JP2006029413A - Vacuum heat insulating material and its manufacturing method - Google Patents
Vacuum heat insulating material and its manufacturing method Download PDFInfo
- Publication number
- JP2006029413A JP2006029413A JP2004207306A JP2004207306A JP2006029413A JP 2006029413 A JP2006029413 A JP 2006029413A JP 2004207306 A JP2004207306 A JP 2004207306A JP 2004207306 A JP2004207306 A JP 2004207306A JP 2006029413 A JP2006029413 A JP 2006029413A
- Authority
- JP
- Japan
- Prior art keywords
- heat insulating
- vacuum heat
- insulating material
- plate
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Thermal Insulation (AREA)
- Refrigerator Housings (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、冷蔵庫、自動販売機、保冷箱、保冷車等の温度を一定に保つ断熱庫に断熱材として用いられる真空断熱材およびその製造方法に関する。 The present invention relates to a vacuum heat insulating material used as a heat insulating material in a heat insulating chamber that keeps the temperature constant, such as a refrigerator, a vending machine, a cold box, a cold car, and the like, and a manufacturing method thereof.
従来、冷蔵庫、自動販売機、保冷箱、保冷車等の断熱庫には、種々の構造・性能を有する断熱材が使用されている。近年では、非常に優れた断熱性を有する真空断熱材が知られており、上記用途に多く使用されている。真空断熱材とは、一般的には、ガスバリヤー性を有する金属蒸着フィルム等からなる外包材に芯材を充填し、その内部を減圧して密封した構造を有するものである。芯材としては連続気泡からなる合成樹脂フォームが単独で用いられていたが、近年では、断熱性能に極めて優れたグラスウールが単独で使用されている(特許文献1および特許文献2)。
Conventionally, heat insulating materials having various structures and performances are used in heat insulating cabinets such as refrigerators, vending machines, cold storage boxes, and cold cars. In recent years, vacuum heat insulating materials having very excellent heat insulating properties are known and are used in many applications. The vacuum heat insulating material generally has a structure in which a core material is filled in an outer packaging material made of a metal vapor-deposited film having gas barrier properties, and the inside thereof is decompressed and sealed. As the core material, a synthetic resin foam composed of open cells has been used alone, but in recent years, glass wool having excellent heat insulation performance has been used alone (
そのような真空断熱材は、通常、断熱庫を構成する断熱壁内に組み込まれた状態で用いられる。例えば、図1に概略的に示すような冷蔵庫等の断熱庫1は断熱壁(2a、2b、2c、2d)によって構成され、該断熱壁の内部に真空断熱材が設置される(図面上、手前方向の断熱壁は省略する)。図1中、真空断熱材が配置される概略的な位置を点線で示す。そのような断熱壁は図4に示すように、真空断熱材4を主に外箱3aに対し接着又は粘着により固定し、当該外箱3aを内箱3bと嵌合させたのち、別の断熱物質(例えば、発泡ウレタン断熱材)5を充填させることにより形成される(特許文献3)。図4は図1中、断熱壁2bをB方向(図面上、上下方向)から見たときの概略断面図である。真空断熱材4の固定は通常、外箱等の固定面に接着剤を塗布して行われる。
しかしながら、グラスウール芯材はもともと繊維を集綿状にしたものであって、面状にするためニードルパンチ加工やバインダー加工を施されたものであるので、プレス等によっても、外箱等の固定面形状に合わせて、賦形することは到底困難な作業である。したがって、例えば固定面に配管・配線等の凹凸部(特に凸部6;図4参照)がある場合や構造上の凹凸部がある場合、真空断熱材が当該凹凸部に対応して賦形できない。よって、真空断熱材と固定面との間でそのような凹凸部に由来する空隙部分(7;図4参照)が生じ、断熱壁としての断熱性能を大きく低下させてしまう。
However, since the glass wool core material is originally a collection of fibers, and has been subjected to needle punching or binder processing to make it planar, it can also be fixed on the outer box, etc. by pressing, etc. It is extremely difficult to shape according to the shape. Therefore, for example, when there is an uneven portion (particularly the
本発明は、上記のような課題を解決するためになされたもので、真空断熱材が固定されるべき固定面にある凹凸形状に対応した凹凸を有し、かつ優れた断熱性能を有する真空断熱材及びその製造方法を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and has vacuum unevenness corresponding to the uneven shape on the fixing surface to which the vacuum heat insulating material is to be fixed, and has excellent heat insulating performance. It aims at providing a material and its manufacturing method.
本発明は、少なくとも芯材と該芯材を収納し内部を減圧状態に維持できる外包材からなり、前記芯材が、連続気泡合成樹脂フォームからなる板状材料および無機繊維及び/又は有機繊維からなる繊維状材料の積層体である真空断熱材であって、該真空断熱材における板状材料側の外表面に、該真空断熱材が適用される部材表面の形状に対応した凹凸を有する真空断熱材に関する。 The present invention comprises at least a core material and an outer packaging material that can store the core material and maintain the inside in a reduced pressure state, and the core material is composed of a plate-like material made of open-cell synthetic resin foam and inorganic fibers and / or organic fibers. It is a vacuum heat insulating material that is a laminate of fibrous materials, and the vacuum heat insulating material has unevenness corresponding to the shape of the member surface to which the vacuum heat insulating material is applied on the outer surface of the vacuum heat insulating material on the plate-like material side Regarding materials.
本発明はまた、連続気泡合成樹脂フォームからなる板状材料および無機繊維及び/又は有機繊維からなる繊維状材料を積層して外包材に収納し、内部を減圧状態にして外包材開口部を封止し、真空断熱材を得た後、該真空断熱材に対し、板状材料側の外表面から凹凸加工を施すことを特徴とする真空断熱材の製造方法に関する。 The present invention also laminates a plate-like material made of open-cell synthetic resin foam and a fibrous material made of inorganic fibers and / or organic fibers and stores them in an outer packaging material, and the inside is decompressed to seal the outer packaging material opening. It is related with the manufacturing method of the vacuum heat insulating material characterized by performing an uneven | corrugated process from the outer surface by the side of a plate-shaped material with respect to this vacuum heat insulating material after stopping and obtaining a vacuum heat insulating material.
本発明の真空断熱材及びその製造方法は、連続気泡合成樹脂フォームからなる板状材料と繊維状材料からなる積層芯材を用いているため、真空密閉後、凹凸加工を施すことにより、真空断熱材自身に凹凸を比較的精密に安定して付与することが可能である。したがって、真空断熱材が固定されるべき固定面に配線・配管等の凹凸部がある場合や構造上の凹凸部がある場合でも、当該凹凸に対応した真空断熱材の生産が可能となる。 Since the vacuum heat insulating material of the present invention and the manufacturing method thereof use a laminated core material made of a plate-like material and a fibrous material made of an open-cell synthetic resin foam, the vacuum heat insulation is carried out by applying unevenness after vacuum sealing. It is possible to impart irregularities to the material itself with relatively high precision and stability. Therefore, even when there are uneven portions such as wiring and piping on the fixing surface to which the vacuum heat insulating material is to be fixed or when there are uneven portions on the structure, it is possible to produce a vacuum heat insulating material corresponding to the uneven portions.
本発明の真空断熱材は少なくとも芯材と該芯材を収納し内部を減圧状態に維持できる外包材とからなる。 The vacuum heat insulating material of the present invention comprises at least a core material and an outer packaging material that can store the core material and maintain the inside in a reduced pressure state.
本発明において使用される芯材は板状材料および繊維状材料の積層体である。そのような積層体は最下層または最上層の少なくとも一方の層が板状材料からなっている限り、積層数および積層順序は特に制限されるものではない。例えば、積層体の一部または全部において、板状材料および繊維状材料が交互に積層されていてもよいし、または板状材料または繊維状材料が連続して積層されていてもよい。積層体が複数の板状材料層を有する場合、全ての板状材料層が同種類のものであってもよいし、または一部または全部の板状材料層が異なっていてもよい。積層体が複数の繊維状材料層を有する場合も同様である。製造容易性および製造効率の観点から好ましくは、1層の板状材料と1層または複層の繊維状材料とからなる積層体である。 The core material used in the present invention is a laminate of a plate material and a fibrous material. In such a laminate, as long as at least one of the lowermost layer and the uppermost layer is made of a plate-like material, the number of layers and the order of lamination are not particularly limited. For example, in a part or all of the laminate, the plate-like material and the fibrous material may be alternately laminated, or the plate-like material or the fibrous material may be continuously laminated. When the laminate has a plurality of plate-like material layers, all the plate-like material layers may be the same type, or some or all of the plate-like material layers may be different. The same applies when the laminate has a plurality of fibrous material layers. From the viewpoint of manufacturability and production efficiency, a laminate composed of one layer of plate material and one layer or multiple layers of fiber material is preferable.
芯材を構成する板状材料は連続気泡合成樹脂フォームである。独立気泡合成樹脂発砲体を用いると、断熱材内部を減圧しても減圧による断熱性の向上効果が得られないので、十分な断熱性が得られない。連続気泡合成樹脂フォームは、連続気泡構造を有し、かつ真空断熱材の製造時において減圧下で外包材の開口部を封止した後、大気圧下に持ってきても形状を保持可能なものであれば、いかなる合成樹脂フォームであってもよい。連続気泡合成樹脂フォームの具体例として、例えば、いわゆる硬質ポリウレタンフォーム、硬質ポリスチレンフォーム、硬質ポリエチレンフォーム、硬質ポリプロピレンフォーム、硬質フェノール樹脂フォーム、硬質ユリア樹脂フォーム等が挙げられる。好ましくは、硬質ポリウレタンフォームおよび硬質ポリスチレンフォーム、特に硬質ポリウレタンフォームである。連続気泡硬質ポリウレタンフォームは、ポリオール成分とイソシアネート成分とを主反応成分として、連続気泡構造を形成すべく発泡成形された熱硬化性ポリウレタンフォームであり、他の合成樹脂フォームに比較して断熱性能に非常に優れている。また、熱プレス等による形状保持性が高く、種々の形状に賦形できる。 The plate-like material constituting the core material is an open-cell synthetic resin foam. If a closed cell synthetic resin foam is used, even if the inside of the heat insulating material is depressurized, an effect of improving the heat insulating property due to the depressurization cannot be obtained, so that a sufficient heat insulating property cannot be obtained. Open-cell synthetic resin foam has an open-cell structure and can retain its shape even when brought to atmospheric pressure after sealing the opening of the outer packaging material under reduced pressure during the manufacture of vacuum insulation Any synthetic resin foam may be used. Specific examples of the open cell synthetic resin foam include so-called rigid polyurethane foam, rigid polystyrene foam, rigid polyethylene foam, rigid polypropylene foam, rigid phenol resin foam, rigid urea resin foam, and the like. Preferred are rigid polyurethane foams and rigid polystyrene foams, especially rigid polyurethane foams. Open-cell rigid polyurethane foam is a thermosetting polyurethane foam that is foam-molded to form an open-cell structure with a polyol component and an isocyanate component as the main reaction components, and has better heat insulation performance than other synthetic resin foams. Very good. Moreover, the shape retention property by hot press etc. is high, and it can shape in various shapes.
連続気泡合成樹脂フォームの密度としては通常、40〜80Kg/m3であり、好ましくは50〜70Kg/m3である。密度は、JISK7222に規定される方法に準じて測定された値を用いている。独立気泡率については、10%以下のものを用い、連続気泡性の高いもの、すなわち、独立気泡率の小さいものほど好ましい。なお、独立気泡率は、ASTM D2856に規定される方法に準じて測定する。 The density of the open cell synthetic resin foam is usually 40 to 80 Kg / m 3 , and preferably 50 to 70 Kg / m 3 . As the density, a value measured according to a method defined in JISK7222 is used. Regarding the closed cell ratio, those having 10% or less are used, and those having higher open cell properties, that is, those having a lower closed cell ratio are preferable. The closed cell ratio is measured according to the method defined in ASTM D2856.
また連続気泡合成樹脂フォームの平均セル径としては通常、20〜120μmであり、好ましくは30〜100μmである。平均セル径は、10個のセルに対し、セル1個当たり2箇所の径をCCDカメラ画像を処理して測定し、計20箇所の径の平均値を求めて平均セル径値として用いた。 Moreover, as an average cell diameter of an open cell synthetic resin foam, it is 20-120 micrometers normally, Preferably it is 30-100 micrometers. The average cell diameter was measured by processing the CCD camera image at two locations per cell for 10 cells, and the average value of the diameters at a total of 20 locations was obtained and used as the average cell diameter value.
上記好ましい物性を有する連続気泡合成樹脂フォームは多くの市販品として入手可能であり、例えば、倉敷紡績社製のものが使用可能である。 The open-cell synthetic resin foam having the above-mentioned preferable physical properties can be obtained as many commercial products, for example, those manufactured by Kurashiki Boseki Co., Ltd. can be used.
連続気泡合成樹脂フォームの厚みは特に制限されず、通常、1〜20mm、好ましくは10mm程度であり、減圧によっても厚みはほとんど変わらない。 The thickness of the open cell synthetic resin foam is not particularly limited, and is usually 1 to 20 mm, preferably about 10 mm, and the thickness hardly changes even under reduced pressure.
繊維状材料としては無機繊維、有機繊維またはそれらの混合繊維が使用される。本発明において使用される繊維状材料の形態は特に制限されるものではないが、取り扱い作業性の観点からは、上記繊維からなるマット状の形態を有していることが好ましい。 As the fibrous material, inorganic fibers, organic fibers, or mixed fibers thereof are used. The form of the fibrous material used in the present invention is not particularly limited, but from the viewpoint of handling workability, it is preferable that the fibrous material has a mat-like form made of the fibers.
無機繊維としては、例えば、ガラス繊維(グラスウール)、アルミナ繊維、スラグウール繊維、シリカ繊維、ロックウール等が挙げられる。
有機繊維としては、ポリエステル繊維、ナイロン繊維、アラミド繊維等が挙げられる。 好ましい繊維状材料は無機繊維、特にガラス繊維である。ガラス繊維は極めて優れた熱伝導率を示す。
Examples of the inorganic fiber include glass fiber (glass wool), alumina fiber, slag wool fiber, silica fiber, rock wool, and the like.
Examples of the organic fiber include polyester fiber, nylon fiber, and aramid fiber. Preferred fibrous materials are inorganic fibers, especially glass fibers. Glass fibers exhibit very good thermal conductivity.
繊維状材料の平均繊維径は特に制限されないが、通常は0.1〜30μm、特に1〜5μmである。特にガラス繊維を使用する場合は製造容易性の観点から好ましい平均繊維径は0.5〜5μm程度である。
平均繊維長もまた特に制限されないが、マット状形態の成形性の観点からは1〜100mm、特に3〜10mmが好ましい。
The average fiber diameter of the fibrous material is not particularly limited, but is usually 0.1 to 30 μm, particularly 1 to 5 μm. In particular, when glass fiber is used, a preferable average fiber diameter is about 0.5 to 5 μm from the viewpoint of ease of production.
The average fiber length is also not particularly limited, but 1 to 100 mm, particularly 3 to 10 mm is preferable from the viewpoint of moldability of the mat-like form.
繊維状材料は、いわゆるニードルパンチ法、バインダー法、抄造法等により、容易にマット状とすることができる。 The fibrous material can be easily formed into a mat shape by a so-called needle punch method, a binder method, a papermaking method, or the like.
繊維状材料の厚みは特に制限されず、通常は、真空断熱材としたときに1〜100mm、好ましくは3〜30mmとなればよい。 The thickness of the fibrous material is not particularly limited, and usually 1 to 100 mm, preferably 3 to 30 mm, when used as a vacuum heat insulating material.
外包材としては、ガスバリア性を有し、上記芯材を収納して内部を減圧状態に維持できるものであれば、どのようなものでも用いることができる。中でも、ヒートシール可能なものが好ましい。好ましい具体例として、例えば、最外層から、ナイロン、アルミ蒸着PET(ポリエチレンテレフタレート)、アルミ箔、及び最内層として高密度ポリエチレンの4層構造からなるガスバリアフィルム、最外層から、ポリエチレンテレフタレート樹脂、中間層にアルミ箔、最内層に高密度ポリエチレン樹脂からなるガスバリアフィルム、最外層にPET樹脂、中間層にアルミ蒸着層を有するエチレンービニルアルコール共重合体樹脂、最内層に高密度ポリエチレン樹脂からなるガスバリアフィルム等が挙げられる。 As the outer packaging material, any material can be used as long as it has gas barrier properties and can store the core material and maintain the inside in a reduced pressure state. Especially, what can be heat-sealed is preferable. Preferable specific examples include, for example, a gas barrier film having a four-layer structure of nylon, aluminum vapor-deposited PET (polyethylene terephthalate), aluminum foil, and high-density polyethylene as the innermost layer from the outermost layer, polyethylene terephthalate resin, intermediate layer from the outermost layer Gas barrier film made of high-density polyethylene resin in the innermost layer, PET-barrier resin in the outermost layer, ethylene-vinyl alcohol copolymer resin having an aluminum vapor deposition layer in the intermediate layer, and gas barrier film made of high-density polyethylene resin in the innermost layer Etc.
外包材の中には芯材のみを入れるだけでも、断熱性能に優れた真空断熱材を得ることができるが、芯材から不純物を完全に取り除くことは困難であり、微量のアウトガス等による経時的な断熱性能低下を防止するために、さらに吸着剤(ゲッター材)を封入することも好ましい。 Even if only the core material is included in the outer packaging material, it is possible to obtain a vacuum heat insulating material with excellent heat insulation performance, but it is difficult to completely remove impurities from the core material. In order to prevent a significant decrease in heat insulation performance, it is also preferable to enclose an adsorbent (getter material).
上記のような材料からなる本発明の真空断熱材は凹凸が付与されている。本発明の真空断熱材の好ましい一実施形態を図2を用いて説明する。図2は本発明の真空断熱材の一例の概略断面図である。 The vacuum heat insulating material of the present invention made of the material as described above is provided with unevenness. A preferred embodiment of the vacuum heat insulating material of the present invention will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view of an example of the vacuum heat insulating material of the present invention.
本発明の真空断熱材10は少なくとも芯材12が外包材16に減圧状態で収容されてなっている。本発明の真空断熱材10は、芯材12が板状材料13および繊維状材料14の積層体であって、その最下層または最上層の少なくとも一方の層が板状材料からなっている。そのため、芯材の最下層または最上層の板状材料の外表面に良好に凹凸が付与されて、結果として真空断熱材における当該板状材料側の外表面に凹凸(凹部15)を有する。芯材の最下層または最上層における板状材料の外表面に付与される凹凸を、真空断熱材が適用(固定)される部材表面の形状(例えば、配線・配管等の凹凸や構造上の凹凸)に対応した凹凸にすると、真空断熱材と固定面との間でほとんど空隙が生じないので、該真空断熱材が組み込まれる断熱壁の断熱性が向上する。図2中、17は熱融着部である。
In the vacuum
真空断熱材が組み込まれる断熱壁内部の壁面は平面状であって、かつその内部の配線・配管等は壁面に埋め込まれることなく壁面上を垂れ下がるのが一般的であるので、真空断熱材が有する凹凸は溝状(凹部)であることが好ましい。 The wall surface inside the heat insulating wall into which the vacuum heat insulating material is incorporated is a flat surface, and the wiring and piping inside the wall are generally hung down on the wall surface without being embedded in the wall surface. The unevenness is preferably groove-shaped (concave).
本発明において付与される凹凸の寸法は、当該凹凸を付与される部分(領域)が真空断熱材の一部である程度の比較的小さい寸法であることが好ましい。凹凸が小さいほど、一般に賦形は困難とされるが、本発明においては凹凸が比較的小さい寸法であっても良好に付与され得るためである。そのような凹凸寸法は、凹凸が溝状の場合で、真空断熱材の外表面上、幅として1〜200mm、特に3〜30mm、および深さとして1〜50mm、特に3〜15mmが好適である。 In the present invention, it is preferable that the unevenness provided is a relatively small size to a certain extent that the portion (region) to which the unevenness is provided is a part of the vacuum heat insulating material. In general, the smaller the unevenness is, the more difficult it is to form, but in the present invention, even if the unevenness is a relatively small size, it can be imparted satisfactorily. Such irregularities are suitable when the irregularities are groove-like and on the outer surface of the vacuum heat insulating material, the width is 1 to 200 mm, especially 3 to 30 mm, and the depth is 1 to 50 mm, especially 3 to 15 mm. .
本発明の真空断熱材の寸法は芯材および外包材の大きさに依存し、芯材および外包材の大きさは該真空断熱材の用途に応じて適宜、決定されればよい。 The dimensions of the vacuum heat insulating material of the present invention depend on the sizes of the core material and the outer packaging material, and the sizes of the core material and the outer packaging material may be appropriately determined according to the use of the vacuum heat insulating material.
外表面に凹凸(特に凹部)を賦形された本発明の真空断熱材を、図1に示す断熱庫(例えば、冷蔵庫)に使用した場合の使用状態の一例を図3に示す。図3は図1中、断熱壁2bをB方向から見たときの概略断面図である。本発明の真空断熱材10は配線・配管6に対応した凹部を有しているので、断熱壁2b内において真空断熱材10と固定面11との間でほとんど空隙が生じていない。
FIG. 3 shows an example of the state of use when the vacuum heat insulating material of the present invention in which irregularities (particularly concave portions) are formed on the outer surface is used in a heat insulating cabinet (for example, a refrigerator) shown in FIG. FIG. 3 is a schematic cross-sectional view of the
そのような断熱壁2bは例えば、以下の手順によって形成される。真空断熱材10の凹部に配線・配管6を誘導しながら、該真空断熱材10を外箱3aに対し接着又は粘着により固定する。固定は通常、固定面11に接着剤を塗布して行われる。次いで、当該外箱3aを内箱3bと嵌合させたのち、別の断熱物質(例えば、発泡ウレタン断熱材)5を充填させて、断熱壁2bは形成される。
Such a
以下、本発明の真空断熱材の製造方法について説明する。
板状材料及び繊維状材料(好ましくはマット状)をそれぞれ適当な大きさ及び形(例えば、四角形)にカットし、内部に含まれる水分等を除去するために乾燥を行う。当該乾燥は通常、120℃1時間程度の条件にて行われるが、より有効に連続気泡合成樹脂フォーム及び繊維状材料の水分等を除去するために、120℃において真空乾燥するのが好ましい。さらに、遠赤外線による乾燥を併用してもよい。真空度については、0.5〜0.001Torr程度で乾燥を行うのが好ましく、温度については、100℃〜150℃で行うのが好ましい。
Hereinafter, the manufacturing method of the vacuum heat insulating material of this invention is demonstrated.
A plate-like material and a fibrous material (preferably mat-like) are each cut into an appropriate size and shape (for example, a square shape), and dried to remove moisture and the like contained therein. The drying is usually performed under conditions of about 120 ° C. for about 1 hour. However, in order to more effectively remove moisture and the like from the open cell synthetic resin foam and the fibrous material, vacuum drying at 120 ° C. is preferable. Furthermore, you may use together the drying by far infrared rays. The degree of vacuum is preferably about 0.5 to 0.001 Torr, and the temperature is preferably 100 to 150 ° C.
次に、板状材料と繊維状材料とを積層し、袋状にシールされた外包材の中に挿入する。なおこの時、ゲッター材を一緒に挿入しておくのが好ましい。この状態で真空引き装置内に入れて、内圧が0.1〜0.001Torr程度の真空度となるよう減圧排気する。その後、外包材の袋状開口部を熱融着により封止し、真空断熱材を得る。 Next, the plate-like material and the fibrous material are laminated and inserted into an outer packaging material sealed in a bag shape. At this time, it is preferable to insert a getter material together. In this state, it is put in a vacuuming device and evacuated under reduced pressure so that the internal pressure becomes a degree of vacuum of about 0.1 to 0.001 Torr. Thereafter, the bag-like opening of the outer packaging material is sealed by heat sealing to obtain a vacuum heat insulating material.
本発明においては、上記のように一旦、真空断熱材を得た後で、板状材料側の外表面に凹凸を付与する。凹凸の付与は凹凸加工によって行う。凹凸加工としては、プレス加工等挙げられるが、生産性に優れ、真空断熱材の外包材を傷つけることなく加工することを考慮すると、プレス加工が最も好ましい。プレス条件は例えば、圧力5〜15kg/cm2およびプレス時間2〜5秒間が適当である。なお、凹凸加工は、例えば外箱内表面の配管、配線等に対応して設けることが必要であり、プレス加工にて溝形状に賦形されることが、生産性及び加工性からして好ましい。 In this invention, after obtaining a vacuum heat insulating material once as mentioned above, an unevenness | corrugation is provided to the outer surface by the side of a plate-shaped material. Concavity and convexity are imparted by concave and convex processing. Examples of the concavo-convex processing include press processing and the like. However, press processing is most preferable in view of excellent productivity and processing without damaging the outer packaging material of the vacuum heat insulating material. The press conditions are, for example, a pressure of 5 to 15 kg / cm 2 and a press time of 2 to 5 seconds. In addition, it is necessary to provide uneven processing corresponding to, for example, piping and wiring on the inner surface of the outer box, and it is preferable from the viewpoint of productivity and workability to be formed into a groove shape by pressing. .
真空断熱材における板状材料側の外表面への凹凸の付与は、板状材料にあらかじめ凹凸加工を施しておき、当該芯材を外包材に収納し、減圧状態とすることにより、外包材を芯材に密着させ、真空断熱材表面に芯材の凹凸が現れるようにすることも可能である。しかしながら、そのように凹凸加工を減圧工程より前に行う場合、減圧工程の直前工程として通常行われる乾燥工程にて、付与された凹凸形状が復元してしまい、賦形が不十分になり、精密な賦形を行えない。したがって、本発明においては板状材料と繊維状芯材との積層体芯材を、まず外包材に収納して内部を減圧状態とし、真空密閉状態にした後、外包材を介して板状材料に対して凹凸加工を行う。このように真空密閉状態にした後に凹凸加工を行うと、付与された凹凸形状の復元がほとんど見られず、所望の凹凸形状を比較的精密に安定して付与可能である。 The provision of irregularities on the outer surface on the plate-like material side in the vacuum heat insulating material is performed by applying irregularities to the plate-like material in advance, storing the core material in the outer packaging material, and putting the outer packaging material in a reduced pressure state. It is also possible to make it adhere to the core material so that irregularities of the core material appear on the surface of the vacuum heat insulating material. However, when the concavo-convex process is performed before the decompression step, the provided concavo-convex shape is restored in the drying step normally performed as a step immediately before the decompression step, and the shaping becomes insufficient, and the precision is high. Can not be shaped properly. Therefore, in the present invention, the laminated core material of the plate-like material and the fibrous core material is first stored in the outer packaging material, the inside is brought into a reduced pressure state, and the vacuum-sealed state is set, and then the plate-like material is interposed via the outer packaging material. Concavity and convexity processing is performed on When the concave and convex process is performed after the vacuum-sealed state as described above, the applied concave and convex shape is hardly restored, and the desired concave and convex shape can be imparted relatively accurately and stably.
特に、溝状の凹凸を付与する場合には、凹凸加工時の金型の突起が精密に賦形され得る。そのため、金型の突起形状は、真空断熱材が有する前記凹凸寸法にそのまま対応した形状にすればよい。 In particular, when providing groove-shaped unevenness, the projections of the mold during unevenness processing can be precisely shaped. Therefore, the protrusion shape of the mold may be a shape that directly corresponds to the uneven size of the vacuum heat insulating material.
(実施例1)
芯材として、連続気泡硬質ウレタンフォーム(密度:55Kg/m3、平均セル径:75μm、独立気泡率5%、倉敷紡績社製)および抄造法によりマット状としたグラスウール(平均繊維長:10mm、平均繊維径3μm)を用いる。なお、共にサイズは500mm×1500mmであり、厚み10mmである。
Example 1
As the core material, open-celled rigid urethane foam (density: 55 Kg / m 3 , average cell diameter: 75 μm,
上記の芯材をまず積層し、温度120℃にて1時間乾燥を行った。乾燥後の積層芯材を、ナイロン、アルミ蒸着PET、アルミ箔、高密度ポリエチレンの4層構造からなるガスバリアフィルム製外包材に挿入し、同時にゲッター材(サエス ゲッターズ社製:COMBO)を1個外包材の中に挿入した。その後、真空引き装置にて、内圧が0.05Torrとなるよう真空引きを行いながら、密封した。得られた真空断熱材は、500mm×1500mmであり、厚みは16mmであった。また、このときの繊維状材料の厚みは6mmであった。 The core material was first laminated and dried at a temperature of 120 ° C. for 1 hour. The laminated core material after drying is inserted into a gas barrier film envelope made of nylon, aluminum vapor-deposited PET, aluminum foil, and high-density polyethylene, and at the same time, one getter material (SAES Getters: COMBO) is included. Inserted into the material. Then, it sealed, performing evacuation with an evacuation apparatus so that an internal pressure might be 0.05 Torr. The obtained vacuum heat insulating material was 500 mm x 1500 mm, and the thickness was 16 mm. Moreover, the thickness of the fibrous material at this time was 6 mm.
その後、プレス機によりプレス加工を行い真空断熱材を得た。プレス加工は、真空断熱材の表面に、長手方向に沿った溝形状を賦形すべく行った。プレス型(上型)に直径10mmおよび高さ5mmの半円柱状の突起を設け、7kg/cm2で3秒間プレスを行った。なお、得られる溝深さは5mm、溝幅は10mmであり、断熱箱体の外箱表面に設置される配管径に合うよう精密に賦形された。溝本数は2本であり、長手方向の一方の端部から他方の端部まで直線上に設けられた。外包材への悪影響を防ぐため、真空断熱材に鋭角部をなるべく発生させないよう、プレス加工の金型形状は、角部分が曲面形状となるよう設計されていた。 Then, the press work was performed with the press machine and the vacuum heat insulating material was obtained. The press working was performed to shape a groove shape along the longitudinal direction on the surface of the vacuum heat insulating material. A semi-cylindrical protrusion having a diameter of 10 mm and a height of 5 mm was provided on the press die (upper die), and pressing was performed at 7 kg / cm 2 for 3 seconds. In addition, the groove depth obtained was 5 mm, and the groove width was 10 mm, and it was precisely shaped to match the pipe diameter installed on the outer box surface of the heat insulating box. The number of grooves was two, and was provided on a straight line from one end in the longitudinal direction to the other end. In order to prevent an adverse effect on the outer packaging material, the die shape of the press working has been designed so that the corner portion has a curved shape so as not to generate an acute angle portion in the vacuum heat insulating material as much as possible.
(比較例1)
芯材として、抄造法によりマット状としたグラスウール(平均繊維長:10mm、平均繊維径3μm、厚み10mm)を単独で用いたこと以外、実施例1と同様の方法で真空断熱材を得た。
(Comparative Example 1)
A vacuum heat insulating material was obtained in the same manner as in Example 1 except that glass wool (average fiber length: 10 mm, average fiber diameter: 3 μm, thickness: 10 mm) formed into a mat by a papermaking method was used as the core material.
(比較例2)
連続気泡硬質ウレタンフォームに対するプレス工程を、乾燥工程の前に実施し、プレス工程後に乾燥、真空引きおよび密封工程を行うこと以外は、実施例1と同様の材質、方法にて真空断熱材を得た。
(Comparative Example 2)
A vacuum heat insulating material is obtained by the same material and method as in Example 1 except that the pressing process for the open-celled rigid urethane foam is performed before the drying process, and the drying, vacuuming and sealing processes are performed after the pressing process. It was.
(評価)
断熱性能の評価は、「AutoΛ HC−074」(英弘精機(株)製)を用いて、平均温度20℃の熱伝導率を測定することにより行った。なお、測定は真空引き工程から1日経過後に測定した。
(Evaluation)
Evaluation of the heat insulation performance was performed by measuring the thermal conductivity at an average temperature of 20 ° C. using “AutoΛ HC-074” (manufactured by Eihiro Seiki Co., Ltd.). The measurement was made after 1 day from the vacuuming step.
1:断熱庫(冷蔵庫)、2a:2b:2c:2d:断熱壁、3a:外箱、3b:内箱、4;従来の真空断熱材、5:別の断熱物質(発泡ウレタン断熱材)、6:配線・配管、7:空隙、10:本発明の真空断熱材、12:芯材、13:板状材料、14:繊維状材料、15:凹部、16:外包材、17:熱融着部。
1: heat insulation (refrigerator), 2a: 2b: 2c: 2d: heat insulation wall, 3a: outer box, 3b: inner box, 4; conventional vacuum heat insulating material, 5: another heat insulating material (foamed urethane heat insulating material), 6: Wiring and piping, 7: Air gap, 10: Vacuum heat insulating material of the present invention, 12: Core material, 13: Plate material, 14: Fibrous material, 15: Recess, 16: Outer packaging material, 17: Thermal fusion Department.
Claims (4)
The method for producing a vacuum heat insulating material according to claim 3, wherein the plate-like material is open-celled rigid urethane foam, and the fibrous material is glass fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004207306A JP2006029413A (en) | 2004-07-14 | 2004-07-14 | Vacuum heat insulating material and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004207306A JP2006029413A (en) | 2004-07-14 | 2004-07-14 | Vacuum heat insulating material and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006029413A true JP2006029413A (en) | 2006-02-02 |
Family
ID=35896018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004207306A Pending JP2006029413A (en) | 2004-07-14 | 2004-07-14 | Vacuum heat insulating material and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006029413A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008280058A (en) * | 2007-05-09 | 2008-11-20 | Zojirushi Corp | Thermal insulating panel structure, thermally insulating container, and manufacturing process for the same |
EP2657278A2 (en) * | 2010-12-24 | 2013-10-30 | LG Hausys, Ltd. | Core material for a vacuum insulation panel formed of a phenolic resin-cured foam and vacuum insulation panel using same, and method for manufacturing same |
JP2016173149A (en) * | 2015-03-17 | 2016-09-29 | 株式会社東芝 | Method for manufacturing vacuum heat insulation panel, vacuum heat insulation panel, core material, and refrigerator |
JP2019143809A (en) * | 2019-04-18 | 2019-08-29 | 株式会社東芝 | Vacuum heat insulation panel, core material and refrigerator |
-
2004
- 2004-07-14 JP JP2004207306A patent/JP2006029413A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008280058A (en) * | 2007-05-09 | 2008-11-20 | Zojirushi Corp | Thermal insulating panel structure, thermally insulating container, and manufacturing process for the same |
EP2657278A2 (en) * | 2010-12-24 | 2013-10-30 | LG Hausys, Ltd. | Core material for a vacuum insulation panel formed of a phenolic resin-cured foam and vacuum insulation panel using same, and method for manufacturing same |
JP2014503054A (en) * | 2010-12-24 | 2014-02-06 | エルジー・ハウシス・リミテッド | CORE MATERIAL FOR VACUUM INSULATION MATERIAL COMPRISING PHENOL RESIN CURED FOAM, VACUUM INSULATION MATERIAL USING THE SAME AND PROCESS FOR PRODUCING THE SAME |
EP2657278A4 (en) * | 2010-12-24 | 2014-10-22 | Lg Hausys Ltd | Core material for a vacuum insulation panel formed of a phenolic resin-cured foam and vacuum insulation panel using same, and method for manufacturing same |
JP2016173149A (en) * | 2015-03-17 | 2016-09-29 | 株式会社東芝 | Method for manufacturing vacuum heat insulation panel, vacuum heat insulation panel, core material, and refrigerator |
JP2019143809A (en) * | 2019-04-18 | 2019-08-29 | 株式会社東芝 | Vacuum heat insulation panel, core material and refrigerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6938968B2 (en) | Vacuum insulating material and device using the same | |
TW548186B (en) | Evacuated panel for thermal insulation of a body having non-planar surfaces | |
US9400133B2 (en) | Vacuum insulation material and heat insulation housing using the same | |
KR20090017645A (en) | Vacuum heat insulation material | |
JP5599383B2 (en) | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, equipment using vacuum heat insulating material, and method for manufacturing vacuum heat insulating material | |
JP2007155065A (en) | Vacuum heat insulating material and its manufacturing method | |
JPH11159693A (en) | Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it | |
JP2007056972A (en) | Vacuum heat insulating material and refrigerator using the same | |
KR20170105049A (en) | Vacuum insulation panel | |
JP6022037B2 (en) | Vacuum insulation | |
JP2011102622A (en) | Insulating container | |
JP2011074934A (en) | Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator | |
JP5111331B2 (en) | Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material | |
US20040185203A1 (en) | Method for producing thermo-insulating cylindrical vacuum panels and panels thereby obtained | |
JP3528846B1 (en) | Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using the vacuum insulation material | |
JP4969436B2 (en) | Vacuum insulation material and equipment using the same | |
JP2007321925A (en) | Vacuum heat insulating material and its manufacturing method | |
JP2007162824A (en) | Vacuum heat insulation material, and heat insulation box using vacuum heat insulation material | |
JP2008248618A (en) | Heat-insulating and sound-insulating material | |
TW494207B (en) | Evacuated panel for thermal insulation of cylindrical bodies | |
JP2006029413A (en) | Vacuum heat insulating material and its manufacturing method | |
JP2012092870A (en) | Vacuum heat insulating material and heat insulating box using the same | |
JP2011038574A (en) | Vacuum heat insulating material and refrigerator using this | |
JP2006161939A (en) | Vacuum thermal insulating material | |
JP5414751B2 (en) | refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060523 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090317 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090707 |