JP4969436B2 - Vacuum insulation material and equipment using the same - Google Patents

Vacuum insulation material and equipment using the same Download PDF

Info

Publication number
JP4969436B2
JP4969436B2 JP2007335524A JP2007335524A JP4969436B2 JP 4969436 B2 JP4969436 B2 JP 4969436B2 JP 2007335524 A JP2007335524 A JP 2007335524A JP 2007335524 A JP2007335524 A JP 2007335524A JP 4969436 B2 JP4969436 B2 JP 4969436B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
outer packaging
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007335524A
Other languages
Japanese (ja)
Other versions
JP2009156353A (en
Inventor
大五郎 嘉本
孝行 中川路
恒 越後屋
克美 福田
俊光 鶴賀
久男 横倉
邦成 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007335524A priority Critical patent/JP4969436B2/en
Publication of JP2009156353A publication Critical patent/JP2009156353A/en
Application granted granted Critical
Publication of JP4969436B2 publication Critical patent/JP4969436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)

Description

本発明は、熱影響を遮断する真空断熱材と、それを用いた機器に関する。   The present invention relates to a vacuum heat insulating material that blocks heat influence, and an apparatus using the same.

近年、地球温暖化に対する観点から、家電品を含め種々の製品に対し消費電力等のエネルギー削減が望まれている。例えば、冷蔵庫の消費電力は庫内の負可量が一定であれば、冷却用圧縮機の効率を向上させたり、熱漏洩量に関与する断熱材の断熱性能を向上させることにより、消費するエネルギーが削減できる。これまで、熱伝導率を低減するための断熱材として真空断熱材が開発され、冷蔵庫や冷凍庫等に多く使用されてきた。発泡ウレタン等の断熱材に比べ、真空断熱材は熱伝導率が非常に小さい。   In recent years, from the viewpoint of global warming, energy reduction such as power consumption is desired for various products including home appliances. For example, if the amount of power consumed by the refrigerator is constant, the energy consumed by improving the efficiency of the cooling compressor or improving the heat insulation performance of the heat insulating material involved in the amount of heat leakage Can be reduced. Up to now, vacuum heat insulating materials have been developed as heat insulating materials for reducing the thermal conductivity, and have been used in many refrigerators and freezers. Compared to heat insulating materials such as urethane foam, vacuum heat insulating materials have a very low thermal conductivity.

また、近年、冷蔵庫の内容積は増加の傾向を示している。断熱材すなわち壁の厚さを薄くすることで、冷蔵庫の内容積は外形寸法を同一とした場合、大きくできる。壁の厚さを薄くすると断熱性能が低くなってしまうため、この断熱性能の低下を補うため真空断熱材にはより低い熱伝導率が求められている。   In recent years, the internal volume of refrigerators has been increasing. By reducing the thickness of the heat insulating material, that is, the wall, the internal volume of the refrigerator can be increased when the external dimensions are the same. When the thickness of the wall is reduced, the heat insulating performance is lowered. Therefore, in order to compensate for the decrease in the heat insulating performance, a lower thermal conductivity is required for the vacuum heat insulating material.

特許文献1は、無機繊維からなる芯材をガスバリア性フィルムで覆い、内部を減圧密封した真空断熱材が記載されている。   Patent Document 1 describes a vacuum heat insulating material in which a core material made of inorganic fibers is covered with a gas barrier film and the inside is sealed under reduced pressure.

特許文献2は、芯材と該芯材を収納し内部を減圧状態に維持できる外包材を備えた真空断熱材が記載されている。   Patent Document 2 describes a vacuum heat insulating material including a core material and an outer packaging material that can store the core material and maintain the inside in a reduced pressure state.

特開2001−336691号公報JP 2001-336691 A 特開2006−153199号公報JP 2006-153199 A

真空断熱材では、低い熱伝導率を長期間保持するため、ガスバリア層としてアルミの蒸着層または薄箔を用いることが必要となる。しかしながら、アルミニウム金属は熱伝導率が非常に大きいため、熱がアルミニウム部分を伝わって移動するところでヒートブリッジが発生し、断熱性能の熱漏洩量に悪影響を及ぼす。   In the vacuum heat insulating material, in order to maintain a low thermal conductivity for a long period of time, it is necessary to use an aluminum vapor deposition layer or a thin foil as a gas barrier layer. However, since aluminum metal has a very high thermal conductivity, a heat bridge is generated where heat travels through the aluminum portion, which adversely affects the amount of heat leakage in the heat insulating performance.

特許文献1には、芯材として無機繊維からなるシート状成形体を用い、ガスバリア性フィルムとして金属箔とプラスチックフィルムが積層されたラミネートフィルムまたは金属の蒸着が施されたプラスチックフィルムを用いた真空断熱材が記載されている。熱伝導率は0.0035〜0.0045(W/m・K)である。   In Patent Document 1, a vacuum insulation using a sheet-like molded body made of inorganic fibers as a core material and a laminated film in which a metal foil and a plastic film are laminated or a plastic film on which metal deposition is performed is used as a gas barrier film. The materials are listed. The thermal conductivity is 0.0033 to 0.0045 (W / m · K).

また、特許文献2には、芯材としてシート状有機繊維集合体を用い、外包材としては、ナイロン,アルミ蒸着ポリエチレンテレフタレート,アルミ箔,高密度ポリエチレン等の積層物を用いる真空断熱材が記載されている。熱伝導率は最小でも0.003(W/m・K)である。   Patent Document 2 describes a vacuum heat insulating material that uses a sheet-like organic fiber aggregate as a core material and uses a laminate of nylon, aluminum-deposited polyethylene terephthalate, aluminum foil, high-density polyethylene or the like as an outer packaging material. ing. The minimum thermal conductivity is 0.003 (W / m · K).

本発明は、冷蔵庫等の各種機器のさらなる高効率化,大容量化のため、これらの特許文献1,2に記載された真空断熱材の熱伝導率よりもさらに低い熱伝導率の真空断熱材を提供することにある。   The present invention is a vacuum heat insulating material having a thermal conductivity lower than that of the vacuum heat insulating materials described in Patent Documents 1 and 2 in order to further increase the efficiency and capacity of various devices such as refrigerators. Is to provide.

上記本願の課題を解決する本発明の特徴は、ガスバリア性を有する外包材中に無機繊維の芯材をいれ、内部を減圧した真空断熱材において、前記ガスバリア性を有する外包材の表面に突起を有することを特徴とする真空断熱材にある。   The feature of the present invention that solves the problem of the present application is that, in a vacuum heat insulating material in which a core material of inorganic fiber is placed in an outer packaging material having gas barrier properties, and the inside is decompressed, a protrusion is formed on the surface of the outer packaging material having gas barrier properties. It exists in the vacuum heat insulating material characterized by having.

外包材は、気体・液体を遮断するガスバリア層と、外包材を袋形状にするための溶着層を備える。さらに、強度向上等のためのオーバーコート層や、その他の有機・無機薄膜よりなるを付して多層膜としてもよい。外包材に突起を形成するためには、ガスバリア層やその他の表面を凹凸としてもよいし、溶着層に凹凸を形成してもよい。   The outer packaging material includes a gas barrier layer that blocks gas and liquid, and a welding layer for making the outer packaging material into a bag shape. Further, an overcoat layer for improving the strength or the like, or other organic / inorganic thin films may be added to form a multilayer film. In order to form protrusions on the outer packaging material, the gas barrier layer and other surfaces may be uneven, or unevenness may be formed on the weld layer.

真空断熱材中の伝熱は、断熱材中の固体および気体によりおこる。通常、真空断熱材中は減圧されており気体による伝熱は無視できる。従って、真空断熱材は、固体中を伝わる熱に大きな影響を受ける。特に、真空断熱材は内部を減圧して作製することから、大気による圧力を受けている。圧力を受けた状態では、芯材と外包材または真空断熱材を貼り付けた機器の面と外包材の接触面で、熱の伝達が起こる。   Heat transfer in the vacuum heat insulating material is caused by solids and gas in the heat insulating material. Normally, the vacuum heat insulating material is depressurized and heat transfer by gas is negligible. Therefore, the vacuum heat insulating material is greatly affected by the heat transmitted through the solid. In particular, the vacuum heat insulating material is produced by depressurizing the inside thereof, and thus receives pressure from the atmosphere. In a state where pressure is applied, heat transfer occurs between the surface of the device to which the core material and the outer packaging material or the vacuum heat insulating material are attached and the contact surface of the outer packaging material.

外包材表面に突起を形成することで、芯材と外包材、外包材と断熱対象の機器との接触を面での接触から点での接触とする。その結果、熱抵抗を増大させることが可能となる。突起形状部分の材質は特に問わないが、熱伝導率の小さい材質で構成するとさらに熱伝導率を小さくすることができる。   By forming protrusions on the surface of the outer packaging material, the contact between the core material and the outer packaging material, and the outer packaging material and the device to be insulated is changed from the contact on the surface to the point contact. As a result, the thermal resistance can be increased. The material of the protrusion-shaped part is not particularly limited, but the heat conductivity can be further reduced if it is made of a material having a low heat conductivity.

突起の形状としては四角柱,四角錐,円柱,円錐等が考えられるが、特に接触熱抵抗増大のためには錐形状の突起を用いることが望ましい。また、突起の長さは熱抵抗に大きな影響を与える。突起は長い(高い)ほうが好ましく、特に30μm以上の長さを有すると高い断熱性能を有する。   As the shape of the projection, a quadrangular prism, a quadrangular pyramid, a cylinder, a cone, and the like are conceivable. In particular, it is desirable to use a cone-shaped projection for increasing contact thermal resistance. Further, the length of the protrusion has a great influence on the thermal resistance. The protrusions are preferably long (high), and particularly have a heat insulation performance when they have a length of 30 μm or more.

突起は、有機物でも無機物でもよい。例えば外包材が有機物−無機物−有機物の多層膜となっている場合には、表面の有機物に凹凸を形成することもできるし、内部の無機物膜を凹凸形状とし、表面に有機物をコートすることもよい。外包材は内面側に溶着層を有する場合が多いため、外包材と芯材との断熱性能の向上の際には、溶着層を突起形状とすることが好ましい。溶着層部分を熱可塑性樹脂で構成すると、突起を形成することが特に容易である。   The protrusion may be organic or inorganic. For example, when the outer packaging material is a multilayer film of organic matter-inorganic matter-organic matter, it is possible to form irregularities on the organic matter on the surface, or to make the inner inorganic matter film uneven and coat the surface with organic matter. Good. Since the outer packaging material often has a weld layer on the inner surface side, it is preferable that the weld layer has a protruding shape when the heat insulation performance between the outer packaging material and the core material is improved. When the weld layer portion is made of a thermoplastic resin, it is particularly easy to form protrusions.

また、上記課題を解決する本発明は、上記の真空断熱材を採用した断熱箱体もしくはそれを用いた機器である。上記の真空断熱材を採用することで、熱漏洩量を低減した機器を提供できる。対象となる機器は、例えば冷蔵庫,給湯器,電気温水器,保温浴槽,インバータモジュール,太陽集熱装置等であり、機器全体または機器の内部の発熱部の熱影響を断熱できる。また、その結果、消費電力量を低減することが可能となる。   Moreover, this invention which solves the said subject is the heat insulation box which employ | adopted said vacuum heat insulating material, or an apparatus using the same. By adopting the above vacuum heat insulating material, it is possible to provide a device with a reduced amount of heat leakage. The target devices are, for example, a refrigerator, a water heater, an electric water heater, a hot tub, an inverter module, a solar heat collecting device, and the like, and can insulate the thermal influence of the entire device or a heat generating part inside the device. As a result, it is possible to reduce power consumption.

上記構成によれば、接触熱抵抗の増大を図ることで、熱伝導率の小さい真空断熱材を提供できる。また、真空断熱材を機器に用いて、熱影響を遮断し、消費電力量を低減した省エネ機器を提供することができる。   According to the said structure, the vacuum heat insulating material with small heat conductivity can be provided by aiming at the increase in contact thermal resistance. Further, by using a vacuum heat insulating material for the device, it is possible to provide an energy saving device that cuts off the heat effect and reduces the power consumption.

従来の真空断熱材、及び本発明の真空断熱材の構成例について、図面を参照して説明する。図1は従来の真空断熱材の構成を示す図である。図1(a)に示すように、真空断熱材は、芯材と、水分や気体を除去するゲッター剤を、外包材で覆い、外包材の一部を溶着等で固着して袋形状とし、内部を減圧して封止した構成を有する。また、図1(b)に示すように、外包材としては、内面側より袋形状とするための溶着層,水や気体を遮断するガスバリア層,衝撃からガスバリア層を保護するオーバーコート層が形成されている。   The structural example of the conventional vacuum heat insulating material and the vacuum heat insulating material of this invention is demonstrated with reference to drawings. FIG. 1 is a diagram showing a configuration of a conventional vacuum heat insulating material. As shown in FIG. 1 (a), the vacuum heat insulating material covers the core material and the getter agent that removes moisture and gas with an outer packaging material, and a part of the outer packaging material is fixed by welding or the like to form a bag shape. It has a configuration in which the inside is depressurized and sealed. As shown in FIG. 1B, as the outer packaging material, a weld layer for forming a bag shape from the inner surface side, a gas barrier layer for blocking water and gas, and an overcoat layer for protecting the gas barrier layer from impact are formed. Has been.

一方、図2は本発明の真空断熱材の構成を示す図である。図2(b)に示すとおり、外包材の内面側、溶着層の表面を凹凸形状とした例である。真空断熱材の熱伝導は外包材内部の固体の熱伝導とガスの熱伝導の和であらわされる。真空断熱材内部は減圧されていることから、ガスの熱伝導はほぼ無視できる状態にあるため、固体の熱伝導が重要となる。従来の真空断熱材は外包材と芯材、もしくは外包材と保温される機器とが面で接触しているため、真空断熱材の熱伝導が大きくなっていた。本発明は外包材の表面に突起を設けて、接触面積を低減したことにより、熱伝導率を低減した。このように外包材の表面に形成した突起は、芯材と外包材との接触熱抵抗を増大させ、真空断熱材の熱伝導率を小さくできる。芯材は、グラスウール等、結合剤を含有しない無機繊維を用いることが好ましい。   On the other hand, FIG. 2 is a figure which shows the structure of the vacuum heat insulating material of this invention. As shown in FIG.2 (b), it is the example which made the inner surface side of the outer packaging material and the surface of the welding layer uneven | corrugated shape. The heat conduction of the vacuum heat insulating material is expressed as the sum of the heat conduction of the solid inside the outer packaging material and the heat conduction of the gas. Since the inside of the vacuum heat insulating material is depressurized, the heat conduction of the gas is almost negligible, so the heat conduction of the solid is important. In the conventional vacuum heat insulating material, since the outer packaging material and the core material, or the outer packaging material and the device to be kept warm are in contact with each other, the heat conduction of the vacuum heat insulating material is increased. In the present invention, protrusions are provided on the surface of the outer packaging material to reduce the contact area, thereby reducing the thermal conductivity. Thus, the protrusion formed on the surface of the outer packaging material increases the contact thermal resistance between the core material and the outer packaging material, and can reduce the thermal conductivity of the vacuum heat insulating material. The core material is preferably an inorganic fiber that does not contain a binder, such as glass wool.

外包材としては、現在用いられているようにガスバリア層の全面に有機フィルムを接着剤で接着したラミネート材がよい。例えば、ガスバリア層としてアルミ箔,アルミ蒸着,エチレン−ビニルアルコール共重合樹脂フィルム,ポリエステルフィルム等を貼り合わせ、オーバーコート層にナイロンフィルムを貼り付けている。ガスバリア性の高い有機樹脂としては、ポリビニルアルコール(PVA),ポリエチレンビニルアルコール(EVOH),ポリ塩化ビニリデン(PVDC)等があげられる。また、外包材の外層(オーバーコート層)には、ナイロン等が用いられる。   As the outer packaging material, a laminate material in which an organic film is bonded to the entire surface of the gas barrier layer with an adhesive as currently used is preferable. For example, an aluminum foil, aluminum vapor deposition, an ethylene-vinyl alcohol copolymer resin film, a polyester film or the like is bonded as a gas barrier layer, and a nylon film is bonded to the overcoat layer. Examples of the organic resin having a high gas barrier property include polyvinyl alcohol (PVA), polyethylene vinyl alcohol (EVOH), and polyvinylidene chloride (PVDC). Moreover, nylon etc. are used for the outer layer (overcoat layer) of an outer packaging material.

外包材の溶着層としては、高密度ポリエチレン,低密度ポリエチレン,無延伸ポリプロピレン等が用いられる。また、高温(100℃以上)となる部分への真空材の適用も望まれており、高温部には2軸延伸ポリプロピレン(CPP)を溶着層とすることが望ましい。   High density polyethylene, low density polyethylene, unstretched polypropylene, or the like is used as a weld layer for the outer packaging material. Further, it is also desired to apply a vacuum material to a portion that is at a high temperature (100 ° C. or higher), and it is desirable to use biaxially oriented polypropylene (CPP) as a weld layer in the high temperature portion.

芯材としては、無機繊維を用いることが好ましい。無機繊維の芯材は、グラスウールが好ましい。グラスウールの平均繊維径により熱伝導率やコストが大きく異なる。平均繊維径は3〜5μmを有するものが熱伝導率・コストの面より好ましい。この繊維径のものは、熱流路がジグザクとなり接触抵抗以外でも熱抵抗を増大させ、熱伝導率を低くさせることができる。また、バインダーの結合材を含まないものが好ましい。バインダーよりアウトガスが生じ、熱伝導率が高くなることを避けるためである。また、ポリエチレンテレフタレート繊維などの有機樹脂繊維を用いることもできる。   As the core material, inorganic fibers are preferably used. The inorganic fiber core material is preferably glass wool. Thermal conductivity and cost vary greatly depending on the average fiber diameter of glass wool. What has an average fiber diameter of 3-5 micrometers is preferable from the surface of thermal conductivity and cost. With this fiber diameter, the heat flow path becomes zigzag, and the thermal resistance can be increased and the thermal conductivity can be lowered other than the contact resistance. Moreover, what does not contain the binder binder is preferable. This is to prevent outgassing from the binder and increase the thermal conductivity. Moreover, organic resin fibers, such as a polyethylene terephthalate fiber, can also be used.

ゲッター剤は乾燥させて用いることにより、減圧封止した後に水分やガス成分を除去することができる。その結果、真空度を保持し、熱伝導率の低減に寄与する。モレキュラシーブ,シリカゲル,酸化カルシウム,合成ゼオライト,活性炭等が挙げられ、適宜これらを混合して使用してもよい。特に、外部からの水分等が再び吸着しにくい疎水性モレキュラシーブが好ましい。   By using the getter agent after drying, moisture and gas components can be removed after sealing under reduced pressure. As a result, the degree of vacuum is maintained and it contributes to the reduction of thermal conductivity. Molecular sieves, silica gels, calcium oxides, synthetic zeolites, activated carbons and the like may be mentioned, and these may be used in a suitable mixture. In particular, a hydrophobic molecular sieve that is difficult to adsorb moisture from the outside again is preferable.

外包材の表面に設けられた突起は、内面の芯材と接触する部分か、外面の断熱すべき発熱部または保温部との接触面に設けられる。有機物よりなるものとすると形成が容易で好ましい。また、特に内面側に突起を形成する場合は、溶着層と同一材質で突起を形成することが好ましい。断熱性能を向上させるため、長さ30μm以上であることが好ましい。   The protrusion provided on the surface of the outer packaging material is provided on a portion of the inner surface that comes into contact with the core material, or on a contact surface of the outer surface with the heat generating portion or the heat retaining portion to be insulated. Forming with an organic material is preferable because it is easy to form. In particular, when the protrusion is formed on the inner surface side, it is preferable to form the protrusion with the same material as the weld layer. In order to improve the heat insulation performance, the length is preferably 30 μm or more.

突起の形状としては接触面積を低下させることができる形状であれば、特に形状は問わないが、四角柱,四角錐,円柱,円錐等が挙げられる。形成した突起については、光学顕微鏡,走査型電子顕微鏡等で形状を確認することができる程度の大きさを有することが適当である。   The shape of the protrusion is not particularly limited as long as the contact area can be reduced, and examples thereof include a quadrangular prism, a quadrangular pyramid, a cylinder, and a cone. It is appropriate that the formed protrusions have such a size that the shape can be confirmed with an optical microscope, a scanning electron microscope, or the like.

外包材表面に形成される突起の数は、突起の素材や大きさに応じて任意に設定することが可能である。例えば、突起を形成しない場合に接触する面積を100とした場合、突起を形成した後の接触面積が1〜50となるように形成すると、充分な断熱性能の向上が見込まれる。   The number of protrusions formed on the outer packaging material surface can be arbitrarily set according to the material and size of the protrusions. For example, when the contact area when the protrusion is not formed is 100, if the contact area after forming the protrusion is 1 to 50, sufficient heat insulation performance can be expected.

外包材表面の突起はどのように形成してもよく、外包材の表面を加工したり、凹凸を有する基材を用いて得られるものである。例えば有機物よりなる最外層に凹凸を形成するための加工方法としては、従来の外包材をラミネート等で作成した後、所定の形状に加工した型材を外包材表面に配置し、加熱圧着する方法で形成することが可能である。加熱圧着する際の温度は、加工する物質により変化する。他の加工方法としてはエンボス加工等が挙げられる。また、外包材表面に所定形状のマスクを形成後、印刷,スパッタ等を用い突起を形成した後、マスクを除去する方法等も挙げられる。   The protrusions on the surface of the outer packaging material may be formed in any way, and can be obtained by processing the surface of the outer packaging material or using a substrate having irregularities. For example, as a processing method for forming irregularities on the outermost layer made of an organic material, a conventional outer packaging material is prepared by laminating or the like, and then a mold material processed into a predetermined shape is placed on the outer packaging material surface, and is subjected to thermocompression bonding. It is possible to form. The temperature at the time of thermocompression bonding varies depending on the material to be processed. Other processing methods include embossing. In addition, a method of removing a mask after forming a projection with a predetermined shape on the surface of the outer packaging material, forming a protrusion using printing, sputtering, or the like is also included.

上記真空断熱材は、被保温部と、被保温部の温度状態を保つための断熱部材とを有する断熱箱体に使用される。上記断熱部材は、本発明の真空断熱材よりなる。特に、熱交換部を有し、断熱が必要となる機器全般に使用することが好ましい。真空断熱材を配置する場合には、真空断熱材の突起を被保温部の熱拡散方向に平行とすることが好ましい。   The said vacuum heat insulating material is used for the heat insulation box which has a to-be-heated part and the heat insulation member for maintaining the temperature state of a to-be-heated part. The said heat insulation member consists of a vacuum heat insulating material of this invention. In particular, it is preferable to use it for all devices having a heat exchanging part and requiring heat insulation. When a vacuum heat insulating material is disposed, it is preferable that the protrusion of the vacuum heat insulating material be parallel to the heat diffusion direction of the heat retaining portion.

上記の断熱箱体は、例えば冷蔵庫,冷凍庫等の冷気を保持する機器や、給湯機・保温浴槽等の発熱体または高温部を保温する機器に用いられる。他にも、給湯器,電気温水器,保温浴槽等にも使用可能である。図3は、冷蔵庫の庫内スペースの周辺に使用した例、図4は、給湯器の庫内スペースの周辺に使用した例、図5は、電気温水器の庫内スペースの周辺に使用した例、図6は、保温浴槽の周辺に使用部した例である。
〔実施例〕
本実施例では、外包材の内面側に突起を形成し、芯材と外包材との断熱性能を向上させた例について説明する。外包材の内面側に突起を形成する場合、ガスバリア層等に凹凸を設けてもよいが、本実施例では、溶着層を凹凸形状とした。上述の通り、溶着層を熱可塑性樹脂とすると、溶着性能が高いとともに、突起の形成が比較的容易となる。
The heat insulating box is used for, for example, a device that holds cold air such as a refrigerator or a freezer, or a heat generator such as a hot water heater or a heat insulating bathtub or a device that keeps a high temperature part warm. In addition, it can also be used for water heaters, electric water heaters, and hot tubs. FIG. 3 is an example used around the refrigerator interior space, FIG. 4 is an example used around the interior space of the water heater, and FIG. 5 is an example used around the interior space of the electric water heater. FIG. 6 is an example in which the use portion is provided around the heat insulation bathtub.
〔Example〕
In this embodiment, an example will be described in which protrusions are formed on the inner surface side of the outer packaging material to improve the heat insulation performance between the core material and the outer packaging material. When the protrusions are formed on the inner surface side of the outer packaging material, the gas barrier layer or the like may be provided with irregularities, but in this embodiment, the weld layer has an irregular shape. As described above, when the welding layer is made of a thermoplastic resin, the welding performance is high and the formation of the protrusions is relatively easy.

実施例・比較例に用いた真空断熱材について、以下詳細に説明する。本発明者らは、本発明の実施例1〜4の外包材と、比較例1,2の外包材を作成し、それぞれの性能を確認した。   The vacuum heat insulating materials used in the examples and comparative examples will be described in detail below. The present inventors made the outer packaging materials of Examples 1 to 4 of the present invention and the outer packaging materials of Comparative Examples 1 and 2, and confirmed the respective performances.

本発明の外包材として、ナイロンフィルム(厚さ15μm),アルミ蒸着ポリエチレンテレフタレート(厚さ12μm),エチレンビニルアルコール共重合体フィルム(厚さ15μm),高密度ポリエチレンフィルム(厚さ100μm)をラミネートして作製した外包材の高密度ポリエチレン側に四角柱形状を形成した型を熱圧着し、表面に四角柱状の突起を有す外包材を作製した。形成した突起の長さを光学顕微鏡で観察したところ50μmであった。グラスウールとの接触面積は突起を形成しない場合を100として50となるように配置した。   As an outer packaging material of the present invention, a nylon film (thickness 15 μm), an aluminum vapor-deposited polyethylene terephthalate (thickness 12 μm), an ethylene vinyl alcohol copolymer film (thickness 15 μm), and a high-density polyethylene film (thickness 100 μm) are laminated. A mold having a quadrangular prism shape formed on the high-density polyethylene side of the outer packaging material thus produced was thermocompression-bonded to produce an outer packaging material having a quadrangular prism-shaped protrusion on the surface. When the length of the formed protrusion was observed with an optical microscope, it was 50 μm. The contact area with the glass wool was arranged to be 50 with 100 as the case where no protrusion was formed.

真空断熱材は、上記外包材の3辺部をヒートシーラーで熱溶着後、平均繊維径3μmのグラスウール(サイズ:250mm×250mm×100mm)およびゲッター剤としてモレキュラシーブを挿入後、真空チャンバー内に設置してチャンバー内の圧力が1.3Paになるまで真空包装機のロータリーポンプ10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。   The vacuum heat insulating material is installed in a vacuum chamber after inserting three sides of the outer packaging material with a heat sealer, inserting glass wool with an average fiber diameter of 3 μm (size: 250 mm × 250 mm × 100 mm) and a molecular sieve as a getter agent. Then, the vacuum pump of the vacuum packaging machine was evacuated for 10 minutes and the diffusion pump for 10 minutes until the pressure in the chamber reached 1.3 Pa. Then, the edge part was sealed by heat sealing.

このようにして得られた真空断熱材(厚み:約10mm)の熱伝導率を測定した。熱伝導率は、1.5mW/m・Kであり、比較例1に記載の突起を形成しない外包材を用いた場合と比較して小さな熱伝導率となった。   The thermal conductivity of the vacuum heat insulating material (thickness: about 10 mm) thus obtained was measured. The thermal conductivity was 1.5 mW / m · K, which was smaller than that in the case of using the outer packaging material that does not form the protrusions described in Comparative Example 1.

(真空断熱材実施例1を用いた冷蔵庫例)
冷蔵庫の箱体中に、真空断熱材実施例1を冷蔵庫の断熱部に挿入して使用した。真空断熱材を設けない場合と比して、消費電力量が約15%削減された。また、真空断熱材を用いることにより、従来の断熱材よりも断熱層を薄くでき、装置容積に対して庫内スペースを広くすることができた。
(Refrigerator example using vacuum heat insulating material Example 1)
The vacuum heat insulating material Example 1 was inserted into the heat insulating part of the refrigerator and used in the refrigerator box. Compared to the case where no vacuum heat insulating material is provided, the power consumption is reduced by about 15%. Moreover, by using the vacuum heat insulating material, the heat insulating layer can be made thinner than the conventional heat insulating material, and the space in the cabinet can be widened with respect to the device volume.

本発明の外包材として、ナイロンフィルム(厚さ15μm),アルミ蒸着ポリエチレンテレフタレート(厚さ12μm),エチレンビニルアルコール共重合体フィルム(厚さ15μm),高密度ポリエチレンフィルム(厚さ50μm)をラミネートして作製した外包材の高密度ポリエチレン側に四角錐形状を形成した型を熱圧着し、表面に四角錐状の突起を有す外包材を作製した。形成した突起の長さを光学顕微鏡で観察したところ30μmであった。グラスウールとの接触面積は突起を形成しない場合を100として10となるように配置した。   As an outer packaging material of the present invention, a nylon film (thickness 15 μm), an aluminum vapor-deposited polyethylene terephthalate (thickness 12 μm), an ethylene vinyl alcohol copolymer film (thickness 15 μm), and a high-density polyethylene film (thickness 50 μm) are laminated. A mold having a quadrangular pyramid shape formed on the high-density polyethylene side of the outer packaging material produced in this way was thermocompression bonded to produce an outer packaging material having a quadrangular pyramidal projection on the surface. When the length of the formed protrusion was observed with an optical microscope, it was 30 μm. The contact area with glass wool was set to 10 when 100 was not formed as a protrusion.

真空断熱材は、上記外包材の3辺部をヒートシーラーで熱溶着後、平均繊維径3μmのグラスウール(サイズ:250mm×250mm×100mm)およびゲッター剤としてモレキュラシーブを挿入後、真空チャンバー内に設置してチャンバー内の圧力が1.3Paになるまで真空包装機のロータリーポンプ10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。   The vacuum heat insulating material was heat-sealed with a heat sealer on the three sides of the outer packaging material, glass wool with an average fiber diameter of 3 μm (size: 250 mm x 250 mm x 100 mm) and a molecular sieve as a getter agent were inserted into the vacuum chamber. Then, the vacuum pump of the vacuum packaging machine was evacuated for 10 minutes and the diffusion pump for 10 minutes until the pressure in the chamber reached 1.3 Pa. Then, the edge part was sealed by heat sealing.

このようにして得られた真空断熱材(厚み:約10mm)の熱伝導率を測定した。熱伝導率は、1.4mW/m・Kであり、比較例1に記載の突起を形成しない外包材を用いた場合と比較して小さな熱伝導率となった。   The thermal conductivity of the vacuum heat insulating material (thickness: about 10 mm) thus obtained was measured. The thermal conductivity was 1.4 mW / m · K, which was smaller than that in the case of using the outer packaging material that does not form the protrusions described in Comparative Example 1.

(真空断熱材実施例2を用いた冷蔵庫例)
冷蔵庫の箱体中に、真空断熱材実施例2を冷蔵庫の断熱部に挿入して使用した。真空断熱材を設けない場合と比して、消費電力量が約15%削減された。また、真空断熱材を用いることにより、従来の断熱材よりも断熱層を薄くでき、装置容積に対して庫内スペースを広くすることができた。
(Refrigerator example using vacuum heat insulating material Example 2)
The vacuum heat insulating material Example 2 was inserted into the heat insulating part of the refrigerator and used in the refrigerator box. Compared to the case where no vacuum heat insulating material is provided, the power consumption is reduced by about 15%. Moreover, by using the vacuum heat insulating material, the heat insulating layer can be made thinner than the conventional heat insulating material, and the space in the cabinet can be widened with respect to the device volume.

本発明の外包材として、ナイロンフィルム(厚さ15μm),アルミ蒸着ポリエチレンテレフタレート(厚さ12μm),エチレンビニルアルコール共重合体フィルム(厚さ15μm),無延伸ポリプロピレン(厚さ100μm)をラミネートして作製した外包材の高密度ポリエチレン側に円柱形状を形成した型を熱圧着し、表面に円柱状の突起を有す外包材を作製した。形成した突起の長さを光学顕微鏡で観察したところ50μmであった。グラスウールとの接触面積は突起を形成しない場合を100として50となるように配置した。   As an outer packaging material of the present invention, a nylon film (thickness 15 μm), aluminum vapor-deposited polyethylene terephthalate (thickness 12 μm), an ethylene vinyl alcohol copolymer film (thickness 15 μm), and unstretched polypropylene (thickness 100 μm) are laminated. A mold having a cylindrical shape formed on the high-density polyethylene side of the produced outer packaging material was thermocompression bonded to produce an outer packaging material having a cylindrical projection on the surface. When the length of the formed protrusion was observed with an optical microscope, it was 50 μm. The contact area with the glass wool was arranged to be 50 with 100 as the case where no protrusion was formed.

真空断熱材は、上記外包材の3辺部をヒートシーラーで熱溶着後、平均繊維径5μmのグラスウール(サイズ:250mm×250mm×100mm)およびゲッター剤としてモレキュラシーブを挿入後、真空チャンバー内に設置してチャンバー内の圧力が1.3Paになるまで真空包装機のロータリーポンプ10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。   The vacuum insulation material is heat-sealed on the three sides of the outer packaging material, and glass wool (size: 250 mm x 250 mm x 100 mm) with an average fiber diameter of 5 μm and a molecular sieve as a getter agent are inserted into the vacuum chamber and placed in a vacuum chamber. Then, the vacuum pump of the vacuum packaging machine was evacuated for 10 minutes and the diffusion pump for 10 minutes until the pressure in the chamber reached 1.3 Pa. Then, the edge part was sealed by heat sealing.

このようにして得られた真空断熱材(厚み:約10mm)の熱伝導率を測定した。熱伝導率は、1.5mW/m・Kであり、比較例1に記載の突起を形成しない外包材を用いた場合と比較して小さな熱伝導率となった。   The thermal conductivity of the vacuum heat insulating material (thickness: about 10 mm) thus obtained was measured. The thermal conductivity was 1.5 mW / m · K, which was smaller than that in the case of using the outer packaging material that does not form the protrusions described in Comparative Example 1.

(真空断熱材実施例3を用いた給湯器,電気温水器例)
給湯器の貯湯タンク辺部に、実施例3で作製した真空断熱材を配置して使用した。
(Example of water heater and electric water heater using vacuum insulation material Example 3)
The vacuum heat insulating material produced in Example 3 was disposed and used on the side of the hot water storage tank of the water heater.

真空断熱材を設けない場合と比して、消費電力量が約5%削減された。また、真空断熱材を用いることにより、従来の断熱材よりも断熱層を薄くでき、装置容積に対して貯湯タンクの容量を大きくすることが可能となった。   Compared with the case where no vacuum heat insulating material is provided, the power consumption is reduced by about 5%. Further, by using a vacuum heat insulating material, the heat insulating layer can be made thinner than the conventional heat insulating material, and the capacity of the hot water storage tank can be increased with respect to the device volume.

更に、電気温水器の貯湯タンク辺部に、実施例3で作製した真空断熱材を配置して使用した。真空断熱材を設けない場合と比して、消費電力量が約5%削減された。また、真空断熱材を用いることにより、従来の断熱材よりも断熱層を薄くでき、装置容積に対して貯湯タンクの容量を大きくすることが可能となった。   Furthermore, the vacuum heat insulating material produced in Example 3 was arrange | positioned and used for the hot water storage tank side part of an electric water heater. Compared with the case where no vacuum heat insulating material is provided, the power consumption is reduced by about 5%. Further, by using a vacuum heat insulating material, the heat insulating layer can be made thinner than the conventional heat insulating material, and the capacity of the hot water storage tank can be increased with respect to the device volume.

本発明の外包材として、ナイロンフィルム(厚さ15μm),アルミ蒸着ポリエチレンテレフタレート(厚さ12μm),エチレンビニルアルコール共重合体フィルム(厚さ15μm),高密度ポリエチレンフィルム(厚さ100μm)をラミネートして作製した外包材の高密度ポリエチレン側に円錐形状を形成した型を熱圧着し、表面に円錐状の突起を有す外包材を作製した。形成した突起の長さを光学顕微鏡で観察したところ50μmであった。グラスウールとの接触面積は突起を形成しない場合を100として1となるように配置した。   As an outer packaging material of the present invention, a nylon film (thickness 15 μm), an aluminum vapor-deposited polyethylene terephthalate (thickness 12 μm), an ethylene vinyl alcohol copolymer film (thickness 15 μm), and a high-density polyethylene film (thickness 100 μm) are laminated. A mold having a conical shape on the high density polyethylene side of the outer packaging material produced in this manner was thermocompression bonded to produce an outer packaging material having conical protrusions on the surface. When the length of the formed protrusion was observed with an optical microscope, it was 50 μm. The contact area with glass wool was set to 1 when 100 was not formed as a protrusion.

真空断熱材は、上記外包材の3辺部をヒートシーラーで熱溶着後、平均繊維径3μmのグラスウール(サイズ:250mm×250mm×100mm)およびゲッター剤としてモレキュラシーブを挿入後、真空チャンバー内に設置してチャンバー内の圧力が1.3Paになるまで真空包装機のロータリーポンプ10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。   The vacuum heat insulating material was heat-sealed with a heat sealer on the three sides of the outer packaging material, glass wool with an average fiber diameter of 3 μm (size: 250 mm x 250 mm x 100 mm) and a molecular sieve as a getter agent were inserted into the vacuum chamber. Then, the vacuum pump of the vacuum packaging machine was evacuated for 10 minutes and the diffusion pump for 10 minutes until the pressure in the chamber reached 1.3 Pa. Then, the edge part was sealed by heat sealing.

このようにして得られた真空断熱材(厚み:約10mm)の熱伝導率を測定した。熱伝導率は、1.0mW/m・Kであり、比較例1に記載の突起を形成しない外包材を用いた場合と比較して小さな熱伝導率となった。   The thermal conductivity of the vacuum heat insulating material (thickness: about 10 mm) thus obtained was measured. The thermal conductivity was 1.0 mW / m · K, which was smaller than that in the case of using the outer packaging material that does not form the protrusions described in Comparative Example 1.

(真空断熱材実施例4を用いた冷蔵庫例)
冷蔵庫の箱体中に、真空断熱材実施例4を冷蔵庫の断熱部に挿入して使用した。真空断熱材を設けない場合と比して、消費電力量が約20%削減された。また、真空断熱材を用いることにより、従来の断熱材よりも断熱層を薄くでき、装置容積に対して庫内スペースを広くすることができた。
(Refrigerator example using vacuum heat insulating material Example 4)
The vacuum heat insulating material Example 4 was inserted into the heat insulating part of the refrigerator and used in the refrigerator box. Compared with the case where no vacuum heat insulating material is provided, the power consumption is reduced by about 20%. Moreover, by using the vacuum heat insulating material, the heat insulating layer can be made thinner than the conventional heat insulating material, and the space in the cabinet can be widened with respect to the device volume.

〔比較例1〕
比較例1の外包材として、ナイロンフィルム(厚さ15μm),アルミ蒸着ポリエチレンテレフタレート(厚さ12μm),エチレンビニルアルコール共重合体フィルム(厚さ15μm),高密度ポリエチレンフィルム(厚さ100μm)をラミネートして作製した外包材を用いた。
[Comparative Example 1]
As the outer packaging material of Comparative Example 1, a nylon film (thickness 15 μm), aluminum vapor-deposited polyethylene terephthalate (thickness 12 μm), ethylene vinyl alcohol copolymer film (thickness 15 μm), and high-density polyethylene film (thickness 100 μm) are laminated. The outer packaging material produced in this way was used.

真空断熱材は、上記外包材の3辺部をヒートシーラーで熱溶着後、平均繊維径3μmのグラスウール(サイズ:250mm×250mm×100mm)およびゲッター剤としてモレキュラシーブを挿入後、真空チャンバー内に設置してチャンバー内の圧力が1.3Paになるまで真空包装機のロータリーポンプ10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。   The vacuum heat insulating material was heat-sealed with a heat sealer on the three sides of the outer packaging material, glass wool with an average fiber diameter of 3 μm (size: 250 mm x 250 mm x 100 mm) and a molecular sieve as a getter agent were inserted into the vacuum chamber. Then, the vacuum pump of the vacuum packaging machine was evacuated for 10 minutes and the diffusion pump for 10 minutes until the pressure in the chamber reached 1.3 Pa. Then, the edge part was sealed by heat sealing.

このようにして得られた真空断熱材(厚み:約10mm)の熱伝導率を測定したところ、熱伝導率は2.5mW/m・Kであった。   The heat conductivity of the vacuum heat insulating material (thickness: about 10 mm) thus obtained was measured and found to be 2.5 mW / m · K.

〔比較例2〕
比較例2の外包材として、ナイロンフィルム(厚さ15μm),アルミ蒸着ポリエチレンテレフタレート(厚さ12μm),エチレンビニルアルコール共重合体フィルム(厚さ15μm),無延伸ポリプロピレン(厚さ100μm)をラミネートして作製した外包材を用いた。
[Comparative Example 2]
As an outer packaging material of Comparative Example 2, a nylon film (thickness 15 μm), an aluminum-deposited polyethylene terephthalate (thickness 12 μm), an ethylene vinyl alcohol copolymer film (thickness 15 μm), and an unstretched polypropylene (thickness 100 μm) are laminated. The outer packaging material produced in this way was used.

真空断熱材は、上記外包材の3辺部をヒートシーラーで熱溶着後、平均繊維径5μmのグラスウール(サイズ:250mm×250mm×100mm)およびゲッター剤としてモレキュラシーブを挿入後、真空チャンバー内に設置してチャンバー内の圧力が1.3Paになるまで真空包装機のロータリーポンプ10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。   The vacuum insulation material is heat-sealed on the three sides of the outer packaging material, and glass wool (size: 250 mm x 250 mm x 100 mm) with an average fiber diameter of 5 μm and a molecular sieve as a getter agent are inserted into the vacuum chamber and placed in a vacuum chamber. Then, the vacuum pump of the vacuum packaging machine was evacuated for 10 minutes and the diffusion pump for 10 minutes until the pressure in the chamber reached 1.3 Pa. Then, the edge part was sealed by heat sealing.

このようにして得られた真空断熱材(厚み:約10mm)の熱伝導率を測定したところ、熱伝導率は2.6mW/m・Kであった。   The heat conductivity of the vacuum heat insulating material thus obtained (thickness: about 10 mm) was measured. The heat conductivity was 2.6 mW / m · K.

表1に実施例1ないし4、及び比較例1,2の真空断熱材の構成と、外包材表面に形成した突起形状,接触面積,初期熱伝導率を示す。   Table 1 shows the configurations of the vacuum heat insulating materials of Examples 1 to 4 and Comparative Examples 1 and 2, the shape of the protrusions formed on the outer packaging material surface, the contact area, and the initial thermal conductivity.

Figure 0004969436
Figure 0004969436

実施例,比較例の真空断熱材の熱伝導率の測定は、英弘精機(株)製のAUTO−Λを用いて、20℃の条件で測定した。比較例1と実施例1,2,4,比較例2と実施例3を比較して明らかなとおり、突起を形成することによって熱伝導率を低くすることができた。   The thermal conductivity of the vacuum heat insulating materials of Examples and Comparative Examples was measured under the condition of 20 ° C. using AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. As is apparent from a comparison between Comparative Example 1 and Examples 1, 2, 4, Comparative Example 2 and Example 3, the thermal conductivity could be lowered by forming protrusions.

次に、外包材表面に形成する突起の形状および接触面積について検討を行った。実施例1と実施例4より明らかな通り、同じ高さの突起であっても、円錐形状として接触面積を小さくすることにより、熱伝導率を低くできた。また、接触面積よりも、突起の高さを変化させた場合に大きく熱伝導率が変化した。   Next, the shape and contact area of the protrusions formed on the outer packaging material surface were examined. As is clear from Example 1 and Example 4, even if the protrusions had the same height, the thermal conductivity could be lowered by reducing the contact area as a conical shape. Further, the thermal conductivity changed more greatly when the height of the protrusion was changed than the contact area.

また、上記の真空断熱材では、外包材の内面に突起を形成し、外包材と芯材との接触面を低減したが、外包材の外面側(断熱対象の機器等の側)に突起を形成してもよい。外面側に突起を形成しても熱伝導率は大きく低下するが、真空状態ではないため、内面側と比して熱伝導率が低くなる効果は小さい。   Further, in the above vacuum heat insulating material, the protrusion is formed on the inner surface of the outer packaging material to reduce the contact surface between the outer packaging material and the core material, but the protrusion is formed on the outer surface side of the outer packaging material (side of the device to be insulated). It may be formed. Even if the protrusion is formed on the outer surface side, the thermal conductivity is greatly reduced, but since it is not in a vacuum state, the effect of lowering the thermal conductivity compared to the inner surface side is small.

従来真空断熱材の断面模式図。The cross-sectional schematic diagram of the conventional vacuum heat insulating material. 本発明真空断熱材の断面模式図。The cross-sectional schematic diagram of this invention vacuum heat insulating material. 本発明外包材の模式図。The schematic diagram of this invention outer packaging material. 本発明外包材の模式図。The schematic diagram of this invention outer packaging material. 本発明の真空断熱材を備えた冷蔵庫。The refrigerator provided with the vacuum heat insulating material of this invention. 本発明の真空断熱材を備えた給湯機。The water heater provided with the vacuum heat insulating material of this invention. 本発明の真空断熱材を備えた電気温水器。The electric water heater provided with the vacuum heat insulating material of this invention. 本発明真空断熱材を備えた保温浴槽。The heat insulation bathtub provided with this invention vacuum heat insulating material.

符号の説明Explanation of symbols

1 従来真空断熱材
2 従来外包材
3 グラスウール
4 ゲッター剤
5 溶着層
6 アルミ蒸着ポリエチレンテレフタレートフィルム
7 エチレンビニル共重合フィルム
8 ナイロンフィルム
9 本発明真空断熱材
10 本発明外包材
11 円柱状突起
12 四角柱上突起
13 硬質ウレタンフォーム
14 箱体
15 冷蔵庫内箱
16 貯湯タンク
17 逃し弁
18 漏電遮断器
19 逃し弁操作バルブ
20 排水操作バルブ
21 排水管
22 元栓
23 給水管
24 止水バルブ
25 給湯配管
26 ヒートポンプユニット
27 貯湯タンクユニット
28 浴槽
DESCRIPTION OF SYMBOLS 1 Conventional vacuum heat insulating material 2 Conventional outer packaging material 3 Glass wool 4 Getter agent 5 Welding layer 6 Aluminum vapor deposition polyethylene terephthalate film 7 Ethylene vinyl copolymer film 8 Nylon film 9 Invention vacuum heat insulating material 10 Invention outer packaging material 11 Cylindrical protrusion 12 Square pillar Upper projection 13 Rigid urethane foam 14 Box 15 Refrigerator box 16 Hot water storage tank 17 Relief valve 18 Leakage breaker 19 Relief valve operation valve 20 Drainage operation valve 21 Drainage pipe 22 Main plug 23 Water supply pipe 24 Water stoppage valve 25 Hot water supply pipe 26 Heat pump unit 27 Hot Water Storage Tank Unit 28 Bathtub

Claims (9)

ガスバリア性を有する外包材と、外包材に覆われた無機繊維よりなる芯材とを有し、外包材の内部を減圧した真空断熱材であって、
前記外包材は表面に長さ30μm以上の有機物よりなる突起を有し、
前記芯材の前記外包材と対向する面の面積を100とした場合に、前記芯材と前記外包材の接触面積が1〜50となるように前記外包材の芯材との接触面に前記突起が配置されていることを特徴とする真空断熱材。
A vacuum heat insulating material having an outer packaging material having a gas barrier property and a core material made of inorganic fibers covered with the outer packaging material, wherein the inside of the outer packaging material is decompressed,
The outer material may have a projection made of length 30μm or more organic compound on the surface,
When the area of the surface of the core material facing the outer packaging material is 100, the contact surface between the core material and the outer packaging material is 1-50 in the contact surface with the core material of the outer packaging material. The vacuum heat insulating material characterized by the protrusion being arrange | positioned .
請求項1に記載された真空断熱材であって、前記突起の形状が四角柱、四角錐、円柱、円錐のいずれかであることを特徴とする真空断熱材。2. The vacuum heat insulating material according to claim 1, wherein the shape of the protrusion is any one of a quadrangular prism, a quadrangular pyramid, a cylinder, and a cone. 請求項1に記載された真空断熱材であって、前記突起の形状が錐形状であることを特徴とする真空断熱材。2. The vacuum heat insulating material according to claim 1, wherein the shape of the protrusion is a cone shape. 請求項1ないしのいずれかに記載された真空断熱材であって、前記外包材の芯材と反対側の面に突起が形成されていることを特徴とする真空断熱材。 A vacuum heat insulating material according to any of claims 1 to 3, the vacuum heat insulating material, characterized in that projections on the surface opposite to the core material before Kigaitsutsumizai is formed. 請求項1ないしのいずれかに記載された真空断熱材であって、前記外包材は金属の薄膜と有機物の薄膜とのラミネート材よりなり、前記突起は、前記有機物の薄膜と同じ有機物よりなることを特徴とする真空断熱材。 A vacuum heat insulating material according to any of claims 1 to 4, wherein the outer material is made of a laminate material of a thin film of a metal thin film and an organic substance, wherein the projection is made of the same organic material as a thin film of the organic material Vacuum insulation characterized by that. 請求項1ないしのいずれかに記載された真空断熱材であって、前記外包材は有機物よりなる溶着層を有し、前記突起は、前記溶着層と同一材質よりなることを特徴とする真空断熱材。 A vacuum heat insulating material according to any of claims 1 to 5, wherein the outer material has a welding layer made of organic material, the projection is characterized by consisting of the same material as the welding layer vacuum Insulation. 請求項1ないしのいずれかに記載された真空断熱材であって、
前記芯材は平均繊維径3〜5μmのグラスウールであることを特徴とする真空断熱材。
A vacuum heat insulating material according to any one of claims 1 to 6 ,
The vacuum heat insulating material, wherein the core material is glass wool having an average fiber diameter of 3 to 5 μm.
請求項1ないしのいずれかに記載された真空断熱材であって、
前記外包材はアルミ箔層またはアルミニウムを蒸着した有機膜層と、ポリエチレンよりなる溶着層を有し、前記ポリエチレン層は突起を有することを特徴とする真空断熱材。
The vacuum heat insulating material according to any one of claims 1 to 7 ,
The outer packaging material has an aluminum foil layer or an organic film layer on which aluminum is vapor-deposited, and a welded layer made of polyethylene, and the polyethylene layer has protrusions.
被保温部と、前記被保温部の温度状態を保つ断熱部材とを有する断熱箱体であって、
前記断熱部材は請求項1ないしのいずれかに記載された真空断熱材であることを特徴とする断熱箱体。
A heat insulation box having a heat insulation part and a heat insulation member that maintains the temperature state of the heat insulation part,
The said heat insulation member is a vacuum heat insulating material as described in any one of Claim 1 thru | or 8 , The heat insulation box characterized by the above-mentioned.
JP2007335524A 2007-12-27 2007-12-27 Vacuum insulation material and equipment using the same Expired - Fee Related JP4969436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335524A JP4969436B2 (en) 2007-12-27 2007-12-27 Vacuum insulation material and equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335524A JP4969436B2 (en) 2007-12-27 2007-12-27 Vacuum insulation material and equipment using the same

Publications (2)

Publication Number Publication Date
JP2009156353A JP2009156353A (en) 2009-07-16
JP4969436B2 true JP4969436B2 (en) 2012-07-04

Family

ID=40960596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335524A Expired - Fee Related JP4969436B2 (en) 2007-12-27 2007-12-27 Vacuum insulation material and equipment using the same

Country Status (1)

Country Link
JP (1) JP4969436B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798942B2 (en) * 2011-09-12 2015-10-21 日立アプライアンス株式会社 Vacuum heat insulating material and refrigerator and equipment using the same
EP2980467B1 (en) * 2013-03-29 2019-07-03 Mitsubishi Electric Corporation Vacuum heat-insulating material
JP2014214856A (en) * 2013-04-30 2014-11-17 大日本印刷株式会社 Method of manufacturing vacuum heat insulating material, and outer packaging material for vacuum heat insulating material
KR102205476B1 (en) * 2014-03-13 2021-01-20 삼성전자주식회사 Vacuum heat insulating material and refrigerator including the same
JP5833182B2 (en) * 2014-05-26 2015-12-16 株式会社東芝 refrigerator
JP6471769B2 (en) * 2016-05-24 2019-02-20 大日本印刷株式会社 Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
CN109879240B (en) * 2017-12-06 2021-11-09 有研工程技术研究院有限公司 Preparation method of thick film getter material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151297A (en) * 1993-11-29 1995-06-13 Meisei Kogyo Kk Vacuum insulating structure body
JP2007056903A (en) * 2005-08-22 2007-03-08 Nissan Motor Co Ltd Heat insulating material and heat insulating structure using the same
JP4861715B2 (en) * 2006-02-06 2012-01-25 日立アプライアンス株式会社 Manufacturing method of vacuum insulation

Also Published As

Publication number Publication date
JP2009156353A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4969436B2 (en) Vacuum insulation material and equipment using the same
US10337787B2 (en) Vacuum insulation panel, method of manufacturing vacuum insulation panel, and refrigerator including vacuum insulation panel
JP5624305B2 (en) Insulated container
WO2010087039A1 (en) Vacuum insulation material and insulation box using the same
JP2007016927A (en) Vacuum heat insulating material and its manufacturing method
JP2009085255A (en) Vacuum heat insulating material and apparatus using the same
JP2003262296A (en) Vacuum heat insulating material and refrigerator using the same
JP2011153721A (en) Refrigerator
JP2009299764A (en) Vacuum heat insulation material and heat insulation vessel using the same
JP2014228135A (en) Method of manufacturing vacuum heat insulation material, and the vacuum heat insulation material
JP2010065711A (en) Vacuum heat insulating material and refrigerator using the same
JP2004245258A (en) Vacuum heat insulating material, and refrigerating equipment and chilled/hot equipment using the same
JP2004003534A (en) Vacuum heat insulating material and refrigerator using vacuum heat insulating material
JP3856008B2 (en) Manufacturing method of vacuum insulation
JP2010096291A (en) Vacuum heat insulated casing
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
JP2013019475A (en) Insulating container
JP2012092870A (en) Vacuum heat insulating material and heat insulating box using the same
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP2011089740A (en) Bag body and vacuum heat insulating material
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
JP2010127421A (en) Vacuum thermal-insulating material and thermal insulation box
JP5216510B2 (en) Vacuum insulation material and equipment using the same
KR102186839B1 (en) Vacuum insulation material and the refrigerator which is applied it
JP5377451B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees