとともに、大型化した真空断熱材を断熱箱体に適用することができる。さらに、断熱箱体の強度向上、省エネルギーを図ることができる。 Thereby, the coverage of the vacuum heat insulating material in the heat insulating box can be improved, the intrusion heat from the heat radiating pipe can be reduced, and the enlarged vacuum heat insulating material can be applied to the heat insulating box. Furthermore, it is possible to improve the strength of the heat insulating box and save energy.
図1は、本発明の第1の実施の形態における冷蔵庫の冷蔵庫本体の斜視図である。FIG. 1 is a perspective view of a refrigerator main body of the refrigerator according to the first embodiment of the present invention. 図2は、本発明の第1の実施の形態における冷蔵庫を説明する側面断面図である。FIG. 2 is a side cross-sectional view for explaining the refrigerator in the first embodiment of the present invention. 図3は、本発明の第1の実施の形態における冷蔵庫の側面断面図である。FIG. 3 is a side cross-sectional view of the refrigerator in the first embodiment of the present invention. 図4は、本発明の第1の実施の形態における冷蔵庫を説明する側面断面図である。FIG. 4 is a side cross-sectional view for explaining the refrigerator in the first embodiment of the present invention. 図5は、図4のD部の簡易拡大図である。FIG. 5 is a simplified enlarged view of a portion D in FIG. 図6は、本発明の第1の実施の形態における冷蔵庫に用いる真空断熱材の平面図である。FIG. 6 is a plan view of a vacuum heat insulating material used for the refrigerator in the first embodiment of the present invention. 図7は、図6の7-7線断面図である。7 is a cross-sectional view taken along line 7-7 of FIG. 図8は、図6の8-8線断面図である。8 is a cross-sectional view taken along line 8-8 of FIG. 図9は、図1の9-9線断面図である。9 is a cross-sectional view taken along line 9-9 of FIG. 図10は、本発明の第2の実施の形態における冷蔵庫に用いる真空断熱材の平面図である。FIG. 10 is a plan view of a vacuum heat insulating material used for the refrigerator in the second embodiment of the present invention. 図11は、本発明の第3の実施の形態における冷蔵庫の断面図である。FIG. 11 is a cross-sectional view of the refrigerator in the third embodiment of the present invention. 図12は、本発明の第3の実施の形態における冷蔵庫の真空断熱材と放熱パイプの正面図である。FIG. 12: is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 3rd Embodiment of this invention. 図13は、本発明の第4の実施の形態における冷蔵庫の断面図である。FIG. 13: is sectional drawing of the refrigerator in the 4th Embodiment of this invention. 図14は、本発明の第4の実施の形態における冷蔵庫の放熱パイプの斜視図である。FIG. 14 is a perspective view of the heat radiating pipe of the refrigerator in the fourth embodiment of the present invention. 図15は、本発明の第4の実施の形態における冷蔵庫の真空断熱材と放熱パイプの正面図である。FIG. 15: is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 4th Embodiment of this invention. 図16は、本発明の第5の実施の形態における冷蔵庫の真空断熱材と放熱パイプの正面図である。FIG. 16: is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 5th Embodiment of this invention. 図17は、従来の冷蔵庫の断熱箱体の側壁水平断面図である。FIG. 17 is a horizontal sectional view of a side wall of a heat-insulating box of a conventional refrigerator.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.
 (実施の形態1)
 図1は本発明の第1の実施の形態による冷蔵庫の冷蔵庫本体の斜視図である。図2、図3、図4は本発明の第1の実施の形態における冷蔵庫の側面断面図である。図5は図4のD部簡易拡大図である。図6は本発明の第1の実施の形態における冷蔵庫に用いられる真空断熱材の平面図である。図7は図6の7-7断面図である。図8は図6の8-8断面図である。図9は図1の9-9断面図である。
(Embodiment 1)
FIG. 1 is a perspective view of the refrigerator main body of the refrigerator according to the first embodiment of the present invention. 2, 3 and 4 are side cross-sectional views of the refrigerator according to the first embodiment of the present invention. FIG. 5 is a simplified enlarged view of a portion D in FIG. FIG. 6 is a plan view of a vacuum heat insulating material used in the refrigerator according to the first embodiment of the present invention. 7 is a cross-sectional view taken along line 7-7 of FIG. 8 is a cross-sectional view taken along the line 8-8 in FIG. 9 is a cross-sectional view taken along line 9-9 of FIG.
 図1から図9に示すように、冷蔵庫本体112は、前方に開口する金属製(例えば鉄板)の外箱107と硬質樹脂製(例えばABS)の内箱108を有する。そして、冷蔵庫本体112は、外箱107と内箱108の間に発泡断熱材109が発泡充填されて断熱箱体を構成する。この冷蔵庫本体112の上部には貯蔵室である冷蔵室113が設けられている。冷蔵室113の下には冷凍温度帯から冷蔵、野菜、チルド等の温度帯に切り替え可能な切替室114と、製氷室115が同一高さで設けられている。冷蔵庫本体112の最下部には野菜室116が設けられ、切替室114及び製氷室115と、野菜室116の間には冷凍室117が設けられている。切替室114と製氷室115と野菜室116と冷凍室117の前面部は引き出し式の扉(図示せず)により開閉自由に閉塞される。冷蔵室113の前面は、例えば観音開き式の扉(図示せず)により開閉自由に閉塞される。 1 to 9, the refrigerator main body 112 has a metal (for example, iron plate) outer box 107 and a hard resin (for example, ABS) inner box 108 that open forward. And the refrigerator main body 112 comprises the foam insulation material 109 foam-filled between the outer box 107 and the inner box 108, and comprises a heat insulation box. In the upper part of the refrigerator main body 112, a refrigerator compartment 113 as a storage room is provided. Under the refrigerating chamber 113, a switching chamber 114 that can be switched from a freezing temperature zone to a temperature zone such as refrigeration, vegetables, and chilled, and an ice making chamber 115 are provided at the same height. A vegetable room 116 is provided at the lowermost part of the refrigerator main body 112, and a freezing room 117 is provided between the switching room 114, the ice making room 115, and the vegetable room 116. Front portions of the switching chamber 114, the ice making chamber 115, the vegetable chamber 116, and the freezing chamber 117 are freely opened and closed by a pull-out door (not shown). The front surface of the refrigerator compartment 113 is closed freely by, for example, a double door (not shown).
 冷蔵庫本体112の後部には冷却室130があり、冷気を生成する冷却器118と、冷気を各貯蔵室に供給する冷気送風ファン119とを有する。そして、庫内温度は庫内の温度検知センサー(図示せず)とダンパ等(図示せず)により制御されている。また、冷却器118下方には除霜手段(図示せず)が設置されている。なお、冷却器118の材質は、アルミや銅が用いられる。 There is a cooling chamber 130 at the rear of the refrigerator main body 112, and includes a cooler 118 that generates cool air and a cool air blower fan 119 that supplies the cool air to each storage chamber. The internal temperature is controlled by an internal temperature sensor (not shown), a damper, etc. (not shown). Further, a defrosting means (not shown) is installed below the cooler 118. The material of the cooler 118 is aluminum or copper.
 冷蔵庫本体112の天面奥部には圧縮機120が配置されている。この圧縮機120と、コンデンサ(図示せず)と、放熱用の放熱パイプ111と、キャピラリーチューブ121と、冷却器118とを順次環状に接続し、冷媒を封入して冷凍サイクルを構成している。冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。 A compressor 120 is disposed at the top of the refrigerator main body 112. The compressor 120, a condenser (not shown), a heat radiating pipe 111, a capillary tube 121, and a cooler 118 are sequentially connected in an annular shape, and a refrigerant is enclosed to constitute a refrigeration cycle. . In recent years, a flammable refrigerant is often used as a refrigerant for environmental protection.
 冷蔵庫本体112の背面及び側面には、放熱用の放熱パイプ111が配設されている。放熱パイプ111は、一本のパイプを例えばU字に折り曲げることで放熱長さを確保し、外箱107にアルミテープ等で固定され、貼り付けられている。放熱パイプ111は通常、冷蔵庫本体の外箱各表面に分割されて貼り付けてあり、機械室にて各面のパイプを溶接して接続している。 A heat radiating pipe 111 is disposed on the back and side surfaces of the refrigerator main body 112. The heat radiating pipe 111 secures a heat radiating length by bending one pipe into, for example, a U-shape, and is fixed to the outer box 107 with aluminum tape or the like and attached. The heat radiating pipe 111 is usually divided and attached to each surface of the outer box of the refrigerator main body, and pipes on each surface are welded and connected in the machine room.
 そして、図7、図8に示すように、冷蔵庫側面には配設してある放熱パイプ111(放熱パイプサイド111S、放熱パイプフロント111F)に真空断熱材103が貼り付けてある。真空断熱材103の上端部は、図3に示すように、内箱108の天面部より上方に延出して配置し、下端部は内箱108の底面部より下方に延出して配置されている。真空断熱材103が内箱108から延出している部分は真空断熱材の一部分でも良い。また、真空断熱材103の最上端と最下端のどちらか一方が内箱108の上下端面より延出して配置してもよい。 And as shown in FIG. 7, FIG. 8, the vacuum heat insulating material 103 is affixed on the heat radiating pipe 111 (The heat radiating pipe side 111S, the heat radiating pipe front 111F) arrange | positioned at the refrigerator side surface. As shown in FIG. 3, the upper end portion of the vacuum heat insulating material 103 is disposed to extend upward from the top surface portion of the inner box 108, and the lower end portion is disposed to extend downward from the bottom surface portion of the inner box 108. . The part where the vacuum heat insulating material 103 extends from the inner box 108 may be a part of the vacuum heat insulating material. Further, either one of the uppermost end and the lowermost end of the vacuum heat insulating material 103 may extend from the upper and lower end surfaces of the inner box 108.
 真空断熱材103には、放熱パイプ埋め込み用の溝があり、放熱パイプ埋め込み用の溝は、図6に示すように縦溝104と横溝105とを備える。縦溝104と横溝105とは互いに直行してほぼ90°で交差し、縦溝104と横溝105は少なくとも真空断熱材103の表面において互いに交差する。さらに、真空断熱材103の上下左右の端面まで縦溝104、横溝105を形成し、縦溝104、横溝105は真空断熱材103の端部で開口した構造としている。また、真空断熱材103は矩形状に形成され、縦溝104は真空断熱材103の長手方向に沿って所定間隔をおいて複数形成し、横溝105は真空断熱材103の短手方向に沿って上部および下部に形成している。 The vacuum heat insulating material 103 has a groove for embedding the heat radiating pipe, and the groove for embedding the heat radiating pipe includes a vertical groove 104 and a horizontal groove 105 as shown in FIG. The vertical groove 104 and the horizontal groove 105 are orthogonal to each other and intersect at approximately 90 °, and the vertical groove 104 and the horizontal groove 105 intersect each other at least on the surface of the vacuum heat insulating material 103. Further, the vertical groove 104 and the horizontal groove 105 are formed up to the upper, lower, left and right end surfaces of the vacuum heat insulating material 103, and the vertical groove 104 and the horizontal groove 105 are open at the end of the vacuum heat insulating material 103. Further, the vacuum heat insulating material 103 is formed in a rectangular shape, a plurality of vertical grooves 104 are formed at predetermined intervals along the longitudinal direction of the vacuum heat insulating material 103, and the lateral grooves 105 are formed along the short direction of the vacuum heat insulating material 103. Formed at the top and bottom.
 具体的には、縦溝104の溝幅を4.2mm、溝深さを4.0mmとし、放熱パイプ111の外径を4.0mmよりやや大きく形成している。なお、真空断熱材103は外箱107に接着剤等で固定される。 Specifically, the groove width of the longitudinal groove 104 is 4.2 mm, the groove depth is 4.0 mm, and the outer diameter of the heat radiating pipe 111 is slightly larger than 4.0 mm. The vacuum heat insulating material 103 is fixed to the outer box 107 with an adhesive or the like.
 また、本実施の形態では、縦溝104と横溝105がほぼ直角に交わっており、縦溝104の幅より横溝105の幅の方が広く形成されている。 In the present embodiment, the vertical groove 104 and the horizontal groove 105 intersect at a substantially right angle, and the width of the horizontal groove 105 is wider than the width of the vertical groove 104.
 具体的には、横溝105は天面壁のウレタン充填部より下方の貯蔵室側に位置しており、例えば内箱108の上端部から55mm下方の位置から溝幅70mmで形成されている。 Specifically, the lateral groove 105 is located on the storage chamber side below the urethane filling portion of the top wall, and is formed with a groove width of 70 mm from a position 55 mm below the upper end of the inner box 108, for example.
 また、縦溝104および横溝105はそれぞれ複数本形成され、縦溝104の本数は横溝105の本数より多く形成されている。 Also, a plurality of vertical grooves 104 and horizontal grooves 105 are formed, and the number of vertical grooves 104 is larger than the number of horizontal grooves 105.
 放熱パイプ111は最下段の野菜室116の位置、および最上段の冷蔵室113の位置の冷蔵温度帯で屈曲部127bを配置しており、被覆率が大きくできる真空断熱材を貼り付けている。すなわち、放熱パイプ111は、内箱108の天面部より下方で、かつ内箱108の底面部より上方に配置している。また、本実施の形態では、冷蔵庫背面方向には、冷却室があるため放熱パイプ111は冷却室の前面までの配置としているが、この配置に限定されるものではない。 The heat dissipating pipe 111 is provided with a bent portion 127b in the refrigeration temperature zone at the position of the lowermost vegetable chamber 116 and the position of the uppermost refrigerated chamber 113, and is attached with a vacuum heat insulating material capable of increasing the coverage. That is, the heat radiating pipe 111 is disposed below the top surface portion of the inner box 108 and above the bottom surface portion of the inner box 108. Moreover, in this Embodiment, since there exists a cooling chamber in the refrigerator back direction, the thermal radiation pipe 111 is arrange | positioned to the front surface of a cooling chamber, However, It is not limited to this arrangement | positioning.
 冷蔵室113は冷蔵保存のために凍らない温度を下限に通常1~5℃で設定されている。野菜室116は冷蔵室113と同等もしくは若干高い温度設定の2℃~7℃とすることが多い。低温にすれば葉野菜の鮮度を長期間維持することが可能である。冷凍室117は冷凍保存のために通常-22から-18℃で設定されているが、冷凍保存状態の向上のために、たとえば-30から-25℃の低温で設定されることもある。 The refrigerator compartment 113 is normally set at 1 to 5 ° C. with the lower limit of the temperature at which it does not freeze for refrigerated storage. The vegetable room 116 is often set to 2 ° C. to 7 ° C., which is set to a temperature that is the same as or slightly higher than that of the refrigerator room 113. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time. The freezer compartment 117 is normally set at −22 to −18 ° C. for frozen storage, but may be set at a low temperature of −30 to −25 ° C., for example, to improve the frozen storage state.
 冷蔵室113や野菜室116は庫内がプラス温度で設定されるので、冷蔵温度帯と呼ばれる。また、冷凍室117や製氷室115は庫内がマイナス温度で設定されるので、冷凍温度帯と呼ばれる。 The refrigerator compartment 113 and the vegetable compartment 116 are called refrigeration temperature zones because the interior is set at a plus temperature. The freezer compartment 117 and the ice making compartment 115 are called freezing temperature zones because the interior is set at a minus temperature.
 また、冷蔵庫本体112の側面下部稜線部には強度向上の為の補強部材200が設けられている。補強部材200は外箱107の底面から背面に立ち上がって形成され、補強部材200と外箱107には外気と連通する部品間空間201を備えている。 Further, a reinforcing member 200 for improving the strength is provided on the lower side ridge portion of the side surface of the refrigerator main body 112. The reinforcing member 200 is formed to rise from the bottom surface of the outer box 107 to the back surface, and the reinforcing member 200 and the outer box 107 are provided with an inter-component space 201 that communicates with the outside air.
 また、冷蔵庫本体112の側面には、放熱用の放熱パイプサイド111Sが配設されており、一本のパイプを例えばU字に折り曲げることで放熱長さを確保し、外箱107に貼り付けられている。また、冷蔵庫本体112の前面にも同様に放熱パイプフロント111FがU字に折り曲げられ各貯蔵室の仕切り(図示せず)に配設されている。放熱パイプフロント111Fは各貯蔵室の仕切りを経て機械室126へ接続される。 Further, a heat radiating pipe side 111S for heat radiating is provided on the side surface of the refrigerator main body 112, and a heat radiating length is secured by bending one pipe into, for example, a U-shape, which is attached to the outer box 107. ing. Similarly, a heat radiating pipe front 111F is bent in a U shape on the front surface of the refrigerator main body 112, and is disposed in a partition (not shown) of each storage chamber. The heat radiating pipe front 111F is connected to the machine room 126 through partitions of the storage rooms.
 また、冷蔵庫側面には配設してある放熱パイプサイド111Sに真空断熱材103が貼り付けてある。真空断熱材103には、放熱パイプサイド111Sを設置する縦溝104と横溝105とからなり、縦溝104は真空断熱材103の長手方向(つまり冷蔵庫の上下方向)に沿って真空断熱材103の上下端面部106まで形成された溝であり、複数の縦溝104が互いに平行に形成されている。 Moreover, the vacuum heat insulating material 103 is affixed on the heat radiating pipe side 111S provided on the side of the refrigerator. The vacuum heat insulating material 103 includes a vertical groove 104 and a horizontal groove 105 in which the heat radiating pipe side 111S is installed. The vertical groove 104 extends along the longitudinal direction of the vacuum heat insulating material 103 (that is, the vertical direction of the refrigerator). It is a groove | channel formed to the upper-lower-end surface part 106, and the several vertical groove 104 is mutually formed in parallel.
 横溝105は、真空断熱材103の短手方向(つまり冷蔵庫の前後方向)に沿って延びる凹溝であり、縦溝104の上下方向に1本ずつ配設されている。そして、縦溝104と横溝105は互いに交差するように形成されている。また、下側の横溝105は少なくとも冷蔵庫本体112の底面仕切壁の上端より上部に配置されている。 The horizontal grooves 105 are concave grooves that extend along the short direction of the vacuum heat insulating material 103 (that is, the front-rear direction of the refrigerator), and are arranged one by one in the vertical direction of the vertical groove 104. The vertical groove 104 and the horizontal groove 105 are formed so as to intersect each other. The lower lateral groove 105 is disposed at least above the upper end of the bottom partition wall of the refrigerator main body 112.
 上下の横溝105には、放熱パイプサイド111Sの上下端で屈曲形成された屈曲部127bが配置されている。 In the upper and lower horizontal grooves 105, bent portions 127b that are bent at the upper and lower ends of the heat radiating pipe side 111S are arranged.
 また、上下の横溝105のいずれか一方(本実施の形態では、下側の横溝105)は放熱パイプサイド111Sまたは放熱パイプフロント111Fの少なくとも一方は下側の横溝105の一部である導入溝122に連結されている。 In addition, either one of the upper and lower horizontal grooves 105 (in this embodiment, the lower horizontal groove 105) is the introduction groove 122 in which at least one of the heat radiating pipe side 111S or the heat radiating pipe front 111F is a part of the lower horizontal groove 105. It is connected to.
 そして、放熱パイプフロント111Fは、真空断熱材103の周縁から放熱パイプフロント111Fの導入溝122を通って、横溝105に導入されている。縦溝104には放熱パイプサイド111Sの直線部127aが配置され、横溝105には放熱パイプサイド111Sの屈曲部127bが配置されている。また、横溝105の上部に形成される縦溝104の放熱パイプサイド111Sの出口溝125を通るように配置されることで、上下に蛇行する放熱パイプサイド111Sのほぼ全体が、真空断熱材103の上下端面部106より飛び出ることなく真空断熱材と外箱側板との間に配置されている。 The heat radiating pipe front 111F is introduced into the lateral groove 105 from the peripheral edge of the vacuum heat insulating material 103 through the introduction groove 122 of the heat radiating pipe front 111F. A straight portion 127a of the heat radiating pipe side 111S is disposed in the vertical groove 104, and a bent portion 127b of the heat radiating pipe side 111S is disposed in the horizontal groove 105. Further, since the vertical groove 104 formed in the upper part of the horizontal groove 105 is disposed so as to pass through the outlet groove 125 of the heat radiating pipe side 111S, almost the entire heat radiating pipe side 111S meandering up and down is made of the vacuum heat insulating material 103. It arrange | positions between a vacuum heat insulating material and an outer case side board, without jumping out from the upper-lower-end surface part 106. FIG.
 さらに、横溝105には外箱107と放熱パイプサイド111Sとの間に形成された空間部123と外気とを連通する連通部材124の一端が配置されている。連通部材124の他端は、外箱107の底面から背面に立ち上がって形成された補強部材200に形成された連通部材124の外径より大きな内径の穴へ配置される。補強部材200と外箱107の部品間に構成された部品間空間201は外気と連通し、横溝105の内部の空気を放出させている。 Furthermore, one end of a communication member 124 that communicates the space 123 formed between the outer box 107 and the heat radiating pipe side 111S and the outside air is disposed in the lateral groove 105. The other end of the communication member 124 is disposed in a hole having an inner diameter larger than the outer diameter of the communication member 124 formed in the reinforcing member 200 formed to rise from the bottom surface of the outer box 107 to the back surface. An inter-component space 201 formed between the components of the reinforcing member 200 and the outer box 107 communicates with the outside air and discharges the air inside the lateral groove 105.
 すなわち、本実施の形態における冷蔵庫を構成する連通部材124は、横溝105に沿ってほぼ直線的に外気と連通する構成としている。この構成は、連通部材124を真空断熱材103の横溝105で位置決めし、補強部材200を利用して連通部材124の端部を固定することにより実現している。 That is, the communication member 124 constituting the refrigerator in the present embodiment is configured to communicate with the outside air substantially linearly along the lateral groove 105. This configuration is realized by positioning the communication member 124 with the lateral groove 105 of the vacuum heat insulating material 103 and fixing the end of the communication member 124 using the reinforcing member 200.
 次に冷蔵庫の冷却について説明する。庫内温度が上昇して冷凍室センサ(図示せず)が起動温度以上になった場合に、圧縮機120が起動し冷却が開始される。圧縮機120から吐出された高温高圧の冷媒は、最終的に機械室126に配置されたドライヤ(図示せず)まで到達する。その間、特に外箱107に設置される放熱パイプサイド111Sにおいて、外箱107の外側の空気や庫内の発泡断熱材109との熱交換をすることにより、冷媒は冷却されて液化する。 Next, the cooling of the refrigerator will be described. When the internal temperature rises and a freezer compartment sensor (not shown) reaches or exceeds the starting temperature, the compressor 120 is started and cooling is started. The high-temperature and high-pressure refrigerant discharged from the compressor 120 finally reaches a dryer (not shown) disposed in the machine chamber 126. In the meantime, particularly in the heat radiating pipe side 111S installed in the outer box 107, the refrigerant is cooled and liquefied by exchanging heat with the air outside the outer box 107 and the foam heat insulating material 109 in the warehouse.
 次に液化した冷媒はキャピラリーチューブ121で減圧されて、冷却器118に流入し冷却器118周辺の庫内空気と熱交換する。熱交換された冷気は、近傍の冷気送風ファン119により庫内に冷気が送風され庫内を冷却する。この後、冷媒は加熱されガス化して圧縮機120に戻る。庫内が冷却されて冷凍室センサ(図示せず)の温度が停止温度以下になった場合に圧縮機120の運転が停止する。 Next, the liquefied refrigerant is depressurized by the capillary tube 121, flows into the cooler 118, and exchanges heat with the internal air around the cooler 118. The cold air that has been heat-exchanged is blown into the cabinet by a nearby cool air blower fan 119 to cool the inside of the cabinet. Thereafter, the refrigerant is heated and gasified, and returns to the compressor 120. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 120 is stopped.
 以上のように構成された冷蔵庫及び冷蔵庫に取り付けられる真空断熱材において、以下その作用について説明する。 The operation of the refrigerator constructed as described above and the vacuum heat insulating material attached to the refrigerator will be described below.
 本実施の形態のように、野菜室116が下方に設置され、冷蔵室113が上方に設置された冷蔵庫のレイアウト構成が使い勝手の観点からよく用いられている。また、圧縮機を天面奥部に配設した構成の冷蔵庫も、使い勝手の観点と庫内容量向上の点から用いられる。 As in this embodiment, a layout configuration of a refrigerator in which the vegetable compartment 116 is installed downward and the refrigerator compartment 113 is installed upward is often used from the viewpoint of usability. Moreover, the refrigerator of the structure which has arrange | positioned the compressor in the top | upper surface back part is also used from the point of a user-friendliness point and the point of the improvement of storage capacity.
 そして、従来、真空断熱材は、放熱パイプ埋め込み用の溝を直線以外の曲げ形状で作成することは困難であるため、放熱パイプの折り曲げ部近傍までしか真空断熱材を貼り付けることができなかった。しかし、本実施の形態では、真空断熱材103に形成した溝は、縦溝104と横溝105とを備え、縦溝104と横溝105とは互いに交差し、縦溝104と横溝105は真空断熱材103の端部で開口したものである。直線部127aと屈曲部127bとで折り返し形成した放熱パイプ111は、直線部127aを縦溝104に、屈曲部127bを横溝105に配置する。この構成により、放熱パイプ111の屈曲部127bを含めて放熱パイプ111全体を真空断熱材103で覆うことができる。 And conventionally, since it is difficult to make a groove for embedding a heat radiating pipe with a bent shape other than a straight line, the vacuum heat insulating material can only be attached to the vicinity of the bent portion of the heat radiating pipe. . However, in the present embodiment, the groove formed in the vacuum heat insulating material 103 includes the vertical groove 104 and the horizontal groove 105, the vertical groove 104 and the horizontal groove 105 intersect each other, and the vertical groove 104 and the horizontal groove 105 are the vacuum heat insulating material. 103 is opened at the end. In the heat radiating pipe 111 formed by folding back between the straight portion 127a and the bent portion 127b, the straight portion 127a is arranged in the vertical groove 104 and the bent portion 127b is arranged in the horizontal groove 105. With this configuration, the entire heat radiating pipe 111 including the bent portion 127 b of the heat radiating pipe 111 can be covered with the vacuum heat insulating material 103.
 そして、真空断熱材103の上端部は内箱108の天面部より上方に延出して配置し、下端部は内箱108の底面部より下方に延出して配置することができる。この構成により、真空断熱材103の被覆率が向上し、外部あるいは放熱パイプ111から庫内への侵入熱を低減でき、省エネルギーを図ることができる。 The upper end portion of the vacuum heat insulating material 103 can be disposed to extend upward from the top surface portion of the inner box 108, and the lower end portion can be disposed to extend downward from the bottom surface portion of the inner box 108. With this configuration, the coverage of the vacuum heat insulating material 103 is improved, and heat entering from the outside or the heat radiating pipe 111 into the cabinet can be reduced, thereby saving energy.
 さらに、発泡断熱材109より曲げ弾性強度の高い真空断熱材103の、外箱107に対する被覆率が向上することで、断熱箱体の強度も高めることができる。そのため、冷蔵庫本体112に荷重が掛かった場合でも、断熱箱体の変形を低減することができる。外形寸法を変えずに市場ニーズの高い大容量を実現するためには、壁厚の薄肉化が必須となるが、上記本実施の形態の構成であれば、その際の外箱の強度を確保することが可能となる。 Furthermore, the strength of the heat insulating box can be increased by improving the coverage of the vacuum heat insulating material 103 having higher bending elastic strength than the foam heat insulating material 109 to the outer box 107. Therefore, even when a load is applied to the refrigerator main body 112, deformation of the heat insulating box can be reduced. In order to realize a large capacity with high market needs without changing the external dimensions, it is essential to reduce the wall thickness. However, with the configuration of the present embodiment, the strength of the outer box at that time is ensured. It becomes possible to do.
 また、本実施の形態では、真空断熱材103に形成した縦溝104と横溝105とは互いに交差し、縦溝104と横溝105は真空断熱材103の端部で開口した構成としている。この構成により、真空断熱材103の上下方向における放熱パイプ111の屈曲部127bの外側に位置する真空断熱材103の厚みを溝の無い基準壁厚とすることができる。そのため、外周縁端面を溝として外側端面を開口した真空断熱材に比べて本実施の形態に用いる真空断熱材103の周縁の断熱性を高めることができる。 In this embodiment, the vertical groove 104 and the horizontal groove 105 formed in the vacuum heat insulating material 103 intersect with each other, and the vertical groove 104 and the horizontal groove 105 are open at the end of the vacuum heat insulating material 103. With this configuration, the thickness of the vacuum heat insulating material 103 positioned outside the bent portion 127b of the heat radiating pipe 111 in the vertical direction of the vacuum heat insulating material 103 can be set to a reference wall thickness without a groove. Therefore, the heat insulating property of the peripheral edge of the vacuum heat insulating material 103 used in the present embodiment can be improved as compared with the vacuum heat insulating material having the outer peripheral end surface as a groove and the outer end surface opened.
 さらに、外周縁端面を溝として外側端面を開口した真空断熱材の場合は、外周縁端面全体の壁厚が溝の無い基準壁厚より薄くなる。そのため、薄くなった部分の曲げ弾性強度が低くなったり、真空断熱材のソリが発生しやすくなったりする。本実施の形態の真空断熱材103では、外周縁の大半は溝の無い部分の基準壁厚とすることができ、曲げ弾性強度の低減抑制、真空断熱材のソリの発生を防止することができる。したがって、真空断熱材103の外箱107からの剥がれを防止でき、外箱107の変形防止、断熱箱体の構造強度確保が可能となる。 Furthermore, in the case of a vacuum heat insulating material having an outer peripheral end face as a groove and an outer end face opened, the wall thickness of the entire outer peripheral end face becomes thinner than the reference wall thickness without the groove. For this reason, the bending elastic strength of the thinned portion is lowered, and warpage of the vacuum heat insulating material is likely to occur. In the vacuum heat insulating material 103 of the present embodiment, most of the outer peripheral edge can be set to the reference wall thickness of a portion without a groove, and the bending elastic strength can be suppressed from being reduced, and the warpage of the vacuum heat insulating material can be prevented. . Therefore, peeling of the vacuum heat insulating material 103 from the outer box 107 can be prevented, the deformation of the outer box 107 can be prevented, and the structural strength of the heat insulating box can be ensured.
 また、本実施の形態では、真空断熱材103に形成した縦溝104と横溝105とは互いに交差し、縦溝104と横溝105は真空断熱材103の端部で開口した構成としている。この構成により、断熱箱体の一面の外箱107に貼り付けられる、直線部127aと屈曲部127bとで折り返し形成した放熱パイプ111の入口部と出口部の他の面との繋ぎ配管の設計自由度を高めることができる。 In this embodiment, the vertical groove 104 and the horizontal groove 105 formed in the vacuum heat insulating material 103 intersect with each other, and the vertical groove 104 and the horizontal groove 105 are open at the end of the vacuum heat insulating material 103. With this configuration, the design freedom of the connecting pipe between the inlet portion of the heat radiating pipe 111 formed on the straight portion 127a and the bent portion 127b and the other surface of the outlet portion, which is affixed to the outer box 107 on one surface of the heat insulating box, is possible. The degree can be increased.
 例えば、冷蔵庫本体112の右側面と左側面で放熱パイプ111の配管設計が異なっても、縦溝104と横溝105の開口端部を利用して対応すれば良い。そのため、ひとつの真空断熱材103が種々の配管設計に対応できるので、真空断熱材103の兼用化も可能となる。さらに、真空断熱材103の長手方向に沿って形成した縦溝104を複数形成することにより、放熱パイプ111の直線部127aのピッチが異なる機種でも対応でき、真空断熱材103の兼用化が更に広がる。 For example, even if the piping design of the heat radiating pipe 111 is different between the right side surface and the left side surface of the refrigerator main body 112, it may be dealt with by using the open end portions of the vertical groove 104 and the horizontal groove 105. Therefore, since one vacuum heat insulating material 103 can respond to various piping designs, the vacuum heat insulating material 103 can be shared. Furthermore, by forming a plurality of vertical grooves 104 formed along the longitudinal direction of the vacuum heat insulating material 103, it is possible to cope with models with different pitches of the linear portion 127a of the heat radiating pipe 111, and the dual use of the vacuum heat insulating material 103 is further expanded. .
 また、縦溝104と横溝105を真空断熱材103に形成する方法としては、真空断熱材103を均等な厚みに成形したあとで、プレス、あるいはローラで移動させながら縦溝104と横溝105を形成する方法が考えられる。そして、縦溝104と横溝105は真空断熱材103の端部で開口した構成とする場合、比較的製造工程が安価で変更が容易なローラを選定することができる。 As a method of forming the vertical groove 104 and the horizontal groove 105 in the vacuum heat insulating material 103, after forming the vacuum heat insulating material 103 to an equal thickness, the vertical groove 104 and the horizontal groove 105 are formed while being moved by a press or a roller. A way to do this is conceivable. When the vertical groove 104 and the horizontal groove 105 are configured to open at the end of the vacuum heat insulating material 103, it is possible to select a roller that is relatively inexpensive to manufacture and can be easily changed.
 また、真空断熱材103の短手方向に沿って形成した横溝105の溝幅は、真空断熱材103の長手方向に沿って形成した縦溝104の溝幅より広く形成している。この構成により、放熱パイプ111の屈曲部127bを大きく設計しても確実に横溝105に収納することができる。さらに屈曲部127bの曲げRを大きく設定することで、放熱パイプ111の曲げ工程における不具合の発生も低減でき、冷却システム設計の信頼性も向上する。 Further, the groove width of the lateral groove 105 formed along the short direction of the vacuum heat insulating material 103 is formed wider than the groove width of the vertical groove 104 formed along the longitudinal direction of the vacuum heat insulating material 103. With this configuration, even if the bent portion 127b of the heat radiating pipe 111 is designed to be large, it can be securely stored in the lateral groove 105. Furthermore, by setting the bend R of the bent portion 127b to be large, it is possible to reduce the occurrence of problems in the bending process of the heat radiating pipe 111 and to improve the reliability of the cooling system design.
 また、横溝105には、放熱パイプ111の屈曲部127bだけでなく、放熱パイプ111の入口部と出口部の他の面との繋ぎ配管も配置することができ、真空断熱材103に対する放熱パイプ111の配管集約率を高めることができる。なお、本実施の形態では横溝105に配設する放熱パイプ111は2本としたが、2本に限定されるものではなく、横溝105が縦溝104より広く形成したことにより、放熱パイプ111を3本以上埋設してもよい。 Further, in the lateral groove 105, not only the bent portion 127b of the heat radiating pipe 111 but also a connecting pipe between the inlet portion and the other surface of the heat radiating pipe 111 can be arranged. The pipe concentration rate can be increased. In this embodiment, the number of the heat radiating pipes 111 disposed in the horizontal groove 105 is two. However, the number of the heat radiating pipes 111 is not limited to two. Three or more may be embedded.
 また、冷蔵庫本体112の側面に貼り付けている放熱パイプ111の屈曲部127bを野菜室116および冷蔵室113に対応して配置する。この構成により、放熱パイプ111の屈曲部127bの外側に位置する真空断熱材103の厚みを溝の無い基準壁厚とすることができ、真空断熱材周縁の断熱性を高めることができる。 Also, the bent portion 127b of the heat radiating pipe 111 attached to the side surface of the refrigerator main body 112 is disposed corresponding to the vegetable compartment 116 and the refrigerator compartment 113. With this configuration, the thickness of the vacuum heat insulating material 103 positioned outside the bent portion 127b of the heat radiating pipe 111 can be set to a reference wall thickness without a groove, and the heat insulating property at the periphery of the vacuum heat insulating material can be enhanced.
 また、最下段の野菜室116の下部まで真空断熱材103を貼り付けることが可能なため、冷蔵庫全体の重心を低くすることができ、転倒防止を図ることができる。さらに冷凍室117の内箱108の底面の外側に真空断熱材103を貼り付けると更に野菜室116への侵入熱の低減となり省エネルギーを図ることができる。 Moreover, since the vacuum heat insulating material 103 can be attached to the lower part of the lowermost vegetable room 116, the center of gravity of the entire refrigerator can be lowered, and the fall can be prevented. Furthermore, if the vacuum heat insulating material 103 is affixed to the outside of the bottom surface of the inner box 108 of the freezer compartment 117, the heat entering the vegetable compartment 116 is further reduced, and energy saving can be achieved.
 以上のように、本実施の形態における冷蔵庫は、直線部127aと屈曲部127bとで折り返し形成した放熱パイプ111の直線部を縦溝104に、屈曲部127bを横溝105に配置する。この構成により、放熱パイプ111の屈曲部127bを含めて放熱パイプ111の全体を真空断熱材103で覆うことができ、真空断熱材103の被覆率が向上する。そのため、外部あるいは放熱パイプ111から庫内への侵入熱を低減でき、省エネルギーを図ることができる。 As described above, in the refrigerator according to the present embodiment, the straight portion of the heat radiating pipe 111 formed by folding the straight portion 127a and the bent portion 127b is arranged in the vertical groove 104, and the bent portion 127b is arranged in the horizontal groove 105. With this configuration, the entire heat radiation pipe 111 including the bent portion 127b of the heat radiation pipe 111 can be covered with the vacuum heat insulating material 103, and the coverage of the vacuum heat insulating material 103 is improved. For this reason, heat entering from the outside or the heat radiating pipe 111 into the cabinet can be reduced, and energy saving can be achieved.
 さらに、発泡断熱材109より曲げ弾性強度の高い真空断熱材103の外箱107に対する被覆率が向上することで、断熱箱体110の強度も高めることができる。そのため、冷蔵庫本体112に荷重が掛かった場合でも、断熱箱体110の変形を低減することができる。 Furthermore, the strength of the heat insulating box 110 can be increased by improving the coverage of the vacuum heat insulating material 103 having a higher bending elastic strength than the foam heat insulating material 109 to the outer box 107. Therefore, even when a load is applied to the refrigerator main body 112, deformation of the heat insulating box 110 can be reduced.
 また、本実施の形態では、真空断熱材103上下端面部106に凹部形状で外箱107の前面から背面に横断する横溝105を設けている。このことにより、放熱パイプ111を横溝105で三方から覆う事が可能となり、断熱性能を向上することができる。 Further, in the present embodiment, the upper and lower end surface portion 106 of the vacuum heat insulating material 103 is provided with a lateral groove 105 that crosses from the front surface to the back surface of the outer box 107 in a concave shape. As a result, the heat radiating pipe 111 can be covered with the lateral groove 105 from three directions, and the heat insulation performance can be improved.
 また、真空断熱材103を貼り付け被覆率を大きく取るためには、侵入熱を低減するため冷蔵庫断面壁を厚くしなければならず、庫内容量を低下させねばならなかった。しかし、冷蔵庫側面の放熱パイプサイド111Sまたは放熱パイプフロント111Fの屈曲部127bに横溝105を形成したことによりに真空断熱材103の上下端面部106を内箱108端部より延出することが可能となった。そして、被覆率を高くして貼り付けることができ更に、横溝105の幅が縦溝104の幅よりも広く形成されている。このことにより、放熱パイプサイド111Sの折り曲げ径を大きく設計することが可能となり、放熱パイプサイド111Sの信頼性確保が可能となる。 Also, in order to attach the vacuum heat insulating material 103 and increase the coverage, the refrigerator cross-section wall had to be thickened to reduce the intrusion heat, and the internal capacity had to be reduced. However, the upper and lower end surface portions 106 of the vacuum heat insulating material 103 can be extended from the end portion of the inner box 108 by forming the lateral grooves 105 in the bent portion 127b of the heat radiating pipe side 111S or the heat radiating pipe front 111F on the side surface of the refrigerator. became. Further, it can be applied with a high coverage, and the width of the lateral groove 105 is wider than the width of the vertical groove 104. This makes it possible to design a large bent diameter of the heat radiating pipe side 111S, and to ensure the reliability of the heat radiating pipe side 111S.
 以上のように、本実施の形態においては、真空断熱材103の表面に長手方向に形成した溝を有する縦溝104と短手方向に形成した溝を有する横溝105を真空断熱材103の上下端面部106まで形成した。そして、縦溝104と横溝105は、少なくとも板状の表面において互いに交差するように形成し、放熱パイプサイド111Sの庫内側に真空断熱材103を設けた。この構成により、放熱パイプサイド111Sを突出させることなく、放熱パイプサイド111Sの折り返し部分を真空断熱材103内に配設することができ、さらなる断熱性能を向上させることができる。 As described above, in the present embodiment, the upper and lower end surfaces of the vacuum heat insulating material 103 include the vertical groove 104 having a groove formed in the longitudinal direction on the surface of the vacuum heat insulating material 103 and the horizontal groove 105 having a groove formed in the short direction. Part 106 was formed. And the vertical groove 104 and the horizontal groove 105 were formed so that it might mutually cross | intersect at least on the plate-shaped surface, and the vacuum heat insulating material 103 was provided inside the warehouse of the heat radiating pipe side 111S. With this configuration, the folded portion of the heat radiating pipe side 111S can be disposed in the vacuum heat insulating material 103 without causing the heat radiating pipe side 111S to protrude, and further heat insulating performance can be improved.
 さらに、真空断熱材103の上下端面部106まで基準壁厚で形成されていることにより、真空断熱材103の上下端面部106の強度が向上する。そのため、真空断熱材103のそり、変形も最小となり、冷蔵庫本体112への真空断熱材103の貼り付けが容易で工数削減が可能となる。 Furthermore, since the upper and lower end surface portions 106 of the vacuum heat insulating material 103 are formed with the reference wall thickness, the strength of the upper and lower end surface portions 106 of the vacuum heat insulating material 103 is improved. Therefore, warpage and deformation of the vacuum heat insulating material 103 are minimized, and it is easy to attach the vacuum heat insulating material 103 to the refrigerator main body 112, and man-hours can be reduced.
 また、横溝105と上下端面部106の間には外箱107との貼り付け用糊面を設けることにより、発泡断熱材109を充填する際の流入を防ぐことが可能となり、発泡断熱材109の発泡圧力での外観変形を防ぐことが可能となる。 Further, by providing a paste surface for pasting with the outer box 107 between the lateral groove 105 and the upper and lower end surface portions 106, it becomes possible to prevent the inflow when the foam heat insulating material 109 is filled. It is possible to prevent external deformation due to foaming pressure.
 また、真空断熱材103が矩形状に形成され、縦溝104を横溝105より多く設けたことにより、冷蔵庫本体112の要求性能に応じて容易に放熱パイプサイド111Sの長さを設定することが可能となる。 Further, since the vacuum heat insulating material 103 is formed in a rectangular shape and the vertical grooves 104 are provided more than the horizontal grooves 105, the length of the heat radiating pipe side 111S can be easily set according to the required performance of the refrigerator main body 112. It becomes.
 また、真空断熱材103が矩形状に形成され、横溝105の溝の幅を縦溝104の幅より広くしたことにより、埋没させる放熱パイプサイド111Sの曲げ径を大きく設計することが可能となる。そのため、放熱パイプサイド111S若しくは放熱パイプフロント111Fの信頼性確保が可能となる。 Further, since the vacuum heat insulating material 103 is formed in a rectangular shape and the width of the lateral groove 105 is made wider than the width of the vertical groove 104, it is possible to design a large bending diameter of the radiating pipe side 111S to be buried. Therefore, it is possible to ensure the reliability of the heat radiating pipe side 111S or the heat radiating pipe front 111F.
 また、真空断熱材103の縦溝104、横溝105と、外箱107と、放熱パイプサイド111Sまたは放熱パイプフロント111Fとの間に空間部123を形成する。そして、その空間部123と外気とを連通する連通部材124の一端を横溝105に備えた。このことにより、縦溝104、横溝105の空気を密閉せずに外気と容易に通気することができ、周囲の温度変化等による圧力変化を抑制し、外箱107の外観変形を抑制することが可能となる。 Further, a space portion 123 is formed between the vertical groove 104 and the horizontal groove 105 of the vacuum heat insulating material 103, the outer box 107, and the heat radiating pipe side 111S or the heat radiating pipe front 111F. Then, one end of a communication member 124 that communicates the space 123 with the outside air is provided in the lateral groove 105. As a result, the air in the vertical groove 104 and the horizontal groove 105 can be easily ventilated with the outside air without being sealed, the pressure change due to the ambient temperature change or the like can be suppressed, and the external deformation of the outer box 107 can be suppressed. It becomes possible.
 そのうえ、縦溝104より溝幅の大きい、すなわち流路抵抗の小さい横溝105に連通部材124を設けることで、複数の縦溝104に滞留している空気が横溝105側に短時間で流通することになる。さらに、縦溝104だけでなく横溝105にも放熱パイプサイド111S若しくは放熱パイプフロント111Fの少なくとも一方の配置が可能となるため、溝内空気の温度自体も高くなる。そのため、溝内に滞留している空気をより容易に流通することが可能となり、スムーズな滞留空気の排出を実現する。 In addition, by providing the communication member 124 in the horizontal groove 105 having a groove width larger than that of the vertical groove 104, that is, having a small flow resistance, air staying in the plurality of vertical grooves 104 can flow to the horizontal groove 105 side in a short time. become. Further, since at least one of the heat radiating pipe side 111S and the heat radiating pipe front 111F can be arranged not only in the vertical groove 104 but also in the horizontal groove 105, the temperature of the air in the groove itself is also increased. Therefore, the air staying in the groove can be circulated more easily, and the smooth stay air can be discharged.
 さらに、真空断熱材103の横溝105に備えられた連通部材124を補強部材200の穴へ挿入したことにより、横溝105内空気を外箱107と補強部材200に設けられた部品間空間201を通り、外気へ空気を排出する事ができる。そのため、部品点数も少なくかつ連結部材の形状を簡素化することが可能となる。例えば、ストレート形状で、材料を樹脂とし、押し出し成型加工を可能とすることで、材料費の抑制を図ることができる。 Furthermore, by inserting the communication member 124 provided in the horizontal groove 105 of the vacuum heat insulating material 103 into the hole of the reinforcing member 200, the air in the horizontal groove 105 passes through the space 201 between the parts provided in the outer box 107 and the reinforcing member 200. The air can be discharged to the outside air. Therefore, the number of parts is small and the shape of the connecting member can be simplified. For example, the material cost can be reduced by using a straight shape, using a resin as a material, and enabling extrusion molding.
 また、断熱箱体110の外箱107と内箱108との間に充填する発泡断熱材109は、充填性を高めるために、断熱箱体110の前面開口部を底面に向けて断熱箱体110の背面に備えた開口部から下方に向けて発泡断熱材109の材料を注入する。そして、下方(前面開口部側)から徐々に上方(断熱箱体110の背面側)に向けて発泡断熱材109が発泡充填される方法がとられる。本実施の形態では、真空断熱材103の横溝105に沿って連通部材124の一端を配置し、他端を断熱箱体110の背面側の外気に連通している。そのため、発泡断熱材109が発泡充填される方向と同方向に連通部材124を介して空気が抜けることになり、発泡充填時の溝内の空気抜きの効率向上を図ることができる。 In addition, the foam heat insulating material 109 filled between the outer box 107 and the inner box 108 of the heat insulating box 110 has the front opening portion of the heat insulating box 110 facing the bottom surface in order to improve the filling property. The material of the foam heat insulating material 109 is injected downward from an opening provided on the back surface of the foam. Then, a method is employed in which the foam heat insulating material 109 is foam-filled from the lower side (front opening side) toward the upper side (back side of the heat insulating box 110) gradually. In the present embodiment, one end of the communication member 124 is disposed along the lateral groove 105 of the vacuum heat insulating material 103, and the other end communicates with the outside air on the back side of the heat insulating box 110. For this reason, air escapes through the communication member 124 in the same direction as the foam insulation material 109 is foam-filled, and the efficiency of air venting in the groove at the time of foam-filling can be improved.
 (第2の実施の形態)
 図10は本発明の第2の実施の形態による冷蔵庫に用いられる真空断熱材の平面図である。なお、第1の実施の形態と同一構成、同一技術思想については本実施の形態でも適用可能である。
(Second Embodiment)
FIG. 10 is a plan view of a vacuum heat insulating material used in the refrigerator according to the second embodiment of the present invention. The same configuration and the same technical idea as those of the first embodiment can also be applied to this embodiment.
 冷蔵庫側面には配設してある放熱パイプサイド111Sに真空断熱材103が貼り付けてある。真空断熱材103には、放熱パイプサイド111Sを設置する縦溝104と横溝105が形成されている。縦溝104は真空断熱材103の長手方向(つまり冷蔵庫の上下方向)に沿って真空断熱材103の上下端面部106まで形成された溝であり、複数の縦溝104が互いに平行に配設されている。 The vacuum heat insulating material 103 is affixed on the heat radiating pipe side 111S provided on the refrigerator side. The vacuum heat insulating material 103 is formed with a vertical groove 104 and a horizontal groove 105 for installing the heat radiating pipe side 111S. The vertical groove 104 is a groove formed to the upper and lower end surface portions 106 of the vacuum heat insulating material 103 along the longitudinal direction of the vacuum heat insulating material 103 (that is, the vertical direction of the refrigerator), and a plurality of vertical grooves 104 are arranged in parallel to each other. ing.
 横溝105は、真空断熱材103の短手方向(つまり冷蔵庫の前後方向)に沿って延び、端面には糊面がない。また、横溝105は、縦溝104の上下に1本ずつ配設されており、横溝105と縦溝104は、互いに交差するように形成されている。また、下方に形勢された横溝105は少なくとも図3に示した冷蔵庫本体112の底面仕切壁の上端より下部に配置されている。 The lateral groove 105 extends along the short side direction of the vacuum heat insulating material 103 (that is, the front-rear direction of the refrigerator), and has no glue surface on the end surface. Further, one horizontal groove 105 is provided above and below the vertical groove 104, and the horizontal groove 105 and the vertical groove 104 are formed so as to intersect each other. Further, the horizontal groove 105 formed downward is disposed at least below the upper end of the bottom partition wall of the refrigerator main body 112 shown in FIG.
 上下の横溝105には、放熱パイプサイド111Sの上下端で屈曲形成された屈曲部127bが配置されている。 In the upper and lower horizontal grooves 105, bent portions 127b that are bent at the upper and lower ends of the heat radiating pipe side 111S are arranged.
 また、放熱パイプサイド111Sまたは放熱パイプフロント111Fの少なくとも一方は下側の横溝105に連結されている。 Also, at least one of the heat radiating pipe side 111S or the heat radiating pipe front 111F is connected to the lower lateral groove 105.
 そして、放熱パイプフロント111Fは、真空断熱材103の周縁から下側の横溝105の放熱パイプサイド111Sの下側に導入されている。放熱パイプサイド111Sは、縦溝104に直線部127aが配置され、横溝105に屈曲部127bが配置されている。そして、放熱パイプサイド111Sの上端部は、上側の横溝105の上部に形成された縦溝104の放熱パイプサイド111Sの出口溝を通るように配置されている。この構成により、上下に蛇行する放熱パイプサイド111Sのほぼ全体が、真空断熱材103の上下端面部106より飛び出ることなく真空断熱材と外箱側板との間に配置される。 The heat radiating pipe front 111F is introduced from the periphery of the vacuum heat insulating material 103 to the lower side of the heat radiating pipe side 111S of the lower lateral groove 105. In the heat radiating pipe side 111 </ b> S, the straight portion 127 a is arranged in the vertical groove 104, and the bent portion 127 b is arranged in the horizontal groove 105. And the upper end part of the heat radiating pipe side 111S is arrange | positioned so that the exit groove | channel of the heat radiating pipe side 111S of the vertical groove 104 formed in the upper part of the upper horizontal groove 105 may be passed. With this configuration, almost the entire heat radiating pipe side 111 </ b> S meandering up and down is disposed between the vacuum heat insulating material and the outer box side plate without jumping out from the upper and lower end surface portions 106 of the vacuum heat insulating material 103.
 さらに、本実施の形態は、第1の実施の形態と同様に図7に示すように、横溝105に外箱107と放熱パイプサイド111Sとの間に形成された空間部123と外気とを連通する連通部材124が配置されており、外箱107の外気と連通する空間から横溝105内の空気を放出させている。 Further, in the present embodiment, as shown in FIG. 7, the space 123 formed between the outer box 107 and the heat radiating pipe side 111S is communicated with the outside air in the lateral groove 105 as in the first embodiment. The communicating member 124 is disposed, and the air in the lateral groove 105 is released from the space communicating with the outside air of the outer box 107.
 連通部材124は、横溝105と平行な部分と折れ曲がって立ち上がった部分とから構成されて外気と連通する構造としている。外箱107と内箱108との間に発泡断熱材109を充填する際に発泡圧力による変形を防止するために発泡冶具を用いる。連通部材124の折れ曲がって立ち上がった部分は、外箱に固定された放熱パイプ111や連通部材124が発泡冶具の邪魔にならないように、逃がしのために形成したものである。これにより、断熱箱体110に発泡断熱材109を充填した後に、放熱パイプ111や連通部材124を引っ張り出して所定の位置に配置するための自由度を持たせることができる。 The communication member 124 includes a portion parallel to the lateral groove 105 and a bent and raised portion, and has a structure communicating with the outside air. A foaming jig is used to prevent deformation due to foaming pressure when the foam insulation material 109 is filled between the outer box 107 and the inner box 108. The portion of the communication member 124 that is bent and rises is formed for escape so that the heat radiating pipe 111 and the communication member 124 fixed to the outer box do not interfere with the foaming jig. Thereby, after filling the heat insulating box body 110 with the foam heat insulating material 109, the heat radiation pipe 111 and the communication member 124 can be pulled out and provided with a degree of freedom to be arranged at a predetermined position.
 このように、真空断熱材103の短手方向(つまり冷蔵庫の前後方向)に沿って延び、端面に糊面のない横溝105としたことにより、放熱パイプ111や連通部材124における引っ張り出し等の自由度を持たせることが可能となる。 As described above, the lateral heat insulation pipe 111 and the communication member 124 can be freely pulled out by forming the lateral groove 105 extending along the short direction of the vacuum heat insulating material 103 (that is, the front-rear direction of the refrigerator) and having no glue surface on the end face. It is possible to have a degree.
 以上のように構成された冷蔵庫及び冷蔵庫に取り付けられる真空断熱材において、以下その動作、作用について説明する。 The operation and action of the refrigerator configured as described above and the vacuum heat insulating material attached to the refrigerator will be described below.
 本実施の形態では、真空断熱材103上下端面部106に糊面がなく、図3に示す外箱107の前面から背面に横断する横溝105を設ける。これにより、ウレタンの充填方向と同方向に連通部材124を配置することとなり、ウレタンの発泡圧力により加圧され、空気抜きのスピード向上が可能となるので、縦溝104、横溝105内の空気抜きの効率向上を図ることができる。 In this embodiment, the upper and lower end surface portion 106 of the vacuum heat insulating material 103 does not have a glue surface, and a lateral groove 105 that crosses from the front surface to the back surface of the outer box 107 shown in FIG. 3 is provided. As a result, the communication member 124 is arranged in the same direction as the urethane filling direction, and the pressure is increased by the foaming pressure of the urethane, so that the air venting speed can be improved. Therefore, the air venting efficiency in the vertical grooves 104 and the horizontal grooves 105 is improved. Improvements can be made.
 また、連通部材124は、横溝105と平行な部分と折れ曲がって立ち上がった部分とから構成されているので、放熱パイプ111や連通部材124を引っ張り出して所定の位置に配置するための自由度を持たせることができる。 Further, since the communication member 124 is composed of a portion parallel to the lateral groove 105 and a bent and raised portion, the communication member 124 has a degree of freedom for pulling out the heat radiating pipe 111 and the communication member 124 and disposing them at a predetermined position. Can be made.
 (第3の実施の形態)
 図11は本発明の第3の実施の形態における冷蔵庫の断面図である。図12は本発明の第3の実施の形態における冷蔵庫の真空断熱材と放熱パイプの正面図である。なお、第1の実施の形態および第2の実施の形態と同一構成、同一技術思想については本実施の形態でも適用可能である。
(Third embodiment)
FIG. 11 is a sectional view of a refrigerator in the third embodiment of the present invention. FIG. 12: is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 3rd Embodiment of this invention. The same configuration and the same technical idea as those of the first embodiment and the second embodiment can also be applied to this embodiment.
 図11、図12において、冷却システム(図示せず)の凝縮器の一部である放熱パイプ312は、複数の直線部を形成するよう蛇行する。放熱パイプ312の入口部313と出口部314は冷蔵庫301背面下部に形成された機械室315内に突出しており、他の放熱パイプ(図示せず)と連結している。真空断熱材316は、放熱パイプ312の直径よりも厚みが大きく、真空断熱材316の端部まで形成された長手方向の複数の縦溝317と、短手方向の複数の横溝318を有し、縦溝317と横溝318は互いに十字状に交差している。 11 and 12, the heat radiating pipe 312 which is a part of the condenser of the cooling system (not shown) meanders so as to form a plurality of straight portions. An inlet portion 313 and an outlet portion 314 of the heat radiating pipe 312 protrude into a machine room 315 formed at the lower back of the refrigerator 301 and are connected to another heat radiating pipe (not shown). The vacuum heat insulating material 316 has a thickness larger than the diameter of the heat radiating pipe 312 and has a plurality of longitudinal grooves 317 formed to the end of the vacuum heat insulating material 316 and a plurality of transverse grooves 318 in the short direction, The vertical groove 317 and the horizontal groove 318 cross each other in a cross shape.
 ここで、放熱パイプ312の複数の横方向の直線部において、冷蔵庫上側に位置する上側直線部319及び冷蔵庫下側に位置する下側直線部320は、それぞれ、ほぼ同一直線上に形成しており、それぞれが一本の横溝318内に配置している。 Here, in the plurality of lateral straight portions of the heat radiating pipe 312, the upper straight portion 319 located on the upper side of the refrigerator and the lower straight portion 320 located on the lower side of the refrigerator are respectively formed on substantially the same straight line. , Each is disposed in one transverse groove 318.
 また、真空断熱材316は、縦溝317及び横溝318以外の外箱302側の面に接着剤を塗布した後に、放熱パイプ312と縦溝317及び横溝318が複層するように外箱302に貼り付けられている。 The vacuum heat insulating material 316 is applied to the outer box 302 so that the heat radiating pipe 312, the vertical groove 317, and the horizontal groove 318 are multilayered after an adhesive is applied to the surface on the outer box 302 side other than the vertical groove 317 and the horizontal groove 318. It is pasted.
 以上のように構成された冷蔵庫について、以下その動作を説明する。 About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below.
 冷蔵庫301の製造時、まず外箱302に放熱パイプ312を金属箔テープ(図示せず)などにより貼り付け、その上から真空断熱材316を貼り付ける。その後、内箱303を外箱302の中に嵌め込み、外箱302と内箱303の間に発泡ウレタンなどの発泡断熱材304を充填し断熱箱体306を形成する。 When manufacturing the refrigerator 301, first, the heat radiating pipe 312 is attached to the outer box 302 with a metal foil tape (not shown) or the like, and the vacuum heat insulating material 316 is attached thereon. Thereafter, the inner box 303 is fitted into the outer box 302, and a foam heat insulating material 304 such as urethane foam is filled between the outer box 302 and the inner box 303 to form a heat insulating box body 306.
 この時、発泡断熱材304を充填する前には、縦溝317及び横溝318と外箱302と放熱パイプ312に囲まれた空間には、空気が存在している。ここで、縦溝317及び横溝318が真空断熱材316の端部まで形成されてない場合、断熱材充填後、この空間に空気層が形成される。この空気層は、外箱302表面や貯蔵室308内の温度が変化すると膨張、収縮し、結果として外箱302が変形し、見栄えの悪い冷蔵庫となってしまう。 At this time, air is present in the space surrounded by the vertical grooves 317 and the horizontal grooves 318, the outer box 302, and the heat radiating pipe 312 before filling with the foam heat insulating material 304. Here, when the vertical groove 317 and the horizontal groove 318 are not formed up to the end of the vacuum heat insulating material 316, an air layer is formed in this space after the heat insulating material is filled. This air layer expands and contracts when the surface of the outer box 302 or the temperature in the storage chamber 308 changes, and as a result, the outer box 302 is deformed, resulting in a refrigerator that does not look good.
 また、縦溝317または横溝318内に接着剤を塗布した場合にも、空気が抜けず、同様に外箱302が変形してしまう。 Also, when an adhesive is applied in the vertical groove 317 or the horizontal groove 318, air does not escape and the outer box 302 is similarly deformed.
 これに対し、本実施の形態における冷蔵庫301は、縦溝317と横溝318は連通し、さらに縦溝317または横溝318が真空断熱材316の端部まで形成されている。さらに、接着剤は真空断熱材316の外箱302側の面の縦溝317及び横溝318以外の面に塗布されている。このことにより、発泡断熱材304が縦溝317及び横溝318に充填され、空気を追い出すことができ、空気層が形成されることはない。 On the other hand, in the refrigerator 301 according to the present embodiment, the vertical groove 317 and the horizontal groove 318 communicate with each other, and the vertical groove 317 or the horizontal groove 318 is formed to the end of the vacuum heat insulating material 316. Further, the adhesive is applied to a surface other than the vertical groove 317 and the horizontal groove 318 on the surface of the vacuum heat insulating material 316 on the outer box 302 side. As a result, the foam heat insulating material 304 is filled in the vertical grooves 317 and the horizontal grooves 318, and air can be expelled, and no air layer is formed.
 従って、外箱302の変形を防止することができ、見栄えが良くデザイン性の高い冷蔵庫とすることができる。 Therefore, deformation of the outer box 302 can be prevented, and a refrigerator that has a good appearance and high design can be obtained.
 また、縦溝317または横溝318を真空断熱材316の端部に形成した場合、真空断熱材316の外縁が溝になるため、接着剤を塗布できない。これにより、発泡断熱材304を充填した時に、真空断熱材316と外箱302の間に発泡断熱材304が侵入、発泡し、膨張するため、外箱302が膨張圧力により変形する恐れがある。 Further, when the vertical groove 317 or the horizontal groove 318 is formed at the end of the vacuum heat insulating material 316, the outer edge of the vacuum heat insulating material 316 becomes a groove, so that the adhesive cannot be applied. As a result, when the foam heat insulating material 304 is filled, the foam heat insulating material 304 enters, expands, and expands between the vacuum heat insulating material 316 and the outer box 302, so that the outer box 302 may be deformed by the expansion pressure.
 これに対し、本実施の形態における冷蔵庫301は、真空断熱材316の端部を外箱302と接着するため、発泡断熱材304が侵入する恐れがない。従って、外箱302の変形を防止することができ、見栄えが良くデザイン性の高い冷蔵庫とすることができる。 On the other hand, since the refrigerator 301 in the present embodiment bonds the end of the vacuum heat insulating material 316 to the outer box 302, there is no possibility that the foam heat insulating material 304 enters. Therefore, deformation of the outer box 302 can be prevented, and a refrigerator with good appearance and high design can be obtained.
 また、本実施の形態における冷蔵庫301は、十字交差させた縦溝317と横溝318に合うような放熱パイプ312の形状としている。冷蔵庫上側に位置する放熱パイプ312の上側直線部319及び冷蔵庫下側に位置する放熱パイプ312の下側直線部320は、それぞれ、ほぼ同一直線上に形成している。上側直線部319および下側直線部320のそれぞれが一本の横溝318内に配置しているので、少ない溝の数で真空断熱材316と放熱パイプ312を複層することで、真空断熱材316の断熱性能劣化を抑制することができる。その結果として、冷蔵庫の断熱性能を向上し、効率の高い冷蔵庫とすることができる。 In addition, the refrigerator 301 in the present embodiment has a shape of the heat radiating pipe 312 that fits the crossed vertical groove 317 and the horizontal groove 318. The upper straight portion 319 of the heat radiating pipe 312 located on the upper side of the refrigerator and the lower straight portion 320 of the heat radiating pipe 312 located on the lower side of the refrigerator are formed on substantially the same straight line. Since each of the upper straight portion 319 and the lower straight portion 320 is disposed in one horizontal groove 318, the vacuum heat insulating material 316 is formed by stacking the vacuum heat insulating material 316 and the heat radiating pipe 312 with a small number of grooves. The deterioration of the heat insulation performance can be suppressed. As a result, the heat insulation performance of the refrigerator can be improved and a highly efficient refrigerator can be obtained.
 すなわち、真空断熱材316に溝を形成すると、溝の部分は厚さが薄くなる。一般的に、真空断熱材を通過する熱量は、断熱材の厚さに比例するため、溝の部分は断熱性能が低くなってしまう。本実施の形態における冷蔵庫の真空断熱材316のように、溝の数を減らすことにより、断熱性能劣化を抑制することができ、断熱性能が高く、効率の高い冷蔵庫とすることができる。 That is, when a groove is formed in the vacuum heat insulating material 316, the thickness of the groove portion is reduced. In general, the amount of heat passing through the vacuum heat insulating material is proportional to the thickness of the heat insulating material, so that the heat insulating performance of the groove portion becomes low. Like the vacuum heat insulating material 316 of the refrigerator in this embodiment, by reducing the number of grooves, deterioration of the heat insulating performance can be suppressed, and the refrigerator having high heat insulating performance and high efficiency can be obtained.
 なお、本実施の形態において、溝の中の空気は発泡断熱材304が充填されることにより溝の外側に押し出されるとして説明した。ここで、溝の内部と外部、例えば機械室315を連通する空気抜き部材を設ける構成とすれば、さらに確実に溝の中の空気を抜くことができる。 In the present embodiment, it has been described that the air in the groove is pushed out of the groove by being filled with the foam heat insulating material 304. Here, if the air vent member that communicates the inside and the outside of the groove, for example, the machine room 315, is provided, the air in the groove can be more reliably vented.
 また、本実施の形態において、放熱パイプ312は冷蔵庫301の側面に貼り付ける構成として説明したが、冷蔵庫301の背面においても、同様の構成とすることで同様の効果が得られる。 Further, in the present embodiment, the heat radiating pipe 312 has been described as being configured to be attached to the side surface of the refrigerator 301. However, the same effect can be obtained by using the same configuration also on the back surface of the refrigerator 301.
 また、本実施の形態において、放熱パイプ312に入口部313及び出口部314を定義して説明したが、冷媒の流れる方向に関係なく、入口部313と出口部314が逆になっても同様の効果を得られる。 In the present embodiment, the inlet portion 313 and the outlet portion 314 are defined in the heat radiating pipe 312. However, the same is true even if the inlet portion 313 and the outlet portion 314 are reversed regardless of the refrigerant flow direction. The effect can be obtained.
 また、本実施の形態においては、縦溝317を真空断熱材316の長手方向、横溝318を真空断熱材316の短手方向として説明した。しかし、これは冷蔵庫301の形状に合わせて縦長の真空断熱材316を用いた場合であり、横長の真空断熱材316を用いた場合は長手方向と短手方向が逆となる。 In the present embodiment, the vertical groove 317 is described as the longitudinal direction of the vacuum heat insulating material 316, and the horizontal groove 318 is described as the short direction of the vacuum heat insulating material 316. However, this is a case where the vertically long vacuum heat insulating material 316 is used in accordance with the shape of the refrigerator 301. When the horizontally long vacuum heat insulating material 316 is used, the longitudinal direction and the short direction are reversed.
 また、放熱パイプ312の複数の直線部と複層する溝の部分は、放熱パイプ312の成形誤差及び貼り付け誤差を考慮して、十分な幅とすることにより、確実に複層させることができる。 In addition, the groove portions that are multilayered with the plurality of straight portions of the heat radiating pipe 312 can be surely multilayered by setting a sufficient width in consideration of a molding error and a pasting error of the heat radiating pipe 312. .
 また、本実施の形態においては、放熱パイプ312は外箱302に貼り付ける構成として説明した。しかし、放熱パイプを真空断熱材316に貼り付ける構成とすることにより、放熱パイプ312の貼り付け誤差による放熱パイプ312と溝のズレをより確実に防ぐことができ、溝の幅を狭くすることができる。 Further, in the present embodiment, the heat radiating pipe 312 has been described as being configured to be attached to the outer box 302. However, by adopting a configuration in which the heat radiating pipe is attached to the vacuum heat insulating material 316, it is possible to more surely prevent the gap between the heat radiating pipe 312 and the groove due to the attachment error of the heat radiating pipe 312 and to reduce the width of the groove. it can.
 (第4の実施の形態)
 図13は本発明の第4の実施の形態における冷蔵庫の断面図である。図14は本発明の第4の実施の形態における冷蔵庫の放熱パイプの斜視図である。図15は本発明の第4の実施の形態における冷蔵庫の真空断熱材と放熱パイプの正面図である。なお、第1の実施の形態~第3の実施の形態と同一構成、同一技術思想については本実施の形態でも適用可能である。
(Fourth embodiment)
FIG. 13 is a cross-sectional view of the refrigerator in the fourth embodiment of the present invention. FIG. 14 is a perspective view of the heat radiating pipe of the refrigerator in the fourth embodiment of the present invention. FIG. 15: is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 4th Embodiment of this invention. The same configuration and the same technical idea as those of the first to third embodiments can be applied to this embodiment.
 図13ないし図15に示すように、放熱パイプ321は、放熱効率向上を狙い、長さを確保するために、外箱302の左右に貼り付けるべく連結部322により冷蔵庫301の天面で左右のパイプを繋げる構成としている。 As shown in FIG. 13 to FIG. 15, the heat radiating pipe 321 aims to improve heat radiating efficiency, and in order to secure the length, the connecting portion 322 is attached to the left and right of the outer box 302 so It is configured to connect pipes.
 ここで、連結部322は、冷蔵庫301の最背面または最前面で繋ぐ構成とすれば、できるだけ放熱パイプ321の長さを長くしつつ縦溝317をそのまま使い放熱パイプ321を連結部322と繋ぐことができる。しかしながら、冷蔵庫301は、天面の最前面に断熱扉307を回動自在に軸支するヒンジ部(図示せず)を設けている。さらに、最背面には冷蔵庫301を運搬する際に手をかける取手部(図示せず)を設けている。そのため、冷蔵庫301の最背面または最前面に連結部を設けることは困難である。 Here, if the connecting part 322 is connected at the rearmost or frontmost side of the refrigerator 301, the length of the heat radiating pipe 321 is made as long as possible and the vertical groove 317 is used as it is to connect the heat radiating pipe 321 to the connecting part 322. Can do. However, the refrigerator 301 is provided with a hinge portion (not shown) that pivotally supports the heat insulating door 307 on the front surface of the top surface. In addition, a handle portion (not shown) is provided on the backmost surface for handling the refrigerator 301 when it is transported. For this reason, it is difficult to provide a connecting portion on the backmost surface or the frontmost surface of the refrigerator 301.
 従って、連結部322を冷蔵庫1天面の前後方向の略中央部に設けている。このため、放熱パイプ321は、上下に蛇行した後、背面上部で一旦冷蔵庫301の前方向に曲げられる。そして、冷蔵庫301の前後方向の略中央部で且つ蛇行した放熱パイプ321の縦方向の直線部とほぼ一直線上の位置で上方向へと曲げられ連結部322と接続する。 Therefore, the connection part 322 is provided in the substantially center part of the front-back direction of the refrigerator 1 top surface. For this reason, the heat radiating pipe 321 meanders up and down, and is once bent toward the front of the refrigerator 301 at the upper part of the back surface. Then, it is bent upward at a position substantially in line with the longitudinal straight portion of the meandering heat radiation pipe 321 at the substantially central portion in the front-rear direction of the refrigerator 301 and connected to the connecting portion 322.
 真空断熱材316に縦溝317と横溝318を十字交差させて設けているため、連結部322と繋がる上方向へ伸びる放熱パイプ321とほぼ一直線上にある縦方向の放熱パイプ321は、同一の縦溝317と複層でき、連結部322と繋ぐことができる。 Since the vertical grooves 317 and the horizontal grooves 318 are provided in the vacuum heat insulating material 316 so as to cross each other, the vertically extending heat radiating pipe 321 connected to the connecting portion 322 and the vertically extending heat radiating pipe 321 are in the same vertical direction. The groove 317 can be multilayered, and the connection portion 322 can be connected.
 従って、放熱パイプ321を冷蔵庫301の左右に設け、天面で連結した場合にも、溝の数を増やすことなく真空断熱材316と放熱パイプ321を複層することができる。そのため、真空断熱材316に溝を形成することによる断熱性能劣化を抑制することができ、断熱性能が高く、効率の高い冷蔵庫とすることができる。 Therefore, even when the heat radiating pipes 321 are provided on the left and right sides of the refrigerator 301 and connected at the top surface, the vacuum heat insulating material 316 and the heat radiating pipe 321 can be formed in multiple layers without increasing the number of grooves. Therefore, the heat insulation performance deterioration by forming a groove | channel in the vacuum heat insulating material 316 can be suppressed, and it can be set as a highly efficient refrigerator with high heat insulation performance.
 なお、本実施の形態では、連結部322を冷蔵庫301天面としたが、放熱パイプ321を蛇行した後背面側に曲げて横溝318と複層させることにより、連結部322を冷蔵庫301の背面に構成しても同様の効果を得ることができる。 In this embodiment, the connecting portion 322 is the top surface of the refrigerator 301. However, the connecting portion 322 is attached to the back surface of the refrigerator 301 by bending the heat radiating pipe 321 to the back side and bending the heat sink pipe 321 to the back surface side. Even if configured, the same effect can be obtained.
 (第5の実施の形態)
 図16は本発明の第5の実施の形態における冷蔵庫の真空断熱材と放熱パイプの正面図である。なお、第1の実施の形態~第4の実施の形態と同一構成、同一技術思想については本実施の形態でも適用可能である。
(Fifth embodiment)
FIG. 16: is a front view of the vacuum heat insulating material and heat radiating pipe of the refrigerator in the 5th Embodiment of this invention. The same configuration and technical idea as those in the first to fourth embodiments can also be applied to this embodiment.
 図16において、真空断熱材323には、縦溝317及び横溝318の一部が十字状に交差するように設けられている。すなわち、蛇行した形状の放熱パイプ324と複層する部分のみに、縦溝317及び横溝318を形状している。 In FIG. 16, the vacuum heat insulating material 323 is provided so that a part of the vertical groove 317 and the horizontal groove 318 intersect in a cross shape. That is, the vertical groove 317 and the horizontal groove 318 are formed only in a portion that is multilayered with the meandering heat radiation pipe 324.
 ここで、真空断熱材323の縦溝317及び横溝318は、例えばプレス加工など、自由な形状で溝を形成する加工方法で加工されており、放熱パイプ324と複層する位置のみが溝形状となっている。 Here, the vertical groove 317 and the horizontal groove 318 of the vacuum heat insulating material 323 are processed by a processing method of forming a groove in a free shape such as press processing, and only the position where the heat radiating pipe 324 is multilayered is a groove shape. It has become.
 これにより、第3の実施の形態及び第4の実施の形態における冷蔵庫のように、放熱パイプ324が通らない位置に溝が無いことにより、より溝の数を少なくすることができる。 Thereby, like the refrigerators in the third embodiment and the fourth embodiment, since there is no groove at a position where the heat radiating pipe 324 does not pass, the number of grooves can be further reduced.
 従って、溝の数を増やすことなく真空断熱材323と放熱パイプ324を複層することができ、真空断熱材323に溝を形成することによる断熱性能劣化を抑制することができ、断熱性能が高く、効率の高い冷蔵庫とすることができる。 Therefore, the vacuum heat insulating material 323 and the heat radiating pipe 324 can be multilayered without increasing the number of grooves, deterioration of the heat insulating performance due to the formation of grooves in the vacuum heat insulating material 323 can be suppressed, and the heat insulating performance is high. , Can be a highly efficient refrigerator.
 以上説明したように、本発明の冷蔵庫は、冷蔵庫を構成する断熱箱体が外箱と、内箱と、外箱に貼り付けられる放熱パイプとを有する。また、断熱箱体が放熱パイプを覆う溝を形成し外箱に貼り付けられる真空断熱材と、外箱と内箱間に充填される発泡断熱材とを備える。そして、真空断熱材の上端部が内箱の天面部より上方に延出するように真空断熱材をして配置する。 As described above, in the refrigerator of the present invention, the heat insulating box constituting the refrigerator has the outer box, the inner box, and the heat radiating pipe attached to the outer box. Further, the heat insulating box includes a vacuum heat insulating material that forms a groove that covers the heat radiating pipe and is attached to the outer box, and a foam heat insulating material that is filled between the outer box and the inner box. And it arrange | positions with a vacuum heat insulating material so that the upper end part of a vacuum heat insulating material may extend upwards from the top | upper surface part of an inner box.
 この構成により、真空断熱材の被覆率が向上し、且つ、天面放熱パイプからの侵入熱を低減するので、省エネルギーを図ることができる。さらに、真空断熱材が拡大することで冷蔵庫断面壁を薄肉化して庫内容量拡大しても、外箱の強度確保が可能となる。 This configuration improves the coverage of the vacuum heat insulating material and reduces the intrusion heat from the top surface heat radiating pipe, thereby saving energy. Furthermore, the strength of the outer box can be ensured even if the vacuum heat insulating material is expanded and the refrigerator sectional wall is thinned to increase the internal capacity.
 また、本発明は、真空断熱材に形成した溝が、縦溝と横溝とを含み、縦溝と横溝とは互いに交差し、かつ縦溝と横溝は真空断熱材の端部で開口してもよい。直線部と屈曲部とで折り返し形成した放熱パイプの直線部を縦溝に、屈曲部を横溝に配置することで、放熱パイプの屈曲部を含めて放熱パイプ全体を真空断熱材で覆うことができる。さらに、放熱パイプの屈曲部の外側に位置する真空断熱材の断熱性も高めることができる。 In the present invention, the groove formed in the vacuum heat insulating material includes a vertical groove and a horizontal groove, the vertical groove and the horizontal groove intersect each other, and the vertical groove and the horizontal groove may be opened at the end of the vacuum heat insulating material. Good. By arranging the straight part of the heat-dissipating pipe folded back between the straight part and the bent part in the vertical groove and the bent part in the horizontal groove, the entire heat-dissipating pipe including the bent part of the heat-dissipating pipe can be covered with the vacuum heat insulating material. . Furthermore, the heat insulation property of the vacuum heat insulating material located outside the bent portion of the heat radiating pipe can be enhanced.
 また、本発明は、真空断熱材が矩形状に形成され、縦溝が真空断熱材の長手方向に沿って形成し、横溝が真空断熱材の短手方向に沿って形成してもよい。これにより、縦長に形成した断熱箱体の外箱に効率的に放熱パイプおよび真空断熱材を埋設することができる。 In the present invention, the vacuum heat insulating material may be formed in a rectangular shape, the vertical groove may be formed along the longitudinal direction of the vacuum heat insulating material, and the lateral groove may be formed along the short direction of the vacuum heat insulating material. Thereby, a heat radiating pipe and a vacuum heat insulating material can be efficiently embedded in the outer box of the heat insulating box formed vertically.
 また、本発明は、横溝の溝幅を縦溝の溝幅より広く形成してもよい。これにより、放熱パイプの屈曲部を大きく設計しても確実に溝に収納することができる。 In the present invention, the width of the lateral groove may be wider than the width of the vertical groove. Thereby, even if the bending part of a heat radiating pipe is designed large, it can be reliably accommodated in a groove | channel.
 また、本発明は、放熱パイプが内箱の天面部より下方で、かつ内箱の底面部より上方となるように配置してもよい。放熱パイプの屈曲部の外側に位置する真空断熱材の厚みを溝の無い基準壁厚とすることができ、真空断熱材周縁の断熱性を高めることができる。 In the present invention, the heat radiating pipe may be disposed below the top surface portion of the inner box and above the bottom surface portion of the inner box. The thickness of the vacuum heat insulating material located outside the bent portion of the heat radiating pipe can be set to a reference wall thickness without a groove, and the heat insulating property of the vacuum heat insulating material periphery can be enhanced.
 本発明の冷蔵庫は、冷蔵庫の外観変形を抑制することができるので、真空断熱材に凹部形状の溝を設けた冷却機器全般に適用可能である。 Since the refrigerator of the present invention can suppress external deformation of the refrigerator, it can be applied to all cooling devices provided with a recess-shaped groove in a vacuum heat insulating material.
 10,110,306 断熱箱体
 14,101 芯材
 31,107,302 外箱
 33,111,312,321,324 放熱パイプ
 41,109,304 発泡断熱材
 102 ガスバリア性フィルム
 103,316,323 真空断熱材
 104,317 縦溝
 105,318 横溝
 106 上下端面部
 108,303 内箱
 111F 放熱パイプフロント
 111S 放熱パイプサイド
 112 冷蔵庫本体
 113 冷蔵室
 114 切替室
 115 製氷室
 116 野菜室
 117 冷凍室
 118 冷却器
 119 冷気送風ファン
 120 圧縮機
 121 キャピラリーチューブ
 123 空間部
 124 連通部材
 125 出口溝
 126,315 機械室
 127a 直線部
 127b 屈曲部
 130 冷却室
 200 補強部材
 201 部品間空間
10, 110, 306 Heat insulation box 14, 101 Core material 31, 107, 302 Outer box 33, 111, 312, 321, 324 Radiation pipe 41, 109, 304 Foam insulation 102 Gas barrier film 103, 316, 323 Vacuum insulation Materials 104, 317 Vertical grooves 105, 318 Horizontal grooves 106 Upper and lower end surfaces 108, 303 Inner box 111F Radiation pipe front 111S Radiation pipe side 112 Refrigerator body 113 Refrigeration room 114 Switching room 115 Ice making room 116 Vegetable room 117 Freezer room 118 Cooler 119 Cold air Blower fan 120 Compressor 121 Capillary tube 123 Space part 124 Communication member 125 Exit groove 126,315 Machine room 127a Straight line part 127b Bent part 130 Cooling room 200 Reinforcement member 201 Space between parts

Claims (5)

  1. 外箱と、内箱と、前記外箱に貼り付けられる放熱パイプと、前記放熱パイプを覆う溝を形成し前記外箱に貼り付けられる真空断熱材と、前記外箱と前記内箱間に充填される発泡断熱材とを備えた断熱箱体を有し、前記真空断熱材の上端部が前記内箱の天面部より上方に延出するように前記真空断熱材を配置したことを特徴とする冷蔵庫。 An outer box, an inner box, a heat radiating pipe affixed to the outer box, a vacuum heat insulating material affixed to the outer box by forming a groove that covers the heat radiating pipe, and a space between the outer box and the inner box And a heat insulating box having a foamed heat insulating material, wherein the vacuum heat insulating material is arranged so that an upper end portion of the vacuum heat insulating material extends above a top surface portion of the inner box. refrigerator.
  2. 前記真空断熱材に形成した前記溝は、縦溝と横溝とを備え、前記縦溝と前記横溝とは互いに交差し、前記縦溝と前記横溝は前記真空断熱材の端部で開口していることを特徴とする請求項1に記載の冷蔵庫。 The groove formed in the vacuum heat insulating material includes a vertical groove and a horizontal groove, the vertical groove and the horizontal groove intersect each other, and the vertical groove and the horizontal groove are opened at an end portion of the vacuum heat insulating material. The refrigerator according to claim 1.
  3. 前記真空断熱材は矩形状に形成され、前記縦溝は前記真空断熱材の長手方向に沿って形成し、前記横溝は前記真空断熱材の短手方向に沿って形成したことを特徴とする請求項2に記載の冷蔵庫。 The vacuum heat insulating material is formed in a rectangular shape, the vertical groove is formed along a longitudinal direction of the vacuum heat insulating material, and the lateral groove is formed along a short direction of the vacuum heat insulating material. Item 3. The refrigerator according to Item 2.
  4. 前記横溝の溝幅は、前記縦溝の溝幅より広く形成したことを特徴とする請求項2または3のいずれか一項に記載の冷蔵庫。 4. The refrigerator according to claim 2, wherein a groove width of the horizontal groove is wider than a groove width of the vertical groove. 5.
  5. 前記放熱パイプは、前記内箱の前記天面部より下方で、かつ前記内箱の底面部より上方に配置したことを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the heat radiating pipe is disposed below the top surface portion of the inner box and above the bottom surface portion of the inner box.
PCT/JP2013/007066 2012-12-27 2013-12-03 Refrigerator WO2014103179A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201390001020.XU CN205119635U (en) 2012-12-27 2013-12-03 Refrigerator
DE212013000262.9U DE212013000262U1 (en) 2012-12-27 2013-12-03 fridge

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-284177 2012-12-27
JP2012284177 2012-12-27
JP2013-082735 2013-04-11
JP2013082735 2013-04-11
JP2013106875 2013-05-21
JP2013-106875 2013-05-21
JP2013-113713 2013-05-30
JP2013113713 2013-05-30

Publications (1)

Publication Number Publication Date
WO2014103179A1 true WO2014103179A1 (en) 2014-07-03

Family

ID=51020307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007066 WO2014103179A1 (en) 2012-12-27 2013-12-03 Refrigerator

Country Status (4)

Country Link
JP (5) JP5578266B1 (en)
CN (1) CN205119635U (en)
DE (1) DE212013000262U1 (en)
WO (1) WO2014103179A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090160A (en) * 2014-11-06 2016-05-23 ホシザキ電機株式会社 Heat insulating panel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104344654A (en) * 2013-09-27 2015-02-11 海尔集团公司 Assembling method for refrigerator
CN104344653A (en) * 2013-09-27 2015-02-11 海尔集团公司 Refrigerator
JP7164286B2 (en) * 2016-04-27 2022-11-01 東芝ライフスタイル株式会社 refrigerator
CN109564054A (en) * 2016-08-10 2019-04-02 松下知识产权经营株式会社 Freezer
JP2019207043A (en) * 2018-05-28 2019-12-05 東芝ライフスタイル株式会社 refrigerator
JP7228589B2 (en) * 2018-06-25 2023-02-24 シャープ株式会社 refrigerator
JP7287642B2 (en) * 2018-12-27 2023-06-06 アクア株式会社 refrigerator
JP2021032522A (en) * 2019-08-28 2021-03-01 パナソニックIpマネジメント株式会社 refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233506A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Refrigerator
JP2006105507A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Refrigerator
JP2007178077A (en) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd Refrigerator
JP2010145002A (en) * 2008-12-18 2010-07-01 Sharp Corp Heat insulating case body for refrigerator and method of manufacturing the same
JP2011102599A (en) * 2009-11-10 2011-05-26 Toshiba Corp Vacuum insulation panel and refrigerator using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221616A (en) * 1990-12-21 1992-08-12 Sharp Corp Degassing method and heat insulation box body manufactured by use of same
JP2941565B2 (en) * 1992-06-29 1999-08-25 シャープ株式会社 Storage cabinet structure
US5858501A (en) * 1997-12-18 1999-01-12 The Dow Chemical Company Evacuated insulation panel having non-wrinkled surfaces
JP2005098637A (en) * 2003-09-26 2005-04-14 Hitachi Home & Life Solutions Inc Refrigerator, vacuum heat insulating material and its manufacturing method
JP4545126B2 (en) 2006-09-04 2010-09-15 シャープ株式会社 Vacuum insulation panel and refrigerator using the same
JP5503478B2 (en) * 2010-09-14 2014-05-28 日立アプライアンス株式会社 refrigerator
JP2012083068A (en) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp Refrigerator
CN103597304B (en) * 2011-06-07 2015-10-07 夏普株式会社 Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233506A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Refrigerator
JP2006105507A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Refrigerator
JP2007178077A (en) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd Refrigerator
JP2010145002A (en) * 2008-12-18 2010-07-01 Sharp Corp Heat insulating case body for refrigerator and method of manufacturing the same
JP2011102599A (en) * 2009-11-10 2011-05-26 Toshiba Corp Vacuum insulation panel and refrigerator using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090160A (en) * 2014-11-06 2016-05-23 ホシザキ電機株式会社 Heat insulating panel

Also Published As

Publication number Publication date
JP2015007523A (en) 2015-01-15
JP5578266B1 (en) 2014-08-27
JP5578263B1 (en) 2014-08-27
JP2015007527A (en) 2015-01-15
JP2015007526A (en) 2015-01-15
CN205119635U (en) 2016-03-30
JP5578264B1 (en) 2014-08-27
DE212013000262U1 (en) 2015-08-07
JP2015007524A (en) 2015-01-15
JP5578265B1 (en) 2014-08-27
JP5641115B1 (en) 2014-12-17
JP2015007525A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2014103179A1 (en) Refrigerator
JP5677737B2 (en) refrigerator
JP4696906B2 (en) refrigerator
JP2008116161A (en) Refrigerator
JP2008116126A (en) Refrigerator
JP6964810B2 (en) refrigerator
JP6200742B2 (en) refrigerator
WO2015025477A1 (en) Refrigerator
CN206001789U (en) Refrigerator
JP6558874B2 (en) Manufacturing method of vacuum insulation
JP6071174B2 (en) refrigerator
JP2013185730A (en) Refrigerator
JP6191008B2 (en) refrigerator
JP2015064134A (en) Refrigerator
JP4984783B2 (en) refrigerator
JP6504379B2 (en) refrigerator
JP6314311B2 (en) refrigerator
JP6402352B2 (en) refrigerator
JP6379348B2 (en) refrigerator
JP2005172307A (en) Refrigerator
JP4552623B2 (en) refrigerator
JP6113610B2 (en) refrigerator
JP6113612B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2006090650A (en) Cooling storage
JP2013185734A (en) Refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390001020.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 212013000262

Country of ref document: DE

Ref document number: 2120130002629

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869383

Country of ref document: EP

Kind code of ref document: A1