JP5414751B2 - refrigerator - Google Patents
refrigerator Download PDFInfo
- Publication number
- JP5414751B2 JP5414751B2 JP2011157401A JP2011157401A JP5414751B2 JP 5414751 B2 JP5414751 B2 JP 5414751B2 JP 2011157401 A JP2011157401 A JP 2011157401A JP 2011157401 A JP2011157401 A JP 2011157401A JP 5414751 B2 JP5414751 B2 JP 5414751B2
- Authority
- JP
- Japan
- Prior art keywords
- heat insulating
- insulating material
- vacuum heat
- refrigerator
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011810 insulating material Substances 0.000 claims description 71
- 239000000835 fiber Substances 0.000 claims description 43
- 239000005022 packaging material Substances 0.000 claims description 32
- 239000011162 core material Substances 0.000 claims description 28
- 230000000712 assembly Effects 0.000 claims description 15
- 238000000429 assembly Methods 0.000 claims description 15
- 239000006260 foam Substances 0.000 claims description 15
- 229920000742 Cotton Polymers 0.000 description 47
- 241000219146 Gossypium Species 0.000 description 47
- 239000010410 layer Substances 0.000 description 23
- 238000009413 insulation Methods 0.000 description 14
- -1 polypropylene Polymers 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 6
- 230000006837 decompression Effects 0.000 description 6
- 239000003463 adsorbent Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 239000011491 glass wool Substances 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012784 inorganic fiber Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
- F25D23/065—Details
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/541—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/065—Arrangements using an air layer or vacuum using vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2201/00—Insulation
- F25D2201/10—Insulation with respect to heat
- F25D2201/14—Insulation with respect to heat using subatmospheric pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B40/00—Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/07—Vacuum plates
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Textile Engineering (AREA)
- Thermal Insulation (AREA)
- Refrigerator Housings (AREA)
Description
本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.
近年、冷蔵庫の省エネルギー化の面から、真空断熱材は必要不可欠な存在となってきている。 In recent years, vacuum heat insulating materials have become indispensable from the viewpoint of energy saving in refrigerators.
真空断熱材はスペーサーの役割を持つ芯材を、ガスバリヤ性を有する外包材中に挿入し、内部を減圧して封止したものである。 The vacuum heat insulating material is obtained by inserting a core material serving as a spacer into an outer packaging material having gas barrier properties, and sealing the interior by reducing the pressure.
また、最近の冷蔵庫は、食品の充実、まとめ買いの普及等のニーズにより大型化傾向にある。冷蔵庫の大型化に伴い、真空断熱材も大きくする必要があるが、それには大型の製造設備が必要となる為、真空断熱材の板状寸法を簡単に大きくすることはできない。なお、大型の製造設備とは、真空断熱材の原綿に含まれる水分を除去する乾燥炉等を指す。乾燥炉を大型化することは、大きな設備費用が発生することは勿論、小さなサイズの真空断熱材を製作する場合にはエネルギーロスが発生してしまう。 In addition, recent refrigerators tend to be larger due to needs such as enriching food and popularizing bulk purchases. As the refrigerator becomes larger, it is necessary to increase the size of the vacuum heat insulating material. However, since a large-scale manufacturing facility is required, the plate size of the vacuum heat insulating material cannot be easily increased. In addition, a large sized manufacturing equipment refers to the drying furnace etc. which remove the water | moisture content contained in the raw cotton of a vacuum heat insulating material. Increasing the size of the drying furnace not only causes a large equipment cost, but also causes an energy loss when manufacturing a vacuum insulating material of a small size.
現状、各メーカーは真空断熱材の幅を500mm前後にしており、それを超えたものには現有設備では対応ができない。 At present, each manufacturer sets the width of the vacuum insulation material to around 500mm, and if it exceeds that, the existing equipment cannot handle it.
即ち、冷蔵庫の大型化、省エネルギー化に伴って、例えば冷蔵庫の幅を広げ700mm〜800mm幅とした場合、真空断熱材を冷蔵庫の背面部等に配設することは難しかった。 That is, with the increase in size and energy saving of the refrigerator, for example, when the width of the refrigerator is increased to 700 mm to 800 mm, it is difficult to dispose the vacuum heat insulating material on the back surface of the refrigerator.
これに対応すべく、芯材を複数組み合わせて幅を広くした真空断熱材を製造する案がある。この案として例えば、特開平5−248592号公報(特許文献1)、特開平7−332585号公報(特許文献2)がある。 In order to cope with this, there is a proposal to manufacture a vacuum heat insulating material having a wide width by combining a plurality of core materials. For example, Japanese Patent Application Laid-Open No. 5-248592 (Patent Document 1) and Japanese Patent Application Laid-Open No. 7-332585 (Patent Document 2) are proposed.
ところが、これらの特許文献に示された板状芯材は、有機バインダーを使って固形化した圧密ボードであったり、珪酸カルシウム成形体であったりする。 However, the plate-like core material shown in these patent documents is a compacted board solidified using an organic binder or a calcium silicate molded body.
また、これら特許文献に示されたものは、それらを複数個組み合わせて幅を広げた場合、板状芯材の継ぎ目から直進して逃げる輻射熱を抑える為に、板状芯材を複雑な形状でオーバーラップさせる必要がある。 In addition, in these patent documents, when a plurality of them are combined to increase the width, the plate-shaped core material has a complicated shape in order to suppress the radiant heat that goes straight from the seam of the plate-shaped core material and escapes. Need to overlap.
そこで本発明は、大型冷蔵庫に合わせて幅を広くして、かつ断熱性能の低下を抑制した真空断熱材を備えた冷蔵庫を提供することを目的とする。 Then, an object of this invention is to provide the refrigerator provided with the vacuum heat insulating material which made the width | variety wide according to a large sized refrigerator, and suppressed the heat insulation performance fall.
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、真空断熱材及び発泡断熱材を断熱部に備えた冷蔵庫において、前記真空断熱材は、繊維集合体を3層以上積層した30〜60mmの突出部を有する複数の繊維集合体と、該複数の繊維集合体をそれぞれの前記突出部間に空間を形成するように組み合わせた芯材と、該芯材を収納した外包材とを備え、前記突出部間の前記空間を埋めるように前記外包材内を圧縮した。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-mentioned problems. For example, in a refrigerator provided with a heat insulating portion including a vacuum heat insulating material and a foam heat insulating material, the vacuum heat insulating material includes three layers of fiber assemblies. A plurality of fiber assemblies having 30 to 60 mm protruding portions stacked as described above, a core material combining the plurality of fiber assemblies so as to form a space between the respective protruding portions, and the core material are stored. The outer packaging material was compressed so that the space between the protrusions was filled.
本発明によれば、大型冷蔵庫に合わせて幅を広くして、かつ断熱性能の低下を抑制した真空断熱材を備えた冷蔵庫を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the refrigerator provided with the vacuum heat insulating material which made the width | variety wide according to a large sized refrigerator, and suppressed the heat insulation performance fall can be provided.
断熱性能の向上を目的として真空断熱材の厚肉化を図るべく、例えばグラスウール等の原綿を3枚以上重ね、それをバインダーや熱等を併用して、圧縮形成し、板状芯材とし、それを冷蔵庫の大型化に対応する真空断熱材とするものである。この種の従来例としては、図9〜図11に示す案がある。以下これを図において説明する。 In order to increase the thickness of the vacuum heat insulating material for the purpose of improving the heat insulating performance, for example, three or more raw cottons such as glass wool are stacked, combined with a binder, heat, etc., and compressed to form a plate-like core material, This is a vacuum heat insulating material corresponding to the upsizing of the refrigerator. As a conventional example of this type, there are plans shown in FIGS. This will be described below with reference to the drawings.
図9に示すものは、3枚重ねし、且つ原綿を外側に位置する一層の原綿端部を30〜60mm延長して突出部52とした二つ以上の繊維集合体51a、51bを外包材53に入れ、減圧したものである。 In the case shown in FIG. 9, two or more fiber aggregates 51 a and 51 b that are formed by overlapping three sheets and extending the end of one layer of raw cotton 30 to 60 mm to form a protrusion 52 are provided as an outer packaging material 53. In a vacuum.
図において、減圧前の突出部は実線の状態にあるが、減圧を開始すると、突出部で囲まれた空間の抵抗が小さい為に、芯材の折れ等の変形が発生し、破線の如く突出部52の付け根部で急激に曲がった状態で減圧状態作業が終了し、外包材の密封作業が終了する。 In the figure, the protrusion before decompression is in the state of a solid line, but when decompression is started, the resistance of the space surrounded by the protrusion is small, so deformation such as bending of the core material occurs and the protrusion protrudes as shown by a broken line. The reduced pressure state work is finished in a state where the base 52 of the portion 52 is bent sharply, and the outer packaging material sealing work is finished.
出来上がった真空断熱材は図9に示すように、外包材がF部で大きく窪み、以後の取扱い性及び性能を低減させることは勿論、外包材にも急激な曲げ部で大きなダメージを与えかねない状態となる。 As shown in FIG. 9, the outer packaging material is greatly depressed at the F portion, and the handling property and performance thereafter are reduced, as well as the outer packaging material may be severely damaged by a sharp bend as shown in FIG. 9. It becomes a state.
これは繊維集合体51a、51bは予めバインダーや熱を使って圧縮成形されたものであるから、突出部52は原綿の自由度が低く、空間を埋める役目は果せないためである。 This is because the fiber aggregates 51a and 51b are compression-molded in advance using a binder or heat, so that the protruding portion 52 has a low degree of freedom of raw cotton and cannot fill the space.
また、図10に示すものは、バインダーや熱等を持って予め階段状に作った二つの板状芯材を組み合わせるようにして外包材内に入れ、減圧を行ない、その後外包材を密封させたものである。 In addition, what is shown in FIG. 10 was put in the outer packaging material so as to combine two plate-shaped core materials made in advance with a binder, heat, etc., and decompressed, and then the outer packaging material was sealed. Is.
このものであると、図9に示した大きな窪みが出来ることはないが、段部の組み合わせは原綿の切断や積層等のバラツキ要素が増えS寸法が一定しない為に、S部の狙い寸法を大きくしなければならず、幅射熱の透過が増大する。 If this is the case, the large depression shown in FIG. 9 will not be made, but the combination of stepped parts will increase the variation factors such as cutting and lamination of raw cotton, and the S dimension will not be constant. It must be increased and the transmission of width radiation heat increases.
また、図11に示すものは、二つある繊維集合体の一方に突出部54を設け、これを他方の段差部55に組み合わせるようにしたものであるから図9、図10の課題は解消されるが、組み合わされる繊維集合体が対象形でない為に、生産性が悪く、高価なものとなってしまう。 Moreover, since what is shown in FIG. 11 provided the protrusion part 54 in one of two fiber assemblies, and combined this with the other level | step-difference part 55, the subject of FIG. 9, FIG. 10 is eliminated. However, since the fiber assembly to be combined is not the target shape, the productivity is poor and the product becomes expensive.
以上のように、図9〜図11に示す真空断熱材は、バインダーや熱等で板状芯材を定められた形状に固形化するものであった為、リサイクル等に向かない。また、外包材内の減圧時、板状芯材の端面特に突出部52、54或いは図9のQ部等で外包材を損傷させるおそれがある。 As described above, the vacuum heat insulating material shown in FIGS. 9 to 11 is not suitable for recycling or the like because the plate-shaped core material is solidified into a predetermined shape by a binder or heat. Further, at the time of decompression in the outer packaging material, there is a risk of damaging the outer packaging material at the end face of the plate-like core material, particularly the projecting portions 52 and 54 or the Q portion in FIG.
また、複雑な形状の繊維集合体を準備する必要があり、生産性が悪く、高価なものとなる。 In addition, it is necessary to prepare a fiber assembly having a complicated shape, resulting in poor productivity and high cost.
更には、図9のように途中に窪み(F)が出来てしまう場合、発泡断熱材の流れを阻害するおそれがある。 Furthermore, when a dent (F) is made in the middle as shown in FIG. 9, there is a possibility that the flow of the foam heat insulating material may be hindered.
一方、本発明は、真空断熱材及び発泡断熱材を断熱部に備えた冷蔵庫において、前記真空断熱材は、繊維集合体を3層以上積層した30〜60mmの突出部を有する複数の繊維集合体と、該複数の繊維集合体をそれぞれの前記突出部間に空間を形成するように組み合わせた芯材と、該芯材を収納した外包材とを備え、前記突出部間の前記空間を埋めるように前記外包材内を圧縮したものである。 On the other hand, the present invention provides a refrigerator including a vacuum heat insulating material and a foam heat insulating material in a heat insulating portion, wherein the vacuum heat insulating material has a plurality of fiber assemblies having a 30 to 60 mm protruding portion in which three or more layers of fiber assemblies are laminated. And a core material in which the plurality of fiber assemblies are combined so as to form a space between the protrusions, and an outer packaging material that stores the core material, and fills the space between the protrusions. The inside of the outer packaging material is compressed.
これにより、冷蔵庫の大型化に合わせ、特別な設備を準備することなく、幅の広い真空断熱材を製造することが出来るものである。 Thereby, a wide vacuum heat insulating material can be manufactured without preparing special equipment according to the enlargement of a refrigerator.
また、この真空断熱材の製作にあたり、最外層に位置する原綿を他の原綿より30〜60mm幅広とし突出部を作る構成としたので、内袋内への挿入時には上記突出部を位置合わせの基準とし組み合わせればよく、作業性もよく、断熱空間内に配設した時発泡断熱材の流れを阻害しない。また、大きな窪みのない真空断熱材を備えた冷蔵庫が得られるものである。 Also, when manufacturing this vacuum heat insulating material, the raw cotton located in the outermost layer is 30-60 mm wider than the other raw cotton, so that the protruding part is made. Therefore, when inserting into the inner bag, the protruding part is used as a reference for alignment. And the workability is good, and the flow of the foam heat insulating material is not obstructed when it is disposed in the heat insulating space. Moreover, the refrigerator provided with the vacuum heat insulating material without a big hollow is obtained.
以下、本発明の実施の形態について図を用いて説明する。尚、図1は本発明の実施形態における冷蔵庫の縦断面図であり、図2は図1の真空断熱材の断面図であり、図3は図2の真空断熱材の圧縮、減圧前の原綿の説明図であり、図4は図3の原綿を外包材に入れ減圧した図であり、図5は図4のP部拡大説明図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a longitudinal sectional view of the refrigerator in the embodiment of the present invention, FIG. 2 is a sectional view of the vacuum heat insulating material of FIG. 1, and FIG. 3 is a raw cotton before compression and decompression of the vacuum heat insulating material of FIG. FIG. 4 is a view in which the raw cotton of FIG. 3 is put in an outer packaging material and decompressed, and FIG. 5 is an enlarged explanatory view of a P portion of FIG.
まず図1において、1は冷蔵庫本体を構成する箱体である。この箱体1は外箱2と内箱3と、発泡断熱材5、真空断熱材6等により構成されている。 First, in FIG. 1, reference numeral 1 denotes a box constituting the refrigerator body. The box 1 includes an outer box 2, an inner box 3, a foam heat insulating material 5, a vacuum heat insulating material 6, and the like.
冷蔵庫本体の大型化は、冷蔵庫本体の開口幅(横幅)を広げることにより行われる傾向にある。開口幅を広げるには、外箱2の天板2a、背面板2b、底板2cの幅を広げることに対応する。 Increasing the size of the refrigerator body tends to be performed by increasing the opening width (width) of the refrigerator body. To widen the opening width, it corresponds to increasing the width of the top plate 2a, the back plate 2b, and the bottom plate 2c of the outer box 2.
真空断熱材6は、冷蔵庫の拡幅に対応し拡大される天板2a、背面板2b、底板2cに合わせて、幅方向に拡大する必要が出てくる。例えば、真空断熱材を2枚並列に配置して天板2a、背面板2b、底板2cに適用することも考えられるが、コスト、或いは外包材からの熱回り(ヒートブリッジ)等の面で好ましい方法ではない。 The vacuum heat insulating material 6 needs to be expanded in the width direction in accordance with the top plate 2a, the back plate 2b, and the bottom plate 2c that are enlarged corresponding to the widening of the refrigerator. For example, it can be considered that two vacuum heat insulating materials are arranged in parallel and applied to the top plate 2a, the back plate 2b, and the bottom plate 2c. However, this is preferable in terms of cost or heat around the outer packaging material (heat bridge). Not a way.
これを踏まえて、図2において本実施形態の真空断熱材6について説明する。真空断熱材6は、有機繊維集合体である樹脂繊維層又は無機繊維集合体であるグラスウール層の少なくともいずれかと、吸着剤(図示無し)とを内袋8に入れ、圧縮状態の板状芯材とし、ガスバリヤ性を有する外包材9で包み、内袋内、外包材9内を減圧して作られたものである。なお、芯材7の樹脂繊維層としてはポリスチレン繊維(ポリプロピレンやポリエチレンテレフタレート等)の樹脂繊維を用いてもよい。 Based on this, the vacuum heat insulating material 6 of this embodiment is demonstrated in FIG. The vacuum heat insulating material 6 is a plate-like core material in a compressed state in which at least one of a resin fiber layer that is an organic fiber aggregate or a glass wool layer that is an inorganic fiber aggregate and an adsorbent (not shown) are placed in an inner bag 8. It is made by wrapping with an outer packaging material 9 having gas barrier properties, and reducing the pressure inside the inner bag and the outer packaging material 9. In addition, as the resin fiber layer of the core material 7, resin fibers of polystyrene fibers (polypropylene, polyethylene terephthalate, etc.) may be used.
真空断熱材6は、芯材7と吸着剤とを、ガスバリヤ性を有する外包材9で包み、真空包装機にセットして真空度2.2Pa程度に減圧して一定時間保持後、外包材9を封止したものである。これにより得られた真空断熱材の熱伝導率を、英弘精機社製熱伝導率測定機オートλHC−074で測定すると、2.2〜2.5mw/m・kであり、ウレタン発泡断熱材等と比較し約10倍以上の断熱性能を示す。従って、この真空断熱材6を断熱材として冷蔵庫の箱体に使用すれば、未使用の冷蔵庫に比較して大幅な省エネルギー効果が得られるものである。 The vacuum heat insulating material 6 wraps the core material 7 and the adsorbent with an outer packaging material 9 having a gas barrier property, sets it in a vacuum packaging machine, reduces the degree of vacuum to about 2.2 Pa, and holds it for a certain period of time. Is sealed. The heat conductivity of the vacuum heat insulating material obtained in this way is 2.2 to 2.5 mw / m · k when measured with a heat conductivity measuring device Auto λHC-074 manufactured by Eihiro Seiki Co., Ltd. Compared to, the heat insulation performance is about 10 times or more. Therefore, if this vacuum heat insulating material 6 is used as a heat insulating material in a refrigerator box, a significant energy saving effect can be obtained as compared with an unused refrigerator.
次に真空断熱材6を構成する内袋8、外包材9について説明する。 Next, the inner bag 8 and the outer packaging material 9 constituting the vacuum heat insulating material 6 will be described.
8は内袋である。この内袋8は、一般的にポリエチレンフィルムが用いられているが、ポリプロピレンフィルム,ポリエチレンテレフタレートフィルム,ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであればポリエチレンフィルムに限られるものではない。 8 is an inner bag. The inner bag 8 is generally made of a polyethylene film. However, a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film, or the like is not limited to a polyethylene film as long as it has low hygroscopicity and can be heat-welded and has little outgas. It is not something that can be done.
また、吸着剤には物理吸着タイプの合成ゼオライトを用いるが、水分やガスを吸着するものであれば良く、シリカゲルや酸化カルシウム,塩化カルシウム,酸化ストロンチウム等の化学反応型吸着剤を用いることもできる。 In addition, a physical adsorption type synthetic zeolite is used as the adsorbent, but any adsorbent that adsorbs moisture or gas may be used, and a chemical reaction type adsorbent such as silica gel, calcium oxide, calcium chloride, and strontium oxide can also be used. .
外包材9については、表面層として吸湿性が低いポリプロピレンフィルムを、防湿層としてポリエチレンテレフタレートフィルムにアルミ蒸着層を設け、ガスバリヤ層はエチレンビニルアルコール共重合体フィルムにアルミ蒸着層を設けて、防湿層のアルミ蒸着層と向かい合わせるように貼り合せた。外被材54のラミネート構成については、前記材質の4層構成としたが、同等のガスバリヤ性,耐熱,突き刺し強度を有したポリアミドフィルムやポリエチレンテレフタレートフィルム等であれば前記構成に限定するものではない。 For the outer packaging material 9, a polypropylene film having low hygroscopicity is provided as a surface layer, an aluminum vapor deposition layer is provided on a polyethylene terephthalate film as a moisture barrier layer, and a gas barrier layer is provided on the ethylene vinyl alcohol copolymer film with an aluminum vapor deposition layer. It was pasted to face the aluminum vapor deposition layer. The laminate structure of the jacket material 54 is a four-layer structure of the above material, but is not limited to the above structure as long as it is a polyamide film or a polyethylene terephthalate film having equivalent gas barrier properties, heat resistance, and piercing strength. .
また、芯材7は、バインダーで固形化せずに、後述する原綿10を内袋8に入れ減圧すると共に圧縮状態にして板状にしたものである。 The core material 7 is not solidified with a binder, but a raw cotton 10 described later is put in an inner bag 8 and decompressed and compressed into a plate shape.
ここで、原綿10は、一般的に無機繊維の場合、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維或いは木綿等の天然繊維を用いる。 Here, when the raw cotton 10 is generally an inorganic fiber, a natural fiber such as glass wool, glass fiber, alumina fiber, silica-alumina fiber, or cotton is used.
次に、図3をもって繊維集合体11について説明する。尚、この繊維集合体11を構成する原綿10は、ロール状に巻かれた、例えば厚みが100mm、幅が500mmあるロール上原綿から必要寸法に切り出したものである。 Next, the fiber assembly 11 will be described with reference to FIG. In addition, the raw cotton 10 which comprises this fiber assembly 11 is cut out to a required dimension from the raw cotton on a roll wound in roll shape, for example, thickness 100mm and width 500mm.
図3に示す繊維集合体11は、長さT1の原綿10a層、長さT2の原綿10b,10c層を重ねたものである。長さT1の層の原綿10aは、長さT2の原綿10b,10c層よりも外側に位置するようにして積層したものである。 The fiber assembly 11 shown in FIG. 3 is obtained by stacking a raw cotton 10a layer having a length T1 and raw cotton 10b and 10c layers having a length T2. The raw cotton 10a of the layer of length T1 is laminated so as to be located outside the layers of raw cotton 10b and 10c of length T2.
また、T1とT2の差は、30mm〜60mmにしておく。この寸法30mm〜60mm分、突出している箇所を、本実施例においては突出部12と称している。 The difference between T1 and T2 is 30 mm to 60 mm. In this embodiment, the projecting portion corresponding to the dimension of 30 mm to 60 mm is referred to as the projecting portion 12.
尚、ロール状原綿の切断により端材が生じるが、この端材を使用し繊維集合体を製作することも可能である。 In addition, although an end material is produced by cutting the raw roll cotton, it is also possible to produce a fiber assembly using this end material.
端部を30〜60mm延長して突出部12とした二つ以上の繊維集合体を、突出部12が中間に空間を形成するように組み合わせて内袋内に入れて、圧縮して板状の芯材とし外包材に入れ減圧する。これにより、突出部及びその他の部分の原綿で空間13を埋めるように変形した真空断熱材が得られる。これにより、大型冷蔵庫の広い断熱平面に組み込み対応できる。 Two or more fiber assemblies having end portions extended by 30 to 60 mm to form projecting portions 12 are combined in such a way that the projecting portions 12 form a space in the middle and placed in an inner bag, and compressed into a plate-like shape. Put it in the outer packaging as a core and depressurize it. Thereby, the vacuum heat insulating material deform | transformed so that the space 13 may be filled up with the raw cotton of a protrusion part and another part is obtained. As a result, it can be incorporated into a large heat insulating plane of a large refrigerator.
また、突出部12を30mm〜60mmとする理由は、原綿が積層状態で300mm以上となり、突出部の寸法が小さい場合、原綿の切断寸法や積層のバラツキで原綿の乗り上げが生じてしまうためである。また、大きすぎると断熱性能の低下が懸念されるためである。 The reason why the protrusion 12 is 30 mm to 60 mm is that when the raw cotton is 300 mm or more in the laminated state and the size of the protruding part is small, the raw cotton runs up due to the cut dimensions of the raw cotton and the variation in the lamination. . Moreover, it is because a fall of heat insulation performance will be anxious if too large.
このように製作される板厚15mmを有する真空断熱材は、冷蔵庫において断熱空間が30mm〜40mm程度の所に配設される。断熱空間が30mm以下の所であると、流動性を改善した発泡断熱材であっても発泡時のウレタンの流れを阻害することが懸念されるためである。 The vacuum heat insulating material having a plate thickness of 15 mm manufactured as described above is disposed in a place where the heat insulating space is about 30 mm to 40 mm in the refrigerator. This is because if the heat insulation space is 30 mm or less, there is a concern that the flow of urethane during foaming may be hindered even with a foam heat insulating material with improved fluidity.
繊維集合体11,11を図3に示す如く組み合わせた時、突出部12及び原綿10bの端部で囲まれた空間13が形成される。同じ製造ラインで作られた同形状の繊維集合体11を2つ使用し、繊維集合体の一方を反転させて組み合わせることで、容易に真空断熱材を拡幅することができるものである。 When the fiber aggregates 11 and 11 are combined as shown in FIG. 3, a space 13 surrounded by the protruding portion 12 and the end of the raw cotton 10b is formed. The vacuum heat insulating material can be easily widened by using two fiber assemblies 11 of the same shape made in the same production line and inverting one of the fiber assemblies.
また、厚み100mmの原綿を3層重ねとすることで、板厚15mmの真空断熱材とすることができるものである。 Further, a three-layer stack of raw cotton having a thickness of 100 mm can be used as a vacuum heat insulating material having a thickness of 15 mm.
このように組み合わせられた繊維集合体11,11を内袋8内に入れ、該内袋8を脱気圧縮して、突出部12及びその他の部分の原綿、例えば原綿10a,10bで空間を埋めると共に、減圧時にも原綿の圧縮により空間を埋めるものである。 The fiber aggregates 11 and 11 combined in this way are put into the inner bag 8, the inner bag 8 is deaerated and compressed, and the space is filled with the protruding portion 12 and other portions of raw cotton, for example, raw cotton 10a and 10b. At the same time, the space is filled by compressing the raw cotton even during decompression.
図5は、図4のP部拡大図である。図3の状態で、突出部12及び原綿10bの端部で囲まれた所に空間13がある状態で、内袋8、外包材9内を減圧すると空間13内の空気が引かれ突出部12が空間13側に引かれるのは勿論であるが、原綿10bの端部も空間13側に引かれ、図5の如く空間13を埋める。なぜならば、原綿10はバインダーや熱等で固形化されていない為に、原綿は空間13の負圧によって変形するためである。 FIG. 5 is an enlarged view of a portion P in FIG. In the state of FIG. 3, when the inner bag 8 and the outer packaging material 9 are depressurized in a state where the space 13 is surrounded by the protruding portion 12 and the end of the raw cotton 10 b, the air in the space 13 is drawn and the protruding portion 12. Of course, the end of the raw cotton 10b is also drawn toward the space 13 and fills the space 13 as shown in FIG. This is because the raw cotton 10 is not solidified by a binder, heat or the like, so that the raw cotton is deformed by the negative pressure in the space 13.
このことにより、空間13は従来例の図8で説明した急激な窪みとならず、使い勝手や断熱性能を悪化させることがないものである。 As a result, the space 13 does not become the sudden depression described with reference to FIG. 8 of the conventional example, and the usability and the heat insulation performance are not deteriorated.
次に図6、図7において、繊維集合体の組み合わせ方を説明する。尚、図6は図3の原綿の組み合わせ方を説明する図であり、図7は図5を説明する為に、図5と異なる原綿の組み合わせ方を説明する図である。 Next, in FIG. 6 and FIG. 7, how to combine the fiber assemblies will be described. 6 is a diagram for explaining how to combine the raw cotton in FIG. 3, and FIG. 7 is a diagram for explaining how to combine raw cotton different from FIG. 5 in order to explain FIG.
図において、11は繊維集合体、12は突出部、13は空間を示す。真空断熱材6の拡幅、例えば750mm程度まで拡大することに伴い、T3寸法が400mm、T4寸法が50mmの二つの繊維集合体11を用意する。この繊維集合体11を外包材9内に入れる時、外包材9の開口より、繊維集合体11の縦方向の合わせ部(空間13)が見えるように作業工程を組むものである。 In the figure, 11 is a fiber assembly, 12 is a protrusion, and 13 is a space. Along with the expansion of the vacuum heat insulating material 6, for example, to about 750 mm, two fiber assemblies 11 having a T3 dimension of 400 mm and a T4 dimension of 50 mm are prepared. When this fiber assembly 11 is put into the outer packaging material 9, the work process is set so that the longitudinal alignment portion (space 13) of the fiber assembly 11 can be seen from the opening of the outer packaging material 9.
このことにより、組み合わせ状態を見ながら、真空パック装置に配置し封止を行うことが出来るので組み合わせ時の乗り上げ等の不良を低減することが出来るものである。即ち、従来例の図7に示すものは、外包材の開口より繊維集合体の縦方向の合わせ部(空間13)が見えない作業工程であるため、位置合わせが難しく不良が拡大する可能性がある。 As a result, it is possible to arrange and seal in the vacuum pack device while observing the combined state, so that it is possible to reduce defects such as riding on the combined state. That is, the conventional example shown in FIG. 7 is a work process in which the longitudinal alignment portion (space 13) of the fiber assembly cannot be seen from the opening of the outer packaging material, and thus positioning is difficult and the possibility of an increase in defects may be increased. is there.
ここで、真空断熱材の芯材は断熱性能の確保と板厚確保の役目がある。これを確保する為に、板状に芯材を構成する原綿の目付け量は約1200g/m2で管理されている。通常、板厚5mmの真空断熱材は、原綿一層を5mmに圧縮することにより製造されている。従って、板厚10mmの真空断熱材を得ようとすれば、原綿は二層積層し、板厚15mmの真空断熱材を得ようとすれば、原綿は三層積層する。 Here, the core material of the vacuum heat insulating material has the role of ensuring the heat insulating performance and the plate thickness. In order to ensure this, the basis weight of the raw cotton constituting the core material in a plate shape is controlled at about 1200 g / m 2 . Usually, a vacuum heat insulating material having a thickness of 5 mm is manufactured by compressing one layer of raw cotton to 5 mm. Therefore, two layers of raw cotton are laminated to obtain a vacuum heat insulating material having a thickness of 10 mm, and three layers of raw cotton are laminated to obtain a vacuum heat insulating material having a thickness of 15 mm.
本実施形態は、上記の通り板厚15mm程度より厚い真空断熱材を得る場合に適用される。尚、一層が4mmの場合は、板厚が12mm程度の真空断熱材を得ることが可能である。 This embodiment is applied when obtaining a vacuum heat insulating material thicker than about 15 mm thick as described above. In addition, when one layer is 4 mm, it is possible to obtain a vacuum heat insulating material having a plate thickness of about 12 mm.
次に、図8に基づいて真空断熱材6の合わせ部と放熱パイプを組み合わせた例を説明する。 Next, an example in which the mating portion of the vacuum heat insulating material 6 and the heat radiating pipe are combined will be described with reference to FIG.
図において、1は箱体、2は外箱、2bは背面板、2dは側板、3は内箱、5は発泡断熱材、5aは発泡断熱材5の原液、6は真空断熱材、12は突出部である。 In the figure, 1 is a box, 2 is an outer box, 2b is a back plate, 2d is a side plate, 3 is an inner box, 5 is a foam insulation, 5a is a stock solution of the foam insulation 5, 6 is a vacuum insulation, It is a protrusion.
14は放熱パイプであり、この放熱パイプ14は側板2dに取り付けられて、側板2dを放熱板としている。しかし、この放熱パイプ14は第2の真空断熱材15を貼り付ける時に障害となる。この為、第2の真空断熱材15には上記放熱パイプ14を吸収する為の溝16が図の如く設けられている。 Reference numeral 14 denotes a heat radiating pipe. The heat radiating pipe 14 is attached to the side plate 2d, and the side plate 2d is used as a heat radiating plate. However, the heat radiating pipe 14 becomes an obstacle when the second vacuum heat insulating material 15 is attached. Therefore, the second vacuum heat insulating material 15 is provided with a groove 16 for absorbing the heat radiating pipe 14 as shown in the figure.
本発明の真空断熱材6であれば、専用の溝を設けなくとも断熱ブロックの継ぎ目に当たる所に形成される凹部17を利用して、放熱パイプ4を配置できる。即ち、図6で説明したように、繊維集合体11の突出部12間に空間13を形成するように組み合わせ、内袋8に入れ圧縮したものであれば、突出部12の外面に凹部17が形成されて、ここに放熱パイプ14を配置できる。 If it is the vacuum heat insulating material 6 of this invention, the heat radiating pipe 4 can be arrange | positioned using the recessed part 17 formed in the place which hits the joint of a heat insulation block, without providing an exclusive groove | channel. That is, as described with reference to FIG. 6, the concave portion 17 is formed on the outer surface of the projecting portion 12 as long as the space 13 is formed between the projecting portions 12 of the fiber assembly 11 and is compressed in the inner bag 8. The heat radiating pipe 14 can be arranged here.
減圧時、突出部12は全体的に空間13側に窪むが、原綿10b、10c側より空間13部に入り込む原綿がある為、1〜3mm程度の凹部17となる。凹部17を利用すれば、直径が4mm程度の放熱パイプ14を配置することができるものである。 At the time of decompression, the projecting portion 12 is generally recessed toward the space 13, but since there is raw cotton that enters the space 13 portion from the raw cotton 10 b, 10 c side, it becomes a recess 17 of about 1 to 3 mm. If the recessed part 17 is utilized, the heat radiating pipe 14 about 4 mm in diameter can be arrange | positioned.
通常、冷蔵庫の箱体1への発泡断熱材5の充填は、背面板2bが上になるよう発泡治具内にセットし、原液5aを背面板2d側に注入し、矢印の如く外箱2と内箱3との間、或いは真空断熱材と内箱3との間を上方に向かって発泡を開始させ、断熱空間内にウレタンフォーム等の発泡断熱材を充填していくものである。 Usually, the foam insulation 5 is filled in the refrigerator box 1 in a foaming jig so that the back plate 2b faces up, and the stock solution 5a is poured into the back plate 2d, and the outer box 2 is shown as an arrow. Foaming is started upward between the inner box 3 and the vacuum insulating material and the inner box 3, and the heat insulating space is filled with a foam heat insulating material such as urethane foam.
この過程において、先に説明した真空断熱材6は断熱空間内に配設固定されているものである。 In this process, the vacuum heat insulating material 6 described above is disposed and fixed in the heat insulating space.
本発明は以上の如く構成したので次の効果が得られるものである。 Since the present invention is configured as described above, the following effects can be obtained.
すなわち、真空断熱材及び発泡断熱材を断熱部に備えた冷蔵庫において、前記真空断熱材は、30〜60mmの突出部を有する複数の繊維集合体と、該複数の繊維集合体をそれぞれの前記突出部間に空間を形成するように組み合わせた芯材と、該芯材を収納した外包材とを備え、前記突出部間の前記空間を埋めるように前記外包材内を圧縮した。 That is, in the refrigerator provided with a heat insulating part including a vacuum heat insulating material and a foam heat insulating material, the vacuum heat insulating material includes a plurality of fiber aggregates having a protrusion of 30 to 60 mm, and the plurality of fiber aggregates each of the protrusions. A core material combined so as to form a space between the parts and an outer packaging material containing the core material were provided, and the inside of the outer packaging material was compressed so as to fill the space between the protruding portions.
また、前記複数の繊維集合体は、長辺方向に前記突出部間の前記空間を形成するように配置してから内袋に収納して、該内袋に収納した状態で前記外包材内に収納して、厚み12mm以上、幅500mm以上とした。 Further, the plurality of fiber aggregates are arranged so as to form the space between the protruding portions in the long side direction, and then stored in an inner bag, and are stored in the inner bag in the outer bag. It was stored to have a thickness of 12 mm or more and a width of 500 mm or more.
これにより、冷蔵庫の大型化に合わせ、特別な設備を準備することなく、幅の広げた真空断熱材を得ることができるものである。 Thereby, the vacuum heat insulating material which expanded the width | variety can be obtained, without preparing special equipment according to the enlargement of a refrigerator.
また、最外層に位置する原綿を他の原綿より30〜60mm幅広とし突出部を形成する構成としたので、内袋内への挿入時には突出部を位置合わせの基準として組み合わせればよく、作業性が向上して、断熱空間内に配設した時発泡断熱材の流れを阻害しない。また、大きな窪みのない真空断熱材を備えた冷蔵庫が得られるものである。 In addition, since the raw cotton located in the outermost layer is 30 to 60 mm wider than other raw cotton to form a protruding part, the protruding part may be combined as a reference for alignment when inserted into the inner bag, and workability Is improved and does not hinder the flow of the foam insulation when disposed in the heat insulation space. Moreover, the refrigerator provided with the vacuum heat insulating material without a big hollow is obtained.
また、前記突出部の外面に凹部が形成され、該凹部に放熱パイプを配設した。このことにより、放熱パイプを避ける溝を特別に真空断熱材側に加工して設ける必要がないものである。 Moreover, the recessed part was formed in the outer surface of the said protrusion part, and the thermal radiation pipe was arrange | positioned in this recessed part. Thus, it is not necessary to provide a groove for avoiding the heat radiating pipe specially on the vacuum heat insulating material side.
1 箱体
2 外箱
2a 天板
2b 背面板
2c 底板
2d 側板
3 内箱
4 断熱空間
5 発泡断熱材
5a 原液
6 真空断熱材
7 芯材
8 内袋
9 外包材
10 原綿
11 繊維集合体
12 突出部
13 空間
14 放熱パイプ
15 第2の真空断熱材
16 溝
17 凹部
DESCRIPTION OF SYMBOLS 1 Box 2 Outer box 2a Top plate 2b Back plate 2c Bottom plate 2d Side plate 3 Inner box 4 Heat insulation space 5 Foam heat insulation material 5a Stock solution 6 Vacuum heat insulation material 7 Core material 8 Inner bag 9 Outer packaging material 10 Raw cotton 11 Fiber assembly 12 Protrusion part 13 Space 14 Radiation pipe 15 Second vacuum heat insulating material 16 Groove 17 Recess
Claims (3)
前記真空断熱材は、30〜60mmの突出部を有する複数の繊維集合体と、該複数の繊維集合体をそれぞれの前記突出部間に空間を形成するように組み合わせた芯材と、該芯材を収納した外包材とを備え、前記突出部間の前記空間を埋めるように前記外包材内を圧縮したことを特徴とする冷蔵庫。 In a refrigerator equipped with a vacuum heat insulating material and a foam heat insulating material in a heat insulating part,
The vacuum heat insulating material includes a plurality of fiber assemblies having protrusions of 30 to 60 mm, a core material combining the plurality of fiber assemblies so as to form a space between the protrusions, and the core material. The refrigerator is characterized in that the inside of the outer packaging material is compressed so as to fill the space between the protruding portions.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011157401A JP5414751B2 (en) | 2011-07-19 | 2011-07-19 | refrigerator |
CN201110302421.6A CN102889741B (en) | 2011-07-19 | 2011-09-28 | Refrigerator |
KR1020110098888A KR101303440B1 (en) | 2011-07-19 | 2011-09-29 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011157401A JP5414751B2 (en) | 2011-07-19 | 2011-07-19 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013024439A JP2013024439A (en) | 2013-02-04 |
JP5414751B2 true JP5414751B2 (en) | 2014-02-12 |
Family
ID=47533336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011157401A Expired - Fee Related JP5414751B2 (en) | 2011-07-19 | 2011-07-19 | refrigerator |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5414751B2 (en) |
KR (1) | KR101303440B1 (en) |
CN (1) | CN102889741B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015068632A (en) * | 2013-10-01 | 2015-04-13 | 日立アプライアンス株式会社 | Refrigerator |
JP6609420B2 (en) * | 2015-04-17 | 2019-11-20 | 日立グローバルライフソリューションズ株式会社 | Vacuum insulation material and equipment using the same |
US20240044571A1 (en) * | 2022-08-05 | 2024-02-08 | Whirlpool Corporation | Vacuum insulated structure |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS646679A (en) * | 1987-06-26 | 1989-01-11 | Matsushita Refrigeration | Decompression heat-insulator pack |
JPH05248592A (en) * | 1992-03-05 | 1993-09-24 | Kubota Corp | Vacuum insulation wall |
JP2659646B2 (en) * | 1992-03-27 | 1997-09-30 | 日本碍子株式会社 | Vacuum insulated container |
JPH07332585A (en) * | 1994-06-03 | 1995-12-22 | Mitsubishi Chem Corp | Vacuum heat insulating material |
DE29613093U1 (en) * | 1996-07-29 | 1997-11-27 | Bayer Ag, 51373 Leverkusen | Fixed vacuum insulation panel as well as a refrigeration cabinet element containing this fixed vacuum insulation panel |
DE19745859A1 (en) * | 1997-10-16 | 1999-04-22 | Bosch Siemens Hausgeraete | Closure for vacuum-sealed insulated housing |
JP2002310384A (en) * | 2001-04-11 | 2002-10-23 | Matsushita Refrig Co Ltd | Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range |
JP4130982B2 (en) * | 2004-01-30 | 2008-08-13 | 有限会社メタルパネル | Vacuum insulation |
CN100532910C (en) * | 2004-06-03 | 2009-08-26 | 松下电器产业株式会社 | Vacuum heat insulation material and cold reserving apparatus with the same |
JP2006189207A (en) * | 2005-01-07 | 2006-07-20 | Hitachi Home & Life Solutions Inc | Refrigerator |
JP4545126B2 (en) * | 2006-09-04 | 2010-09-15 | シャープ株式会社 | Vacuum insulation panel and refrigerator using the same |
JP4778996B2 (en) * | 2008-09-03 | 2011-09-21 | 日立アプライアンス株式会社 | Vacuum heat insulating material and refrigerator using the same |
CN101929591B (en) * | 2009-06-23 | 2012-06-13 | 东元奈米应材股份有限公司 | Vacuum panel structure with built-in getter and production method thereof |
JP5677737B2 (en) * | 2009-11-10 | 2015-02-25 | 株式会社東芝 | refrigerator |
-
2011
- 2011-07-19 JP JP2011157401A patent/JP5414751B2/en not_active Expired - Fee Related
- 2011-09-28 CN CN201110302421.6A patent/CN102889741B/en not_active Expired - Fee Related
- 2011-09-29 KR KR1020110098888A patent/KR101303440B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
CN102889741A (en) | 2013-01-23 |
KR101303440B1 (en) | 2013-09-05 |
KR20130010815A (en) | 2013-01-29 |
JP2013024439A (en) | 2013-02-04 |
CN102889741B (en) | 2015-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4215745B2 (en) | Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of vacuum heat insulating material | |
JP5608457B2 (en) | Vacuum heat insulating material and refrigerator using the same | |
JP2006112641A (en) | Refrigerator | |
JP2013088036A (en) | Thermal insulation box, refrigerator, and storage type water heater | |
JP6132715B2 (en) | Vacuum insulation material manufacturing method and insulation box | |
JP6073005B1 (en) | Vacuum heat insulating material and method for manufacturing vacuum heat insulating material | |
KR20120028219A (en) | Vacuum insulation panel and refrigerator using this | |
JP2014163494A (en) | Heat insulator | |
JP5414751B2 (en) | refrigerator | |
TWI599737B (en) | Vacuum thermal insulator,thermal insulating box,and method for manufacturing vacuum thermal insulator | |
JP4576197B2 (en) | Vacuum insulation and refrigerator | |
JP4415392B2 (en) | Insulation manufacturing method | |
JP2011038574A (en) | Vacuum heat insulating material and refrigerator using this | |
JP6742076B2 (en) | Vacuum heat insulating material and method for manufacturing vacuum heat insulating material | |
JP2016089963A (en) | Vacuum heat insulation material and refrigeration using vacuum heat insulation material | |
JP4944567B2 (en) | Vacuum insulation article and method for manufacturing the same | |
JP5982276B2 (en) | Refrigerator using vacuum heat insulating material and vacuum heat insulating material | |
JP6917870B2 (en) | Manufacturing method of vacuum heat insulating material and vacuum heat insulating material | |
JP2012026512A (en) | Bag body and vacuum heat insulating material | |
JP4384232B2 (en) | Vacuum heat insulating material and refrigerator using the same | |
JP6333085B2 (en) | Method for forming fiber assembly, and method for manufacturing fiber assembly, vacuum heat insulating material, and heat insulation box | |
JP6240542B2 (en) | How to recycle vacuum insulation | |
JP2006029413A (en) | Vacuum heat insulating material and its manufacturing method | |
JP2015001290A (en) | Vacuum heat insulation material and refrigerator | |
WO2020255884A1 (en) | Vacuum insulation material and insulated box using vacuum insulation material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130522 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131015 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5414751 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |