JP2016169823A - Heat insulation material, core material, refrigerator, and manufacturing method of heat insulation material - Google Patents

Heat insulation material, core material, refrigerator, and manufacturing method of heat insulation material Download PDF

Info

Publication number
JP2016169823A
JP2016169823A JP2015050734A JP2015050734A JP2016169823A JP 2016169823 A JP2016169823 A JP 2016169823A JP 2015050734 A JP2015050734 A JP 2015050734A JP 2015050734 A JP2015050734 A JP 2015050734A JP 2016169823 A JP2016169823 A JP 2016169823A
Authority
JP
Japan
Prior art keywords
fiber
heat insulating
thin
diameter
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015050734A
Other languages
Japanese (ja)
Inventor
健哉 内田
Kenya Uchida
健哉 内田
育生 植松
Ikuo Uematsu
育生 植松
直哉 速水
Naoya Hayamizu
直哉 速水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Lifestyle Products and Services Corp filed Critical Toshiba Corp
Priority to JP2015050734A priority Critical patent/JP2016169823A/en
Priority to CN201680014313.XA priority patent/CN107407454B/en
Priority to US15/556,884 priority patent/US20180238605A1/en
Priority to CN201911068875.4A priority patent/CN110778852B/en
Priority to EP16761747.1A priority patent/EP3270030A4/en
Priority to US15/556,920 priority patent/US20190257573A1/en
Priority to EP16761749.7A priority patent/EP3270032A4/en
Priority to KR1020197022182A priority patent/KR102279401B1/en
Priority to KR1020177026870A priority patent/KR102072453B1/en
Priority to US15/556,918 priority patent/US20180238609A1/en
Priority to PCT/JP2016/057132 priority patent/WO2016143781A1/en
Priority to EP16761748.9A priority patent/EP3270031A4/en
Priority to CN201680014497.XA priority patent/CN107429872B/en
Priority to KR1020177025681A priority patent/KR20170117508A/en
Priority to PCT/JP2016/057130 priority patent/WO2016143779A1/en
Priority to KR1020177025799A priority patent/KR20170117181A/en
Priority to CN201680014502.7A priority patent/CN107429873A/en
Priority to PCT/JP2016/057131 priority patent/WO2016143780A1/en
Priority to CN201610134479.7A priority patent/CN105972389B/en
Publication of JP2016169823A publication Critical patent/JP2016169823A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulation material that compensates strength poverty of a core material to suppress deterioration of heat insulation performance, even in a case where the core material comprises fiber materials having thin fiber diameters, and a manufacturing method of the heat insulation material including reinforcement means of reinforcing core material strength.SOLUTION: A heat insulation material 10 includes a core material 11 comprising a thin-diameter fiber materials 13 having fiber diameters within a range of a micro order to nano order, and reinforcement means of reinforcing strength of the core material 11. A manufacturing method of the heat insulation material contains a process including the reinforcement means of reinforcing strength of the core material 11.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、断熱材、この断熱材を構成するコア材、この断熱材を備える冷蔵庫、並びに、この断熱材の製造方法に関する。   Embodiments of the present invention relate to a heat insulating material, a core material constituting the heat insulating material, a refrigerator including the heat insulating material, and a method for manufacturing the heat insulating material.

従来より、断熱機能を有するコア材を外包材内に収容することで構成される断熱材が考えられている(例えば、特許文献1参照)。近年では、この種の断熱材のコア材を、繊維材により構成することが考えられている。そして、コア材を構成する繊維材の繊維径を小さくすることにより、繊維材同士が接触する接触面積が減り、断熱性能の向上を図ることができる。そのため、コア材を構成する繊維材の繊維径を小さくする試みがなされている。しかし、コア材を構成する繊維材の繊維径を小さくすると、繊維材自体の強度が不足し、ひいては、コア材の強度が不足する。そのため、例えばコア材が収容された外包材内を減圧する際に、繊維材が圧縮されて、断熱材の厚みが低下すると同時に、繊維材同士の接触面積が増加し、断熱性能が低下する。   Conventionally, the heat insulating material comprised by accommodating the core material which has a heat insulation function in an outer packaging material is considered (for example, refer patent document 1). In recent years, it has been considered that the core material of this type of heat insulating material is composed of a fiber material. And by reducing the fiber diameter of the fiber material which comprises a core material, the contact area which fiber materials contact decreases, and it can aim at the improvement of heat insulation performance. For this reason, attempts have been made to reduce the fiber diameter of the fiber material constituting the core material. However, if the fiber diameter of the fiber material constituting the core material is reduced, the strength of the fiber material itself is insufficient, and consequently the strength of the core material is insufficient. Therefore, for example, when the inside of the outer packaging material in which the core material is accommodated is decompressed, the fiber material is compressed, the thickness of the heat insulating material is reduced, and at the same time, the contact area between the fiber materials is increased and the heat insulating performance is reduced.

特開2006−105286号公報JP 2006-105286 A

本実施形態は、細い繊維径の繊維材によりコア材を構成する場合であっても、コア材の強度不足を補うことができ、断熱性能の低下を抑えることができる断熱材、この断熱材を備える冷蔵庫、並びに、この断熱材の製造方法を提供する。   Even if this embodiment is a case where a core material is constituted by a fiber material having a thin fiber diameter, a heat insulating material that can compensate for a lack of strength of the core material and suppress a decrease in heat insulating performance, and this heat insulating material A refrigerator provided and a method for producing the heat insulating material are provided.

本実施形態に係る断熱材は、マイクロオーダからナノオーダの繊維径を有する細径繊維材により構成されるコア材と、前記コア材の強度を補強する補強手段と、を備える。
本実施形態に係る断熱材の製造方法は、マイクロオーダからナノオーダの繊維径を有する細径繊維材により構成されるコア材に、当該コア材の強度を補強する補強手段を備える行程を含む。
The heat insulating material according to the present embodiment includes a core material composed of a fine fiber material having a fiber diameter of micro-order to nano-order, and reinforcing means for reinforcing the strength of the core material.
The manufacturing method of the heat insulating material which concerns on this embodiment includes the process provided with the reinforcement means which reinforces the intensity | strength of the said core material to the core material comprised by the thin fiber material which has a fiber diameter of a micro order to a nano order.

本実施形態に係る断熱材の構成例を示す断面図Sectional drawing which shows the structural example of the heat insulating material which concerns on this embodiment 繊維材の一部を拡大して示す図Figure showing an enlarged view of part of the fiber material 繊維材の構成例を示す図(その1)The figure which shows the structural example of a fiber material (the 1) 繊維材の構成例を示す図(その2)FIG. 2 shows a configuration example of a fiber material (part 2) 断熱材の製造方法の一例を示すフローチャート(その1)Flow chart showing an example of manufacturing method of heat insulating material (part 1) 断熱材の製造方法の一例を示すフローチャート(その2)Flow chart showing an example of manufacturing method of heat insulating material (part 2) 冷蔵庫の本体部の構成例を示す縦断側面図Longitudinal side view showing a configuration example of the main body of the refrigerator 冷蔵庫の本体部の構成例を示す縦断正面図Longitudinal front view showing a configuration example of the main body of the refrigerator

以下、一実施形態について図面を参照しながら説明する。図1に例示する断熱材10は、その主体部を構成するコア材11を外包材12内に収容した構成である。コア材11は、繊維材13により構成されている。外包材12は、断熱材10の表面部を構成する。外包材12は、例えば1層または2層以上の樹脂フィルムに金属または金属酸化物を蒸着させたいわゆるラミネート材であり、気体の透過性が低く、高い気密性を有する。この場合、外包材12は、コア材11を収容可能な袋状に構成されている。コア材11を収容した外包材12は、内部が真空に近い圧力まで減圧された後、密封される。これにより、コア材11を収容した外包材12は、真空断熱材10として形成される。   Hereinafter, an embodiment will be described with reference to the drawings. A heat insulating material 10 illustrated in FIG. 1 has a configuration in which a core material 11 constituting a main portion thereof is accommodated in an outer packaging material 12. The core material 11 is composed of a fiber material 13. The outer packaging material 12 constitutes a surface portion of the heat insulating material 10. The outer packaging material 12 is a so-called laminate material in which a metal or metal oxide is vapor-deposited on a resin film of one layer or two or more layers, and has low gas permeability and high airtightness. In this case, the outer packaging material 12 is configured in a bag shape that can accommodate the core material 11. The outer packaging material 12 containing the core material 11 is sealed after the inside is depressurized to a pressure close to vacuum. Thereby, the outer packaging material 12 containing the core material 11 is formed as the vacuum heat insulating material 10.

繊維材13は、ランダムに絡み合った樹脂繊維材で形成されている。この場合、繊維材13は、エレクトロスピニング法で成形されている。エレクトロスピニング法で生成された繊維材13は、その繊維径が0.1nm〜10μm程度となる細い繊維となり、且つ、長さが外径の例えば1000倍以上となる長い繊維となる。また、エレクトロスピニング法で生成された繊維材13は、全体的に直線状ではなく、ランダムに湾曲した縮れ形状をなす。これにより、図2に例示するように、繊維材13は、それぞれ、同じ繊維同士で接触する箇所Cを少なくとも1箇所有する構成となる。そのため、繊維材13は、繊維同士の絡み合いが多くなる。   The fiber material 13 is formed of a resin fiber material entangled at random. In this case, the fiber material 13 is formed by an electrospinning method. The fiber material 13 produced by the electrospinning method is a thin fiber having a fiber diameter of about 0.1 nm to 10 μm, and a long fiber having a length of, for example, 1000 times or more of the outer diameter. Moreover, the fiber material 13 produced | generated by the electrospinning method makes not the linear form as a whole, but makes the crimped shape curved at random. Thereby, as illustrated in FIG. 2, the fiber material 13 has a configuration having at least one location C where the same fibers contact each other. Therefore, the fiber material 13 has many entanglements between fibers.

この場合、繊維材13は、ガラスよりも密度の小さな有機系のポリマーで形成されている。繊維材13をガラスよりも密度の小さなポリマーで形成することにより繊維材13の軽量化を図ることができる。繊維材13は、ポリスチレン、ポリカーボネート、ポリメタクリル酸メチル、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド、ポリオキシメチレン、ポリアミドイミド、ポリイミド、ポリサルファン、ポリエーテルサルファン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、変性ポリフェニレンエーテル、シンジオタクチックポリスチレン、液晶ポリマー、ユリア樹脂、不飽和ポリエステル、ポリフェノール、メラミン樹脂、エポキシ樹脂やこれらを含む共重合体などから選択される1種類、または2種類以上のポリマーの混紡によって形成することができる。   In this case, the fiber material 13 is formed of an organic polymer having a density lower than that of glass. By forming the fiber material 13 with a polymer having a density lower than that of glass, the fiber material 13 can be reduced in weight. The fiber material 13 is polystyrene, polycarbonate, polymethyl methacrylate, polypropylene, polyethylene, polyethylene terephthalate, polybutylene terephthalate, polyamide, polyoxymethylene, polyamideimide, polyimide, polysulfane, polyethersulfane, polyetherimide, poly 1 type selected from ether ether ketone, polyphenylene sulfide, modified polyphenylene ether, syndiotactic polystyrene, liquid crystal polymer, urea resin, unsaturated polyester, polyphenol, melamine resin, epoxy resin, and a copolymer containing these, or 2 It can be formed by blending more than one type of polymer.

繊維材13をエレクトロスピニング法で形成する場合、上記ポリマーを溶液化する。溶媒としては、例えば、イソプロパノール、エチレングリコール、シクロヘキサノン、ジメチルホルムアミド、アセトン、酢酸エチル、ジメチルアセトアミド、N−メチル−2−ピロリドン、ヘキサン、トルエン、キシレン、メチルエチルケトン、ジエチルケトン、酢酸ブチル、テトラヒドロフラン、ジオキサン、ピリジンなどの揮発性の有機溶剤や水を用いることができる。また、溶媒としては上記溶媒より選ばれる一種でもよく、また、複数種類が混在しても構わない。本願発明は、上記溶媒に限定されるものではなく、上記は例示である。   When the fiber material 13 is formed by an electrospinning method, the polymer is made into a solution. Examples of the solvent include isopropanol, ethylene glycol, cyclohexanone, dimethylformamide, acetone, ethyl acetate, dimethylacetamide, N-methyl-2-pyrrolidone, hexane, toluene, xylene, methyl ethyl ketone, diethyl ketone, butyl acetate, tetrahydrofuran, dioxane, A volatile organic solvent such as pyridine or water can be used. Further, the solvent may be one kind selected from the above solvents, or a plurality of kinds may be mixed. This invention is not limited to the said solvent, The above is an illustration.

繊維材13をエレクトロスピニング法で形成する場合、繊維同士の絡み合いを多くすることができるから、紡糸すると同時に、不織布状の繊維シートを形成することが可能である。また、繊維材13をエレクトロスピニング法で形成することによりマイクロオーダからナノオーダの繊維径を得ることができるから、1枚あたりの繊維シートの厚みを非常に薄くすることが可能である。断熱材10は、このように不織布状の繊維シートにした繊維材13を積層することでコア材11を構成している。   When the fiber material 13 is formed by the electrospinning method, since the entanglement between the fibers can be increased, it is possible to form a non-woven fiber sheet simultaneously with the spinning. Further, since the fiber material 13 is formed by the electrospinning method, the fiber diameter can be obtained from the micro order to the nano order, so that the thickness of the fiber sheet per sheet can be made very thin. The heat insulating material 10 comprises the core material 11 by laminating | stacking the fiber material 13 made into the nonwoven fabric-like fiber sheet in this way.

なお、絡み合った繊維材の間の空隙の体積を小さくすることで空隙の数が増加し断熱性がより良くなる。そのため、繊維材13の繊維径は約5μm以下とすることが好ましく、さらに好ましくは1μm以下、つまりナノオーダの繊維径とすることが好ましい。また、繊維材13には、例えばケイ素酸化物、金属の水酸化物、炭酸塩、硫酸塩、ケイ酸塩など各種の無機フィラーを添加してもよい。繊維材13に無機フィラーを添加することにより、断熱性を維持しつつ強度の向上を図ることができる。添加する無機フィラーとしては、例えば、ウォラスナイト、チタン酸カリウム、ゾノトライト、石膏繊維、アルミニウムポレート、MOS(塩基性硫酸マグネシウム)、アラミド繊維、炭素繊維、ガラス繊維、タルク、マイカ、ガラスフレークなどから1種類もしくは2種類以上を添加してもよい。   In addition, by reducing the volume of the gaps between the intertwined fiber materials, the number of the gaps is increased and the heat insulation is improved. For this reason, the fiber diameter of the fiber material 13 is preferably about 5 μm or less, more preferably 1 μm or less, that is, a nano-order fiber diameter. Further, various inorganic fillers such as silicon oxide, metal hydroxide, carbonate, sulfate, and silicate may be added to the fiber material 13. By adding an inorganic filler to the fiber material 13, strength can be improved while maintaining heat insulation. Examples of the inorganic filler to be added include 1 from wollastonite, potassium titanate, zonotlite, gypsum fiber, aluminum porate, MOS (basic magnesium sulfate), aramid fiber, carbon fiber, glass fiber, talc, mica, glass flake and the like. One kind or two or more kinds may be added.

次に、断熱材10のうち特に繊維材13に係る構成例について説明する。図3に例示する構成例では、繊維材13は、シート状の複数の繊維層を構成している。繊維材13は、例えば数百層から数千層以上の繊維層を積層するとよい。この場合、繊維材13は、細径繊維層13Aおよび太径繊維層13Bを構成している。細径繊維層13Aは、マイクロオーダからナノオーダの繊維径を有する細径繊維材により構成されたシート状の繊維層である。太径繊維層13Bは、細径繊維材よりも太い太径繊維材により構成されたシート状の繊維層である。この場合、太径繊維材は、少なくとも、細径繊維材の2〜3倍の繊維径を有する。   Next, the structural example which concerns on the fiber material 13 among the heat insulating materials 10 is demonstrated. In the configuration example illustrated in FIG. 3, the fiber material 13 forms a plurality of sheet-like fiber layers. The fiber material 13 may be formed by laminating, for example, several hundred to several thousand fiber layers. In this case, the fiber material 13 constitutes a thin fiber layer 13A and a large fiber layer 13B. The small-diameter fiber layer 13A is a sheet-like fiber layer made of a fine-diameter fiber material having a fiber diameter of micro-order to nano-order. The large-diameter fiber layer 13B is a sheet-like fiber layer composed of a large-diameter fiber material thicker than the small-diameter fiber material. In this case, the large-diameter fiber material has a fiber diameter at least 2 to 3 times that of the small-diameter fiber material.

細径繊維材は、上記溶媒に例えばポリアミドイミドを溶解させた溶液を、例えば、10〜40wtパーセントで作成し、図示しないエレクトロスピニング装置により電界の力によって紡糸することにより得ることができる。そして、この紡糸と同時に細径繊維層13Aを得ることができる。また、太径繊維材は、上記溶媒に例えばポリアミドイミドを溶解させた溶液を、例えば、10〜40wtパーセントで作成し、図示しないエレクトロスピニング装置により電界の力によって紡糸することにより得ることができる。そして、この紡糸と同時に太径繊維層13Bを得ることができる。なお、細径繊維材および太径繊維材、並びに、細径繊維層13Aおよび太径繊維層13Bの製法は、これに限られるものではなく、種々の製法を採用することができる。   The fine fiber material can be obtained by preparing a solution in which, for example, polyamideimide is dissolved in the above solvent at, for example, 10 to 40 wt%, and spinning the solution by an electric spinning device (not shown) by an electric field. And the thin fiber layer 13A can be obtained simultaneously with this spinning. The large-diameter fiber material can be obtained by preparing a solution in which, for example, polyamideimide is dissolved in the above-mentioned solvent at, for example, 10 to 40 wt%, and spinning it by the electric field force using an electrospinning apparatus (not shown). And the large diameter fiber layer 13B can be obtained simultaneously with this spinning. In addition, the manufacturing method of a small diameter fiber material and a large diameter fiber material, 13A of small diameter fiber layers, and the large diameter fiber layer 13B is not restricted to this, A various manufacturing method is employable.

そして、この場合、断熱材10は、細径繊維層13Aと太径繊維層13Bが1枚ずつ交互に積層された構成となっている。このとき、細径繊維層13Aおよび太径繊維層13Bの積層枚数は、合計で、少なくとも100枚以上とするとよい。太径繊維層13Bは、細径繊維層13Aを構成する細径繊維材よりも太い太径繊維材で構成されていることから、細径繊維層13Aよりも剛性、強度が高くなっている。従って、この太径繊維層13Bは、細径繊維層13A、ひいてはコア材11の剛性、強度を補強する。そして、このようにコア材11の剛性、強度が補強されることにより、断熱材10全体としての剛性、強度も高くなる。そのため、例えばコア材11が収容された外包材12内を減圧する際に、繊維材13が圧縮されにくくなる。従って、繊維材13同士の接触面積の増加を抑えることができ、ひいては、断熱性能を向上させることができる。   In this case, the heat insulating material 10 has a configuration in which the thin fiber layers 13A and the large fiber layers 13B are alternately laminated one by one. At this time, the total number of laminated thin fiber layers 13A and large fiber layers 13B may be at least 100 or more. Since the large-diameter fiber layer 13B is made of a thick-diameter fiber material that is thicker than the fine-diameter fiber material constituting the thin-diameter fiber layer 13A, it has higher rigidity and strength than the fine-diameter fiber layer 13A. Therefore, the large-diameter fiber layer 13B reinforces the rigidity and strength of the fine-diameter fiber layer 13A and eventually the core material 11. And the rigidity and intensity | strength as the whole heat insulating material 10 become high by reinforcing the rigidity and intensity | strength of the core material 11 in this way. Therefore, for example, when the pressure inside the outer packaging material 12 in which the core material 11 is accommodated is reduced, the fiber material 13 is hardly compressed. Therefore, an increase in the contact area between the fiber materials 13 can be suppressed, and as a result, the heat insulation performance can be improved.

この断熱材10は、断熱性能の向上を図るべく、基本的には細径繊維層13Aによりコア材11を構成する構成態様において、さらに太径繊維層13Bを備える。そして、この太径繊維層13Bは、細径繊維材よりも太い太径繊維材により構成されており、コア材11の強度を補強する補強手段としての機能を備える。この構成によれば、細い繊維径の繊維材によりコア材11を構成する場合であっても、コア材11の強度不足を補うことができる。そのため、例えば外包材12内を減圧したとしても、繊維材13が圧縮されにくく、従って、断熱性能を向上させることができる。   In order to improve the heat insulating performance, the heat insulating material 10 basically includes a large diameter fiber layer 13B in a configuration in which the core material 11 is configured by the small diameter fiber layer 13A. The thick fiber layer 13B is made of a thick fiber material that is thicker than the fine fiber material, and has a function as a reinforcing means for reinforcing the strength of the core material 11. According to this structure, even if it is a case where the core material 11 is comprised with the fiber material of a thin fiber diameter, the strength shortage of the core material 11 can be compensated. Therefore, for example, even if the inside of the outer packaging material 12 is depressurized, the fiber material 13 is not easily compressed, and thus the heat insulation performance can be improved.

次に、繊維材13の変形構成例について説明する。図4に例示する構成例では、繊維材13は、シート状の複数の繊維層を構成している。この場合、繊維材13は、混合繊維層13Cを構成している。混合繊維層13Cは、上述した細径繊維層13Aに太径繊維材を混合した繊維層である。そして、この場合、断熱材10は、複数の混合繊維層13Cが積層された構成となっている。このような混合繊維層13Cは、例えば、細径繊維材形成用に調整した溶液と太径繊維材形成用に調整した溶液を、図示しないエレクトロスピニング装置が備える異なるノズルからそれぞれ同時に射出して紡糸することにより得ることができる。なお、混合繊維層13Cの製法は、これに限るものではなく、種々の製法を採用することができる。   Next, a modified configuration example of the fiber material 13 will be described. In the configuration example illustrated in FIG. 4, the fiber material 13 configures a plurality of sheet-like fiber layers. In this case, the fiber material 13 constitutes a mixed fiber layer 13C. The mixed fiber layer 13C is a fiber layer obtained by mixing the above-described thin fiber layer 13A with a large fiber material. In this case, the heat insulating material 10 has a configuration in which a plurality of mixed fiber layers 13C are laminated. For example, the mixed fiber layer 13C is formed by simultaneously injecting a solution prepared for forming a fine fiber material and a solution adjusted for forming a large fiber material from different nozzles provided in an electrospinning device (not shown). Can be obtained. In addition, the manufacturing method of 13 C of mixed fiber layers is not restricted to this, A various manufacturing method is employable.

混合繊維層13Cは、細径繊維層13Aに太径繊維材を含む構成であることから、単独の細径繊維層13Aよりも剛性、強度が高くなっている。従って、この混合繊維層13Cは、その一部を構成する太径繊維材によりコア材11の剛性、強度を補強する。そして、このようにコア材11の剛性、強度が補強されることにより、断熱材10全体としての剛性、強度も高くなる。   Since the mixed fiber layer 13C is configured to include the large-diameter fiber material in the small-diameter fiber layer 13A, the mixed fiber layer 13C has higher rigidity and strength than the single small-diameter fiber layer 13A. Accordingly, the mixed fiber layer 13C reinforces the rigidity and strength of the core material 11 with the large-diameter fiber material constituting a part thereof. And the rigidity and intensity | strength as the whole heat insulating material 10 become high by reinforcing the rigidity and intensity | strength of the core material 11 in this way.

この断熱材10によれば、断熱性能の向上を図るべく、基本的には細径繊維層13Aによりコア材11を構成する構成態様において、その細径繊維層13Aに太径繊維材を混合することにより混合繊維層13Cを構成している。そして、この混合繊維層13Cは、細径繊維材よりも太い太径繊維材を含んでおり、コア材11の強度を補強する補強手段としての機能を備える。従って、細い繊維径の繊維材によりコア材11を構成する場合であっても、コア材11の強度不足を補うことができる。そのため、例えば外包材12内を減圧したとしても、繊維材13が圧縮されにくく、従って、断熱性能を向上させることができる。   According to this heat insulating material 10, in order to improve the heat insulating performance, basically, in the configuration mode in which the core material 11 is configured by the thin fiber layer 13A, the large fiber material is mixed in the thin fiber layer 13A. Thus, the mixed fiber layer 13C is configured. The mixed fiber layer 13 </ b> C includes a thick fiber material that is thicker than the thin fiber material, and has a function as a reinforcing means for reinforcing the strength of the core material 11. Therefore, even when the core material 11 is constituted by a fiber material having a thin fiber diameter, the insufficient strength of the core material 11 can be compensated. Therefore, for example, even if the inside of the outer packaging material 12 is depressurized, the fiber material 13 is not easily compressed, and thus the heat insulation performance can be improved.

次に、上述した断熱材10の製造方法の一例について説明する。ここでは、2つの製造方法を説明する。
(積層型断熱材の製造方法)
この製造方法は、細径繊維層13Aと太径繊維層13Bを積層した積層型の断熱材10の製造方法の一例である。図5に例示するように、まず、エレクトロスピニング法により複数枚の細径繊維層13Aおよび複数枚の太径繊維層13Bを形成する(A1)。そして、細径繊維層13Aおよび太径繊維層13Bを交互に積層する(A2)。これにより、細径繊維層13Aおよび太径繊維層13Bが積層されたコア材11が形成される。また、このように形成されるコア材11は、補強手段としての機能を発揮するための太径繊維材を含んだものとなる。即ち、このステップA2は、コア材11に補強手段を備える行程の一例である。次に、このように形成されたコア材11を、袋状の外包材12内に収容する(A3)。そして、断熱材10を真空断熱材として製造するのであれば、外包材12内にコア材11を収容した後に当該外包材12内を減圧する真空化行程が行われる。
Next, an example of the manufacturing method of the heat insulating material 10 mentioned above is demonstrated. Here, two manufacturing methods will be described.
(Manufacturing method of laminated insulation)
This manufacturing method is an example of a manufacturing method of the laminated heat insulating material 10 in which the thin fiber layer 13A and the large fiber layer 13B are stacked. As illustrated in FIG. 5, first, a plurality of small-diameter fiber layers 13A and a plurality of large-diameter fiber layers 13B are formed by electrospinning (A1). Then, the thin fiber layer 13A and the large fiber layer 13B are alternately laminated (A2). Thereby, the core material 11 in which the thin fiber layer 13A and the large fiber layer 13B are laminated is formed. Moreover, the core material 11 formed in this way includes a large-diameter fiber material for exhibiting a function as a reinforcing means. That is, this step A2 is an example of a process of providing the core member 11 with reinforcing means. Next, the core material 11 formed in this way is accommodated in the bag-shaped outer packaging material 12 (A3). And if the heat insulating material 10 is manufactured as a vacuum heat insulating material, after accommodating the core material 11 in the outer packaging material 12, the vacuum process which decompresses the said outer packaging material 12 will be performed.

なお、細径繊維層13Aおよび太径繊維層13Bは、1枚ずつ交互に積層してもよいし、複数枚ずつ交互に積層してもよい。また、細径繊維層13Aの積層枚数と太径繊維層13Bの積層枚数を異ならせてもよい。また、コア材11に図示しない支持材を備える場合には、その支持材の積層面に、まず、少なくとも1層以上の太径繊維層13Bを積層し、その後、太径繊維層13Bに細径繊維層13Aを積層してもよい。この構成によれば、補強手段としての機能を有する太径繊維層13Bが支持材側に集中的に配置される構成となり、支持材をより強固に補強することができる。   In addition, 13A of small diameter fiber layers and 13B of large diameter fiber layers may be laminated | stacked alternately one by one, and may be laminated | stacked alternately by multiple sheets. Further, the number of the thin fiber layers 13A may be different from the number of the large fiber layers 13B. When the core material 11 includes a support material (not shown), first, at least one large-diameter fiber layer 13B is laminated on the laminated surface of the support material, and then the large-diameter fiber layer 13B has a small diameter. The fiber layer 13A may be laminated. According to this structure, it becomes the structure by which the large diameter fiber layer 13B which has a function as a reinforcement means is arrange | positioned intensively at the support material side, and can reinforce a support material more firmly.

(混合型断熱材の製造方法)
この製造方法は、混合繊維層13Cを積層した混合型の断熱材10の製造方法の一例である。図6に例示するように、まず、エレクトロスピニング法により混合繊維層13Cを形成する(B1)。そして、複数枚の混合繊維層13Cを積層する(B2)。これにより、混合繊維層13Cが積層されたコア材11が形成される。また、このように形成されるコア材11は、補強手段としての機能を発揮するための太径繊維材を含んだものとなる。即ち、このステップB2は、コア材11に補強手段を備える行程の一例である。次に、このように形成されたコア材11を外包材12内に収容する(B3)。そして、断熱材10を真空断熱材として製造するのであれば、外包材12内にコア材11を収容した後に当該外包材12内を減圧する真空化行程が行われる。
(Manufacturing method of mixed insulation)
This manufacturing method is an example of a manufacturing method of the mixed heat insulating material 10 in which the mixed fiber layers 13C are laminated. As illustrated in FIG. 6, first, the mixed fiber layer 13C is formed by electrospinning (B1). Then, a plurality of mixed fiber layers 13C are laminated (B2). Thereby, the core material 11 in which the mixed fiber layer 13C is laminated is formed. Moreover, the core material 11 formed in this way includes a large-diameter fiber material for exhibiting a function as a reinforcing means. That is, this step B2 is an example of a process of providing the core member 11 with reinforcing means. Next, the core material 11 formed in this way is accommodated in the outer packaging material 12 (B3). And if the heat insulating material 10 is manufactured as a vacuum heat insulating material, after accommodating the core material 11 in the outer packaging material 12, the vacuum process which decompresses the said outer packaging material 12 will be performed.

以上は、断熱材10の構成の一例および製造方法の一例について説明した。次に、上述した本実施形態に係る思想を冷蔵庫に適用する場合の一実施形態ついて説明する。即ち、図7および図8に例示するように、冷蔵庫100の外殻を構成する本体部101は、外板102と内板103とを組み合わせた構成であり、天井壁部104、底壁部105、背壁部106、左壁部107、右壁部108、機械室壁部109を備える。外板102は例えば金属製であり、内板103は例えば樹脂製である。   The example of the configuration of the heat insulating material 10 and the example of the manufacturing method have been described above. Next, an embodiment in which the idea according to this embodiment described above is applied to a refrigerator will be described. That is, as illustrated in FIGS. 7 and 8, the main body 101 constituting the outer shell of the refrigerator 100 is a combination of the outer plate 102 and the inner plate 103, and includes a ceiling wall portion 104 and a bottom wall portion 105. , A back wall portion 106, a left wall portion 107, a right wall portion 108, and a machine room wall portion 109. The outer plate 102 is made of metal, for example, and the inner plate 103 is made of resin, for example.

各壁部104〜109には、それぞれ断熱材10が組み込まれている。この場合、断熱材10は、外包材12内が減圧された真空断熱パネルとなっている。天井壁部104、底壁部105、機械室壁部109は、外板102と内板103との間に、断熱材10のほか、例えば発泡ウレタンなどからなる発泡断熱材110を備える。一方、背壁部106、左壁部107、右壁部108は、外板102と内板103との間に、断熱材10のみを備える。機械室壁部109の背面側には、機械室111が形成され、この機械室111には、冷蔵庫100の動作全般を制御する図示しない制御装置や、冷凍サイクルを構成する図示しない圧縮機などが配置される。冷蔵庫100の庫内は、図示しない仕切壁により複数の貯蔵室に区画され、各貯蔵室には図示しない扉が取り付けられる。これにより、冷蔵庫100が構成される。   Each of the walls 104 to 109 has a heat insulating material 10 incorporated therein. In this case, the heat insulating material 10 is a vacuum heat insulating panel in which the inside of the outer packaging material 12 is decompressed. The ceiling wall part 104, the bottom wall part 105, and the machine room wall part 109 include a foam heat insulating material 110 made of, for example, urethane foam, in addition to the heat insulating material 10, between the outer plate 102 and the inner plate 103. On the other hand, the back wall portion 106, the left wall portion 107, and the right wall portion 108 include only the heat insulating material 10 between the outer plate 102 and the inner plate 103. A machine room 111 is formed on the back side of the machine room wall 109. The machine room 111 includes a control device (not shown) that controls the overall operation of the refrigerator 100, a compressor (not shown) that constitutes the refrigeration cycle, and the like. Be placed. The refrigerator 100 is partitioned into a plurality of storage rooms by a partition wall (not shown), and a door (not shown) is attached to each storage room. Thereby, the refrigerator 100 is comprised.

本実施形態に係る断熱材は、マイクロオーダからナノオーダの繊維径を有する細径繊維材により構成されるコア材と、前記コア材の強度を補強する補強手段と、を備える。本実施形態によれば、細い繊維径の繊維材によりコア材を構成する場合であっても、コア材の強度不足を補うことができ、断熱性能を向上させることができる。   The heat insulating material according to the present embodiment includes a core material composed of a fine fiber material having a fiber diameter of micro-order to nano-order, and reinforcing means for reinforcing the strength of the core material. According to the present embodiment, even when the core material is constituted by a fiber material having a thin fiber diameter, insufficient strength of the core material can be compensated for and heat insulation performance can be improved.

本実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。本実施形態およびその変形は、発明の範囲および要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
例えば、本実施形態に係る断熱材は、冷蔵庫以外にも適用可能である。また、繊維材は、樹脂繊維材ではなく、ガラス繊維材であってもよい。また、断熱材は、真空化していないものであってもよい。
This embodiment is presented as an example and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
For example, the heat insulating material according to the present embodiment can be applied to other than the refrigerator. The fiber material may be a glass fiber material instead of a resin fiber material. Further, the heat insulating material may not be evacuated.

図面中、10は断熱材、11はコア材、13Aは細径繊維層、13Bは太径繊維層(補強手段)、13Cは混合繊維層(補強手段)、100は冷蔵庫を示す。   In the drawings, 10 is a heat insulating material, 11 is a core material, 13A is a thin fiber layer, 13B is a large fiber layer (reinforcing means), 13C is a mixed fiber layer (reinforcing means), and 100 is a refrigerator.

Claims (12)

マイクロオーダからナノオーダの繊維径を有する細径繊維材により構成されるコア材と、前記コア材の強度を補強する補強手段と、を備える断熱材。   A heat insulating material comprising: a core material composed of a thin fiber material having a fiber diameter of micro order to nano order; and reinforcing means for reinforcing the strength of the core material. 前記細径繊維材は、同じ繊維同士で接触する箇所を少なくとも1箇所有している請求項1に記載の断熱材。   The heat insulating material according to claim 1, wherein the thin fiber material has at least one location where the same fibers contact each other. 前記補強手段は、前記細径繊維材よりも繊維径が太い太径繊維材で構成されており、
前記細径繊維材は、シート状の細径繊維層を構成し、
前記太径繊維材は、シート状の太径繊維層を構成し、
前記細径繊維層と前記太径繊維層が積層されている請求項1または2に記載の断熱材。
The reinforcing means is composed of a thick fiber material having a fiber diameter larger than that of the thin fiber material,
The fine fiber material constitutes a sheet-like fine fiber layer,
The thick fiber material constitutes a sheet-shaped thick fiber layer,
The heat insulating material according to claim 1 or 2, wherein the thin fiber layer and the large fiber layer are laminated.
前記補強手段は、前記細径繊維材よりも繊維径が太い太径繊維材で構成されており、
前記細径繊維材は、シート状の細径繊維層を構成し、
前記細径繊維層に前記太径繊維材が混合されている請求項1または2に記載の断熱材。
The reinforcing means is composed of a thick fiber material having a fiber diameter larger than that of the thin fiber material,
The fine fiber material constitutes a sheet-like fine fiber layer,
The heat insulating material according to claim 1 or 2, wherein the thick fiber material is mixed in the thin fiber layer.
前記細径繊維材の繊維径は、0.1nm〜10μmである請求項1から4の何れか1項に記載の断熱材。   The heat insulating material according to any one of claims 1 to 4, wherein a fiber diameter of the thin fiber material is 0.1 nm to 10 µm. 請求項1から5の何れか1項に記載の断熱材に備えられるコア材。   The core material with which the heat insulating material of any one of Claim 1 to 5 is equipped. 請求項1から5の何れか1項に記載の断熱材を備える冷蔵庫。   A refrigerator provided with the heat insulating material of any one of Claim 1 to 5. マイクロオーダからナノオーダの繊維径を有する細径繊維材により構成されるコア材に、当該コア材の強度を補強する補強手段を備える行程を含む断熱材の製造方法。   The manufacturing method of the heat insulating material which includes the process provided with the reinforcement means which reinforces the intensity | strength of the said core material to the core material comprised by the thin fiber material which has a fiber diameter of a micro order to a nano order. 前記細径繊維材として、同じ繊維同士で接触する箇所を少なくとも1箇所有する繊維材を用いる請求項8に記載の断熱材の製造方法。   The manufacturing method of the heat insulating material of Claim 8 using the fiber material which has at least one location where the same fibers contact as the said thin fiber material. 前記補強手段を、前記細径繊維材よりも繊維径が太い太径繊維材で構成し、
前記細径繊維材により、シート状の細径繊維層を構成し、
前記太径繊維材により、シート状の太径繊維層を構成し、
前記細径繊維層と前記太径繊維層を積層する請求項8または9に記載の断熱材の製造方法。
The reinforcing means is composed of a thick fiber material having a fiber diameter larger than that of the thin fiber material,
The thin fiber material constitutes a sheet-like thin fiber layer,
The thick fiber material constitutes a sheet-like thick fiber layer,
The manufacturing method of the heat insulating material of Claim 8 or 9 which laminates | stacks the said small diameter fiber layer and the said large diameter fiber layer.
前記補強手段を、前記細径繊維材よりも繊維径が太い太径繊維材で構成し、
前記細径繊維材により、シート状の細径繊維層を構成し、
前記細径繊維層に前記太径繊維材を混合する請求項8または9に記載の断熱材の製造方法。
The reinforcing means is composed of a thick fiber material having a fiber diameter larger than that of the thin fiber material,
The thin fiber material constitutes a sheet-like thin fiber layer,
The manufacturing method of the heat insulating material of Claim 8 or 9 which mixes the said large diameter fiber material with the said small diameter fiber layer.
前記細径繊維材として、繊維径が0.1nm〜10μmである繊維材を用いる請求項8から11の何れか1項に記載の断熱材の製造方法。   The method for producing a heat insulating material according to any one of claims 8 to 11, wherein a fiber material having a fiber diameter of 0.1 nm to 10 µm is used as the thin fiber material.
JP2015050734A 2015-03-10 2015-03-13 Heat insulation material, core material, refrigerator, and manufacturing method of heat insulation material Pending JP2016169823A (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP2015050734A JP2016169823A (en) 2015-03-13 2015-03-13 Heat insulation material, core material, refrigerator, and manufacturing method of heat insulation material
CN201680014313.XA CN107407454B (en) 2015-03-10 2016-03-08 Vacuum heat-insulating plate, core material and refrigerator
US15/556,884 US20180238605A1 (en) 2015-03-10 2016-03-08 Vacuum heat insulation panel, core material, refrigerator, manufacturing method of vacuum heat insulation panel, and recycling method of refrigerator
CN201911068875.4A CN110778852B (en) 2015-03-10 2016-03-08 Heat insulating material, core material, refrigerator, and method for manufacturing heat insulating material
EP16761747.1A EP3270030A4 (en) 2015-03-10 2016-03-08 Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator
US15/556,920 US20190257573A1 (en) 2015-03-10 2016-03-08 Vacuum insulation panel, core material, and refrigerator
EP16761749.7A EP3270032A4 (en) 2015-03-10 2016-03-08 Vacuum insulated panel, core material, and refrigerator
KR1020197022182A KR102279401B1 (en) 2015-03-10 2016-03-08 Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator
KR1020177026870A KR102072453B1 (en) 2015-03-10 2016-03-08 Vacuum Insulation Panel, Core Material, Refrigerator
US15/556,918 US20180238609A1 (en) 2015-03-10 2016-03-08 Heat insulation material, core material, refrigerator, manufacturing method of heat insulation material
PCT/JP2016/057132 WO2016143781A1 (en) 2015-03-10 2016-03-08 Vacuum insulated panel, core material, and refrigerator
EP16761748.9A EP3270031A4 (en) 2015-03-10 2016-03-08 Insulation, core material, refrigerator, and insulation manufacturing method
CN201680014497.XA CN107429872B (en) 2015-03-10 2016-03-08 The manufacturing method of heat-insulating material, core material, refrigerator and heat-insulating material
KR1020177025681A KR20170117508A (en) 2015-03-10 2016-03-08 Vacuum insulation panel, core material, refrigerator, vacuum insulation panel manufacturing method, refrigerator recycling method
PCT/JP2016/057130 WO2016143779A1 (en) 2015-03-10 2016-03-08 Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator
KR1020177025799A KR20170117181A (en) 2015-03-10 2016-03-08 Method of manufacturing insulation, core material, refrigerator, insulation
CN201680014502.7A CN107429873A (en) 2015-03-10 2016-03-08 Vacuum insulation panel, core, refrigerator, the manufacture method of vacuum insulation panel, the recycling method of refrigerator
PCT/JP2016/057131 WO2016143780A1 (en) 2015-03-10 2016-03-08 Insulation, core material, refrigerator, and insulation manufacturing method
CN201610134479.7A CN105972389B (en) 2015-03-10 2016-03-10 Vacuum heat-insulating plate and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050734A JP2016169823A (en) 2015-03-13 2015-03-13 Heat insulation material, core material, refrigerator, and manufacturing method of heat insulation material

Publications (1)

Publication Number Publication Date
JP2016169823A true JP2016169823A (en) 2016-09-23

Family

ID=56983464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050734A Pending JP2016169823A (en) 2015-03-10 2015-03-13 Heat insulation material, core material, refrigerator, and manufacturing method of heat insulation material

Country Status (1)

Country Link
JP (1) JP2016169823A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310384A (en) * 2001-04-11 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
JP2010007683A (en) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp Vacuum thermal insulating material
JP2012092870A (en) * 2010-10-25 2012-05-17 Maeda Kosen Co Ltd Vacuum heat insulating material and heat insulating box using the same
WO2014162771A1 (en) * 2013-04-05 2014-10-09 三菱電機株式会社 Vacuum heat-insulating material, thermal insulation tank provided with same, thermal insulator, and heat pump hot water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310384A (en) * 2001-04-11 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
JP2010007683A (en) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp Vacuum thermal insulating material
JP2012092870A (en) * 2010-10-25 2012-05-17 Maeda Kosen Co Ltd Vacuum heat insulating material and heat insulating box using the same
WO2014162771A1 (en) * 2013-04-05 2014-10-09 三菱電機株式会社 Vacuum heat-insulating material, thermal insulation tank provided with same, thermal insulator, and heat pump hot water heater

Similar Documents

Publication Publication Date Title
WO2016143780A1 (en) Insulation, core material, refrigerator, and insulation manufacturing method
EP2677517B1 (en) Sound absorption panel
EP2462394B1 (en) Vacuum insulation member, refrigerator having vacuum insulation member, and method for fabricating vacuum insulation member
WO2018147464A1 (en) Resin foamed particles, resin foam molded body, and laminated body
JP2008223922A (en) Vacuum heat insulating material
JP2018040421A (en) Core material for vacuum heat insulation panel, vacuum heat insulation panel and refrigerator
JP2016169823A (en) Heat insulation material, core material, refrigerator, and manufacturing method of heat insulation material
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP6517551B2 (en) Method of manufacturing vacuum insulation panel, vacuum insulation panel, core material, refrigerator
JP2016173148A (en) Vacuum heat insulation panel, core material, refrigerator, and method for manufacturing vacuum heat insulation panel
JP2016173143A (en) Heat insulation material, refrigerator, and method for manufacturing heat insulation material
JP2016173142A (en) Heat insulator, core material, refrigerator, and heat insulator manufacturing method
JP2016173147A (en) Vacuum heat insulation panel and refrigerator
JP2016166660A (en) Vacuum heat insulation panel core material, vacuum heat insulation panel and refrigerator
JP2019143809A (en) Vacuum heat insulation panel, core material and refrigerator
JP6478968B2 (en) Structure
JP2016173145A (en) Vacuum heat insulation panel, core material, and refrigerator
JP6062472B2 (en) Core material, structure
JP2016173146A (en) Vacuum heat insulation panel, core material, and refrigerator
JP2016173114A (en) Heat insulation material, core material, and refrigerator
JP2003241765A (en) Fiber laminated structure having damping and sound absorbing property
JP6609420B2 (en) Vacuum insulation material and equipment using the same
JP2016173144A (en) Core material for vacuum heat insulation panel, vacuum heat insulation panel and refrigerator
JP2016173150A (en) Vacuum heat insulation panel for refrigerator and method for recycling refrigerator
JP2013204332A (en) Soundproof panel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519