JP2012092870A - Vacuum heat insulating material and heat insulating box using the same - Google Patents

Vacuum heat insulating material and heat insulating box using the same Download PDF

Info

Publication number
JP2012092870A
JP2012092870A JP2010238912A JP2010238912A JP2012092870A JP 2012092870 A JP2012092870 A JP 2012092870A JP 2010238912 A JP2010238912 A JP 2010238912A JP 2010238912 A JP2010238912 A JP 2010238912A JP 2012092870 A JP2012092870 A JP 2012092870A
Authority
JP
Japan
Prior art keywords
heat insulating
fiber
vacuum heat
insulating material
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010238912A
Other languages
Japanese (ja)
Inventor
Junshi Fukushima
旬志 福嶋
Yoshitsugu Suzaki
喜継 須崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Kosen Co Ltd
Original Assignee
Maeda Kosen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Kosen Co Ltd filed Critical Maeda Kosen Co Ltd
Priority to JP2010238912A priority Critical patent/JP2012092870A/en
Publication of JP2012092870A publication Critical patent/JP2012092870A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material excellent in recyclability and a heat insulating property.SOLUTION: The vacuum heat insulating material 10 includes: a core material 1 where a plurality of fiber aggregates made of an organic fiber are laminated; and an outer wrapping material 2 having a gas barrier property, which stores the core material, wherein the inside of the outer wrapping material 2 is vacuum and each of average fiber diameters of the facing fiber aggregates of the core material 1 varies.

Description

本発明は、真空断熱材及び断熱箱に関し、更に詳しくは、リサイクル性に優れ、且つ断熱性にも優れる真空断熱材及びそれを用いた断熱箱に関する。   The present invention relates to a vacuum heat insulating material and a heat insulating box, and more particularly to a vacuum heat insulating material that is excellent in recyclability and heat insulating properties and a heat insulating box using the same.

冷蔵庫、冷凍庫、自動販売機、保冷庫、保温庫、保冷車、車両用空調機、給湯機等の冷熱機器には、断熱箱が設置される。また、かかる断熱箱には、ウレタンフォームを用いた断熱材が用いられる。   Heat insulation boxes are installed in refrigeration equipment such as refrigerators, freezers, vending machines, cold storages, heat storages, cold storage vehicles, vehicle air conditioners, and water heaters. Moreover, the heat insulating material using a urethane foam is used for this heat insulation box.

近年、省エネ、省スペース大容量化等の市場の要請から、断熱性が優れる真空断熱材を埋設したウレタンフォームが開発されている。なお、真空断熱材は、一般にガスバリア性のアルミ箔ラミネートフィルム等で構成された外包材に、粉末、発泡体、繊維集合体等を芯材として挿入し、内部を数Paの真空にした構造となっている。   In recent years, urethane foam embedded with a vacuum heat insulating material having excellent heat insulating properties has been developed in response to market demands such as energy saving and space saving and large capacity. The vacuum heat insulating material generally has a structure in which powder, foam, fiber aggregate, etc. are inserted as a core material into an outer packaging material composed of a gas barrier aluminum foil laminate film, etc., and the inside is evacuated to several Pa. It has become.

かかる真空断熱材においては、芯材の材質、形態によって断熱性が変動する。このため、様々な芯材を用いた真空断熱材が検討されている。
例えば、芯材の材質として、ガラス繊維やセラミック繊維等の無機繊維を用いた真空断熱材(例えば、特許文献1又は2参照)や、芯材の材質として、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエステル繊維、ポリエチレン繊維、セルロース繊維等の有機繊維を用いた真空断熱材(例えば、特許文献3又は4参照)が知られている。
In such a vacuum heat insulating material, the heat insulating property varies depending on the material and form of the core material. For this reason, vacuum heat insulating materials using various core materials have been studied.
For example, a vacuum heat insulating material using inorganic fibers such as glass fibers and ceramic fibers as the core material (see, for example, Patent Document 1 or 2), and polypropylene fibers, polylactic acid fibers, and aramid fibers as the core material Vacuum heat insulating materials using organic fibers such as LCP (liquid crystal polymer) fibers, polyester fibers, polyethylene fibers, and cellulose fibers (see, for example, Patent Document 3 or 4) are known.

また、芯材の形態として、綿状(繊維が不規則に絡み合って一体化されている状態)やシートを積層した形状を用いた真空断熱材(例えば、特許文献5又は6参照)が知られている。   Moreover, as a form of the core material, a cotton-like (state in which fibers are entangled irregularly and integrated) or a vacuum heat insulating material using a shape in which sheets are laminated (for example, see Patent Document 5 or 6) is known. ing.

特開平08−28776号公報Japanese Patent Laid-Open No. 08-28776 特開2005−344870号公報JP 2005-344870 A 特開2002−188791号公報JP 2002-188791 A 特開2006−283817号公報JP 2006-283817 A 特開2005−344832号公報JP 2005-344832 A 特開2006−307924号公報JP 2006-307924 A

しかしながら、上記特許文献1又は2に記載の真空断熱材は、無機繊維を用いているので、リサイクル性が乏しい。また、上記特許文献3又は4に記載の真空断熱材は、有機繊維を用いているので、繊維の硬度が低い。このため、真空にすると、繊維が潰れ、空隙率が低くなり、その結果、十分な断熱性が得られない欠点がある。
また、上記特許文献5又は6に記載の真空断熱材は、綿状としているので、熱が伝わり易く、十分な断熱性が得られない。
However, since the vacuum heat insulating material described in Patent Document 1 or 2 uses inorganic fibers, the recyclability is poor. Moreover, since the vacuum heat insulating material of the said patent document 3 or 4 uses the organic fiber, the hardness of a fiber is low. For this reason, when it is made into a vacuum, a fiber will be crushed and a porosity will become low, As a result, there exists a fault that sufficient heat insulation cannot be obtained.
Moreover, since the vacuum heat insulating material of the said patent document 5 or 6 is made into cotton shape, heat | fever is easily transmitted and sufficient heat insulation is not obtained.

本発明は上記事情に鑑みてなされたものであり、リサイクル性に優れ、且つ断熱性にも優れる真空断熱材を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the vacuum heat insulating material which is excellent in recyclability and excellent also in heat insulation.

本発明者らは、上記課題を解決するため鋭意検討したところ、有機繊維からなるものとし、且つ平均繊維径が異なる繊維集合体を積層し芯材とすることにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。   The inventors of the present invention have intensively studied to solve the above problems, and can solve the above problems by stacking fiber assemblies having different average fiber diameters to form a core material. As a result, the present invention has been completed.

本発明は、(1)有機繊維からなる複数の繊維集合体が積層された芯材と、ガスバリア性を有し、芯材を収容する外包材と、を備え、外包材の内部が真空であり、芯材の対向する繊維集合体の平均繊維径が異なっている真空断熱材に存する。   The present invention includes (1) a core material in which a plurality of fiber assemblies made of organic fibers are laminated, and an outer packaging material that has gas barrier properties and accommodates the core material, and the inside of the outer packaging material is vacuum. In the vacuum heat insulating material, the average fiber diameters of the fiber aggregates facing the core material are different.

本発明は、(2)繊維集合体の平均繊維径が1μm〜15μmである上記(1)記載の真空断熱材に存する。   This invention exists in the vacuum heat insulating material of the said (1) description whose average fiber diameter of (2) fiber aggregates is 1 micrometer-15 micrometers.

本発明は、(3)対向する繊維集合体が、平均繊維径が細い細繊維集合体と、該細繊維集合体よりも平均繊維径が太い太繊維集合体とからなり、細繊維集合体及び太繊維集合体の密度が0.08〜0.3であり、且つ細繊維集合体の平均繊維径に対し、太繊維集合体の平均繊維径が、1.5倍以上である上記(1)又は(2)に記載の真空断熱材に存する。   The present invention comprises (3) an opposing fiber assembly comprising a fine fiber assembly having a thin average fiber diameter and a thick fiber assembly having an average fiber diameter larger than that of the fine fiber assembly. The density of the thick fiber aggregate is 0.08 to 0.3, and the average fiber diameter of the thick fiber aggregate is 1.5 times or more of the average fiber diameter of the fine fiber aggregate (1) Or it exists in the vacuum heat insulating material as described in (2).

本発明は、(4)太繊維集合体の平均繊維径が9μm〜12μmであり、細繊維集合体の平均繊維径が1μm〜3μmである上記(3)記載の真空断熱材に存する。   The present invention resides in (4) the vacuum heat insulating material according to the above (3), wherein the average fiber diameter of the thick fiber aggregate is 9 μm to 12 μm and the average fiber diameter of the fine fiber aggregate is 1 μm to 3 μm.

本発明は、(5)繊維集合体が不織布である上記(1)〜(4)のいずれか一つに記載の真空断熱材に存する。   This invention exists in the vacuum heat insulating material as described in any one of said (1)-(4) whose fiber assembly is a nonwoven fabric.

本発明は、(6)上記(1)〜(5)のいずれか一つに記載の真空断熱材を用いた断熱箱に存する。   This invention exists in the heat insulation box using the vacuum heat insulating material as described in any one of (6) said (1)-(5).

本発明の真空断熱材においては、繊維集合体として有機繊維を用いているので、リサイクル性が優れる。
また、対向する繊維集合体を、平均繊維径の異なるものとすることにより、繊維集合体同士が空隙を埋めることなく、高い空隙率を保持できるようになる。このため、本発明の真空断熱材は、断熱性が極めて向上する。このとき、繊維集合体の平均繊維径は、1μm〜15μmとすることが好ましい。この場合、空隙率を保ち易くなるので、熱が繊維集合体を伝達しにくくなる。
したがって、上記真空断熱材は、リサイクル性が優れると共に、断熱性にも優れる。
In the vacuum heat insulating material of this invention, since organic fiber is used as a fiber assembly, recyclability is excellent.
Further, by making the opposite fiber aggregates have different average fiber diameters, it becomes possible to maintain a high porosity without filling the voids between the fiber aggregates. For this reason, the heat insulation of the vacuum heat insulating material of the present invention is extremely improved. At this time, it is preferable that the average fiber diameter of a fiber assembly shall be 1 micrometer-15 micrometers. In this case, since it becomes easy to maintain a porosity, it becomes difficult for heat to transmit a fiber assembly.
Therefore, the vacuum heat insulating material is excellent in recyclability and heat insulating properties.

本発明の真空断熱材において、細繊維集合体及び太繊維集合体の密度が0.08〜0.3であることに加え、細繊維集合体の平均繊維径に対し、太繊維集合体の平均繊維径が、1.5倍以上であると、太繊維集合体の凹み部分に細繊維集合体が追従しないため、より高い空隙率を保持できるようになる。なお、この場合、太繊維集合体の平均繊維径が9μm〜12μmであり、細繊維集合体の平均繊維径が1μm〜3μmであると、より効果的である。   In the vacuum heat insulating material of the present invention, in addition to the density of the fine fiber aggregate and the thick fiber aggregate being 0.08 to 0.3, the average of the thick fiber aggregate is relative to the average fiber diameter of the fine fiber aggregate. When the fiber diameter is 1.5 times or more, the fine fiber assembly does not follow the recessed portion of the thick fiber assembly, so that a higher porosity can be maintained. In this case, it is more effective that the average fiber diameter of the thick fiber aggregate is 9 μm to 12 μm and the average fiber diameter of the fine fiber aggregate is 1 μm to 3 μm.

本発明の真空断熱材は、繊維集合体が不織布であることが好ましい。この場合、繊維集合体を積層する際の取り扱い性が優れる。   As for the vacuum heat insulating material of this invention, it is preferable that a fiber assembly is a nonwoven fabric. In this case, the handleability when laminating the fiber assembly is excellent.

本発明の断熱箱は、上述した真空断熱材を用いているので、リサイクル性が優れ、断熱性も極めて向上する。   Since the above-described vacuum heat insulating material is used in the heat insulating box of the present invention, the recyclability is excellent and the heat insulating property is extremely improved.

図1は、本発明に係る真空断熱材の一実施形態を示す断面図である。FIG. 1 is a cross-sectional view showing an embodiment of a vacuum heat insulating material according to the present invention. 図2の(a)は、本実施形態に係る真空断熱材における細繊維集合体の走査型電子顕微鏡の写真であり、(b)は、太繊維集合体の走査型電子顕微鏡の写真である。2A is a photograph of a scanning electron microscope of a fine fiber assembly in the vacuum heat insulating material according to the present embodiment, and FIG. 2B is a photograph of a scanning electron microscope of a thick fiber assembly. 図3は、本実施形態に係る真空断熱材における細繊維集合体又は太繊維集合体を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing a fine fiber aggregate or a thick fiber aggregate in the vacuum heat insulating material according to the present embodiment. 図4の(a)〜(c)は、図3に示す細繊維集合体又は太繊維集合体のエンボス加工された部分の上面の走査型電子顕微鏡の写真であり、(d)及び(e)は、図3に示す細繊維集合体又は太繊維集合体のエンボス加工された部分の断面の走査型電子顕微鏡の写真である。4 (a) to 4 (c) are scanning electron microscope photographs of the upper surface of the embossed portion of the fine fiber aggregate or the thick fiber aggregate shown in FIG. 3, (d) and (e). These are the photographs of the scanning electron microscope of the cross section of the embossed part of the fine fiber aggregate or the thick fiber aggregate shown in FIG. 図5は、本発明に係る断熱箱の一実施形態を示す断面図である。FIG. 5 is a cross-sectional view showing an embodiment of a heat insulation box according to the present invention.

以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

図1は、本発明に係る真空断熱材の一実施形態を示す断面図である。
図1に示すように、本実施形態に係る真空断熱材10は、芯材1と、芯材1を収容する外包材2と、を備える。
FIG. 1 is a cross-sectional view showing an embodiment of a vacuum heat insulating material according to the present invention.
As shown in FIG. 1, the vacuum heat insulating material 10 according to the present embodiment includes a core material 1 and an outer packaging material 2 that houses the core material 1.

真空断熱材10においては、芯材1が外包材2に収容された状態で、外包材2の内部が真空になっている。   In the vacuum heat insulating material 10, the inside of the outer packaging material 2 is evacuated in a state where the core material 1 is accommodated in the outer packaging material 2.

芯材1は、外包材の内部を真空にした場合の空隙率が80%以上であることが好ましい。空隙率が80%未満であると、空隙率が上記範囲内にある場合と比較して、熱が伝わり易くなるので断熱性が低下することになる。   The core material 1 preferably has a porosity of 80% or more when the inside of the outer packaging material is evacuated. When the porosity is less than 80%, heat is easily transmitted as compared to the case where the porosity is within the above range, and thus the heat insulation is reduced.

真空断熱材10において、芯材1は密度の異なる繊維集合体を複数積層した構造となっている。具体的には、芯材1は、平均繊維径が細い繊維集合体(以下便宜的に「細繊維集合体」という。)11と、細繊維集合体11よりも平均繊維径が太い繊維集合体(以下便宜的に「太繊維集合体」という。)12とが交互に積層された構造となっている。   In the vacuum heat insulating material 10, the core material 1 has a structure in which a plurality of fiber assemblies having different densities are stacked. Specifically, the core material 1 includes a fiber aggregate 11 having a thin average fiber diameter (hereinafter referred to as “fine fiber aggregate” for convenience) and a fiber aggregate having a larger average fiber diameter than the fine fiber aggregate 11. (Hereinafter referred to as “thick fiber aggregate” for convenience) 12 and 12 are alternately laminated.

細繊維集合体11と太繊維集合体12の密度は、共に0.08〜0.3g/cmであることが好ましい。細繊維集合体11及び太繊維集合体12の密度が0.08g/cm未満であると、密度が上記範囲にある場合と比較して、積層する際の作業性が悪くなる欠点があり、細繊維集合体11及び太繊維集合体12の密度が0.3g/cmを超えると、密度が上記範囲にある場合と比較して、繊維の直行性が損なわれ、断熱性能が低下するという欠点がある。 The density of the fine fiber aggregate 11 and the thick fiber aggregate 12 is preferably 0.08 to 0.3 g / cm 3 . When the density of the fine fiber aggregate 11 and the thick fiber aggregate 12 is less than 0.08 g / cm 3 , there is a drawback that workability at the time of lamination is deteriorated as compared with the case where the density is in the above range, When the density of the fine fiber aggregate 11 and the thick fiber aggregate 12 exceeds 0.3 g / cm 3 , the straightness of the fibers is impaired and the heat insulation performance is reduced as compared with the case where the density is in the above range. There are drawbacks.

図2の(a)は、本実施形態に係る真空断熱材における細繊維集合体の走査型電子顕微鏡の写真であり、(b)は、太繊維集合体の走査型電子顕微鏡の写真である。
図2の(a)に示すように、真空断熱材10は、対向する細繊維集合体11及び太繊維集合体が密度0.08〜0.3g/cmの範囲で平均繊維径が異なるものであるので、外包材2の内部を真空にした場合、細繊維集合体11の凹み部分に太繊維集合体12が追従しない。このため、真空断熱材10は、細繊維集合体11と太繊維集合体12との間の空隙が埋まることなく、より高い空隙率を保持できるようになる。
ちなみに、対向する繊維集合体の繊維の平均繊維径が略同じであると、一方の繊維集合体の凹み部分に他方の繊維集合体が追従し、その結果、空隙15が埋まり、空隙率が小さくなる。
2A is a photograph of a scanning electron microscope of a fine fiber assembly in the vacuum heat insulating material according to the present embodiment, and FIG. 2B is a photograph of a scanning electron microscope of a thick fiber assembly.
As shown to (a) of FIG. 2, as for the vacuum heat insulating material 10, the average fiber diameter differs in the range whose density of the fine fiber aggregate 11 and the thick fiber aggregate which oppose is 0.08-0.3 g / cm < 3 >. Therefore, when the inside of the outer packaging material 2 is evacuated, the thick fiber assembly 12 does not follow the recessed portion of the fine fiber assembly 11. For this reason, the vacuum heat insulating material 10 can hold | maintain a higher porosity, without the space | gap between the fine fiber assembly 11 and the thick fiber assembly 12 being buried.
Incidentally, if the average fiber diameters of the fibers of the opposing fiber assembly are substantially the same, the other fiber assembly follows the recessed portion of the one fiber assembly, and as a result, the void 15 is buried and the porosity is small. Become.

ここで、細繊維集合体11及び太繊維集合体12は、有機繊維からなる。このため、真空断熱材10は、リサイクル性が優れる。
具体的には、細繊維集合体11としては、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエステル繊維、ポリエチレン繊維、セルロース繊維等が挙げられる。これらは、単独で用いても、複数を混合して用いてもよい。これらの中でも、細繊維集合体11としては、汎用性の観点から、ポリエステル繊維を用いることが好ましい。
一方、太繊維集合体12としては、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエステル繊維、ポリエチレン繊維、セルロース繊維等が挙げられる。これらは、単独で用いても、複数を混合して用いてもよい。これらの中でも、太繊維集合体12としては、汎用性の観点から、ポリエステル繊維を用いることが好ましい。
Here, the fine fiber aggregate 11 and the thick fiber aggregate 12 are made of organic fibers. For this reason, the vacuum heat insulating material 10 is excellent in recyclability.
Specifically, examples of the fine fiber aggregate 11 include polypropylene fiber, polylactic acid fiber, aramid fiber, LCP (liquid crystal polymer) fiber, polyester fiber, polyethylene fiber, and cellulose fiber. These may be used alone or in combination. Among these, it is preferable to use a polyester fiber as the fine fiber aggregate 11 from the viewpoint of versatility.
On the other hand, examples of the thick fiber aggregate 12 include polypropylene fiber, polylactic acid fiber, aramid fiber, LCP (liquid crystal polymer) fiber, polyester fiber, polyethylene fiber, and cellulose fiber. These may be used alone or in combination. Among these, it is preferable to use a polyester fiber as the thick fiber aggregate 12 from the viewpoint of versatility.

細繊維集合体11の形態は、特に限定されないが、織物、編物、組物、不織布等が挙げられ、これらの中でも、不織布であることが好ましい。この場合、積層する際の取り扱い作業性が優れる。なお、不織布の製造方式は、接着湿式・乾式不織布法、スパンボンド法、メルトブローン法、ニードルパンチ法等のいずれであってもよい。
一方、太繊維集合体12の形態は、特に限定されないが、織物、編物、組物、不織布等が挙げられ、これらの中でも、不織布であることが好ましい。この場合、積層する際の取り扱い作業性が優れる。なお、不織布の製造方式は、接着湿式・乾式不織布法、スパンボンド法、メルトブローン法、ニードルパンチ法等のいずれであってもよい。
The form of the fine fiber aggregate 11 is not particularly limited, and examples thereof include woven fabrics, knitted fabrics, braided fabrics, and nonwoven fabrics. Among these, nonwoven fabrics are preferable. In this case, handling workability at the time of lamination is excellent. In addition, the manufacturing method of a nonwoven fabric may be any of an adhesive wet / dry nonwoven fabric method, a spunbond method, a melt blown method, a needle punch method, and the like.
On the other hand, the form of the thick fiber aggregate 12 is not particularly limited, and examples thereof include woven fabrics, knitted fabrics, braided fabrics, and nonwoven fabrics. Among these, nonwoven fabrics are preferable. In this case, handling workability at the time of lamination is excellent. In addition, the manufacturing method of a nonwoven fabric may be any of an adhesive wet / dry nonwoven fabric method, a spunbond method, a melt blown method, a needle punch method, and the like.

細繊維集合体11及び太繊維集合体12の平均繊維径は、1μm〜15μmであることが好ましい。細繊維集合体11及び太繊維集合体12の平均繊維径が1μm未満であると、細繊維集合体11及び太繊維集合体12の平均繊維径が上記範囲内にある場合と比較して、積層する際の作業性が悪くなる欠点があり、細繊維集合体11及び太繊維集合体12の平均繊維径が15μmを超えると、細繊維集合体11及び太繊維集合体12の平均繊維径が上記範囲内にある場合と比較して、繊維集合体を伝達する熱量が多くなり、その結果、断熱性が低下する欠点がある。   The average fiber diameter of the fine fiber aggregate 11 and the thick fiber aggregate 12 is preferably 1 μm to 15 μm. When the average fiber diameter of the fine fiber aggregate 11 and the thick fiber aggregate 12 is less than 1 μm, the average fiber diameter of the fine fiber aggregate 11 and the thick fiber aggregate 12 is greater than that in the above range. When the average fiber diameter of the fine fiber aggregate 11 and the thick fiber aggregate 12 exceeds 15 μm, the average fiber diameter of the fine fiber aggregate 11 and the thick fiber aggregate 12 is as described above. Compared with the case where it is within the range, there is a drawback that the amount of heat transmitted through the fiber assembly is increased, and as a result, the heat insulation is lowered.

ここで、細繊維集合体11の平均繊維径に対する太繊維集合体12の平均繊維径は、1.5倍以上であることが好ましい。この場合、細繊維集合体11と太繊維集合体12との平均繊維径の差が確実に大きくなり、細繊維集合体11と太繊維集合体12との間の空隙がより大きくなる。   Here, the average fiber diameter of the thick fiber aggregate 12 with respect to the average fiber diameter of the fine fiber aggregate 11 is preferably 1.5 times or more. In this case, the difference in average fiber diameter between the fine fiber assembly 11 and the thick fiber assembly 12 is surely increased, and the gap between the fine fiber assembly 11 and the thick fiber assembly 12 is further increased.

具体的には、細繊維集合体11の平均繊維径が1μm〜3μmであり、太繊維集合体12の平均繊維径が9μm〜12μmであることが好ましい。
細繊維集合体11の平均繊維径が1μm未満であると、細繊維集合体11の平均繊維径が上記範囲内にある場合と比較して、積層する際の作業性が悪くなる欠点があり、細繊維集合体11の平均繊維径が3μmを超えると、細繊維集合体11の平均繊維径が上記範囲内にある場合と比較して、対向する繊維集合体の平均繊維径が差が小さくなって、一方の繊維集合体の凹み部分に他方の繊維集合体が追従し、その結果、空隙率15が埋まり、空隙率が小さくなる欠点がある。
また、太繊維集合体12の平均繊維径が9μm未満であると、太繊維集合体12の平均繊維径が上記範囲内にある場合と比較して、対向する繊維集合体の平均繊維径の差が小さくなって、一方の繊維集合体の凹み部分に他方の繊維集合体が追従し、その結果、空隙率15が埋まり、空隙率が小さくなる欠点があり、太繊維集合体12の平均繊維径が12μmを超えると、太繊維集合体12の平均繊維径が上記範囲内にある場合と比較して、繊維集合体を伝達する熱量が多くなり、断熱性が低下する欠点がある。
Specifically, the average fiber diameter of the fine fiber aggregate 11 is preferably 1 μm to 3 μm, and the average fiber diameter of the thick fiber aggregate 12 is preferably 9 μm to 12 μm.
When the average fiber diameter of the fine fiber aggregate 11 is less than 1 μm, the average fiber diameter of the fine fiber aggregate 11 is less than the above range, and there is a defect that workability at the time of lamination is deteriorated, When the average fiber diameter of the fine fiber aggregate 11 exceeds 3 μm, the difference in the average fiber diameter of the opposed fiber aggregates is smaller than that in the case where the average fiber diameter of the fine fiber aggregate 11 is within the above range. As a result, the other fiber assembly follows the recessed portion of the one fiber assembly, and as a result, the porosity 15 is buried and the porosity is reduced.
Further, when the average fiber diameter of the thick fiber aggregate 12 is less than 9 μm, the difference in the average fiber diameters of the opposed fiber aggregates is compared with the case where the average fiber diameter of the thick fiber aggregate 12 is within the above range. And the other fiber assembly follows the recessed portion of one fiber assembly, and as a result, the porosity 15 is buried and the porosity is reduced, and the average fiber diameter of the thick fiber assembly 12 is reduced. When the thickness exceeds 12 μm, compared with the case where the average fiber diameter of the thick fiber aggregate 12 is within the above range, there is a drawback that the amount of heat transmitted through the fiber aggregate increases and the heat insulating property is lowered.

図3は、本実施形態に係る真空断熱材における細繊維集合体又は太繊維集合体を模式的に示す斜視図であり、図4の(a)〜(c)は、図3に示す細繊維集合体又は太繊維集合体のエンボス加工された部分の上面の走査型電子顕微鏡の写真であり、(d)及び(e)は、図3に示す細繊維集合体又は太繊維集合体のエンボス加工された部分の断面の走査型電子顕微鏡の写真である。なお、図4中、(a)は25倍、(b)は100倍、(c)は175倍、(d)は100倍、(e)は175倍に拡大した写真である。
図3及び図4に示すように、細繊維集合体11及び太繊維集合体12は、エンボス加工が施されている。これにより、作業性が向上する。
このとき、エンボス加工される面18の面積は、0.15〜2.5cmであることが好ましい。エンボス加工される面18の面積が0.15cm未満であると、エンボス加工される面18の面積が上記範囲内にある場合と比較して、繊維のまとまりがなくなり、積層する際の作業性が悪くなる欠点があり、エンボス加工される面18の面積が2.5cmを超えると、エンボス加工される面18の面積が上記範囲内にある場合と比較して、真空断熱材の空隙率が低くなり、断熱性が低下する欠点がある。
FIG. 3 is a perspective view schematically showing a fine fiber aggregate or a thick fiber aggregate in the vacuum heat insulating material according to the present embodiment, and FIGS. 4 (a) to 4 (c) are fine fibers shown in FIG. 3. FIG. 4 is a scanning electron microscope photograph of the upper surface of an embossed portion of an aggregate or a thick fiber aggregate, and (d) and (e) are embossed fine fiber aggregates or thick fiber aggregates shown in FIG. It is the photograph of the scanning electron microscope of the cross section of the done part. In FIG. 4, (a) is a photograph magnified 25 times, (b) is 100 times, (c) is 175 times, (d) is 100 times, and (e) is magnified 175 times.
As shown in FIGS. 3 and 4, the fine fiber aggregate 11 and the thick fiber aggregate 12 are embossed. Thereby, workability | operativity improves.
At this time, the area of the embossed surface 18 is preferably 0.15 to 2.5 cm 2 . When the area of the surface 18 to be embossed is less than 0.15 cm 2 , compared to the case where the area of the surface 18 to be embossed is within the above range, the unity of fibers is eliminated, and workability at the time of lamination is increased. When the area of the surface 18 to be embossed exceeds 2.5 cm 2 , the porosity of the vacuum heat insulating material is compared with the case where the area of the surface 18 to be embossed is within the above range. However, there is a drawback that the heat insulating property is lowered.

図1に戻り、外包材2は、ガスバリア性を有するものであれば、特に限定されない。すなわち、外包材2は、内部を減圧状態に維持できるものであれば、特に限定されない。
例えば、外包材2としては、例えば、金属箔の内側にプラスチックフィルムがラミネートされたものが用いられる。
この場合、金属箔としては、厚みが4〜8μmのアルミニウム箔等が挙げられ、プラスチックフィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム等が挙げられる。
Returning to FIG. 1, the outer packaging material 2 is not particularly limited as long as it has gas barrier properties. That is, the outer packaging material 2 is not particularly limited as long as the inside can be maintained in a reduced pressure state.
For example, as the outer packaging material 2, for example, a metal foil laminated with a plastic film is used.
In this case, examples of the metal foil include an aluminum foil having a thickness of 4 to 8 μm, and examples of the plastic film include a polyethylene film and a polypropylene film.

本実施形態に係る真空断熱材は、外包材2に芯材を収容させ、外包材2内部を真空にすることにより製造される。   The vacuum heat insulating material according to the present embodiment is manufactured by housing the core material in the outer packaging material 2 and evacuating the outer packaging material 2.

以上より、本実施形態に係る真空断熱材10は、芯材1を構成する繊維集合体として有機繊維を用い、且つ、対向する繊維集合体を、平均繊維径の異なるものとすることにより、リサイクル性が優れると共に、断熱性にも優れるものとなる。   As mentioned above, the vacuum heat insulating material 10 which concerns on this embodiment uses organic fiber as a fiber assembly which comprises the core material 1, and recycles by making the fiber assembly which opposes into a thing with a different average fiber diameter. In addition to excellent properties, it also has excellent heat insulation properties.

次に、本実施形態に係る断熱箱について説明する。
図5は、本発明に係る断熱箱の一実施形態を示す断面図である。
図5に示すように、本実施形態に係る断熱箱20は、本体部21と、該本体部21を封止する蓋部22とからなる。
Next, the heat insulation box according to the present embodiment will be described.
FIG. 5 is a cross-sectional view showing an embodiment of a heat insulation box according to the present invention.
As shown in FIG. 5, the heat insulating box 20 according to the present embodiment includes a main body portion 21 and a lid portion 22 that seals the main body portion 21.

本体部21は、底に真空断熱材10を配置し、側壁にも真空断熱材10を配置し、この状態を保持したまま、例えば、ウレタン発泡樹脂を流し込んで、全ての真空断熱材10を埋め込むことにより得られる。
蓋部22は、サイズの異なる2つの真空断熱材10を積層し、本体部21と同様にして、例えば、ウレタン発泡樹脂を流し込んで、全ての真空断熱材10を埋め込むことにより得られる。
The main body portion 21 has the vacuum heat insulating material 10 disposed on the bottom, the vacuum heat insulating material 10 is also disposed on the side wall, and while maintaining this state, for example, urethane foam resin is poured to embed all the vacuum heat insulating materials 10. Can be obtained.
The lid portion 22 is obtained by laminating two vacuum heat insulating materials 10 having different sizes, and pouring urethane foam resin and embedding all the vacuum heat insulating materials 10 in the same manner as the main body portion 21.

このように、断熱箱20は、本体部21及び蓋部22に上述した真空断熱材10が用いられるので、リサイクル性に優れ、断熱性にも優れる。   Thus, since the vacuum heat insulating material 10 mentioned above is used for the main-body part 21 and the cover part 22, the heat insulation box 20 is excellent in recyclability, and is excellent also in heat insulation.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

例えば、本実施形態に係る真空断熱材10は、芯材1と、芯材1を収容する外包材2と、を備えているが、外包材2の内部に吸着剤を備えていてもよい。
吸着剤は、真空断熱材10の内部の水分を吸着し、真空断熱材10の内部における真空度の経時劣化を抑制するためのものである。かかる吸着剤としては、例えば、酸化カルシウムを不織布に入れたものが挙げられる。
For example, the vacuum heat insulating material 10 according to the present embodiment includes the core material 1 and the outer packaging material 2 that houses the core material 1, but the outer packaging material 2 may include an adsorbent.
The adsorbent is for adsorbing moisture inside the vacuum heat insulating material 10 to suppress deterioration of the degree of vacuum with time inside the vacuum heat insulating material 10. As such an adsorbent, for example, one in which calcium oxide is put in a nonwoven fabric can be mentioned.

本実施形態に係る真空断熱材10においては、細繊維集合体11及び太繊維集合体12が交互に積層されているが、一部に太繊維集合体、細繊維集合体の順序で積層してあればよい。例えば、太繊維集合体、細繊維集合体、太繊維集合体の順序で積層されていてもよく、太繊維集合体、太繊維集合体、細繊維集合体の順序で積層されていてもよい。   In the vacuum heat insulating material 10 according to the present embodiment, the fine fiber aggregates 11 and the thick fiber aggregates 12 are alternately laminated, but the thick fiber aggregates and the fine fiber aggregates are partially laminated in this order. I just need it. For example, the thick fiber aggregate, the fine fiber aggregate, and the thick fiber aggregate may be laminated in this order, or the thick fiber aggregate, the thick fiber aggregate, and the fine fiber aggregate may be laminated in this order.

本実施形態に係る真空断熱材10においては、細繊維集合体11及び太繊維集合体12にエンボス加工が施されているが、必須の加工ではない。   In the vacuum heat insulating material 10 according to the present embodiment, the fine fiber aggregate 11 and the thick fiber aggregate 12 are embossed, but this is not an essential process.

本発明に係る真空断熱材は、冷蔵庫、冷凍庫、自動販売機、保冷庫、保温庫、保冷車、車両用空調機、給湯機等の冷熱機器の断熱材として好適に用いられる。また、本発明に係る真空断熱材によれば、リサイクル性に優れ、且つ断熱性にも優れる。   The vacuum heat insulating material according to the present invention is suitably used as a heat insulating material for a refrigerator, a freezer, a vending machine, a cold storage, a heat storage, a cold storage vehicle, a vehicle air conditioner, a water heater, and the like. Moreover, according to the vacuum heat insulating material which concerns on this invention, it is excellent in recyclability and it is excellent also in heat insulation.

1・・・芯材
2・・・外包材
10・・・真空断熱材
11・・・細繊維集合体
12・・・太繊維集合体
18・・・面
20・・・断熱箱
21・・・本体部
22・・・蓋部
DESCRIPTION OF SYMBOLS 1 ... Core material 2 ... Outer packaging material 10 ... Vacuum heat insulating material 11 ... Fine fiber aggregate 12 ... Thick fiber aggregate 18 ... Surface 20 ... Heat insulation box 21 ... Main unit 22 ... Lid

Claims (6)

有機繊維からなる複数の繊維集合体が積層された芯材と、
ガスバリア性を有し、前記芯材を収容する外包材と、
を備え、
前記外包材の内部が真空であり、
前記芯材の対向する前記繊維集合体の平均繊維径が異なっている真空断熱材。
A core material in which a plurality of fiber assemblies made of organic fibers are laminated;
An outer packaging material having gas barrier properties and containing the core material;
With
The inside of the outer packaging material is a vacuum,
The vacuum heat insulating material from which the average fiber diameter of the said fiber assembly which the said core material opposes differs.
前記繊維集合体の平均繊維径が1μm〜15μmである請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein an average fiber diameter of the fiber assembly is 1 µm to 15 µm. 対向する前記繊維集合体が、平均繊維径が細い細繊維集合体と、該細繊維集合体よりも平均繊維径が太い太繊維集合体とからなり、
前記細繊維集合体及び前記太繊維集合体の密度が0.08〜0.3であり、且つ
前記細繊維集合体の平均繊維径に対し、前記太繊維集合体の平均繊維径が、1.5倍以上である請求項1又は2に記載の真空断熱材。
The opposing fiber assembly consists of a fine fiber assembly having a thin average fiber diameter, and a thick fiber assembly having a larger average fiber diameter than the fine fiber assembly,
The density of the fine fiber aggregate and the thick fiber aggregate is 0.08 to 0.3, and the average fiber diameter of the thick fiber aggregate is 1. The vacuum heat insulating material according to claim 1 or 2, which is 5 times or more.
前記太繊維集合体の平均繊維径が9μm〜12μmであり、前記細繊維集合体の平均繊維径が1μm〜3μmである請求項3記載の真空断熱材。   The vacuum heat insulating material according to claim 3, wherein the thick fiber aggregate has an average fiber diameter of 9 μm to 12 μm, and the fine fiber aggregate has an average fiber diameter of 1 μm to 3 μm. 前記繊維集合体が不織布である請求項1〜4のいずれか一項に記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 4, wherein the fiber assembly is a nonwoven fabric. 請求項1〜5のいずれか一項に記載の真空断熱材を用いた断熱箱。   The heat insulation box using the vacuum heat insulating material as described in any one of Claims 1-5.
JP2010238912A 2010-10-25 2010-10-25 Vacuum heat insulating material and heat insulating box using the same Pending JP2012092870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238912A JP2012092870A (en) 2010-10-25 2010-10-25 Vacuum heat insulating material and heat insulating box using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238912A JP2012092870A (en) 2010-10-25 2010-10-25 Vacuum heat insulating material and heat insulating box using the same

Publications (1)

Publication Number Publication Date
JP2012092870A true JP2012092870A (en) 2012-05-17

Family

ID=46386432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238912A Pending JP2012092870A (en) 2010-10-25 2010-10-25 Vacuum heat insulating material and heat insulating box using the same

Country Status (1)

Country Link
JP (1) JP2012092870A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005872A (en) * 2012-06-25 2014-01-16 Toshiba Home Technology Corp Vacuum heat insulation body
JP2014077478A (en) * 2012-10-10 2014-05-01 Mitsubishi Electric Corp Vacuum heat insulation material and heat insulation box comprising the same
JP2016169823A (en) * 2015-03-13 2016-09-23 株式会社東芝 Heat insulation material, core material, refrigerator, and manufacturing method of heat insulation material
US9546481B2 (en) 2013-12-06 2017-01-17 Samsung Electronics Co., Ltd. Vacuum insulation material
CN110778852A (en) * 2015-03-10 2020-02-11 东芝生活电器株式会社 Heat insulating material, core material, refrigerator, and method for manufacturing heat insulating material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005872A (en) * 2012-06-25 2014-01-16 Toshiba Home Technology Corp Vacuum heat insulation body
JP2014077478A (en) * 2012-10-10 2014-05-01 Mitsubishi Electric Corp Vacuum heat insulation material and heat insulation box comprising the same
US9546481B2 (en) 2013-12-06 2017-01-17 Samsung Electronics Co., Ltd. Vacuum insulation material
CN110778852A (en) * 2015-03-10 2020-02-11 东芝生活电器株式会社 Heat insulating material, core material, refrigerator, and method for manufacturing heat insulating material
JP2016169823A (en) * 2015-03-13 2016-09-23 株式会社東芝 Heat insulation material, core material, refrigerator, and manufacturing method of heat insulation material

Similar Documents

Publication Publication Date Title
EP1275893B1 (en) Vacuum insulating material and device using the same
KR100507783B1 (en) Heat insulation box, and vacuum heat insulation material used therefor
JP5362024B2 (en) Vacuum heat insulating material, heat insulating box, refrigerator, refrigeration / air conditioning device, hot water supply device and equipment, and method for manufacturing vacuum heat insulating material
JP5388603B2 (en) Vacuum heat insulating material and heat insulating box equipped with the same
KR101164306B1 (en) Vacuum heat insulating material, heat-insulating box body using the same and refrigerator
JP5624305B2 (en) Insulated container
US20110241513A1 (en) Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
WO2006009146A1 (en) Vacuum heat insulation material
JP2012092870A (en) Vacuum heat insulating material and heat insulating box using the same
JP2011074934A (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
JP2007040391A (en) Vacuum heat insulating material and heat insulating housing using the same
KR101087395B1 (en) Vaccum heat insulating material, refrigerator using the same, boiler using the same and manufacturing method thereof
JP4969436B2 (en) Vacuum insulation material and equipment using the same
JP5312605B2 (en) Vacuum insulation, refrigerator and equipment
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
KR100965971B1 (en) Vacuum heat insulation material
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP2006162076A (en) Vacuum thermal insulating material
JP2006161939A (en) Vacuum thermal insulating material
JP2018017314A (en) Vacuum heat insulation material and refrigerator using the same
JP2010007806A (en) Vacuum thermal insulation panel and thermal insulation box body with this
JP5216510B2 (en) Vacuum insulation material and equipment using the same
JP5448937B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
US9734933B2 (en) Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same
JP2006029413A (en) Vacuum heat insulating material and its manufacturing method