JP2015001290A - Vacuum heat insulation material and refrigerator - Google Patents

Vacuum heat insulation material and refrigerator Download PDF

Info

Publication number
JP2015001290A
JP2015001290A JP2013126883A JP2013126883A JP2015001290A JP 2015001290 A JP2015001290 A JP 2015001290A JP 2013126883 A JP2013126883 A JP 2013126883A JP 2013126883 A JP2013126883 A JP 2013126883A JP 2015001290 A JP2015001290 A JP 2015001290A
Authority
JP
Japan
Prior art keywords
heat insulating
fiber assembly
vacuum heat
fiber
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013126883A
Other languages
Japanese (ja)
Inventor
康人 寺内
Yasuto Terauchi
康人 寺内
越後屋 恒
Hisashi Echigoya
恒 越後屋
大五郎 嘉本
Daigoro Kamoto
大五郎 嘉本
祐志 新井
Yushi Arai
祐志 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013126883A priority Critical patent/JP2015001290A/en
Publication of JP2015001290A publication Critical patent/JP2015001290A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a core material, a vacuum heat insulation material and a refrigerator having high heat insulation performance.SOLUTION: A fiber assembly 51a is laminated. Two lines of slits 58a, 58b are provided which penetrate from a top layer fiber assembly 51a to an intermediate position of a lower layer fiber assembly 51c than the top layer fiber assembly 51a. After forming the slits 58a, 58b, pressure is applied between the two slits 58a, 58b, and a part of the top layer fiber assembly 51a is made to protrude in an intermediate layer fiber assembly 51b, and a part of the intermediate layer fiber assembly 51b is made to protrude in the bottom layer fiber assembly 51c. Thereby, the part of the top layer fiber assembly 51a is engaged with the intermediate layer fiber assembly 51b, and the part of the intermediate layer fiber assembly 51b is engaged with the bottom layer fiber assembly 51c, so that positional deviation of each fiber assembly can be prevented during transportation and when accommodating in an inner bag 52.

Description

本発明は、真空断熱材及び冷蔵庫に関する。   The present invention relates to a vacuum heat insulating material and a refrigerator.

近年、家電製品や産業機器には、地球環境保護の観点及び省エネルギーの観点から、より一層の断熱性能の向上が求められている。従来、冷蔵庫に好適な高性能の断熱材としては、ガスバリア性を有する袋内に繊維集合体からなる芯材及びガス吸着用の吸着剤を入れて袋内部を減圧封止した真空断熱材が知られている。真空断熱材の芯材は、シート状の繊維集合体を所定枚数積層することにより作製される。特許文献1には、原反ロールから引き出されたシート状の繊維集合体を数百枚以上積層して繊維集合体の積層体を作製し、更には、この繊維集合体の積層体を折り曲げて、所要の厚さを有する芯材を製造する方法が開示されている(特許文献1の要約書参照。)。   In recent years, home appliances and industrial equipment have been required to further improve heat insulation performance from the viewpoint of global environmental protection and energy saving. Conventionally, as a high-performance heat insulating material suitable for a refrigerator, a vacuum heat insulating material in which a core material made of a fiber assembly and an adsorbent for gas adsorption are put in a bag having a gas barrier property and the inside of the bag is sealed under reduced pressure is known. It has been. The core material of the vacuum heat insulating material is produced by laminating a predetermined number of sheet-like fiber assemblies. In Patent Document 1, several hundred or more sheet-like fiber assemblies drawn from a raw fabric roll are laminated to produce a fiber assembly laminate, and further, the fiber assembly laminate is folded. A method of manufacturing a core material having a required thickness is disclosed (see the abstract of Patent Document 1).

しかし、この方法によると、芯材の製造に大掛かりな設備を必要とするし、芯材の製造効率を高めることも難しい。また、特許文献1に記載の芯材の製造方法によると、シート状の繊維集合体を多数回にわたって折り曲げるので、芯材が切断されやすく、断熱性能が悪化する恐れがある。そこで、断熱性能が良好な芯材を容易に製造できるようにするため、例えば100mm程度の厚さを有する厚形の繊維集合体を作製し、この繊維集合体を必要に応じて複数枚(例えば2枚〜5枚程度)積層することによって、所要の厚さを有する芯材を製造することが検討されている。   However, according to this method, a large facility is required for the production of the core material, and it is difficult to increase the production efficiency of the core material. Moreover, according to the manufacturing method of the core material of patent document 1, since a sheet-like fiber assembly is bend | folded many times, a core material is easy to be cut | disconnected and there exists a possibility that heat insulation performance may deteriorate. Therefore, in order to make it possible to easily manufacture a core material having good heat insulation performance, for example, a thick fiber assembly having a thickness of about 100 mm is produced, and a plurality of fiber assemblies (for example, a plurality of fiber assemblies (for example, It has been studied to manufacture a core material having a required thickness by stacking (about 2 to 5 sheets).

特開2012−163138号公報JP 2012-163138 A

上述したように、真空断熱材は、ガスバリア性を有する袋内に芯材及び吸着剤を入れた後、袋内部を減圧封止することにより作製される。しかるに、厚形の繊維集合体を複数枚積層してなる芯材は、各繊維集合体の積層面において滑りを生じやすいので、作製された芯材をコンベアで移送する際や、移送されてきた芯材を袋内に収納する際に、図7(a)に示すように、各繊維集合体A、B、Cが面方向にずれるという不具合を生じやすい。このように、各繊維集合体A、B、Cが面方向にずれた芯材Dを袋体E内に収納されると、図7(b)に示すように、端部において芯材Dの厚みが小さくなり、断熱体積の減少により断熱性能が低下した真空断熱材が製造されることになる。言うまでもなく、このような不正な真空断熱材を冷蔵庫に適用すると、冷蔵庫の断熱性能が悪くなる。   As described above, the vacuum heat insulating material is manufactured by sealing the inside of the bag under reduced pressure after putting the core material and the adsorbent in the bag having gas barrier properties. However, since the core material formed by laminating a plurality of thick fiber assemblies is likely to slip on the lamination surface of each fiber assembly, it has been transferred when the manufactured core material is transferred by a conveyor. When the core material is stored in the bag, as shown in FIG. 7A, a problem that the fiber assemblies A, B, and C are displaced in the surface direction is likely to occur. Thus, when the core material D in which the fiber assemblies A, B, and C are displaced in the surface direction is stored in the bag body E, as shown in FIG. The vacuum heat insulating material whose thickness becomes small and the heat insulating performance is lowered due to the decrease of the heat insulating volume is manufactured. Needless to say, when such an illegal vacuum heat insulating material is applied to a refrigerator, the heat insulating performance of the refrigerator deteriorates.

なお、ガスバリア性を有する袋内に芯材を直接収納するのではなく、内袋と呼ばれる合成樹脂製の袋内に芯材を収納し、所定の厚さまで圧縮された内袋をガスバリア性を有する袋内に収納するタイプの真空断熱材も従来知られている。このタイプの真空断熱材においては、芯材を内袋に入れる工程で、繊維集合体A、B、Cが原反が面方向にずれる。   In addition, the core material is not directly stored in the bag having gas barrier properties, but the core material is stored in a synthetic resin bag called an inner bag, and the inner bag compressed to a predetermined thickness has gas barrier properties. A vacuum heat insulating material of a type stored in a bag is also known in the past. In this type of vacuum heat insulating material, the fiber assemblies A, B, and C are displaced in the surface direction in the step of putting the core material in the inner bag.

本発明は、上記問題点を解決するためになされたものであり、断熱性能が高い真空断熱材及び冷蔵庫を提供すること、及び、製造が容易な真空断熱材を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vacuum heat insulating material and a refrigerator having high heat insulating performance, and to provide a vacuum heat insulating material that can be easily manufactured.

本発明は、上記課題を解決するために、複数枚の繊維集合体を積層して成る芯材であって、繊維集合体の少なくとも2枚を跨る複数のスリットを形成したことを特徴とする。   In order to solve the above-mentioned problem, the present invention is a core material formed by laminating a plurality of fiber assemblies, and is characterized in that a plurality of slits straddling at least two fiber assemblies are formed.

本発明によれば、断熱性能が高い真空断熱材及び冷蔵庫と提供すること、製造が容易な真空断熱材を提供することができる。上記以外の本発明の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide with a vacuum heat insulating material and a refrigerator with high heat insulation performance, and can provide the vacuum heat insulating material which manufacture is easy. The subject of this invention other than the above, a structure, and an effect are clarified by description of the following embodiment.

実施形態に係る冷蔵庫の正面図である。It is a front view of the refrigerator which concerns on embodiment. 図1のA−A断面図である。It is AA sectional drawing of FIG. 実施形態に係る真空断熱材の断面図である。It is sectional drawing of the vacuum heat insulating material which concerns on embodiment. 実施例1に係る真空断熱材を構成する繊維集合体の積層体の断面図である。1 is a cross-sectional view of a laminated body of fiber assemblies that constitute a vacuum heat insulating material according to Example 1. FIG. 実施例2に係る真空断熱材を構成する繊維集合体の積層体の平面図である。6 is a plan view of a laminated body of fiber assemblies that constitute a vacuum heat insulating material according to Example 2. FIG. 実施例3に係る真空断熱材を構成する繊維集合体の積層体の断面図である。It is sectional drawing of the laminated body of the fiber assembly which comprises the vacuum heat insulating material which concerns on Example 3. FIG. 従来例に係る真空断熱材の説明図である。It is explanatory drawing of the vacuum heat insulating material which concerns on a prior art example.

まず、本発明に係る冷蔵庫の全体構成を、図1及び図2を参照しながら説明する。図1は実施形態に係る冷蔵庫の正面図であり、図2は図1のA−A断面図である。   First, the overall configuration of the refrigerator according to the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a front view of a refrigerator according to the embodiment, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

図2に示すように、実施形態に係る冷蔵庫1は、上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5を有している。また、図1に示すように、これらの各室の前面には、前面開口部を閉塞する冷蔵室扉6a、6b、貯氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9を有している。冷蔵室扉6a、6bは、ヒンジ10を中心に回動する回動式扉であり、それ以外の扉7a、7b、8、9は全て引き出し式の扉である。これらの引き出し式扉7a、7b、8、9を引き出すと、各室を構成する容器が扉と共に引き出されてくる。各扉6a、6b、7a、7b、8、9は、冷蔵庫本体1を密閉するためのパッキン11を有し、これらの各パッキン11は、各扉6a、6b、7a、7b、8、9の室内側外周縁に取り付ける。また、冷蔵室2と製氷室3a及び上段冷凍室3bの間には、区画断熱するための仕切断熱壁12を配置している。これに対して、製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、温度帯が同じであるため、区画断熱する仕切り断熱壁ではなく、パッキン11の受面を形成した仕切り部材13を設けている。更に、下段冷凍室4と野菜室5の間には、区画断熱するための仕切断熱壁14を設けている。このように、冷蔵、冷凍等の貯蔵温度帯の異なる部屋の仕切りには、基本的に仕切断熱壁を設置している。   As shown in FIG. 2, the refrigerator 1 according to the embodiment includes a refrigerator room 2, an ice making room 3 a, an upper freezer room 3 b, a lower freezer room 4, and a vegetable room 5 from the top. Moreover, as shown in FIG. 1, the front of each of these chambers has a refrigerator compartment door 6a, 6b, an ice storage door 7a, an upper freezer compartment door 7b, a lower freezer compartment door 8, a vegetable compartment which closes the front opening. A door 9 is provided. The refrigerator compartment doors 6a and 6b are pivotable doors that pivot about the hinge 10, and the other doors 7a, 7b, 8, and 9 are all drawer-type doors. When these pull-out doors 7a, 7b, 8, 9 are pulled out, the containers constituting each chamber are pulled out together with the doors. Each door 6 a, 6 b, 7 a, 7 b, 8, 9 has a packing 11 for sealing the refrigerator main body 1, and each of these packings 11 includes a door 6 a, 6 b, 7 a, 7 b, 8, 9. Attach to the outer periphery of the room. Further, a partition heat insulation wall 12 for partition heat insulation is disposed between the refrigerator compartment 2, the ice making chamber 3a, and the upper freezer compartment 3b. On the other hand, since the temperature zones are the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, the partition member 13 that forms the receiving surface of the packing 11 instead of the partition heat insulating wall that insulates the partition. Is provided. Furthermore, a partition heat insulation wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 to insulate the compartment. Thus, partition heat insulation walls are basically installed in the partitions of rooms with different storage temperature zones such as refrigeration and freezing.

なお、図1及び図2の例では、箱体20内に、上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a、6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9に関しても回転による開閉、引き出しによる開閉及び扉の分割数等についても、特に限定するものではない。   In the example of FIGS. 1 and 2, storage compartments for the refrigerator compartment 2, the ice making compartment 3 a and the upper freezer compartment 3 b, the lower freezer compartment 4, and the vegetable compartment 5 are formed in the box 20 from the top. However, the arrangement of each storage room is not particularly limited to this. Further, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8 and the vegetable compartment door 9 are also particularly limited in terms of opening and closing by rotation, opening and closing by drawer, and the number of divided doors. Not what you want.

箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間内に断熱部を設けて、箱体20内の各貯蔵室と外部とを断熱している。この外箱21と内箱22の間の空間内には、真空断熱材50を配置し、真空断熱材50の周りの空間には硬質ウレタンフォーム等の発泡断熱材23を充填してある。   The box 20 includes an outer box 21 and an inner box 22, and a heat insulating portion is provided in a space formed by the outer box 21 and the inner box 22 to insulate each storage chamber in the box 20 from the outside. doing. A vacuum heat insulating material 50 is disposed in the space between the outer box 21 and the inner box 22, and the space around the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as hard urethane foam.

冷凍室4の背側には、冷蔵室2、冷凍室3a、4、野菜室5等の各室を所定の温度に冷却するための冷凍サイクル機を備える。冷凍サイクル機は、冷却器28と、圧縮機30と、凝縮機31と、これらを接続するキャピラリーチューブ等をもって構成する。冷却器28の上方には、当該冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設する。   On the back side of the freezer compartment 4, a refrigeration cycle machine for cooling each room such as the refrigerator compartment 2, the freezer compartments 3 a and 4, the vegetable compartment 5 to a predetermined temperature is provided. The refrigeration cycle machine includes a cooler 28, a compressor 30, a condenser 31, and a capillary tube that connects them. Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed.

仕切断熱壁12、14は、真空断熱材50cを埋設した発泡ポリスチレン33をもって構成できるが、これに限定されるものではなく、硬質ウレタンフォーム等の発泡断熱材を用いて形成することもできる。   Although the partition heat insulation walls 12 and 14 can be comprised with the foamed polystyrene 33 which embedded the vacuum heat insulating material 50c, it is not limited to this, It can also form using foam heat insulating materials, such as a rigid urethane foam.

箱体20の例えば天面後方部には、冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40を形成する。該凹部40の開口部には、電気部品41を覆うカバー42を設ける。カバー42の高さは、冷蔵庫の外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるようにする。なお、特に限定するものではないが、カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。このように、箱体20の天面後方部は電気部品41を収納するための凹部40を有するので、断熱厚さを確保しようとすると必然的に内容積が犠牲になってしまうし、内容積をより大きくとると凹部40と内箱22間の断熱材23の厚さが薄くなってしまう。このため、本例の冷蔵庫においては、凹部40の断熱材23中に、略Z形状に成形した1枚の真空断熱材50aを配置して、断熱性能を確保、強化している。なお、カバー42は、耐熱性を考慮し、例えば鋼板製とできる。   For example, a recessed portion 40 for accommodating an electrical component 41 such as a substrate for controlling the operation of the refrigerator 1 or a power supply substrate is formed in the rear portion of the top surface of the box 20. A cover 42 that covers the electrical component 41 is provided in the opening of the recess 40. The height of the cover 42 is set to be substantially the same as the top surface of the outer box 21 in consideration of the appearance design of the refrigerator and securing the internal volume. In addition, although it does not specifically limit, when the height of the cover 42 protrudes from the top | upper surface of an outer box, it is desirable to set it in the range within 10 mm. As described above, since the rear portion of the top surface of the box 20 has the concave portion 40 for housing the electrical component 41, the internal volume is inevitably sacrificed when the heat insulation thickness is to be secured. If the thickness is made larger, the thickness of the heat insulating material 23 between the recess 40 and the inner box 22 will be reduced. For this reason, in the refrigerator of this example, in the heat insulating material 23 of the recessed part 40, the one vacuum heat insulating material 50a shape | molded by the substantially Z shape is arrange | positioned, and the heat insulation performance is ensured and strengthened. The cover 42 can be made of, for example, a steel plate in consideration of heat resistance.

また、箱体20の背面下部に配置する圧縮機30や凝縮機31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、底板21d側に真空断熱材50dを配置すると好ましい。   Moreover, since the compressor 30 and the condenser 31 which are arrange | positioned at the back lower part of the box 20 are components with big heat_generation | fever, in order to prevent the heat | fever penetration | invasion into a store | warehouse | chamber, it is preferable to arrange | position the vacuum heat insulating material 50d to the baseplate 21d side. .

次に、真空断熱材50a〜50dの構成を、図3を用いて説明する。真空断熱材50a〜50dは、芯材51と、芯材51を圧縮状態に保持するための内袋52と、内袋52で圧縮状態に保持した芯材51を被覆する外袋53とを含み、好ましくは、芯材51内に埋設された吸着剤54を含む。   Next, the structure of the vacuum heat insulating materials 50a-50d is demonstrated using FIG. The vacuum heat insulating materials 50a to 50d include a core material 51, an inner bag 52 for holding the core material 51 in a compressed state, and an outer bag 53 covering the core material 51 held in a compressed state by the inner bag 52. Preferably, an adsorbent 54 embedded in the core material 51 is included.

真空断熱材50a〜50dは、例えば以下の手順で作製される。まず、ロール状に作られた繊維集合体の原反シートを所定枚数積層し、これを所定の大きさに切断して、芯材51のもとになる繊維集合体の積層体を作製する。この繊維集合体の積層体を内袋52内に収納した後、繊維集合体の積層体が収納された内袋52をプレス機で圧縮する。次いで、内袋52内を減圧した後、熱溶着機を用いて、内袋52の開口部全体を熱溶着密封し、芯材仮圧縮組品を得る。しかる後に、芯材仮圧縮組品を外袋53内に収納し、内袋52を破る。最後に、外袋53内を減圧し、その開口部を溶着密封して、所望の真空断熱材を得ることができるが、例えば芯材の態様を上記に限定する趣旨ではなく、芯材は繊維集合体等であっても良い。   The vacuum heat insulating materials 50a to 50d are produced, for example, by the following procedure. First, a predetermined number of rolls of fiber aggregate original fabric sheets are laminated and cut into a predetermined size to produce a fiber aggregate laminate from which the core material 51 is based. After the laminated body of fiber assemblies is stored in the inner bag 52, the inner bag 52 in which the stacked body of fiber assemblies is stored is compressed by a press. Next, after the inner bag 52 is depressurized, the entire opening of the inner bag 52 is heat-sealed and sealed using a heat welding machine to obtain a core material temporary compression assembly. After that, the core material temporary compression assembly is stored in the outer bag 53 and the inner bag 52 is broken. Finally, the inside of the outer bag 53 is decompressed, and the opening is welded and sealed to obtain a desired vacuum heat insulating material. For example, the core material is not limited to the above, and the core material is a fiber. An aggregate or the like may be used.

なお、図3に示すように、繊維集合体51a、51b、51cは例えば厚さ100mmのものを3層に積層できる。また、本実施形態においては、繊維集合体51a、51b、51cの積層体を内袋52内に収納する際に、積層体を構成する各繊維集合体51a、51b、51cが面方向にずれるのを防止するため、隣接する2つの繊維集合体51aと51b及び繊維集合体51bと51cの少なくとも一方を縦断する複数のスリットを入れた。これら複数のスリットの間をプレスして、各層の繊維集合体51a、51b、51cを局部的に変形させると、互いに隣接する繊維集合体の一方が他方の繊維集合体内に押し込まれるので、積層された各繊維集合体51aの面方向へのズレを防止できる。これについては、後に、具体的な実施例を挙げて説明する。   In addition, as shown in FIG. 3, the fiber aggregates 51a, 51b, and 51c can be laminated in three layers having a thickness of 100 mm, for example. Moreover, in this embodiment, when storing the laminated body of the fiber assemblies 51a, 51b, and 51c in the inner bag 52, each fiber assembly 51a, 51b, 51c which comprises a laminated body shifts | deviates to a surface direction. In order to prevent this, a plurality of slits that vertically cut at least one of the two adjacent fiber assemblies 51a and 51b and the fiber assemblies 51b and 51c were inserted. When the plurality of slits are pressed to locally deform the fiber assemblies 51a, 51b, 51c of each layer, one of the adjacent fiber assemblies is pushed into the other fiber assembly, so that the layers are laminated. Moreover, the shift | offset | difference to the surface direction of each fiber assembly 51a can be prevented. This will be described later with a specific example.

芯材51としては、無機系繊維材料を用いることもできるし、有機系樹脂繊維材料を用いることもできる。無機系繊維材料の積層体は、有機系樹脂繊維材料に比べてアウトガスが少ないため、断熱性能的に有利である。無機系繊維材料としては、ガラスウール、セラミック繊維、ロックウール、グラスウール以外のガラス繊維等を挙げることができる。なお、例えば芯材51として、バインダー等で接着や結着をしていない平均繊維径4μmのグラスウールからなり、厚みが100mmに調整されたものを3層に積層して用いることができる。芯材51の種類によっては、内袋52を省略できる場合もある。   As the core material 51, an inorganic fiber material can be used, and an organic resin fiber material can also be used. The laminated body of inorganic fiber materials is advantageous in terms of heat insulation performance because it has less outgas compared to organic resin fiber materials. Examples of the inorganic fiber material include glass wool, ceramic fiber, rock wool, glass fiber other than glass wool, and the like. For example, as the core material 51, a glass wool having an average fiber diameter of 4 μm which is not bonded or bound with a binder or the like and whose thickness is adjusted to 100 mm can be laminated in three layers. Depending on the type of the core material 51, the inner bag 52 may be omitted.

有機系樹脂繊維としては、耐熱温度等をクリヤしていれば、特に使用が制約されるものではない。具体的には、ポリスチレン、ポリエチレンテレフタレート、ポリプロピレン等をメルトブローン法やスパンボンド法等で1〜30μm程度の繊維径になるように繊維化したものを用いるのが一般的であるが、これに限定されるものではない。   Use of the organic resin fiber is not particularly limited as long as the heat-resistant temperature is cleared. Specifically, it is common to use polystyrene, polyethylene terephthalate, polypropylene, etc., which are fiberized so as to have a fiber diameter of about 1 to 30 μm by a melt blown method or a spunbond method, but are not limited thereto. It is not something.

内袋52は、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等の吸湿性が低く、熱溶着でき、かつアウトガスが少ない樹脂フィルムを用いて形成する。   The inner bag 52 is formed using a resin film such as a polyethylene film, a polypropylene film, a polyethylene terephthalate film, or a polybutylene terephthalate film that has low hygroscopicity, can be thermally welded, and has little outgas.

外袋53は、内袋52の両面に配置した同じ大きさのラミネートフィルムを貼り合わせることにより袋状に形成する。ラミネートフィルムを貼り合わせは、芯材51の収納部よりも外側で、ラミネートフィルムの外縁部よりも内側の部分を、一定幅で熱溶着することにより行う。   The outer bag 53 is formed into a bag shape by laminating laminate films of the same size arranged on both surfaces of the inner bag 52. The lamination film is bonded by thermally welding a portion outside the housing portion of the core material 51 and inside the outer edge portion of the laminate film with a constant width.

外袋53のラミネート構成については、ガスバリヤ性を有し、かつ熱溶着可能であるように構成される。本実施形態においては、表面保護層、第1ガスバリヤ層、第2ガスバリヤ層2及び熱溶着層の4層構成からなるラミネートフィルムとした。表面保護層としては、例えば保護材の役割を持つ樹脂フィルムを用いる。第1ガスバリヤ層としては、例えば樹脂フィルムに金属蒸着層を設けたものを用いる。第2ガスバリヤ層2としては、例えば酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設けたものを用いる。第1ガスバリヤ層と第2ガスバリヤ層とは、例えば金属蒸着層同士が向かい合うように貼り合わせる。熱溶着層としては、例えば表面保護層と同様に、吸湿性の低いフィルムを用いる。   The laminated structure of the outer bag 53 is configured to have gas barrier properties and to be heat weldable. In the present embodiment, a laminated film having a four-layer structure of a surface protective layer, a first gas barrier layer, a second gas barrier layer 2 and a heat welding layer is formed. As the surface protective layer, for example, a resin film having a role of a protective material is used. As the first gas barrier layer, for example, a resin film provided with a metal vapor deposition layer is used. As the second gas barrier layer 2, for example, a resin film having a high oxygen barrier property provided with a metal vapor deposition layer is used. The first gas barrier layer and the second gas barrier layer are bonded together so that, for example, the metal vapor deposition layers face each other. As the heat-welding layer, for example, a film having a low hygroscopic property is used in the same manner as the surface protective layer.

具体例を挙げると、表面保護層については、二軸延伸タイプのポリプロピレン、ポリアミド、ポリエチレンテレフタレート等の各フィルムが好適である。第1ガスバリヤ層としては、アルミニウム蒸着膜付きの二軸延伸ポリエチレンテレフタレートフィルムが好適である。第2ガスバリヤ層としては、アルミニウム蒸着膜付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム、又はアルミニウム蒸着膜付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔が好適である。熱溶着層としては、未延伸タイプのポリエチレンやポリプロピレン等のフィルムが好適である。   As a specific example, for the surface protective layer, a biaxially stretched film of polypropylene, polyamide, polyethylene terephthalate, or the like is suitable. As the first gas barrier layer, a biaxially stretched polyethylene terephthalate film with an aluminum vapor deposition film is suitable. As the second gas barrier layer, a biaxially stretched ethylene vinyl alcohol copolymer resin film with an aluminum deposited film, a biaxially stretched polyvinyl alcohol resin film with an aluminum deposited film, or an aluminum foil is suitable. As the heat welding layer, an unstretched type polyethylene or polypropylene film is suitable.

但し、ラミネートフィルムの層構成や材料については、上述の実施形態に限定されるものではなく、適宜他の層構造や材料に変更することができる。例えば、第1及び第2のガスバリヤ層としては、金属箔、或いは樹脂系のフィルムに無機層状化合物、ポリアクリル酸等の樹脂系ガスバリヤコート材、DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものを用いることができる。また、熱溶着層としては、例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。表面保護層は、第1ガスバリヤ層1の保護材として機能するものであるが、真空断熱材の製造工程における真空排気効率を良くするためにも、吸湿性の低い樹脂を配置することが望ましい。また、第2ガスバリヤ層2は、アルミニウム蒸着膜などに接する樹脂系フィルムが吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制することが望ましい。これにより、先に述べた真空断熱材50の真空排気工程において、外袋53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながる。   However, the layer configuration and material of the laminate film are not limited to the above-described embodiment, and can be appropriately changed to other layer structures and materials. For example, as the first and second gas barrier layers, a metal foil or a resin-based film is provided with an inorganic layered compound, a resin-based gas barrier coating material such as polyacrylic acid, or a gas barrier film made of DLC (diamond-like carbon) or the like. Things can be used. Moreover, as a heat welding layer, you may use the polybutylene terephthalate film etc. with a high oxygen barrier property, for example. The surface protective layer functions as a protective material for the first gas barrier layer 1, but it is desirable to dispose a resin with low hygroscopicity in order to improve the vacuum exhaust efficiency in the manufacturing process of the vacuum heat insulating material. In addition, since the gas barrier property of the second gas barrier layer 2 is significantly deteriorated when the resin film in contact with the aluminum vapor deposition film or the like absorbs moisture, a resin having low hygroscopic property is also provided for the heat welding layer. It is desirable to suppress the deterioration of property and to suppress the moisture absorption amount of the entire laminate film. As a result, in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought into the outer bag 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved and the heat insulation performance is improved.

なお、各フィルムのラミネート(貼り合せ)は、二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法には特にこれに限定するものではなく、ウェットラミネート法、サーマルラミネート法等の他の方法によるものでもよい。   In addition, the lamination (bonding) of each film is generally performed by a dry lamination method via a two-component curable urethane adhesive, but the type of adhesive and the bonding method are particularly limited to this. However, other methods such as a wet laminating method and a thermal laminating method may be used.

また、内袋52からの芯材51の取り出し、及び、外袋53からの内袋52の取り出しを良好なものにするため、内袋52及び外袋53は、滑性の高い材料をもって形成することが望ましい。   Further, in order to improve the removal of the core material 51 from the inner bag 52 and the removal of the inner bag 52 from the outer bag 53, the inner bag 52 and the outer bag 53 are formed of a material having high lubricity. It is desirable.

吸着剤54としては、物理吸着タイプの合成ゼオライトが好適に用いられるが、本発明の要旨はこれに限定されるものではなく、真空断熱材の外包材を封止した後の残存ガス及び水分を吸着するものであれば良く、例えば、合成ゼオライト以外の物理吸着剤又は化学反応型吸着剤を用いることもでき、モレキュラーシーブス、シリカゲル、酸化カルシウム、合成ゼオライト、活性炭、水酸化カリウム、水酸化ナトリウム、又は水酸化リチウム等を単独または組み合わせて用いることができる。好ましくは吸着剤54は、繊維集合体51a、51b、51cに形成されるスリットを入れた後、その1つに埋設される。このように、繊維集合体51a、51b、51cに形成されるスリットを利用して吸着剤54を埋設すると、吸着剤54を埋設するためのスリットを別途形成する必要がないので、真空断熱材50a〜50dの製造をより容易化できる。   As the adsorbent 54, a physical adsorption type synthetic zeolite is preferably used, but the gist of the present invention is not limited to this, and the residual gas and moisture after sealing the outer packaging material of the vacuum heat insulating material are used. Any adsorbent may be used, for example, a physical adsorbent other than synthetic zeolite or a chemical reaction type adsorbent can be used. Molecular sieves, silica gel, calcium oxide, synthetic zeolite, activated carbon, potassium hydroxide, sodium hydroxide, Or lithium hydroxide etc. can be used individually or in combination. Preferably, the adsorbent 54 is embedded in one of the slits formed in the fiber aggregates 51a, 51b, 51c. As described above, when the adsorbent 54 is embedded using the slits formed in the fiber assemblies 51a, 51b, 51c, it is not necessary to separately form a slit for embedding the adsorbent 54, and thus the vacuum heat insulating material 50a. Production of ˜50d can be made easier.

以下、上述のように構成された真空断熱材50a〜50dのより具体的な実施例について説明する。なお、以下の各実施例においては、芯材51として、厚さ100mmの繊維集合体を3層に積層したものを例にとって説明するが、繊維集合体の厚さや積層数についてはこれに限定されるものではない。これらについては、必要に応じて適宜選択することができる。   Hereinafter, more specific examples of the vacuum heat insulating materials 50a to 50d configured as described above will be described. In each of the following examples, the core material 51 will be described by taking an example in which a fiber assembly having a thickness of 100 mm is laminated in three layers. However, the thickness and the number of laminations of the fiber assembly are not limited thereto. It is not something. About these, it can select suitably as needed.

〈実施例1〉
実施例1に係る真空断熱材50a〜50dの構成を、図4(a)〜(c)を用いて説明する。図4(a)は繊維集合体の積層体の平面図、図4(b)はプレス前の繊維集合体の積層体の断面図(図4(a)のB−B断面図)、図4(c)はプレス後の繊維集合体の積層体の断面図(図4(a)のB−B断面図)である。
<Example 1>
The structure of the vacuum heat insulating materials 50a-50d which concern on Example 1 is demonstrated using Fig.4 (a)-(c). 4A is a plan view of the laminated body of the fiber assembly, FIG. 4B is a cross-sectional view of the laminated body of the fiber assembly before pressing (cross-sectional view taken along line BB in FIG. 4A), FIG. (C) is sectional drawing (BB sectional drawing of Fig.4 (a)) of the laminated body of the fiber assembly after a press.

図4(a)、(b)に示すように、実施例1においては、繊維集合体が3層に積層され、その最上層の繊維集合体51aの表面から最上層の繊維集合体51aより下に位置する繊維集合体の中間位置、好ましくは最下層の繊維集合体51cの中間位置まで達する2条のスリット58a、58bが設けられている。これら2条のスリット58a、58bは、図4(b)に示すように、好ましくは同一長さであり、また好ましくは最上層の繊維集合体51aから最下層の繊維集合体51cに向けて2条のスリット58a、58bの間隔が狭まる逆テーパ状に形成される。逆テーパ状に形成することで、後述する加圧の際にそれぞれの繊維集合体におけるスリット58a、58bの間の領域全域に加圧の力が印加され、かつ、スリット58a、58bの間の領域の最下部まで加圧の力が伝達され、繊維集合体の押し込みが十分に行われる点で好ましい。スリット58a、58bを形成した後、図4(c)に示すように、これら2条のスリット58a、58bの間を加圧し、最上層の繊維集合体51aの一部を中間層の繊維集合体51b内に突出させ、中間層の繊維集合体51bの一部を最下層の繊維集合体51c内に突出させる。これにより、最上層の繊維集合体51aの一部が中間層の繊維集合体51bに係合し、中間層の繊維集合体51bの一部が最下層の繊維集合体51cに係合するので、搬送時や内袋52内への収納時に、各繊維集合体51a、51b、51cの面方向に力が加わっても、それらの位置ずれを防止できる。   As shown in FIGS. 4A and 4B, in Example 1, the fiber assembly is laminated in three layers, and the surface of the uppermost fiber assembly 51a is below the uppermost fiber assembly 51a. Two slits 58a and 58b are provided which reach the middle position of the fiber assembly located at the center, preferably the middle position of the lowermost fiber assembly 51c. These two slits 58a, 58b are preferably the same length as shown in FIG. 4B, and preferably 2 from the uppermost fiber assembly 51a to the lowermost fiber assembly 51c. The slits 58a and 58b are formed in a reverse tapered shape in which the interval between the slits 58a and 58b is narrowed. By forming an inversely tapered shape, a pressurizing force is applied to the entire region between the slits 58a and 58b in each fiber assembly during pressurization described later, and the region between the slits 58a and 58b. It is preferable in that the pressing force is transmitted to the lowermost part of the fiber and the fiber assembly is sufficiently pushed. After forming the slits 58a and 58b, as shown in FIG. 4 (c), the space between these two slits 58a and 58b is pressurized, and a part of the uppermost fiber assembly 51a is partially attached to the intermediate fiber assembly. It protrudes in 51b, A part of the fiber assembly 51b of an intermediate | middle layer is protruded in the fiber assembly 51c of the lowest layer. Thereby, a part of the uppermost fiber assembly 51a is engaged with the intermediate fiber assembly 51b, and a part of the intermediate fiber assembly 51b is engaged with the lowermost fiber assembly 51c. Even if a force is applied in the surface direction of each fiber assembly 51a, 51b, 51c at the time of conveyance or storage in the inner bag 52, the positional deviation thereof can be prevented.

したがって、このようにして作製された繊維集合体51a、51b、51cの積層体を用いて真空断熱材を作製すると、図3に示すように、端部まで一定厚さの芯材51が収納され、断熱体積の減少による断熱性能の低下が抑制された真空断熱材50a〜50dを作製できる。そして、このようにして作製された真空断熱材50a〜50dを用いることにより、断熱性能が良好な冷蔵庫を製造できる。   Therefore, when a vacuum heat insulating material is produced using the laminated body of the fiber assemblies 51a, 51b, 51c produced in this way, a core material 51 having a constant thickness is accommodated to the end as shown in FIG. And the vacuum heat insulating materials 50a-50d by which the fall of the heat insulation performance by the reduction | decrease of heat insulation volume was suppressed can be produced. And the refrigerator with favorable heat insulation performance can be manufactured by using the vacuum heat insulating materials 50a-50d produced in this way.

〈実施例2〉
実施例2に係る真空断熱材50a〜50dの構成を、図5(a)〜(c)を用いて説明する。これらの図は、いずれも繊維集合体51aの積層体の平面図である。図5(a)では、スリット58a〜58hを、輪状に配置したことを特徴とする。その他については、実施例1に係る真空断熱材50a〜50dと同様に構成される。本実施例に係る真空断熱材50a〜50dによっても、実施例1に係る真空断熱材50a〜50dと同様の効果を奏するほか、スリット58a〜58hを輪状に配置したので、繊維集合体51aに作用する外力の方向に関係なく、均等なずれ防止効果を発揮できる。なお、スリット58a〜58hの本数はこれに限られず、また輪状に配置する構成に代えて、図5(b)に示すように、スリット58a〜58dを四角形の枠状に形成しても、同様の効果が得られる。その他、図5(c)に示すように、スリット58a、58bを波型に形成することもできる。
<Example 2>
The structure of the vacuum heat insulating materials 50a-50d which concern on Example 2 is demonstrated using Fig.5 (a)-(c). Each of these figures is a plan view of a laminate of fiber assemblies 51a. FIG. 5A is characterized in that the slits 58a to 58h are arranged in a ring shape. About others, it is comprised similarly to the vacuum heat insulating materials 50a-50d which concern on Example 1. FIG. Even with the vacuum heat insulating materials 50a to 50d according to the present embodiment, the same effects as the vacuum heat insulating materials 50a to 50d according to the first embodiment are obtained, and the slits 58a to 58h are arranged in a ring shape, and thus act on the fiber assembly 51a. Regardless of the direction of the external force to be applied, it is possible to exhibit a uniform shift prevention effect. Note that the number of slits 58a to 58h is not limited to this, and the slits 58a to 58d may be formed in a rectangular frame shape as shown in FIG. The effect is obtained. In addition, as shown in FIG.5 (c), the slits 58a and 58b can also be formed in a waveform.

〈実施例3〉
実施例2に係る真空断熱材50a〜50dの構成を、図6(a)〜(e)を用いて説明する。これらの図は、いずれも繊維集合体51a、51b、51cの積層体の側面図である。図6(a)は2条のスリット58a、58bをテーパ状に形成した実施例である。図6(b)は2条のスリット58a、58bを平行に形成した実施例である。図6(c)は2条のスリット58a、58bの傾斜角度を互いに異ならせた実施例である。図6(d)は2条のスリット58a、58bのスリット深さを互いに異ならせた実施例である。図6(e)は2条のスリット58a、58bを最上層の繊維集合体51aの表面から中間層の繊維集合体51bの中間位置までの形成した実施例である。その他、スリットの本数は、2本以上とすることもできる。本実施例に係る真空断熱材50a〜50dによっても、実施例1に係る真空断熱材50a〜50dと同様の効果を奏する。
<Example 3>
The structure of the vacuum heat insulating materials 50a-50d which concern on Example 2 is demonstrated using Fig.6 (a)-(e). These drawings are all side views of a laminated body of fiber assemblies 51a, 51b, and 51c. FIG. 6A shows an embodiment in which two slits 58a and 58b are formed in a tapered shape. FIG. 6B shows an embodiment in which two slits 58a and 58b are formed in parallel. FIG. 6C shows an embodiment in which the inclination angles of the two slits 58a and 58b are different from each other. FIG. 6D shows an embodiment in which the slit depths of the two slits 58a and 58b are made different from each other. FIG. 6E shows an embodiment in which two slits 58a and 58b are formed from the surface of the uppermost fiber assembly 51a to the intermediate position of the intermediate fiber assembly 51b. In addition, the number of slits can be two or more. Also with the vacuum heat insulating materials 50a to 50d according to the present embodiment, the same effects as the vacuum heat insulating materials 50a to 50d according to the first embodiment are obtained.

以上説明したように、本発明は、積層された繊維集合体51a、51b、51cに複数のスリット58a、58b・・・を形成し、スリット58a、58b・・・の中間部分を加圧することによって各層の繊維集合体51a、51b、51cを相互に係合させるので、各層の繊維集合体51a、51b、51cを接着又は溶着することなく、各層の繊維集合体51a、51b、51cの位置ずれを防止できる。よって、接着又は溶着による場合よりも断熱性能が高い真空断熱材を得ることができる。   As described above, the present invention forms a plurality of slits 58a, 58b ... in the laminated fiber assemblies 51a, 51b, 51c, and pressurizes intermediate portions of the slits 58a, 58b ... Since the fiber assemblies 51a, 51b, 51c of each layer are engaged with each other, the position of the fiber assemblies 51a, 51b, 51c of each layer can be shifted without bonding or welding the fiber assemblies 51a, 51b, 51c of each layer. Can be prevented. Therefore, it is possible to obtain a vacuum heat insulating material having higher heat insulating performance than the case of bonding or welding.

本発明は、以下の態様を包含する。   The present invention includes the following aspects.

複数層の繊維集合体を厚さ方向に積層した芯材と、前記芯材中に配置された吸着剤と、前記芯材及び前記吸着剤を収納する袋体とを有し、前記複数枚の繊維集合体のうち、隣接する少なくとも2層に亘る複数のスリットを有し、該スリットの一部に前記吸着剤を配置する。   A core material obtained by laminating a plurality of layers of fiber aggregates in the thickness direction; an adsorbent disposed in the core material; and a bag body that stores the core material and the adsorbent. The fiber assembly has a plurality of slits extending over at least two adjacent layers, and the adsorbent is disposed in a part of the slits.

即ち、真空断熱材の芯材を構成する複数枚の繊維集合体に、それらに跨る複数のスリットを形成したので、各スリットの間をプレスすると、一の繊維集合体のプレス部分が他の一の繊維集合体の内部に入り込み、これが面方向に作用する力に対するストッパとして機能する。このため、積層される繊維集合体どうしを接着又は溶着することなく、移送時や袋体内への収納時における繊維集合体の位置ずれや積層の崩れを防止でき、断熱効果の高い真空断熱材を高能率に製造できる。また、このようにして製造された真空断熱材を用いることにより、冷蔵庫の断熱性能を向上することができる。   That is, since a plurality of slits straddling them are formed in a plurality of fiber assemblies constituting the core material of the vacuum heat insulating material, when the space between the slits is pressed, the pressed portion of one fiber assembly is changed to the other one. It enters the inside of the fiber assembly and functions as a stopper against the force acting in the surface direction. For this reason, without adhering or welding the fiber assemblies to be laminated, it is possible to prevent displacement of the fiber assemblies and collapse of the laminate during transfer or storage in the bag body, and a vacuum heat insulating material having a high heat insulation effect. Can be manufactured with high efficiency. Moreover, the heat insulation performance of a refrigerator can be improved by using the vacuum heat insulating material manufactured in this way.

また、スリットのうちの少なくとも一部は、輪状に構成する。これにより、繊維集合体51aに作用する外力の方向に関係なく、均等な位置ずれ防止効果を発揮できる。   Further, at least a part of the slit is formed in a ring shape. Thereby, regardless of the direction of the external force acting on the fiber assembly 51a, it is possible to exhibit a uniform displacement prevention effect.

また、スリットは、各スリットの両端が互いに連結しないように形成する。これにより、複数のスリットの間をプレスして各層の繊維集合体を局部的に変形させると、互いに隣接する繊維集合体の一方が他方の繊維集合体内に押し込まれるので、積層された各繊維集合体の面方向へのずれを防止できる。   The slit is formed so that both ends of each slit are not connected to each other. Accordingly, when the fiber aggregates of each layer are locally deformed by pressing between a plurality of slits, one of the adjacent fiber aggregates is pushed into the other fiber aggregate. Deviation in the body surface direction can be prevented.

また、外箱と、内箱と、これら外箱と内箱の間に形成される空間内に収納された真空断熱材とを備え、前記真空断熱材は、複数枚の繊維集合体を厚さ方向に積層した芯材と、前記芯材中に配置された吸着剤と、前記芯材及び前記吸着剤を収納する袋体とを有し、前記複数枚の繊維集合体のうち、隣接する少なくとも2層に亘るスリットを有し、該スリットの一部に前記吸着剤を配置する。   In addition, an outer box, an inner box, and a vacuum heat insulating material housed in a space formed between the outer box and the inner box, the vacuum heat insulating material has a thickness of a plurality of fiber assemblies. A core material laminated in a direction, an adsorbent disposed in the core material, and a bag body that houses the core material and the adsorbent, and at least adjacent one of the plurality of fiber assemblies. A slit extending over two layers is provided, and the adsorbent is disposed in a part of the slit.

これにより、冷蔵庫や冷凍冷蔵庫などの冷熱機器の断熱性能の向上に利用できる。   Thereby, it can utilize for the improvement of the heat insulation performance of refrigeration equipment, such as a refrigerator and a refrigerator-freezer.

1…冷蔵庫、2…冷蔵室、3a…製氷室、3b…上段冷凍室、4…下段冷凍室、5…野菜室、6a…冷蔵室扉、6b…冷蔵室扉、7a…製氷室扉、7b…上段冷凍室扉、8…下段冷凍室扉、9…野菜室扉、10…扉用ヒンジ、11…パッキン、12,14…断熱仕切り、13…仕切り部材、20…箱体、21…外箱、21a…天板、21b…背面板、21d…底板、21e…側面板、21f…前面、22…内箱、23…断熱材、27…送風機、28…冷却器、30…圧縮機、31…凝縮機、33…発泡ポリスチレン、40…凹部、41…電気部品、42…カバー、50a〜50d…真空断熱材、51…芯材、51a、51b、51c…繊維集合体、52…内袋、53…外袋、54… 吸着剤、58a〜51f… 切れ目   DESCRIPTION OF SYMBOLS 1 ... Refrigerator, 2 ... Refrigeration room, 3a ... Ice making room, 3b ... Upper stage freezing room, 4 ... Lower stage freezing room, 5 ... Vegetable room, 6a ... Refrigeration room door, 6b ... Refrigeration room door, 7a ... Ice making room door, 7b ... upper freezer compartment door, 8 ... lower freezer compartment door, 9 ... vegetable compartment door, 10 ... door hinge, 11 ... packing, 12, 14 ... heat insulating partition, 13 ... partition member, 20 ... box, 21 ... outer box 21a ... top plate, 21b ... back plate, 21d ... bottom plate, 21e ... side plate, 21f ... front surface, 22 ... inner box, 23 ... heat insulating material, 27 ... blower, 28 ... cooler, 30 ... compressor, 31 ... Condenser, 33 ... Expanded polystyrene, 40 ... Recess, 41 ... Electrical component, 42 ... Cover, 50a-50d ... Vacuum insulation, 51 ... Core material, 51a, 51b, 51c ... Fiber assembly, 52 ... Inner bag, 53 ... Outer bag, 54 ... Adsorbent, 58a-51f ... Cut

Claims (4)

複数層の繊維集合体を厚さ方向に積層した芯材と、前記芯材中に配置された吸着剤と、前記芯材及び前記吸着剤を収納する袋体とを有し、
前記複数層の繊維集合体のうち、隣接する少なくとも2層に亘る複数のスリットを有し、該スリットの一部に前記吸着剤を配置したことを特徴とする真空断熱材。
A core material obtained by laminating a plurality of layers of fiber assemblies in the thickness direction, an adsorbent disposed in the core material, and a bag body that stores the core material and the adsorbent,
A vacuum heat insulating material having a plurality of slits extending over at least two adjacent layers of the multi-layer fiber assembly, wherein the adsorbent is disposed in a part of the slits.
請求項1に記載の真空断熱材において、
前記スリットのうちの少なくとも一部は、輪状に構成したことを特徴とする真空断熱材。
The vacuum heat insulating material according to claim 1,
A vacuum heat insulating material characterized in that at least a part of the slit is formed in a ring shape.
請求項1及び請求項2のいずれか1項に記載の真空断熱材において、
前記スリットは、各スリットの両端が互いに連結しないように形成したことを特徴とする真空断熱材。
In the vacuum heat insulating material of any one of Claim 1 and Claim 2,
The slit is formed so that both ends of each slit are not connected to each other.
外箱と、内箱と、これら外箱と内箱の間に形成される空間内に収納された真空断熱材とを備え、
前記真空断熱材は、複数枚の繊維集合体を厚さ方向に積層した芯材と、前記芯材中に配置された吸着剤と、前記芯材及び前記吸着剤を収納する袋体とを有し、
前記複数枚の繊維集合体のうち、隣接する少なくとも2層に亘るスリットを有し、該スリットの一部に前記吸着剤を配置したことを特徴とする冷蔵庫。
An outer box, an inner box, and a vacuum heat insulating material housed in a space formed between the outer box and the inner box,
The vacuum heat insulating material includes a core material in which a plurality of fiber assemblies are laminated in a thickness direction, an adsorbent disposed in the core material, and a bag body that stores the core material and the adsorbent. And
A refrigerator having a slit extending over at least two adjacent layers among the plurality of fiber assemblies, wherein the adsorbent is disposed in a part of the slit.
JP2013126883A 2013-06-17 2013-06-17 Vacuum heat insulation material and refrigerator Pending JP2015001290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013126883A JP2015001290A (en) 2013-06-17 2013-06-17 Vacuum heat insulation material and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013126883A JP2015001290A (en) 2013-06-17 2013-06-17 Vacuum heat insulation material and refrigerator

Publications (1)

Publication Number Publication Date
JP2015001290A true JP2015001290A (en) 2015-01-05

Family

ID=52295941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013126883A Pending JP2015001290A (en) 2013-06-17 2013-06-17 Vacuum heat insulation material and refrigerator

Country Status (1)

Country Link
JP (1) JP2015001290A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205480A (en) * 2015-04-20 2016-12-08 日立アプライアンス株式会社 Vacuum heat insulation material and heat insulation box using the same
JP2017178066A (en) * 2016-03-30 2017-10-05 豊田合成株式会社 Front passenger seat airbag device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205480A (en) * 2015-04-20 2016-12-08 日立アプライアンス株式会社 Vacuum heat insulation material and heat insulation box using the same
JP2017178066A (en) * 2016-03-30 2017-10-05 豊田合成株式会社 Front passenger seat airbag device

Similar Documents

Publication Publication Date Title
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5544338B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5608457B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2017106526A (en) Vacuum heat insulation body, heat insulation equipment including the same, and manufacturing method of vacuum heat insulation body
JP2012063029A (en) Vacuum heat insulating material and refrigerator using the same
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP2013088036A (en) Thermal insulation box, refrigerator, and storage type water heater
JP2001165557A (en) Refrigerator
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP2016080281A (en) Heat insulation box body and heat insulation door
JP5401258B2 (en) refrigerator
JP2011153721A (en) Refrigerator
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP2013024440A (en) Refrigerator
JP2015001290A (en) Vacuum heat insulation material and refrigerator
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP6535202B2 (en) Vacuum insulation material and insulation box using the same
JP5401422B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP6486079B2 (en) Method for maintaining heat insulation performance of vacuum insulation panel and method for maintaining heat insulation performance of refrigerator
JP2012229849A (en) Refrigerator and freezer
JP2015055368A (en) Vacuum heat insulation material and refrigerator using the same
JP5810054B2 (en) Vacuum insulation and refrigerator