WO2013145401A1 - Composite heat-insulating material, heat retention tank, and heat-pump-type hot water supply device - Google Patents

Composite heat-insulating material, heat retention tank, and heat-pump-type hot water supply device Download PDF

Info

Publication number
WO2013145401A1
WO2013145401A1 PCT/JP2012/078048 JP2012078048W WO2013145401A1 WO 2013145401 A1 WO2013145401 A1 WO 2013145401A1 JP 2012078048 W JP2012078048 W JP 2012078048W WO 2013145401 A1 WO2013145401 A1 WO 2013145401A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating material
heat insulating
heat
vacuum
composite
Prior art date
Application number
PCT/JP2012/078048
Other languages
French (fr)
Japanese (ja)
Inventor
俊雄 篠木
俊圭 鈴木
稔則 杉木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014507313A priority Critical patent/JP5788081B2/en
Publication of WO2013145401A1 publication Critical patent/WO2013145401A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/181Construction of the tank
    • F24H1/182Insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a composite heat insulating material in which a vacuum heat insulating material and a foam heat insulating material are integrally formed, a heat retaining tank and a heat pump type water heater using the same.
  • Vacuum insulation has been widely used as an insulation material along with an improvement in energy conservation awareness because it can significantly reduce thermal conductivity compared to conventional glass wool insulation.
  • the jacket material that constitutes the vacuum heat insulating material uses a thin laminated film made of aluminum foil or metal foil, so that heat transfer occurs from the film surface from the high temperature side to the low temperature side, thereby reducing the heat insulating performance. Has become an issue. For this reason, it has been attempted to reduce the thickness of the metal constituting the jacket material by using an aluminum vapor deposited film instead of the aluminum foil (see, for example, Patent Document 1).
  • a structure in which the vacuum heat insulating material is embedded in the foam heat insulating material see, for example, Patent Document 2
  • a vacuum heat insulating material and foamed polystyrene there are known a structure in which a vacuum heat insulating material is entirely embedded in a foamed polystyrene and a structure in which it is disposed on one side (for example, see Patent Document 3).
  • JP 2008-256125 A (FIG. 3) JP 59-13187 (page 3, FIG. 2) JP 2008-8431 A (Page 5, FIGS. 1 and 3)
  • the aluminum vapor-deposited film is obtained by vapor-depositing about 50 nm of aluminum on a base film, and it is difficult to form a uniform vapor-deposited layer.
  • the degree of vacuum is lowered, and the heat insulation performance is lowered.
  • the present invention has been made in view of the above, and even if a vacuum insulating material constituting a composite heat insulating material applied to a hot water storage tank or the like is used as a heat insulating material even if a packaging material including an aluminum foil or a thick metal vapor deposited film is used. It aims at obtaining the composite heat insulating material with high performance, a heat retention tank, and a heat pump type water heater.
  • the present invention provides a vacuum insulating material having a core material in which a fiber sheet is laminated and a jacket material that covers the core material by vacuum-sealing, and a vacuum heat insulating material And a foam heat insulating material integrally formed, and the foam heat insulating material is formed on the entire surface of the vacuum heat insulating high temperature surface facing the high temperature side of the vacuum heat insulating material and the peripheral portion of the vacuum heat insulating low temperature surface facing the low temperature side of the vacuum heat insulating material. It is arranged at least partially.
  • the heat transfer from the surface of the aluminum foil jacket material can be suppressed from the vacuum heat insulating high temperature surface to the vacuum heat insulating low temperature surface, and a composite heat insulating material having high heat insulating performance can be obtained, and heat retention using this In the tank and the heat pump type water heater, since the heat retaining property is increased, there is an effect that the thermal efficiency is increased.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a vacuum heat insulating material applied to Embodiment 1 of a composite heat insulating material according to the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating the composite heat insulating material according to the first embodiment.
  • FIG. 3 is a view showing a structure of a composite heat insulating material provided with a polystyrene foam so as to cover the periphery of the vacuum heat insulating material.
  • FIG. 4 is a view showing a structure of a composite heat insulating material in which foamed polystyrene is provided only on one side of the vacuum heat insulating material.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a vacuum heat insulating material applied to Embodiment 1 of a composite heat insulating material according to the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating the composite heat insulating material according to the first embodiment.
  • FIG. 5 shows the relationship between the distance from the end where the vacuum heat insulating material is inserted and the amount of heat moving on the surface of the jacket material under the condition that the laminate film containing an aluminum foil having a thickness of 6 ⁇ m is used as the jacket material.
  • FIG. FIG. 6 is a diagram illustrating another configuration example of the composite heat insulating material according to the first embodiment.
  • FIG. 7 is a cross-sectional view of a composite heat insulating material of another configuration example according to the first embodiment.
  • FIG. 8 is a schematic diagram showing the configuration of the second embodiment of the composite heat insulating material according to the present invention.
  • FIG. 9 is a cross-sectional view of the composite heat insulating material according to the second exemplary embodiment.
  • FIG. 10 is a diagram illustrating another configuration example of the composite heat insulating material according to the second embodiment.
  • FIG. 11 is a cross-sectional view of a composite heat insulating material of another configuration example according to the second embodiment.
  • FIG. 12 is a diagram illustrating a configuration of a system of a heat pump type water heater according to the fourth embodiment.
  • FIG. 13 is a diagram illustrating another system configuration of the heat pump type hot water heater according to the fourth embodiment.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a vacuum heat insulating material applied to Embodiment 1 of a composite heat insulating material according to the present invention.
  • a vacuum heat insulating material 1 is configured by a core material 3 having a fiber sheet 2 having a laminated structure covered with an outer covering material 4 and vacuum-sealed.
  • the jacket material 4 is an aluminum laminate sheet in which an aluminum foil 6 is sandwiched between a plurality of polymer sheets.
  • FIG. 2 is a schematic cross-sectional view showing the composite heat insulating material according to the first embodiment.
  • the high temperature side surface (vacuum heat insulating high temperature surface) 7 in the vacuum heat insulating material 1 is provided with a foamed polystyrene 8a so as to be in contact with the entire surface.
  • the foamed polystyrene 8b is provided also in the surrounding part 9 of the vacuum heat insulating material 1 so that the whole surface may contact
  • the low-temperature side surface (vacuum heat insulating low-temperature surface) 10 is provided with a polystyrene foam 8c so that only a part of the surface is in contact therewith.
  • Styrofoam 8c is disposed at the peripheral edge of the low temperature side surface 10, and the central portion of the low temperature side surface 10 is not covered with the expanded polystyrene 8c but exposed. Since the central portion of the low temperature side surface 10 is exposed, an area that is not covered can be effectively used spatially as compared with the case where the entire surface of the low temperature side surface 10 is covered with the expanded polystyrene 8c.
  • the expanded polystyrene 8a, 8b, 8c is actually comprised with one member (expanded polystyrene 8), and makes a expanded heat insulating material.
  • a method for forming the fiber sheet 2 by the papermaking method will be described.
  • a thick fiber having a diameter of 4 to 13 ⁇ m and a length of 2 to 15 mm and a thin fiber having a diameter of about 1 ⁇ m are dispersed in a liquid.
  • the liquid is used to make a paper using an automatic feed paper machine and then dried to produce a fiber sheet original fabric having a thickness of about 0.5 ⁇ m.
  • this fiber sheet original fabric is cut into the required area of the vacuum heat insulating material 1 to obtain a fiber sheet 2.
  • the fiber direction of the fiber sheet 2 formed by making paper in this way is mostly perpendicular to the thickness direction of the fiber sheet 2.
  • the fiber sheet 2 cut into a predetermined size is laminated so as to have a desired thickness assuming a compressive strain due to a pressure difference between atmospheric pressure and vacuum, and the core material 3 is obtained.
  • the fiber sheet original fabric may be wound into a tuna shape without being cut to form a laminate.
  • the papermaking method was used for preparation of a fiber sheet original fabric was demonstrated as an example, it is not limited to this.
  • a dry manufacturing method using a centrifugal method may be used.
  • the laminated body is produced by laminating glass fibers in the process of producing glass wool.
  • a core material 3 prepared in advance by the above-described method and the like is prepared by making a bag material 4 (made by joining three sides of each of the two sheets) in advance with two sheets of a jacket material sheet (not shown). After being dried and inserted into the jacket material 4, it is placed in a vacuum chamber. Next, the inside of the vacuum chamber is depressurized to a predetermined pressure, for example, a vacuum pressure of about 0.1 to 3 Pa. In this state, the remaining opening of the jacket material 4 is sealed by heat sealing.
  • the vacuum heat insulating material 1 according to the first embodiment is obtained by returning the inside of the vacuum chamber to the atmospheric pressure and taking it out of the vacuum chamber.
  • the internal space of the vacuum heat insulating material 1 manufactured as described above is maintained in a vacuum.
  • raw material particles (polystyrene particles) are heated and pre-expanded to produce expanded polystyrene particles.
  • the vacuum heat insulating material 1 is inserted into a mold, filled with expanded polystyrene particles, and then sealed. Then, by heating the sealed mold with steam, the expanded polystyrene particles are expanded to form expanded polystyrene 8 (expanded polystyrene), and finally, this is removed from the mold to produce the composite heat insulating material 5.
  • a hot melt adhesive may be applied to the vacuum heat insulating material 1 so that the expanded polystyrene 8 and the vacuum heat insulating material 1 can be easily bonded.
  • hot melt adhesives include ethylene-vinyl acetate copolymers and polyolefin copolymers.
  • Patent Document 2 and Patent Document 3 show a structure in which a foamed polystyrene 58 is provided so as to cover the periphery of the vacuum heat insulating material 51.
  • FIG. 3 is a view showing a structure of a composite heat insulating material provided with a polystyrene foam so as to cover the periphery of the vacuum heat insulating material.
  • this structure has an effect of suppressing heat transfer along the surface of the jacket material 54 in which the aluminum foil 56 is sandwiched between a plurality of polymer sheets, the amount of the polystyrene foam 58 used is large, and the composite heat insulating material 55 is cost-effective. It becomes high.
  • the composite heat insulating material 55 when manufacturing the composite heat insulating material 55, it is necessary to install the vacuum heat insulating material 51 so as to float in the mold, and thus a support is required. Not only does the expanded polystyrene particles not enter the place where the support is provided, but the polystyrene foam 58 is easily broken when it is removed from the mold.
  • Patent Document 3 shows a structure in which a polystyrene foam is provided only on one side of the vacuum heat insulating material.
  • FIG. 4 is a view showing the structure of the composite heat insulating material 55 in which the foamed polystyrene 58 is provided only on one side of the vacuum heat insulating material 51.
  • the heat transfer along the surface of the jacket material 54 in which the aluminum foil 56 is sandwiched between the plurality of polymer sheets is large. Insulation performance decreases. That is, the heat transfer through the portion where the outer jacket materials 54 at the peripheral edge are bonded together is increased.
  • the vacuum heat insulating material 1 used for the composite heat insulating material 5 whose performance was evaluated is a papermaking of chopped glass fiber having an average fiber diameter of 6 ⁇ m and a length of about 12 mm and a micro glass fiber fiber of about 0.8 ⁇ m manufactured by a flame method.
  • 25 fiber sheets 2 having a thickness of about 0.5 mm were laminated to form a core material 3
  • the core material 3 was an aluminum laminate sheet [25 ⁇ m-ONy (stretched nylon) / 12 ⁇ m-AL-deposited PET (polyethylene terephthalate).
  • the produced vacuum heat insulating material 1 was inserted into a mold.
  • the mold has a vertical and horizontal size of 800 ⁇ 800 mm and is provided with a convex portion (450 ⁇ 450 mm) at the lower center of the mold.
  • the expanded polystyrene particles are Filled and foamed to obtain a composite heat insulating material 5.
  • Four sets of the composite thermal insulation material 5 was installed in a hot water storage tank, hot water of 90 ° C was put in the hot water storage tank, the outside air was set at 4 ° C, and a heat release test was conducted. The average heat dissipation for 8 hours was about 52W. Met.
  • the same vacuum heat insulating material 1 is manufactured, and then the vacuum heat insulating material is arranged in a mold having no flat portion as described above and one side is flat.
  • a composite heat insulating material having the structure shown was produced. Other procedures are the same.
  • the heat radiation amount was about 56 W.
  • the heat conductivity of the heat insulating material is measured by controlling the upper and lower surfaces of the heat insulating material at different temperatures and measuring the heat flux at the center of the heat insulating material at the temperature difference.
  • the metal constituting the jacket material is thinned to increase the thermal resistance in the plane direction. If the distance between the center portion and the end portion is sufficient, this is not affected.
  • FIG. 5 shows the relationship between the distance from the end where the vacuum heat insulating material is inserted and the amount of heat moving on the surface of the jacket material under the condition that the laminate film containing an aluminum foil having a thickness of 6 ⁇ m is used as the jacket material.
  • the polystyrene foam from the end portion can cover about 50 mm or more, preferably 100 to 150 mm, thereby suppressing the heat transfer on the surface of the jacket material.
  • the amount of heat that moves around the vacuum heat insulating material 1 from the surface of the jacket material 4 can be suppressed, and the heat insulating performance can be improved.
  • FIG. 6 is a diagram illustrating another configuration example of the composite heat insulating material according to the first embodiment.
  • FIG. 7 is a cross-sectional view of a composite heat insulating material of another configuration example according to the first embodiment, and shows a cross section taken along line VII-VII in FIG.
  • the vacuum heat insulating material 1 has a partial cylindrical shape. Others are the same as the previous structure. After the vacuum heat insulating material 1 is produced, it is molded into a partial cylindrical shape before being inserted into the mold. For this processing, for example, a triaxial roll bender can be used. In this case, the partially cylindrical composite heat insulating material 5 can be produced and can be arranged around a cylindrical tank or the like. The heat insulation effect is the same as that of the flat plate shape.
  • the composite heat insulating material 5 concerning Embodiment 1 can suppress the heat transfer from the surface of the jacket material 4 of the vacuum heat insulating material 1, it can improve heat insulation performance. Further, by providing the foamed polystyrene 8 only on a part of the low-temperature side surface 10, the foamed material can be reduced, and a support material for supporting the vacuum heat insulating material 1 is not required when molding with a mold. Can be produced in a uniform shape. Therefore, it becomes difficult to cause breakage or the like in the process after molding until the product is attached. Further, by disposing the expanded polystyrene 8a on the high temperature side surface 7, it becomes possible to use in a temperature region higher than the heat resistance temperature of the vacuum heat insulating material 1.
  • the jacket material 4 since an aluminum laminate sheet is used as the jacket material 4, a high barrier property can be maintained even if it is bent, and even if the vacuum heat insulating material 1 is formed into a partial cylindrical shape or the like. There is no loss of thermal insulation performance.
  • FIG. FIG. 8 is a schematic diagram showing the configuration of the second embodiment of the composite heat insulating material according to the present invention.
  • FIG. 9 is a cross-sectional view of the composite heat insulating material according to the second embodiment, showing a cross section taken along line IX-IX in FIG.
  • the polystyrene foam 8 is arranged so as to be limited to the vacuum heat insulating material 1 side from the plane in which the tangential line 11 is continuous in the axial direction. is there.
  • the wall of the container 12 is arranged so as to be parallel to the tangent, so that the composite heat insulating material 5 can be effectively used.
  • the arrangement can be realized, and the container 12 can be miniaturized and the space efficiency of the device can be improved while realizing the heat insulation performance equivalent to that of the first embodiment.
  • FIG. 10 is a diagram illustrating another configuration example of the composite heat insulating material according to the second embodiment.
  • FIG. 11 is a cross-sectional view of a composite heat insulating material of another configuration example according to the second embodiment, and shows a cross section taken along the line XI-XI in FIG.
  • the polystyrene foam 8 is generally limited to the vacuum heat insulating material 1 side from the plane in which the tangent line 11 is continuous in the axial direction. Are arranged.
  • crank-shaped fitting step 13 is provided in the vertical direction of the foamed polystyrene 8, it can be disposed and pasted so that the foamed polystyrene 8 can be engaged with each other. It is.
  • Embodiment 3 The composite heat insulating material 5 concerning Embodiment 3 makes a foaming magnification differ internally about the foam polystyrene arrange
  • the mold is filled with expanded polystyrene particles having different expansion ratios on both sides of the vacuum heat insulating material 1.
  • the high temperature side surface 7 side of the vacuum heat insulating material 1 is filled with polystyrene particles for low expansion ratio that can obtain high heat retention, although the cost is high due to low expansion ratio, and on the low temperature side surface 10 side. Is filled with polystyrene particles for high expansion ratio, which has a high expansion ratio but is slightly inferior in heat retention to produce the composite heat insulating material 5.
  • the case where the expansion ratio is different is taken as an example, but it is also possible to apply expanded polystyrene particles having different heat resistance temperatures. If it does in this way, since a polystyrene foam according to a use temperature field can be arranged in a part which needs heat resistance, it can be set as a structure with good heat insulation efficiency.
  • FIG. 12 is a diagram illustrating a system configuration of a heat pump type hot water heater according to the fourth embodiment, and illustrates a system flow.
  • the heat pump unit 31 includes a refrigerant circulation system 36 through which a circulation medium circulates and a plurality of devices through which the refrigerant circulates.
  • an air heat exchanger air-refrigerant heat exchanger 35 that exchanges heat with the atmosphere and gives it to the circulating refrigerant
  • a compressor 25 that pressurizes the circulating medium
  • the circulating refrigerant A heat exchanger (refrigerant-medium heat exchanger) 29 for removing heat from the gas and an expansion valve (decompressor) 26 for volume expansion of the circulating medium.
  • the other medium heated by the heat exchanger 29 is connected to the upper part of the heat retaining tank 22 via the three-way valve 28.
  • a water pump 34 a is provided between the lower part of the heat retaining tank 22 and the heat exchanger 29, and these constitute a medium circulation system 37.
  • hot water is taken out from the upper part of the heat retaining tank 22 and mixed with the city water 32 and the mixing valve 27a to be used for hot water supply, and a system for mixing the city water 32 with the mixing valve 27b and supplying it to the bathtub 33. Is provided. Furthermore, from the bathtub 33, the system
  • the heat pump unit 31 is circulated in the refrigerant circulation system 36 using, for example, CO 2 as a refrigerant.
  • CO 2 absorbs heat in the atmosphere by the air heat exchanger 35.
  • it is compressed by the compressor 25 and the temperature rises to a few tens of degrees Celsius.
  • heat exchange with the medium (for example, water) passing through the medium circulation system 37 is performed by the heat exchanger 29.
  • the CO 2 deprived of heat is further reduced in temperature by the expansion valve 26, supplied to the air heat exchanger 35 again, and circulated.
  • the water heated in the heat exchanger 29 is heated to, for example, a little over 90 ° C.
  • the heated hot water is used depending on the application.
  • the warm water taken out from the upper part of the heat retaining tank 22 push up by supplying water with the city water 32 to the lower part of the heat retaining tank 22
  • the mixing valve 27a Is mixed with city water 32 and adjusted to an appropriate temperature, and then supplied to a hot water supply system 38 for hot water supply.
  • hot water mixed with city water 32 by the mixing valve 27 b is supplied to the bathtub 33.
  • the hot water in the bathtub 33 and the hot water in the heat retaining tank 22 are used by exchanging heat in the bath heat exchanger 30.
  • the composite heat insulating material 5 was applied to the heat retaining tank 22 shown in the second embodiment, and the performance of a domestic water heater system was evaluated. As a result of evaluating the efficiency of the water heater system based on JIS C 9220, it was confirmed that the annual hot water supply efficiency was improved by about 1.5%. For this reason, the hot water supply system according to the present embodiment is excellent in energy saving.
  • FIG. 13 is a diagram showing another system configuration of the heat pump type water heater according to the fourth embodiment, and shows a system flow.
  • the medium circulation system 37 is provided with a system that circulates through the heat retaining tank 22 by a three-way valve 28b, and a system that branches from this and connects to a radiator 39 as a heating terminal. Further, the circulation system that circulates through the heat retaining tank 22 is geometrically separated from the water inside the heat retaining tank 22.
  • R410A is used as the refrigerant of the refrigerant circulation system 36.
  • Other configurations are the same as those in FIG.
  • Hot water of about 70 ° C. that circulates through the medium circulation system 37 heated by the heat exchanger 29 constituting the heat pump unit 31 is normally supplied to the radiator 39 and used for room heating.
  • a medium circulation system 37 is formed by returning water whose temperature has been lowered by applying heat to the atmosphere by the radiator 39 to the heat exchanger 29 by the water pump 34a.
  • the supply of warm water to the radiator 39 is stopped by switching the three-way valve 28b, and the water filled in the heat retaining tank 22 is heated by passing through a spiral tube provided in the heat retaining tank 22.
  • Store as hot water The hot water stored in the heat retaining tank 22 is used as hot water for a shower or the like.
  • a hot water supply system mainly for heating, it is necessary to store warm water in a heat retaining tank during a time period when the heating load is small, but by applying the composite heat insulating material 5 to the above embodiment, Heat dissipation is reduced, and a water heater system with superior energy saving can be realized. As a result, the annual hot water supply efficiency can be improved in the ATW (Air to Water) system.
  • ATW Air to Water
  • the present invention is not limited to this, and the water inside the tank is directly heated using the principle of the heat pump.
  • the medium circulating through the medium circulation system 37 and the water in the tank may be geometrically separated and heated indirectly.
  • a CO 2 or R401A as a refrigerant circulating a coolant circulation system 36 is not limited thereto and may also be used, such as isobutane with the use conditions.
  • the composite heat insulating material, the heat retaining tank, and the heat pump type water heater according to the present invention are useful in that they have high heat insulating properties and can downsize the apparatus.

Abstract

The objective of the present invention is to provide a composite heat-insulating material, a heat retention tank, and a heat-pump-type hot water supply device which have high heat-insulating capability even when a packaging material containing aluminum foil or a thick metal evaporation film is used in a vacuum-insulating material. This composite heat-insulating material is equipped with: a vacuum-insulating material (1) having a core material comprising a laminate structure of fiber sheets, and an outer cover material that vacuum-seals and covers the core material; and styrol foam (8a, 8b, 8c) formed integrally with the vacuum-insulating material (1). The styrol foam (8a, 8b, 8c) is arranged on the entire surface of the high-temperature-side surface (7) of the vacuum-insulating material (1), facing the high-temperature side, and on the peripheral portion of the low-temperature-side surface (10) of the vacuum-insulating material (1), facing the low-temperature side.

Description

複合断熱材、保温タンク及びヒートポンプ式給湯機Composite insulation, thermal insulation tank and heat pump water heater
 本発明は、真空断熱材と発泡断熱材とを一体成形した複合断熱材及びそれを用いた保温タンク並びにヒートポンプ式給湯機に関する。 The present invention relates to a composite heat insulating material in which a vacuum heat insulating material and a foam heat insulating material are integrally formed, a heat retaining tank and a heat pump type water heater using the same.
 真空断熱材は、従来からのグラスウール断熱材などと比べて、熱伝導率を大幅に小さくできるため、省エネルギー意識の向上とともに断熱材として広く使われるようになってきた。 Vacuum insulation has been widely used as an insulation material along with an improvement in energy conservation awareness because it can significantly reduce thermal conductivity compared to conventional glass wool insulation.
 しかし、真空断熱材を構成する外被材は、アルミ箔からなる薄いラミネートフィルム、又は金属箔を使用するために、高温側から低温側へフィルム表面から熱移動が起こり、断熱性能を低下させることが課題となっている。このため、アルミ箔に代わってアルミ蒸着フィルムを用いるなどして、外被材を構成する金属を薄肉化することが図られてきている(例えば特許文献1参照)。 However, the jacket material that constitutes the vacuum heat insulating material uses a thin laminated film made of aluminum foil or metal foil, so that heat transfer occurs from the film surface from the high temperature side to the low temperature side, thereby reducing the heat insulating performance. Has become an issue. For this reason, it has been attempted to reduce the thickness of the metal constituting the jacket material by using an aluminum vapor deposited film instead of the aluminum foil (see, for example, Patent Document 1).
 また、作業中に真空断熱材の外被材が破損することを防止するために、真空断熱材を発泡断熱材中に埋設する構造(例えば特許文献2参照)や、真空断熱材と発泡ポリスチレンとをホットメルト接着剤によって一体成形させ、真空断熱材を発泡ポリスチレンに全面埋設する構造及び片面に配設する構造(例えば特許文献3参照)が知られている。 Moreover, in order to prevent the outer sheath material of the vacuum heat insulating material from being damaged during the work, a structure in which the vacuum heat insulating material is embedded in the foam heat insulating material (see, for example, Patent Document 2), a vacuum heat insulating material and foamed polystyrene, There are known a structure in which a vacuum heat insulating material is entirely embedded in a foamed polystyrene and a structure in which it is disposed on one side (for example, see Patent Document 3).
特開2008-256125号公報(図3)JP 2008-256125 A (FIG. 3) 特開昭59-13187号公報(第3頁、図2)JP 59-13187 (page 3, FIG. 2) 特開2008-8431号公報(第5頁、図1、図3)JP 2008-8431 A (Page 5, FIGS. 1 and 3)
 しかしながら、アルミ蒸着フィルムは、基材フィルムに50nm程度のアルミを蒸着させたもので、均一な蒸着層を形成することが困難であることから、アルミ箔と比べてバリア性が低い上に、曲げやねじりのみならず温度変化にも弱いことから、例えば貯湯タンクなどに適用した場合、蒸着層にクラックが発生して真空度が低下し、断熱性能が低くなるという問題があった。 However, the aluminum vapor-deposited film is obtained by vapor-depositing about 50 nm of aluminum on a base film, and it is difficult to form a uniform vapor-deposited layer. For example, when applied to a hot water storage tank or the like, there is a problem that cracks are generated in the vapor deposition layer, the degree of vacuum is lowered, and the heat insulation performance is lowered.
 本発明は、上記に鑑みてなされたものであって、貯湯タンクなどに適用する複合断熱材を構成する真空断熱材に、アルミ箔や厚い金属蒸着フィルムを含んだ包装材を用いても、断熱性能が高い複合断熱材、保温タンク及びヒートポンプ式給湯機を得ることを目的とする。 The present invention has been made in view of the above, and even if a vacuum insulating material constituting a composite heat insulating material applied to a hot water storage tank or the like is used as a heat insulating material even if a packaging material including an aluminum foil or a thick metal vapor deposited film is used. It aims at obtaining the composite heat insulating material with high performance, a heat retention tank, and a heat pump type water heater.
 上述した課題を解決し、目的を達成するために、本発明は、繊維シートを積層体構造にした芯材及び芯材を真空密閉して覆う外被材を有する真空断熱材と、真空断熱材と一体成形された発泡断熱材とを備え、発泡断熱材が、真空断熱材の高温側に面する真空断熱高温面の全面及び真空断熱材の低温側に面する真空断熱低温面の周縁部の少なくとも一部に配設されたことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a vacuum insulating material having a core material in which a fiber sheet is laminated and a jacket material that covers the core material by vacuum-sealing, and a vacuum heat insulating material And a foam heat insulating material integrally formed, and the foam heat insulating material is formed on the entire surface of the vacuum heat insulating high temperature surface facing the high temperature side of the vacuum heat insulating material and the peripheral portion of the vacuum heat insulating low temperature surface facing the low temperature side of the vacuum heat insulating material. It is arranged at least partially.
 本発明によれば、真空断熱高温面から真空断熱低温面に向けて、アルミ箔外被材の表面からの熱移動を抑制でき、断熱性能が高い複合断熱材が得られ、これを用いた保温タンク及びヒートポンプ式給湯機では、保温性が高くなることから、熱効率が高くなるという効果を奏する。 According to the present invention, the heat transfer from the surface of the aluminum foil jacket material can be suppressed from the vacuum heat insulating high temperature surface to the vacuum heat insulating low temperature surface, and a composite heat insulating material having high heat insulating performance can be obtained, and heat retention using this In the tank and the heat pump type water heater, since the heat retaining property is increased, there is an effect that the thermal efficiency is increased.
図1は、本発明にかかる複合断熱材の実施の形態1に適用される真空断熱材の構成を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing a configuration of a vacuum heat insulating material applied to Embodiment 1 of a composite heat insulating material according to the present invention. 図2は、実施の形態1にかかる複合断熱材を示す断面模式図である。FIG. 2 is a schematic cross-sectional view illustrating the composite heat insulating material according to the first embodiment. 図3は、真空断熱材の周囲を覆うように発泡スチロールが設けられた複合断熱材の構造を示す図である。FIG. 3 is a view showing a structure of a composite heat insulating material provided with a polystyrene foam so as to cover the periphery of the vacuum heat insulating material. 図4は、真空断熱材の片側のみに発泡スチロールを設けた複合断熱材の構造を示す図である。FIG. 4 is a view showing a structure of a composite heat insulating material in which foamed polystyrene is provided only on one side of the vacuum heat insulating material. 図5は、6μmの厚さのアルミ箔を含むラミネートフィルムを外被材とした条件で、真空断熱材が挿入された端部からの距離と外被材表面を移動する熱量との関係を示す図である。FIG. 5 shows the relationship between the distance from the end where the vacuum heat insulating material is inserted and the amount of heat moving on the surface of the jacket material under the condition that the laminate film containing an aluminum foil having a thickness of 6 μm is used as the jacket material. FIG. 図6は、実施の形態1にかかる複合断熱材の他の構成例を示す図である。FIG. 6 is a diagram illustrating another configuration example of the composite heat insulating material according to the first embodiment. 図7は、実施の形態1にかかる他の構成例の複合断熱材の断面図である。FIG. 7 is a cross-sectional view of a composite heat insulating material of another configuration example according to the first embodiment. 図8は、本発明にかかる複合断熱材の実施の形態2の構成を示す模式図である。FIG. 8 is a schematic diagram showing the configuration of the second embodiment of the composite heat insulating material according to the present invention. 図9は、実施の形態2にかかる複合断熱材の断面図である。FIG. 9 is a cross-sectional view of the composite heat insulating material according to the second exemplary embodiment. 図10は、実施の形態2にかかる複合断熱材の他の構成例を示す図である。FIG. 10 is a diagram illustrating another configuration example of the composite heat insulating material according to the second embodiment. 図11は、実施の形態2にかかる他の構成例の複合断熱材の断面図である。FIG. 11 is a cross-sectional view of a composite heat insulating material of another configuration example according to the second embodiment. 図12は、実施の形態4にかかるヒートポンプ式給湯機のシステムの構成を示す図である。FIG. 12 is a diagram illustrating a configuration of a system of a heat pump type water heater according to the fourth embodiment. 図13は、実施の形態4にかかるヒートポンプ式給湯機の別のシステム構成を示す図である。FIG. 13 is a diagram illustrating another system configuration of the heat pump type hot water heater according to the fourth embodiment.
 以下に、本発明にかかる複合断熱材、保温タンク及びヒートポンプ式給湯機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a composite heat insulating material, a heat retaining tank, and a heat pump water heater according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明にかかる複合断熱材の実施の形態1に適用される真空断熱材の構成を示す断面模式図である。図1において、真空断熱材1は、繊維シート2を積層体構造とした芯材3が外被材4によって覆われ真空密閉されて構成されている。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view showing a configuration of a vacuum heat insulating material applied to Embodiment 1 of a composite heat insulating material according to the present invention. In FIG. 1, a vacuum heat insulating material 1 is configured by a core material 3 having a fiber sheet 2 having a laminated structure covered with an outer covering material 4 and vacuum-sealed.
 繊維シート2は、約90%が空間で、残りがガラス繊維で構成されており、断熱性能を向上させるために繊維自体は極力シート面と平行方向となるように配置されている。また、外被材4はアルミ箔6を複数の高分子シートで挟持したアルミラミネートシートである。 About 90% of the fiber sheet 2 is a space, and the rest is made of glass fiber, and the fiber itself is arranged so as to be parallel to the sheet surface as much as possible in order to improve heat insulation performance. The jacket material 4 is an aluminum laminate sheet in which an aluminum foil 6 is sandwiched between a plurality of polymer sheets.
 図2は、実施の形態1にかかる複合断熱材を示す断面模式図である。真空断熱材1における高温側面(真空断熱高温面)7には、全面に接するように発泡スチロール8aが設けられている。また、真空断熱材1の周囲部9にも、全面が接するように発泡スチロール8bが設けられている。一方、低温側面(真空断熱低温面)10には、その一部の面のみが接するように発泡スチロール8cが設けられている。低温側面10の周縁部に発泡スチロール8cが配設され、低温側面10の中央部は発泡スチロール8cによって覆われず、露出している。低温側面10の中央部が露出していることにより、低温側面10の全面が発泡スチロール8cに覆われる場合に比べて、覆われない領域を空間的に有効利用できる。なお、発泡スチロール8a,8b,8cは、実際には一つの部材(発泡スチロール8)で構成されており発泡断熱材をなす。 FIG. 2 is a schematic cross-sectional view showing the composite heat insulating material according to the first embodiment. The high temperature side surface (vacuum heat insulating high temperature surface) 7 in the vacuum heat insulating material 1 is provided with a foamed polystyrene 8a so as to be in contact with the entire surface. Moreover, the foamed polystyrene 8b is provided also in the surrounding part 9 of the vacuum heat insulating material 1 so that the whole surface may contact | connect. On the other hand, the low-temperature side surface (vacuum heat insulating low-temperature surface) 10 is provided with a polystyrene foam 8c so that only a part of the surface is in contact therewith. Styrofoam 8c is disposed at the peripheral edge of the low temperature side surface 10, and the central portion of the low temperature side surface 10 is not covered with the expanded polystyrene 8c but exposed. Since the central portion of the low temperature side surface 10 is exposed, an area that is not covered can be effectively used spatially as compared with the case where the entire surface of the low temperature side surface 10 is covered with the expanded polystyrene 8c. In addition, the expanded polystyrene 8a, 8b, 8c is actually comprised with one member (expanded polystyrene 8), and makes a expanded heat insulating material.
 次に、本実施の形態における真空断熱材1の製造方法について説明する。 Next, the manufacturing method of the vacuum heat insulating material 1 in this Embodiment is demonstrated.
 まず、抄紙法による繊維シート2の形成方法について説明する。始めに、直径が4~13μm、長さ2~15mmの太径繊維と、直径が1μm程度の細径繊維とを液体中に分散させる。次に、その液体を用いて自動送り式抄紙機などで抄紙した後に乾燥させ、厚さ0.5μm程度の繊維シート原反を作製する。続いて、この繊維シート原反を、必要とする真空断熱材1の面積程度に裁断し、繊維シート2とする。このように抄紙して形成された繊維シート2の繊維の方向は、多くが繊維シート2の厚さ方向と垂直になっている。 First, a method for forming the fiber sheet 2 by the papermaking method will be described. First, a thick fiber having a diameter of 4 to 13 μm and a length of 2 to 15 mm and a thin fiber having a diameter of about 1 μm are dispersed in a liquid. Next, the liquid is used to make a paper using an automatic feed paper machine and then dried to produce a fiber sheet original fabric having a thickness of about 0.5 μm. Then, this fiber sheet original fabric is cut into the required area of the vacuum heat insulating material 1 to obtain a fiber sheet 2. The fiber direction of the fiber sheet 2 formed by making paper in this way is mostly perpendicular to the thickness direction of the fiber sheet 2.
 次に、芯材3を形成する方法について説明する。所定のサイズに切断された繊維シート2を、大気圧と真空との圧力差による圧縮歪を想定して、所望の厚さとなるように積層して芯材3とする。 Next, a method for forming the core material 3 will be described. The fiber sheet 2 cut into a predetermined size is laminated so as to have a desired thickness assuming a compressive strain due to a pressure difference between atmospheric pressure and vacuum, and the core material 3 is obtained.
 なお、繊維シート原反を切断せずにとぐろ状に巻き込んで積層体にしても良い。また、繊維シート原反の作製に抄紙法を用いる場合を例として説明したが、これに限定されることはない。例えば、遠心法を用いた乾式製造方法であってもよい。またこの場合、積層体の製造はグラスウールを作製する過程でガラス繊維を積層することによって作製する。 It should be noted that the fiber sheet original fabric may be wound into a tuna shape without being cut to form a laminate. Moreover, although the case where the papermaking method was used for preparation of a fiber sheet original fabric was demonstrated as an example, it is not limited to this. For example, a dry manufacturing method using a centrifugal method may be used. In this case, the laminated body is produced by laminating glass fibers in the process of producing glass wool.
 次に、芯材3を外被材4に挿入して真空断熱材1を製造する方法について説明する。まず、2枚の外被材シート(不図示)で予め製袋した(2枚の各々の3辺を接合した)外被材4を作製しておき、前述の方法などにより準備した芯材3を乾燥させてから外被材4に挿入した後に、真空チャンバ内に配置する。次に、真空チャンバ内を減圧して、所定の圧力、例えば0.1~3Pa程度の真空圧にする。この状態で、外被材4の残りの開口部をヒートシールにより密閉する。真空チャンバ内を大気圧に戻し、真空チャンバ内から取り出すことで、実施の形態1にかかる真空断熱材1が得られる。 Next, a method for manufacturing the vacuum heat insulating material 1 by inserting the core material 3 into the jacket material 4 will be described. First, a core material 3 prepared in advance by the above-described method and the like is prepared by making a bag material 4 (made by joining three sides of each of the two sheets) in advance with two sheets of a jacket material sheet (not shown). After being dried and inserted into the jacket material 4, it is placed in a vacuum chamber. Next, the inside of the vacuum chamber is depressurized to a predetermined pressure, for example, a vacuum pressure of about 0.1 to 3 Pa. In this state, the remaining opening of the jacket material 4 is sealed by heat sealing. The vacuum heat insulating material 1 according to the first embodiment is obtained by returning the inside of the vacuum chamber to the atmospheric pressure and taking it out of the vacuum chamber.
 なお、2枚の外被材シートによって芯材3を挟み込むように真空チャンバ内に配置し、真空チャンバ内で減圧した後に、上下の外被材シートの周囲をヒートシールによって密閉するようにしてもよい。また、必要に応じて、外被材4で覆われた空間にガス吸着剤を挿入してもよい。 In addition, it arrange | positions in a vacuum chamber so that the core material 3 may be pinched | interposed by two sheet | seat material sheets, and after depressurizing in a vacuum chamber, you may make it seal the circumference | surroundings of an upper and lower jacket material sheet | seat with a heat seal. Good. Moreover, you may insert a gas adsorbent in the space covered with the jacket material 4 as needed.
 上記のようにして製造された真空断熱材1の内部空間は、真空に保持されている。 The internal space of the vacuum heat insulating material 1 manufactured as described above is maintained in a vacuum.
 続いて、複合断熱材5を作製する方法について説明する。まず、原料粒子(ポリスチレン粒子)を加熱して予備発泡させ、発泡ポリスチレン粒子を作製する。次に、真空断熱材1を金型に挿入し、発泡ポリスチレン粒子を充填した上で、密閉する。そして密閉した金型を蒸気加熱することによって、発泡ポリスチレン粒子を発泡させて発泡スチロール8(発泡ポリスチレン)とし、最後にこれを金型から脱型することで、複合断熱材5が作製される。 Subsequently, a method for producing the composite heat insulating material 5 will be described. First, raw material particles (polystyrene particles) are heated and pre-expanded to produce expanded polystyrene particles. Next, the vacuum heat insulating material 1 is inserted into a mold, filled with expanded polystyrene particles, and then sealed. Then, by heating the sealed mold with steam, the expanded polystyrene particles are expanded to form expanded polystyrene 8 (expanded polystyrene), and finally, this is removed from the mold to produce the composite heat insulating material 5.
 なお、金型に真空断熱材1を配置するのに先だって、ホットメルト系接着剤を真空断熱材1に塗布して、発泡スチロール8と真空断熱材1とを接着しやすいようにしても良い。ホットメルト系接着剤としては、エチレン-酢酸ビニル共重合体やポリオレフィン共重合体などがある。 In addition, prior to disposing the vacuum heat insulating material 1 in the mold, a hot melt adhesive may be applied to the vacuum heat insulating material 1 so that the expanded polystyrene 8 and the vacuum heat insulating material 1 can be easily bonded. Examples of hot melt adhesives include ethylene-vinyl acetate copolymers and polyolefin copolymers.
 従来、例えば、特許文献2及び特許文献3には、真空断熱材51の周囲を覆うように発泡スチロール58が設けられた構造が示されている。図3は、真空断熱材の周囲を覆うように発泡スチロールが設けられた複合断熱材の構造を示す図である。この構造は、アルミ箔56を複数の高分子シートで挟持した外被材54の表面に沿った熱移動を抑制する効果が得られるものの、発泡スチロール58の使用量が多く、複合断熱材55がコスト高になってしまう。また、複合断熱材55を製造する上で、真空断熱材51を金型内で浮かせるように設置しなければならず、そのために支持体が必要となる。支持体を設けた箇所には発泡ポリスチレン粒子が入り込まなくなるだけでなく、金型から脱型するときに特異点となって発泡スチロール58が割れやすくなる。 Conventionally, for example, Patent Document 2 and Patent Document 3 show a structure in which a foamed polystyrene 58 is provided so as to cover the periphery of the vacuum heat insulating material 51. FIG. 3 is a view showing a structure of a composite heat insulating material provided with a polystyrene foam so as to cover the periphery of the vacuum heat insulating material. Although this structure has an effect of suppressing heat transfer along the surface of the jacket material 54 in which the aluminum foil 56 is sandwiched between a plurality of polymer sheets, the amount of the polystyrene foam 58 used is large, and the composite heat insulating material 55 is cost-effective. It becomes high. Moreover, when manufacturing the composite heat insulating material 55, it is necessary to install the vacuum heat insulating material 51 so as to float in the mold, and thus a support is required. Not only does the expanded polystyrene particles not enter the place where the support is provided, but the polystyrene foam 58 is easily broken when it is removed from the mold.
 また、特許文献3には、真空断熱材の片側のみ発泡スチロールを設けた構造が示されている。図4は、真空断熱材51の片側のみに発泡スチロール58を設けた複合断熱材55の構造を示す図である。この構造は、図中での下方向を高温側面57、上方向を低温側面60とすると、アルミ箔56を複数の高分子シートで挟持した外被材54の表面に沿った熱移動が大きく、断熱性能が低下する。すなわち、周縁部の外被材54同士を貼り合わせた部分を介しての熱移動が大きくなる。 Further, Patent Document 3 shows a structure in which a polystyrene foam is provided only on one side of the vacuum heat insulating material. FIG. 4 is a view showing the structure of the composite heat insulating material 55 in which the foamed polystyrene 58 is provided only on one side of the vacuum heat insulating material 51. In this structure, when the lower side in the figure is the high temperature side surface 57 and the upper direction is the low temperature side surface 60, the heat transfer along the surface of the jacket material 54 in which the aluminum foil 56 is sandwiched between the plurality of polymer sheets is large. Insulation performance decreases. That is, the heat transfer through the portion where the outer jacket materials 54 at the peripheral edge are bonded together is increased.
 次に、実施の形態1にかかる複合断熱材5の性能評価結果について説明する。性能評価した複合断熱材5に用いた真空断熱材1は、平均繊維直径が6μmで長さが約12mmのチョップドガラス繊維と火炎法で製造された約0.8μmのマイクロガラスファイバ繊維とを抄紙して作製した厚さ約0.5mmの25枚の繊維シート2を積層して芯材3とし、芯材3をアルミラミネートシート[25μm-ONy(延伸ナイロン)/12μm-AL蒸着PET(ポリエチレンテレフタレート)/6μm-AL箔/50μm-PE(無延伸ポリエチレン)]の外被材4で真空密閉した。サイズは、縦横約600×600mmとし、大気圧と真空との圧力差による圧縮歪が生じた完成状態での厚さは8mmとした。作製した真空断熱材1の熱伝導率を測定した結果、0.0017W/mKであった。 Next, the performance evaluation results of the composite heat insulating material 5 according to the first embodiment will be described. The vacuum heat insulating material 1 used for the composite heat insulating material 5 whose performance was evaluated is a papermaking of chopped glass fiber having an average fiber diameter of 6 μm and a length of about 12 mm and a micro glass fiber fiber of about 0.8 μm manufactured by a flame method. 25 fiber sheets 2 having a thickness of about 0.5 mm were laminated to form a core material 3, and the core material 3 was an aluminum laminate sheet [25 μm-ONy (stretched nylon) / 12 μm-AL-deposited PET (polyethylene terephthalate). ) / 6 μm-AL foil / 50 μm-PE (unstretched polyethylene)]. The size was about 600 × 600 mm in length and width, and the thickness in a completed state where compressive strain was generated due to a pressure difference between atmospheric pressure and vacuum was 8 mm. As a result of measuring the thermal conductivity of the produced vacuum heat insulating material 1, it was 0.0017 W / mK.
 次に、作製した真空断熱材1を型に挿入した。型は、縦横のサイズを800×800mmとし、型の中央下部の凸部(450×450mm)を設けたもので、この凸部に真空断熱材1を載せるように配置した後、発泡ポリスチレン粒子を充填して、発泡させて複合断熱材5とした。作製した複合断熱材5を貯湯タンクに4セット設置し、貯湯タンクに90℃のお湯を入れ、外気を4℃に設定して、放熱試験を実施したところ、8時間の平均放熱量は約52Wであった。 Next, the produced vacuum heat insulating material 1 was inserted into a mold. The mold has a vertical and horizontal size of 800 × 800 mm and is provided with a convex portion (450 × 450 mm) at the lower center of the mold. After placing the vacuum heat insulating material 1 on the convex portion, the expanded polystyrene particles are Filled and foamed to obtain a composite heat insulating material 5. Four sets of the composite thermal insulation material 5 was installed in a hot water storage tank, hot water of 90 ° C was put in the hot water storage tank, the outside air was set at 4 ° C, and a heat release test was conducted. The average heat dissipation for 8 hours was about 52W. Met.
 また、比較のために、同一の真空断熱材1を作製し、次に、前述のような凸部を有さず、片面が平面である金型に真空断熱材を配置して、図4に示した構造の複合断熱材を作製した。その他の手順は同様である。発泡スチロール8側を貯湯タンクに接するように配設し、同様の放熱試験を実施した結果、放熱量は約56Wであった。 For comparison, the same vacuum heat insulating material 1 is manufactured, and then the vacuum heat insulating material is arranged in a mold having no flat portion as described above and one side is flat. A composite heat insulating material having the structure shown was produced. Other procedures are the same. As a result of arranging the expanded polystyrene 8 side so as to be in contact with the hot water storage tank and carrying out the same heat radiation test, the heat radiation amount was about 56 W.
 通常、断熱材の熱伝導率測定は、断熱材の上面及び下面を異なる温度に制御し、その温度差における断熱材中央部の熱流束を測定する。真空断熱材の場合は、外被材表面からの熱が移動しやすいバイパス経路があっても、外被材を構成する金属を薄くして、平面方向の熱抵抗を大きくしていることから、中央部と端部との距離が十分であれば、この影響を受けない。一方、熱機器に適用する場合は、例えば真空断熱材の片側全面が保温対象となるため、真空断熱材の端部(周囲部)では、外被材表面を経由した熱移動が起こる。したがって、全体の放熱量で評価すると、断熱性能に差異が生じることになる。そこで、この現象を確かめるために、上記の実験の条件にて数値解析を実施した。図5は、6μmの厚さのアルミ箔を含むラミネートフィルムを外被材とした条件で、真空断熱材が挿入された端部からの距離と外被材表面を移動する熱量との関係を示す図である。芯材挿入端部から0~50mmは外被材表面に大きな熱移動があることが分かる。この熱移動によって、断熱性能低下が起こり、放熱量の差が現れると考えられる。したがって、端部からの発泡スチロールは、50mm程度以上、好ましくは100~150mmまで覆うことで、外被材表面の熱移動を抑制できる。 Usually, the heat conductivity of the heat insulating material is measured by controlling the upper and lower surfaces of the heat insulating material at different temperatures and measuring the heat flux at the center of the heat insulating material at the temperature difference. In the case of a vacuum heat insulating material, even if there is a bypass path through which heat from the surface of the jacket material is likely to move, the metal constituting the jacket material is thinned to increase the thermal resistance in the plane direction. If the distance between the center portion and the end portion is sufficient, this is not affected. On the other hand, when applied to a thermal apparatus, for example, the entire surface of one side of the vacuum heat insulating material is to be kept warm, and therefore, heat transfer occurs through the surface of the jacket material at the end (peripheral portion) of the vacuum heat insulating material. Therefore, if it evaluates with the whole heat dissipation, a difference will arise in heat insulation performance. Therefore, in order to confirm this phenomenon, numerical analysis was performed under the conditions of the above experiment. FIG. 5 shows the relationship between the distance from the end where the vacuum heat insulating material is inserted and the amount of heat moving on the surface of the jacket material under the condition that the laminate film containing an aluminum foil having a thickness of 6 μm is used as the jacket material. FIG. It can be seen that there is a large heat transfer on the surface of the jacket material from 0 to 50 mm from the core material insertion end. It is considered that this heat transfer causes a decrease in heat insulation performance, resulting in a difference in heat dissipation. Therefore, the polystyrene foam from the end portion can cover about 50 mm or more, preferably 100 to 150 mm, thereby suppressing the heat transfer on the surface of the jacket material.
 上記構成により、外被材4の表面から真空断熱材1の周囲を移動する熱量を抑制でき、断熱性能の向上を図れる。 With the above configuration, the amount of heat that moves around the vacuum heat insulating material 1 from the surface of the jacket material 4 can be suppressed, and the heat insulating performance can be improved.
 図6は、実施の形態1にかかる複合断熱材の他の構成例を示す図である。図7は、実施の形態1にかかる他の構成例の複合断熱材の断面図であり、図6中のVII-VII線に沿った断面を示している。図中、真空断熱材1は、部分円筒形状になっている。その他は前出の構造と同じである。真空断熱材1を作製した後、金型に挿入する前に部分円筒形状に成形加工している。この加工には、例えば、3軸ロールベンダを用いることができる。この場合、部分円筒形状の複合断熱材5を作製でき、円筒形状のタンク等の周囲に配置できる。断熱効果は、平板形状の場合と同等の効果が得られる。 FIG. 6 is a diagram illustrating another configuration example of the composite heat insulating material according to the first embodiment. FIG. 7 is a cross-sectional view of a composite heat insulating material of another configuration example according to the first embodiment, and shows a cross section taken along line VII-VII in FIG. In the figure, the vacuum heat insulating material 1 has a partial cylindrical shape. Others are the same as the previous structure. After the vacuum heat insulating material 1 is produced, it is molded into a partial cylindrical shape before being inserted into the mold. For this processing, for example, a triaxial roll bender can be used. In this case, the partially cylindrical composite heat insulating material 5 can be produced and can be arranged around a cylindrical tank or the like. The heat insulation effect is the same as that of the flat plate shape.
 実施の形態1にかかる複合断熱材5は、真空断熱材1の外被材4の表面からの熱移動を抑制できるため、断熱性能を高くすることができる。また、低温側面10の一部のみに発泡スチロール8を設けることで、発泡材料を削減でき、金型で成形する際に真空断熱材1を支持する支持材が不要となることから、発泡スチロール8の部分を均一な形状で作製できる。したがって、成形した後、製品を取り付けるまでの工程での破損等は発生しにくくなる。さらに、高温側面7に発泡スチロール8aを配置することで、真空断熱材1の耐熱温度よりも高い温度領域での使用が可能となる。 Since the composite heat insulating material 5 concerning Embodiment 1 can suppress the heat transfer from the surface of the jacket material 4 of the vacuum heat insulating material 1, it can improve heat insulation performance. Further, by providing the foamed polystyrene 8 only on a part of the low-temperature side surface 10, the foamed material can be reduced, and a support material for supporting the vacuum heat insulating material 1 is not required when molding with a mold. Can be produced in a uniform shape. Therefore, it becomes difficult to cause breakage or the like in the process after molding until the product is attached. Further, by disposing the expanded polystyrene 8a on the high temperature side surface 7, it becomes possible to use in a temperature region higher than the heat resistance temperature of the vacuum heat insulating material 1.
 本実施の形態においては、アルミラミネートシートを外被材4として用いているため、曲げ加工しても高いバリア性を維持することができ、真空断熱材1を部分円筒形状などに成形しても断熱性能を損なうことがない。 In the present embodiment, since an aluminum laminate sheet is used as the jacket material 4, a high barrier property can be maintained even if it is bent, and even if the vacuum heat insulating material 1 is formed into a partial cylindrical shape or the like. There is no loss of thermal insulation performance.
実施の形態2.
 図8は、本発明にかかる複合断熱材の実施の形態2の構成を示す模式図である。図9は、実施の形態2にかかる複合断熱材の断面図であり、図8でのIX-IX線に沿った断面を示している。
Embodiment 2. FIG.
FIG. 8 is a schematic diagram showing the configuration of the second embodiment of the composite heat insulating material according to the present invention. FIG. 9 is a cross-sectional view of the composite heat insulating material according to the second embodiment, showing a cross section taken along line IX-IX in FIG.
 部分円筒状に成形した真空断熱材1の周方向の接線11を想定し、発泡スチロール8は、接線11を軸方向に連続させた平面よりも概ね真空断熱材1側に限定して配置したものである。この構成により、矩形の容器12に入った円筒形状のタンクの周囲に複合断熱材5を設ける場合、この接線に平行になるように容器12の壁を配置することで複合断熱材5の有効な配置が実現でき、実施の形態1と同等の断熱性能を実現しつつ、容器12を小型化し、機器のスペース効率を向上させることができる。 Assuming a circumferential tangent line 11 of the vacuum heat insulating material 1 formed into a partial cylindrical shape, the polystyrene foam 8 is arranged so as to be limited to the vacuum heat insulating material 1 side from the plane in which the tangential line 11 is continuous in the axial direction. is there. With this configuration, when the composite heat insulating material 5 is provided around the cylindrical tank contained in the rectangular container 12, the wall of the container 12 is arranged so as to be parallel to the tangent, so that the composite heat insulating material 5 can be effectively used. The arrangement can be realized, and the container 12 can be miniaturized and the space efficiency of the device can be improved while realizing the heat insulation performance equivalent to that of the first embodiment.
 図10は、実施の形態2にかかる複合断熱材の他の構成例を示す図である。図11は、実施の形態2にかかる他の構成例の複合断熱材の断面図であり、図10中のXI-XI線に沿った断面を示している。図9と同様に、部分円筒状に成形した真空断熱材1の周方向の接線11を想定し、発泡スチロール8は、接線11を軸方向に連続させた平面よりも概ね真空断熱材1側に限定して配置したものである。実施の形態2にかかる複合断熱材の他の構成例では、発泡スチロール8の縦方向にクランク形状の嵌合段差13を設けているため、発泡スチロール8同士が係合するように配置して貼り付け可能である。 FIG. 10 is a diagram illustrating another configuration example of the composite heat insulating material according to the second embodiment. FIG. 11 is a cross-sectional view of a composite heat insulating material of another configuration example according to the second embodiment, and shows a cross section taken along the line XI-XI in FIG. As in FIG. 9, assuming the tangent line 11 in the circumferential direction of the vacuum heat insulating material 1 formed into a partial cylindrical shape, the polystyrene foam 8 is generally limited to the vacuum heat insulating material 1 side from the plane in which the tangent line 11 is continuous in the axial direction. Are arranged. In another structural example of the composite heat insulating material according to the second embodiment, since the crank-shaped fitting step 13 is provided in the vertical direction of the foamed polystyrene 8, it can be disposed and pasted so that the foamed polystyrene 8 can be engaged with each other. It is.
 この場合、組立作業中などに、複合断熱材5同士の接合部に隙間ができることを防止でき、より断熱性能の高い複合断熱材5を実現できる。さらに、大量生産による製品のバラツキを抑制できる。すなわち、図10のように発泡スチロール8の端部に嵌合段差13が設けられていると、複合断熱材5同士の接合部に隙間ができたとしてもラビリンス効果により隙間内での気体の動きが妨げられるため、断熱性能の低下を抑えられる。このため、製品のバラツキにより隙間が広くなったとしても所望の断熱性能を維持できる。 In this case, it is possible to prevent a gap from being formed in the joint portion between the composite heat insulating materials 5 during assembly work, and to realize the composite heat insulating material 5 with higher heat insulating performance. In addition, product variations due to mass production can be suppressed. That is, when the fitting step 13 is provided at the end of the polystyrene foam 8 as shown in FIG. 10, even if a gap is formed at the joint between the composite heat insulating materials 5, the movement of gas in the gap is caused by the labyrinth effect. Since it is hindered, a decrease in heat insulation performance can be suppressed. For this reason, even if the gap becomes wide due to product variations, the desired heat insulation performance can be maintained.
実施の形態3.
 実施の形態3にかかる複合断熱材5は、真空断熱材1を挟んで配置される発泡スチロールについて、内部で発泡倍率が異なるようにしたものである。例えば、真空断熱材1を挟んで両側の面で、発泡倍率の異なる発泡ポリスチレン粒子を型に充填するようにする。一例として、真空断熱材1の高温側面7の側に、発泡倍率が低いためにコストが割高になるものの、高い保温性が得られる低発泡倍率用ポリスチレン粒子を充填し、低温側面10の側には、発泡倍率が高いものの保温性がやや劣る高発泡倍率用ポリスチレン粒子を充填して複合断熱材5を作製する。
Embodiment 3 FIG.
The composite heat insulating material 5 concerning Embodiment 3 makes a foaming magnification differ internally about the foam polystyrene arrange | positioned on both sides of the vacuum heat insulating material 1. FIG. For example, the mold is filled with expanded polystyrene particles having different expansion ratios on both sides of the vacuum heat insulating material 1. As an example, the high temperature side surface 7 side of the vacuum heat insulating material 1 is filled with polystyrene particles for low expansion ratio that can obtain high heat retention, although the cost is high due to low expansion ratio, and on the low temperature side surface 10 side. Is filled with polystyrene particles for high expansion ratio, which has a high expansion ratio but is slightly inferior in heat retention to produce the composite heat insulating material 5.
 この場合、金型に粒子を充填するタイミングをずらすことなどによって二種類の粒子の配置位置を分けることが可能となる。その結果、厚さが大きく取れるような構造体の部分は、高発泡倍率のポリスチレン粒子を使用することで、コスト低減を図れる。 In this case, it is possible to separate the arrangement positions of the two kinds of particles by shifting the timing of filling the mold with the particles. As a result, cost can be reduced by using polystyrene particles with a high expansion ratio for the portion of the structure that can have a large thickness.
 また、上記の説明では、発泡倍率が異なる場合を例としたが、耐熱温度が異なる発泡ポリスチレン粒子を適用することも可能である。このようにすれば、耐熱性の必要な部位には、使用温度領域に応じた発泡スチロールを配置できるため、断熱効率の良い構造とすることができる。 In the above description, the case where the expansion ratio is different is taken as an example, but it is also possible to apply expanded polystyrene particles having different heat resistance temperatures. If it does in this way, since a polystyrene foam according to a use temperature field can be arranged in a part which needs heat resistance, it can be set as a structure with good heat insulation efficiency.
実施の形態4.
 図12は、実施の形態4にかかるヒートポンプ式給湯機のシステムの構成を示す図であり、システムフローを示している。図12において、ヒートポンプユニット31は、循環媒体が循環する冷媒循環系統36と、冷媒が流通する複数の機器とで構成されている。冷媒が流通する複数の機器として、大気との間で熱を授受し、循環冷媒に授与する空気熱交換器(空気-冷媒熱交換器)35と、循環媒体を加圧する圧縮機25と循環冷媒から熱を除去する熱交換器(冷媒-媒体熱交換器)29と循環媒体を体積膨張させる膨張弁(減圧器)26とを備える。また、熱交換器29で加熱された他の媒体は、三方弁28を経由して保温タンク22の上部と接続されている。また、保温タンク22の下部と熱交換器29との間には水ポンプ34aが設けられており、これらで媒体循環系統37を構成している。また、保温タンク22の上部には温水を取り出して市水32と混合弁27aで混合して給湯に用いる給湯系統38と、混合弁27bにて市水32と混合して浴槽33に供給する系統が設けられている。さらに、浴槽33からは、水ポンプ34bと風呂熱交換器30に接続する系統が設けられている。また、市水32は保温タンク22の下部に接続されている。
Embodiment 4 FIG.
FIG. 12 is a diagram illustrating a system configuration of a heat pump type hot water heater according to the fourth embodiment, and illustrates a system flow. In FIG. 12, the heat pump unit 31 includes a refrigerant circulation system 36 through which a circulation medium circulates and a plurality of devices through which the refrigerant circulates. As a plurality of devices through which the refrigerant circulates, an air heat exchanger (air-refrigerant heat exchanger) 35 that exchanges heat with the atmosphere and gives it to the circulating refrigerant, a compressor 25 that pressurizes the circulating medium, and the circulating refrigerant A heat exchanger (refrigerant-medium heat exchanger) 29 for removing heat from the gas and an expansion valve (decompressor) 26 for volume expansion of the circulating medium. The other medium heated by the heat exchanger 29 is connected to the upper part of the heat retaining tank 22 via the three-way valve 28. A water pump 34 a is provided between the lower part of the heat retaining tank 22 and the heat exchanger 29, and these constitute a medium circulation system 37. Further, hot water is taken out from the upper part of the heat retaining tank 22 and mixed with the city water 32 and the mixing valve 27a to be used for hot water supply, and a system for mixing the city water 32 with the mixing valve 27b and supplying it to the bathtub 33. Is provided. Furthermore, from the bathtub 33, the system | strain connected to the water pump 34b and the bath heat exchanger 30 is provided. The city water 32 is connected to the lower part of the heat retaining tank 22.
 ヒートポンプユニット31を用いて保温タンク内部の水を加熱する動作について説明する。ヒートポンプユニット31は、例えばCOを冷媒として用い、冷媒循環系統36にて循環される。まず、COは、空気熱交換器35で大気中の熱を吸収する。次に、圧縮機25で圧縮されて百数十℃まで温度が上昇する。そして、熱交換器29で媒体循環系統37を通過する媒体(例えば水)との熱交換が行われる。熱を奪われたCOは、膨張弁26にてさらに温度が低下されて、再度空気熱交換器35に供給されて循環される。熱交換器29にて加熱された水は、例えば90℃強まで加熱され、保温タンク22の上部に供給される。またこの時、保温タンク22の下部からは温度の低い冷水が取り出され、水ポンプ34aにて、熱交換器29に供給される。この水循環が媒体循環系統37を構成している。このように、ヒートポンプユニット31を加熱源として用いて、保温タンク22内部の水を加熱させる。 An operation for heating the water inside the heat retaining tank using the heat pump unit 31 will be described. The heat pump unit 31 is circulated in the refrigerant circulation system 36 using, for example, CO 2 as a refrigerant. First, CO 2 absorbs heat in the atmosphere by the air heat exchanger 35. Next, it is compressed by the compressor 25 and the temperature rises to a few tens of degrees Celsius. Then, heat exchange with the medium (for example, water) passing through the medium circulation system 37 is performed by the heat exchanger 29. The CO 2 deprived of heat is further reduced in temperature by the expansion valve 26, supplied to the air heat exchanger 35 again, and circulated. The water heated in the heat exchanger 29 is heated to, for example, a little over 90 ° C. and supplied to the upper part of the heat retaining tank 22. At this time, cold water having a low temperature is taken out from the lower part of the heat retaining tank 22 and supplied to the heat exchanger 29 by the water pump 34a. This water circulation constitutes a medium circulation system 37. Thus, the water inside the heat retaining tank 22 is heated using the heat pump unit 31 as a heating source.
 加熱された温水は用途に応じて使用されるが、例えば、保温タンク22の上部から取り出した温水(保温タンク22の下部に市水32を供給することで水圧にて押し上げる)は、混合弁27aにて市水32と混合されて適切な温度になるように調整された後、給湯用として給湯系統38に供給される。また、同様に混合弁27bにて市水32と混合された温水が浴槽33に供給される。一方、浴槽33の追い焚きには、風呂熱交換器30にて、浴槽33内の温水と、保温タンク22内の温水とを熱交換させて利用する。 The heated hot water is used depending on the application. For example, the warm water taken out from the upper part of the heat retaining tank 22 (push up by supplying water with the city water 32 to the lower part of the heat retaining tank 22) is mixed with the mixing valve 27a. Is mixed with city water 32 and adjusted to an appropriate temperature, and then supplied to a hot water supply system 38 for hot water supply. Similarly, hot water mixed with city water 32 by the mixing valve 27 b is supplied to the bathtub 33. On the other hand, for bathing the bathtub 33, the hot water in the bathtub 33 and the hot water in the heat retaining tank 22 are used by exchanging heat in the bath heat exchanger 30.
 実施の形態2で示した保温タンク22に、複合断熱材5を適用し、家庭用の給湯機システムの性能を評価した。JIS C 9220に基づいて、給湯機システムの効率を評価した結果、年間給湯効率が約1.5%向上することが確認された。このため、本実施の形態に係る給湯システムは、省エネルギー性に優れる。 The composite heat insulating material 5 was applied to the heat retaining tank 22 shown in the second embodiment, and the performance of a domestic water heater system was evaluated. As a result of evaluating the efficiency of the water heater system based on JIS C 9220, it was confirmed that the annual hot water supply efficiency was improved by about 1.5%. For this reason, the hot water supply system according to the present embodiment is excellent in energy saving.
 図13は、実施の形態4にかかるヒートポンプ式給湯機の別のシステム構成を示す図であり、システムフローを示している。図13において、媒体循環系統37は、三方弁28bによって、保温タンク22を循環する系統と、これと分岐して暖房端末としてのラジエータ39に接続する系統とが設けられている。また、保温タンク22を流通する循環系統は、保温タンク22内部の水とは幾何学的に分離されている。冷媒循環系統36の冷媒にはR410Aを用いている。その他の構成は図12と同様である。 FIG. 13 is a diagram showing another system configuration of the heat pump type water heater according to the fourth embodiment, and shows a system flow. In FIG. 13, the medium circulation system 37 is provided with a system that circulates through the heat retaining tank 22 by a three-way valve 28b, and a system that branches from this and connects to a radiator 39 as a heating terminal. Further, the circulation system that circulates through the heat retaining tank 22 is geometrically separated from the water inside the heat retaining tank 22. R410A is used as the refrigerant of the refrigerant circulation system 36. Other configurations are the same as those in FIG.
 ヒートポンプユニット31を構成する熱交換器29で加熱された媒体循環系統37を流通する約70℃弱の温水は、通常はラジエータ39に供給されて、部屋の暖房に用いられる。ラジエータ39で大気に熱を与えて温度が低下した水を、水ポンプ34aによって熱交換器29に戻すことによって媒体循環系統37を形成している。一方で、三方弁28bの切替により、ラジエータ39への温水の供給を停止し、保温タンク22に設けられた螺旋状の管を通過させることによって、保温タンク22に満たされた水を加温し、温水として貯える。保温タンク22に貯えられた温水は、シャワー等の給湯として利用される。 Hot water of about 70 ° C. that circulates through the medium circulation system 37 heated by the heat exchanger 29 constituting the heat pump unit 31 is normally supplied to the radiator 39 and used for room heating. A medium circulation system 37 is formed by returning water whose temperature has been lowered by applying heat to the atmosphere by the radiator 39 to the heat exchanger 29 by the water pump 34a. On the other hand, the supply of warm water to the radiator 39 is stopped by switching the three-way valve 28b, and the water filled in the heat retaining tank 22 is heated by passing through a spiral tube provided in the heat retaining tank 22. Store as hot water. The hot water stored in the heat retaining tank 22 is used as hot water for a shower or the like.
 暖房を主目的とした給湯システムでは、暖房負荷の小さい時間帯に保温タンクに温水を貯え保温しておくことが必要あるが、上記実施の形態に複合断熱材5を適用することで、タンクからの放熱が低減され、より省エネルギー性に優れた給湯機システムを実現できる。これにより、ATW(Air to Water)システムにおいて年間給湯効率の向上を図れる。 In a hot water supply system mainly for heating, it is necessary to store warm water in a heat retaining tank during a time period when the heating load is small, but by applying the composite heat insulating material 5 to the above embodiment, Heat dissipation is reduced, and a water heater system with superior energy saving can be realized. As a result, the annual hot water supply efficiency can be improved in the ATW (Air to Water) system.
 なお上記の説明においては、保温タンク22の加熱方法や浴槽の追い焚きや給湯の一例を示したが、これに限定されることはなく、ヒートポンプの原理を利用してタンク内部の水を直接加熱するものや、媒体循環系統37を流通させる媒体とタンク内部の水を幾何学的に分離して間接的に加熱するものであっても良い。 In the above description, an example of the heating method of the heat retaining tank 22, the reheating of the bathtub, and the hot water supply is shown. However, the present invention is not limited to this, and the water inside the tank is directly heated using the principle of the heat pump. Alternatively, the medium circulating through the medium circulation system 37 and the water in the tank may be geometrically separated and heated indirectly.
 また、冷媒循環系統36を循環させる冷媒としてCOやR401Aを利用した例を示したが、これに限定されることはなく、使用条件等によってイソブタンなどを利用することも可能である。 Also, although an example using a CO 2 or R401A as a refrigerant circulating a coolant circulation system 36 is not limited thereto and may also be used, such as isobutane with the use conditions.
 以上のように、本発明にかかる複合断熱材、保温タンク及びヒートポンプ式給湯機は、断熱性が高く、装置を小型化できる点で有用である。 As described above, the composite heat insulating material, the heat retaining tank, and the heat pump type water heater according to the present invention are useful in that they have high heat insulating properties and can downsize the apparatus.
 1,51 真空断熱材、2 繊維シート、3 芯材、4,54 外被材、5,55 複合断熱材、6,56 アルミ箔、7,57 高温側面、8,8a,8b,8c,58 発泡スチロール、9 周囲部、10,60 低温側面、11 接線、12 容器、13 嵌合段差、31 ヒートポンプユニット、32 市水、33 浴槽、34a,34b 水ポンプ、35 空気熱交換器、36 冷媒循環系統、37 媒体循環系統、38 給湯系統、39 ラジエータ。 1,51 vacuum heat insulating material, 2 fiber sheet, 3 core material, 4,54 jacket material, 5,55 composite heat insulating material, 6,56 aluminum foil, 7,57 high temperature side, 8, 8a, 8b, 8c, 58 Styrofoam, 9 perimeter, 10,60 low temperature side, 11 tangent, 12 container, 13 mating step, 31 heat pump unit, 32 city water, 33 bathtub, 34a, 34b water pump, 35 air heat exchanger, 36 refrigerant circulation system 37 medium circulation system, 38 hot water supply system, 39 radiator.

Claims (10)

  1.  繊維シートを積層体構造にした芯材及び該芯材を真空密閉して覆う外被材を有する真空断熱材と、
     前記真空断熱材と一体成形された発泡断熱材とを備え、
     前記発泡断熱材が、前記真空断熱材の高温側に面する真空断熱高温面の全面及び前記真空断熱材の低温側に面する真空断熱低温面の周縁部に配設されたことを特徴とする複合断熱材。
    A vacuum heat insulating material having a core material having a laminated structure of fiber sheets, and a jacket material covering the core material by vacuum-sealing;
    The foam heat insulating material integrally formed with the vacuum heat insulating material,
    The foam heat insulating material is disposed on the entire surface of the vacuum heat insulating high temperature surface facing the high temperature side of the vacuum heat insulating material and the peripheral portion of the vacuum heat insulating low temperature surface facing the low temperature side of the vacuum heat insulating material. Composite insulation.
  2.  前記真空断熱低温面の中央部は、前記真空断熱材が前記発泡断熱材で覆われておらず、露出されていることを特徴とする請求項1に記載の複合断熱材。 2. The composite heat insulating material according to claim 1, wherein the vacuum heat insulating material is not covered with the foam heat insulating material and exposed at a central portion of the vacuum heat insulating low temperature surface.
  3.  前記外被材は、ラミネート加工されたアルミ箔を含むことを特徴とする請求項1又は2に記載の複合断熱材。 The composite heat insulating material according to claim 1 or 2, wherein the jacket material includes a laminated aluminum foil.
  4.  前記真空断熱材は、部分円筒状に成形されていることを特徴とする請求項1から3のいずれか1項に記載の複合断熱材。 The composite heat insulating material according to any one of claims 1 to 3, wherein the vacuum heat insulating material is formed in a partial cylindrical shape.
  5.  前記発泡断熱材が、前記真空断熱材の部分円筒面の周方向の接線を軸方向に連続させた面よりも前記真空断熱材側に形成されたことを特徴とする請求項4に記載の複合断熱材。 5. The composite according to claim 4, wherein the foam heat insulating material is formed closer to the vacuum heat insulating material than a surface in which circumferential tangents of the partial cylindrical surface of the vacuum heat insulating material are continuous in the axial direction. Insulation.
  6.  前記発泡断熱材は、前記真空断熱高温面側と前記真空断熱低温面側とで発泡倍率が異なることを特徴とする請求項1から5のいずれか1項に記載の複合断熱材。 The composite heat insulating material according to any one of claims 1 to 5, wherein the foam heat insulating material has a different expansion ratio between the vacuum heat insulating high temperature surface side and the vacuum heat insulating low temperature surface side.
  7.  前記発泡断熱材が、発泡ポリスチレンで形成されたことを特徴とする請求項1から6のいずれか1項に記載の複合断熱材。 The composite heat insulating material according to any one of claims 1 to 6, wherein the foam heat insulating material is formed of expanded polystyrene.
  8.  少なくとも一部が請求項1から7のいずれか1項に記載の複合断熱材で覆われた保温タンク。 A heat insulating tank at least partially covered with the composite heat insulating material according to any one of claims 1 to 7.
  9.  請求項8に記載の保温タンクと、
     前記保温タンクに貯留される媒体を加熱する加熱源とを備え、
     前記加熱源は、空気と冷媒とを熱交換する空気-冷媒熱交換器、前記冷媒を圧縮する圧縮機、前記冷媒と前記媒体とを熱交換する冷媒-媒体熱交換器、及び前記冷媒を減圧する減圧器とを有するヒートポンプユニットであることを特徴とするヒートポンプ式給湯機。
    A heat retaining tank according to claim 8,
    A heating source for heating the medium stored in the heat retaining tank,
    The heating source includes an air-refrigerant heat exchanger that exchanges heat between air and a refrigerant, a compressor that compresses the refrigerant, a refrigerant-medium heat exchanger that exchanges heat between the refrigerant and the medium, and a pressure reduction of the refrigerant. A heat pump water heater, characterized by being a heat pump unit having a pressure reducer.
  10.  前記保温タンクに接続され、前記媒体の熱で室内空気を加熱する暖房端末を備えることを特徴とする請求項9に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to claim 9, further comprising a heating terminal connected to the heat retaining tank and configured to heat indoor air with heat of the medium.
PCT/JP2012/078048 2012-03-29 2012-10-30 Composite heat-insulating material, heat retention tank, and heat-pump-type hot water supply device WO2013145401A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014507313A JP5788081B2 (en) 2012-03-29 2012-10-30 Composite insulation, thermal insulation tank and heat pump water heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-076742 2012-03-29
JP2012076742 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013145401A1 true WO2013145401A1 (en) 2013-10-03

Family

ID=49258741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078048 WO2013145401A1 (en) 2012-03-29 2012-10-30 Composite heat-insulating material, heat retention tank, and heat-pump-type hot water supply device

Country Status (2)

Country Link
JP (1) JP5788081B2 (en)
WO (1) WO2013145401A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215134A (en) * 2014-05-12 2015-12-03 三菱電機株式会社 Storage type water heater
CN105570620A (en) * 2016-01-19 2016-05-11 南京航空航天大学 High-temperature-resistant cold-insulation double-faced composite vacuum heat-insulating board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198717A (en) * 2006-01-30 2007-08-09 Denso Corp Hot water storage tank
JP2008215632A (en) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp Hot water storing tank unit of hot water storage type hot water supply machine
JP2008267481A (en) * 2007-04-19 2008-11-06 Mag:Kk Vacuum heat insulating composite material manufacturing method and vacuum heat insulating composite material
JP2011102622A (en) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp Insulating container
JP2011257012A (en) * 2010-06-04 2011-12-22 Mitsubishi Electric Corp Hot-water storage type water heater
JP2012052674A (en) * 2010-08-31 2012-03-15 Hitachi Appliances Inc Water heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198717A (en) * 2006-01-30 2007-08-09 Denso Corp Hot water storage tank
JP2008215632A (en) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp Hot water storing tank unit of hot water storage type hot water supply machine
JP2008267481A (en) * 2007-04-19 2008-11-06 Mag:Kk Vacuum heat insulating composite material manufacturing method and vacuum heat insulating composite material
JP2011102622A (en) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp Insulating container
JP2011257012A (en) * 2010-06-04 2011-12-22 Mitsubishi Electric Corp Hot-water storage type water heater
JP2012052674A (en) * 2010-08-31 2012-03-15 Hitachi Appliances Inc Water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215134A (en) * 2014-05-12 2015-12-03 三菱電機株式会社 Storage type water heater
CN105570620A (en) * 2016-01-19 2016-05-11 南京航空航天大学 High-temperature-resistant cold-insulation double-faced composite vacuum heat-insulating board

Also Published As

Publication number Publication date
JPWO2013145401A1 (en) 2015-12-10
JP5788081B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2013065162A1 (en) Vacuum heat insulating material, method for manufacturing same, heat retaining tank using same, and heat pump water heater
JP6108180B2 (en) Vacuum heat insulating material and heat insulating housing using the same
CA2539448C (en) Vacuum heat insulator, manufacturing method of the same, hot-insulation cold-insulation apparatus having the same, and heat insulation board
JP5624305B2 (en) Insulated container
JP6025969B2 (en) Vacuum heat insulating material, heat insulation tank equipped with the same, heat insulation body, and heat pump water heater
JP5618756B2 (en) Vacuum insulation material and manufacturing method thereof
JP2013124724A (en) Vacuum heat insulating material, heat insulation box and device that use the same, and method for manufacturing vacuum heat insulating material
JP4969436B2 (en) Vacuum insulation material and equipment using the same
JP5664297B2 (en) Vacuum insulation and insulation box
JP5363779B2 (en) Water heater
JP2009299760A (en) Thermal insulation device of heat apparatus
JP5788081B2 (en) Composite insulation, thermal insulation tank and heat pump water heater
JP6266162B2 (en) Insulating body, vacuum heat insulating material, and method of manufacturing vacuum heat insulating material
CN102174974A (en) Vacuum insulation panel supported by full-paperboard structure and manufacturing method thereof
JP5907204B2 (en) Manufacturing method of vacuum insulation
JP2011117631A (en) Storage water heater
JP6641243B2 (en) Method for manufacturing composite heat insulator, method for manufacturing water heater, and composite heat insulator
JP2009041648A (en) Vacuum heat insulating material and construction member applying the same
JP5216510B2 (en) Vacuum insulation material and equipment using the same
CN105149392B (en) A kind of indent method of special-shaped core material of vacuum heat insulation plate
CN219912250U (en) Perforated vacuum heat insulation plate
JP6016435B2 (en) Vacuum insulation material and insulated device
KR102009866B1 (en) Insulation and Cooling/Heating System used Reflective Insulator
CN110388538B (en) Vacuum heat insulation material
KR20140143904A (en) Water heater having a vacuum insulation panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873027

Country of ref document: EP

Kind code of ref document: A1