JP2010007806A - Vacuum thermal insulation panel and thermal insulation box body with this - Google Patents

Vacuum thermal insulation panel and thermal insulation box body with this Download PDF

Info

Publication number
JP2010007806A
JP2010007806A JP2008169810A JP2008169810A JP2010007806A JP 2010007806 A JP2010007806 A JP 2010007806A JP 2008169810 A JP2008169810 A JP 2008169810A JP 2008169810 A JP2008169810 A JP 2008169810A JP 2010007806 A JP2010007806 A JP 2010007806A
Authority
JP
Japan
Prior art keywords
core material
vacuum
organic fiber
insulation panel
heat insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008169810A
Other languages
Japanese (ja)
Inventor
Tsukasa Takagi
司 高木
Shuichi Iwata
修一 岩田
Kyoko Nomura
京子 野村
Hideaki Nakano
秀明 中野
Masanori Tsujihara
雅法 辻原
Shohei Abiko
尚平 安孫子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008169810A priority Critical patent/JP2010007806A/en
Publication of JP2010007806A publication Critical patent/JP2010007806A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum thermal insulation panel having high rigidity, excellent treating property, heat insulation performance and recycle property and a thermal insulation box body with this. <P>SOLUTION: The vacuum thermal insulation panel 1 for storing and sealing a core material 2 in an external package material 10 having gas barrier properties so that inside of the external package material 10 is brought to be a decompressed state. The core material 2 is structured by an organic fiber body 3 having an irregular part in a thickness direction or is structured by laminating the organic fiber bodies 3. The vacuum thermal insulation panel 1 is arranged between an outer box and an inner box of the thermal insulation box body. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、真空断熱パネル及びこれを備えた断熱箱体に係り、特に、冷熱機器に適用して好適な真空断熱パネル及び断熱箱体に関するものである。   The present invention relates to a vacuum heat insulation panel and a heat insulation box provided with the same, and more particularly to a vacuum heat insulation panel and a heat insulation box suitable for application to a cooling apparatus.

従来、断熱材として一般にウレタンが用いられていたが、昨今、ウレタンよりも断熱性能が優れた真空断熱パネルが、ウレタンと併用して使用されるようになった。このような真空断熱パネルは、冷蔵庫の他に、保温庫、車輌空調機、給湯器などの冷熱機器にも使用されている。   Conventionally, urethane has been generally used as a heat insulating material, but recently, vacuum insulation panels having better heat insulation performance than urethane have come to be used in combination with urethane. Such a vacuum heat insulation panel is used not only for a refrigerator but also for a cooling device such as a heat storage, a vehicle air conditioner, and a water heater.

真空断熱パネルは、ガスバリア性(空気遮断性と同じ)のアルミニウム箔からなる外包材の中に、粉末、発泡体、繊維体などを芯材として挿入し、内部が数Paの真空度に保たれているものである。
このような真空断熱パネルの断熱性能が低下する原因の一つとして、外部から侵入する空気・水の他に、芯材から発生するアウトガス、芯材そのものに存在する水分があるが、これらを吸着するために、外包材の中に吸着剤が挿入されている。
The vacuum insulation panel is made by inserting powder, foam, fiber, etc. as a core material into an outer packaging material made of aluminum foil with gas barrier properties (same as air barrier property), and the inside is kept at a degree of vacuum of several Pa. It is what.
One of the causes of the deterioration of the heat insulation performance of such a vacuum insulation panel is not only air and water entering from the outside, but also outgas generated from the core material and moisture present in the core material itself. In order to do this, an adsorbent is inserted into the outer packaging material.

真空断熱パネルの芯材として、シリカなどの粉末、ウレタンなどの発泡体、ガラスなどの繊維体などがあるが、現状では断熱性の最も優れた繊維体が主流になっている。
繊維体には、大別して無機繊維と有機繊維の2種類があり、無機繊維には、ガラス繊維、炭素繊維などがある(例えば、特許文献1,8参照)。また有機繊維には、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエチレンテレフタレート繊維、ポリエステル繊維、ポリエチレン繊維、セルローズ繊維などがある(例えば、特許文献2,7参照)。
As a core material of a vacuum heat insulation panel, there are powders such as silica, foams such as urethane, fiber bodies such as glass, etc., but currently, fiber bodies having the most excellent heat insulation properties are mainly used.
There are roughly two types of fiber bodies, inorganic fibers and organic fibers. Examples of inorganic fibers include glass fibers and carbon fibers (see, for example, Patent Documents 1 and 8). Examples of the organic fiber include polypropylene fiber, polylactic acid fiber, aramid fiber, LCP (liquid crystal polymer) fiber, polyethylene terephthalate fiber, polyester fiber, polyethylene fiber, and cellulose fiber (see, for example, Patent Documents 2 and 7).

また、繊維体の形状(形態)には、綿状のもの、シートを積層したもの(例えば、特許文献3,4参照)や、シートを繊維の配向が交互になるように積層したものなどがある(例えば、特許文献5,6参照)。   Further, the shape (form) of the fibrous body includes a cotton-like one, a laminate of sheets (for example, see Patent Documents 3 and 4), a laminate of sheets so that fiber orientations are alternated, and the like. Yes (see, for example, Patent Documents 5 and 6).

ところで、真空断熱パネルは、内部が数Pa程度に減圧されているので、常に厚み方向に大気圧とほぼ等しい圧力を受け続けることになり、この圧力に耐えうるだけの強度を確保しなければならない。また、真空断熱パネルを断熱箱体へ適用する場合、通常その周囲に発泡ポリウレタン樹脂などの断熱材を充填する。これにより、真空断熱パネルは大気圧に加えて、充填材の発泡圧力を受けることになる。   By the way, since the vacuum insulation panel is depressurized to about several Pa inside, it always receives a pressure almost equal to the atmospheric pressure in the thickness direction, and must have a strength sufficient to withstand this pressure. . Moreover, when applying a vacuum heat insulation panel to a heat insulation box, normally, the circumference | surroundings are filled with heat insulating materials, such as a polyurethane foam resin. Thereby, a vacuum heat insulation panel receives the foaming pressure of a filler in addition to atmospheric pressure.

このように、真空断熱パネルは常に外部から圧力を受けるため、その圧力に耐え得るだけの強度が必要となる。芯材が繊維体の場合、繊維の強度に応じて外部から受ける圧力により芯材が押し潰される。その結果、真空包装後の芯材の充填率は、ガラス繊維では10%弱(特許文献1参照)であるのに対し、ポリエステル繊維では20%弱(特許文献7参照)となる。   Thus, since the vacuum heat insulation panel always receives pressure from the outside, it needs to be strong enough to withstand the pressure. When the core material is a fibrous body, the core material is crushed by the pressure received from the outside according to the strength of the fiber. As a result, the filling rate of the core material after vacuum packaging is a little less than 10% for glass fibers (see Patent Document 1), whereas it is a little less than 20% for polyester fibers (see Patent Document 7).

真空断熱パネルの強度は、主として外包材の中に挿入された芯材によって形成されるため、芯材の素材と共に芯材の構造も重要である。厚み方向の応力に強い芯材構造として、例えば、段ボールを厚み方向からみたときに、長方形が一方向に連続して接続された形状、段ボールを厚み方向からみたときに六角形に接続した形状、あるいは、段ボールによりコルゲート構造に形成したものがある(例えば、特許文献9参照)。   Since the strength of the vacuum heat insulating panel is mainly formed by a core material inserted into the outer packaging material, the structure of the core material is also important as well as the material of the core material. As a core material structure resistant to stress in the thickness direction, for example, when the cardboard is viewed from the thickness direction, a shape in which the rectangles are continuously connected in one direction, a shape in which the cardboard is connected to the hexagon when viewed from the thickness direction, Or there exists what was formed in the corrugated structure with the corrugated cardboard (for example, refer patent document 9).

特開平8−028776号公報(第2−3頁)JP-A-8-028776 (page 2-3) 特開2002−188791号公報(第4−6頁、図1)JP 2002-188791 A (page 4-6, FIG. 1) 特開2005−344832号公報(第3−4頁、図1)Japanese Patent Laying-Open No. 2005-344832 (page 3-4, FIG. 1) 特開2006−307924号公報(第5−6頁、図2)JP 2006-307924 A (page 5-6, FIG. 2) 特開2006−017151号公報(第3頁、図1)JP 2006-017151 A (page 3, FIG. 1) 特公平7−103955号公報(第2頁、図2)Japanese Examined Patent Publication No. 7-103955 (second page, FIG. 2) 特開2006−283817号公報(第7−8頁)JP 2006-283817 A (pages 7-8) 特開2005−344870号公報(第7頁、図2)Japanese Patent Laying-Open No. 2005-344870 (page 7, FIG. 2) 特開平11−201376(第5−6頁、図1、図5、図8)JP-A-11-201376 (page 5-6, FIG. 1, FIG. 5, FIG. 8)

従来の真空断熱パネルは、一般にガラス繊維やポリエステル繊維が芯材して用いられているが、ガラス繊維は硬くて脆いため、真空断熱パネルの製造時に粉塵が飛び散って、作業者の皮膚や粘膜などに付着すると刺激を受けるおそれがあり、その取扱性、作業性が問題になっている。また、リサイクルの場面を考えた場合、例えば、冷蔵庫ではリサイクル工場で製品ごとに粉砕され、ガラス繊維はウレタン屑などに混ってサーマルリサイクルに供されるが、燃焼効率が低下したり、残渣となったりするなど、リサイクル性が良くないという問題があった。   Conventional vacuum insulation panels are generally used with glass fiber or polyester fiber as the core material, but since glass fiber is hard and brittle, dust is scattered during the manufacture of vacuum insulation panels, and the skin and mucous membranes of workers There is a risk of irritation if it adheres to it, and its handling and workability are problematic. In addition, when considering the scene of recycling, for example, in a refrigerator, each product is pulverized in a recycling factory, and glass fiber is mixed with urethane waste and is used for thermal recycling. There was a problem that recyclability was not good.

また、ポリエステルなどの有機繊維は、ガラス繊維に比べて強度が低いため、大気圧や周囲に充填される断熱材の発泡圧力で圧縮されやすく、真空断熱パネル内の芯材の充填率がガラス繊維より大きくなり、これが断熱性能に劣る要因にもなっていた。   In addition, since organic fibers such as polyester are lower in strength than glass fibers, they are easily compressed by atmospheric pressure and the foaming pressure of the heat insulating material filled in the surroundings, and the filling rate of the core material in the vacuum heat insulating panel is glass fiber. It became larger and this was also a factor inferior in heat insulation performance.

このようなことから、真空断熱パネルの芯材の強度を向上させるための対策として、特許文献9に記載されているように、厚み方向からみて長方形や六角形をなす構造や、コルゲート形状をなす構造があるが、いずれの場合も、断熱方向である厚み方向に芯材が連続的に繋がっているため、芯材を介して伝熱し易くなり、断熱性を十分に改善できなかった。   For this reason, as described in Patent Document 9, as a measure for improving the strength of the core material of the vacuum heat insulating panel, a rectangular or hexagonal structure as viewed from the thickness direction, or a corrugated shape is formed. Although there is a structure, in any case, since the core material is continuously connected in the thickness direction, which is the heat insulation direction, it is easy to transfer heat through the core material, and the heat insulation property cannot be sufficiently improved.

本発明は、上記の課題を解決するためになされたもので、剛性が高く、取り扱い性、断熱性能及びリサイクル性に優れた真空断熱パネル及びこれを使えた断熱箱体を提供することを目的としたものである。   The present invention has been made in order to solve the above-described problems, and has an object to provide a vacuum heat insulation panel having high rigidity, excellent handleability, heat insulation performance, and recyclability, and a heat insulation box using the same. It is a thing.

本発明は、ガスバリア性の外包材内に芯材を収容して密封し、該外包材内を減圧状態にした真空断熱パネルであって、前記芯材を、厚み方向に凹凸部を有する有機繊維体で構成したものである。   The present invention relates to a vacuum heat insulating panel in which a core material is accommodated and sealed in a gas barrier outer packaging material, and the inner packaging material is decompressed, and the core material is an organic fiber having an uneven portion in the thickness direction. It consists of a body.

また、本発明に係る断熱箱体は、外箱と、この外筐の内側に空間部を介して配置された内箱とを有し、前記空間部の一部又は全域にわたって上記の真空断熱パネルを配設したものである。   Further, the heat insulation box according to the present invention has an outer box and an inner box disposed inside the outer casing via a space portion, and the vacuum heat insulation panel described above over a part or the entire area of the space portion. Is provided.

本発明によれば、剛性が高く、取扱い性、断熱性能及びリサイクル性に優れた真空断熱パネルを得ることができる。
また、本発明に係る断熱箱体は、上記のような真空断熱パネルを備えたので、低伝熱性能を保持すると共に断熱箱体の強度を高めることができ、その上断熱箱体の経時的な変形を抑制することができる。
According to the present invention, it is possible to obtain a vacuum heat insulation panel having high rigidity and excellent handleability, heat insulation performance and recyclability.
Further, since the heat insulation box according to the present invention includes the vacuum heat insulation panel as described above, it is possible to maintain low heat transfer performance and increase the strength of the heat insulation box. Can be suppressed.

[実施の形態1]
図1は本発明の実施の形態1に係る真空断熱パネルの斜視図、図2は図1の分解斜視図である。
真空断熱パネル1は、厚み方向に凹凸を有する複数の有機繊維体3を積層した芯材2を、空気遮断性を有するガスバリア性容器10(以下、外包材という)内に収容し、外包材10を密封して内部を所定の真空度に減圧したものである。なお、9は芯材2内に配置又は埋設されてガスや水分を吸着する吸着剤である。
[Embodiment 1]
1 is a perspective view of a vacuum heat insulation panel according to Embodiment 1 of the present invention, and FIG. 2 is an exploded perspective view of FIG.
The vacuum heat insulation panel 1 accommodates a core material 2 in which a plurality of organic fiber bodies 3 having irregularities in the thickness direction are stacked in a gas barrier container 10 (hereinafter referred to as an outer packaging material) having air barrier properties. Is sealed and the inside is depressurized to a predetermined degree of vacuum. Reference numeral 9 denotes an adsorbent which is disposed or embedded in the core material 2 and adsorbs gas and moisture.

芯材2を構成する有機繊維体3は、図3(a)に示すような、例えばポリエステル繊維からなるシート状の不織布4を素材とし、図3(b)に示すように、厚み方向に形成された凹凸部である円弧部5が連続する波形形状に折り曲げ(しわ寄せ)られ、ミシンで縫製8してその形状を形成し保持したものである。   The organic fiber body 3 constituting the core material 2 is made of a sheet-like non-woven fabric 4 made of, for example, polyester fiber as shown in FIG. 3A, and is formed in the thickness direction as shown in FIG. 3B. The circular arc portion 5 which is the uneven portion is bent (creased) into a continuous wave shape, and the shape is formed and held by sewing 8 with a sewing machine.

このように、凹凸部が波形形状に形成された有機繊維体3は、図4に示すように、下層の有機繊維体3aの円弧部5の頂部に、その上層の有機繊維体3bの円弧部5の下端部6(以下、底部という)が接するように、順次空間部7を介して厚み方向に複数段(図には、6段の場合が示してある)積層され、厚みのある芯材2が形成される。
このように構成した芯材2は、吸着剤9が取付けられて外包材10内に収容され、開口部が閉じられて内部が所定の真空度に減圧され、真空断熱パネル1が構成される。
Thus, as shown in FIG. 4, the organic fiber body 3 in which the concavo-convex portion is formed in a corrugated shape is formed on the top of the arc portion 5 of the lower organic fiber body 3a and the arc portion of the upper organic fiber body 3b. 5 are stacked in multiple layers in the thickness direction through the space portion 7 so that the lower end portion 6 (hereinafter referred to as the bottom portion) is in contact with each other (in the figure, the case of six steps is shown), and a thick core material 2 is formed.
The core material 2 configured as described above is attached to the adsorbent 9 and accommodated in the outer packaging material 10, the opening is closed, and the inside is depressurized to a predetermined degree of vacuum, whereby the vacuum heat insulating panel 1 is configured.

図5は芯材2の他の例を示すもので、本例においては、有機繊維体3の縦・横方向の長さをほぼ等しく形成し、下層の有機繊維体3aの上に、90°回転した上層の有機繊維体3bを、波形形状の延伸方向が交差するように載置し、以下、交互に90°回転させて積層したものである。   FIG. 5 shows another example of the core material 2. In this example, the lengths of the organic fiber bodies 3 in the vertical and horizontal directions are substantially equal, and 90 ° is formed on the lower organic fiber body 3 a. The rotated organic fiber body 3b of the upper layer is placed so that the extending directions of the corrugated shape intersect with each other, and thereafter, the organic fiber bodies 3b are alternately rotated by 90 ° and stacked.

上記の説明では、芯材2を構成する有機繊維体3を、ポリエステル繊維からなるシート状の不織布を素材とした場合を示したが、これに限定するものではなく、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエチレンテレフタレート繊維、ポリエチレン繊維、セルローズ繊維、ポリスチレン繊維などの有機繊維も使用することができる。   In the above description, the case where the organic fiber body 3 constituting the core material 2 is made of a sheet-like non-woven fabric made of polyester fiber is not limited to this, but is not limited to this, polypropylene fiber, polylactic acid fiber, Organic fibers such as aramid fiber, LCP (liquid crystal polymer) fiber, polyethylene terephthalate fiber, polyethylene fiber, cellulose fiber, and polystyrene fiber can also be used.

また、上記の説明では、有機繊維体3の凹凸部を円弧部5が連続する波形形状に形成した場合を示したが、例えば、図6に示すように三角形部5aが連続する凹凸部、あるいは台形部5bが連続する凹凸部など、他の形状の凹凸部で形成し、これを図4又は図5のように積層してもよい。
さらに、上記の説明では、凹凸部を有する複数の有機繊維体3を積層して芯材2を形成した場合を示したが、厚い板厚で波形形状等の凹凸部を有する単層の有機繊維体3を芯材としてもよい。
Further, in the above description, the case where the uneven portion of the organic fiber body 3 is formed in a corrugated shape in which the arc portion 5 is continuous is shown. For example, as shown in FIG. 6, the uneven portion in which the triangular portion 5a is continuous, or It may be formed by uneven portions of other shapes such as the uneven portion where the trapezoidal portion 5b is continuous, and may be laminated as shown in FIG. 4 or FIG.
Furthermore, in the above description, a case where the core material 2 is formed by laminating a plurality of organic fiber bodies 3 having uneven portions is shown, but a single layer organic fiber having uneven portions such as corrugated shapes with a thick plate thickness. The body 3 may be a core material.

また、上記の説明では、有機繊維体3の波形形状等の凹凸部を形成する手段として、縫製8による場合を示したが、縫製8に代えて、凹凸部の底部6を接着剤や熱融着によって固定し、形状を保持するようにしてもよい。なお、接着剤を用いる場合は、真空下においてガスの発生の少ないホットメルト接着剤を用いることが望ましい。さらに、例えば図6(b)の台形部5bが連続して凹凸部を形成する場合は、台形部5bが連続する金型を用い、シート状の有機繊維を熱加工することにより、凹凸状を形成することができる。   In the above description, the case of using the sewing 8 is shown as means for forming the concavo-convex portion such as the corrugated shape of the organic fiber body 3, but instead of the sewing 8, the bottom portion 6 of the concavo-convex portion is replaced with an adhesive or heat fusion It may be fixed by wearing and the shape may be maintained. In the case of using an adhesive, it is desirable to use a hot melt adhesive that generates less gas under vacuum. Furthermore, for example, when the trapezoidal portion 5b in FIG. 6B continuously forms the uneven portion, the uneven shape is obtained by thermally processing the sheet-like organic fiber using a mold in which the trapezoidal portion 5b is continuous. Can be formed.

本実施の形態によれば、凹凸形状を備えたシート状の有機繊維体3を空間部7を介して積層し、又は凹凸部の延伸方向を交差させて積層して真空断熱パネル1の芯材2としたので、芯材2の剛性が高まり、真空下においても芯材2の潰れが少なく、芯材2の充填率が高まることなく低熱伝導率を保持することができる。また、芯材2は積層構造としているので、断熱方向である厚み方向に対して連続した形状となっておらず空間部7が存在するため、熱伝導を悪化することなく剛性を高めることができる。   According to the present embodiment, the sheet-like organic fiber body 3 having a concavo-convex shape is laminated via the space portion 7 or laminated so that the extending directions of the concavo-convex portions are crossed, and the core material of the vacuum heat insulating panel 1. Therefore, the rigidity of the core material 2 is increased, the core material 2 is less crushed even under vacuum, and a low thermal conductivity can be maintained without increasing the filling rate of the core material 2. Moreover, since the core material 2 has a laminated structure, the space portion 7 is not formed in a continuous shape with respect to the thickness direction, which is a heat insulating direction, and thus the rigidity can be increased without deteriorating heat conduction. .

また、芯材2の剛性が高まることにより、真空断熱パネル1そのものも剛性が高くなるため、例えば、冷蔵庫の断熱箱体にこの真空断熱パネル1を埋設した場合、その強度を向上させることができる。さらに、真空断熱パネル1の耐クリープ性を向上させることができるので、断熱箱体の経時的な変形を抑制することができる。   Moreover, since the rigidity of the vacuum heat insulation panel 1 itself also becomes high because the rigidity of the core material 2 increases, for example, when the vacuum heat insulation panel 1 is embedded in a heat insulation box of a refrigerator, the strength can be improved. . Furthermore, since the creep resistance of the vacuum heat insulation panel 1 can be improved, the temporal deformation of the heat insulation box can be suppressed.

本実施の形態に係る芯材2において、有機繊維体3の波形形状等の凹凸部の高さが高い場合、真空断熱パネル1内の気体分子の衝突が増加するため気体の熱伝導が増加し、その結果、真空断熱パネル1に熱伝導率が悪化する。気体分子の衝突確率を低下させるためには、芯材2の凹凸部の高さを、真空断熱パネル1の内部圧力における気体の平均自由行程以下にすればよく、これにより、気体の熱伝導を無視できるレベルに抑制することができる。   In the core material 2 according to the present embodiment, when the height of the concavo-convex portion such as the corrugated shape of the organic fiber body 3 is high, the collision of gas molecules in the vacuum heat insulating panel 1 increases, so that the heat conduction of the gas increases. As a result, the heat conductivity of the vacuum heat insulating panel 1 is deteriorated. In order to reduce the collision probability of gas molecules, the height of the concavo-convex portion of the core material 2 may be set to be equal to or less than the mean free path of gas at the internal pressure of the vacuum heat insulating panel 1, thereby reducing the heat conduction of the gas. It can be suppressed to a negligible level.

[実施の形態2]
図7は本発明の実施の形態2に係る断熱箱体の模式的説明図で、図には冷蔵庫を構成する断熱箱体を示す。
断熱箱体20は、例えば薄板鋼板からなる外箱21と、その内側に空間部Gを隔てて設けられた例えばABS樹脂の真空成形によって形成された内箱22とからなり、前面側の開口部には開閉自在の扉23が設けられている。
[Embodiment 2]
FIG. 7 is a schematic explanatory view of a heat insulation box according to Embodiment 2 of the present invention, and shows the heat insulation box constituting the refrigerator.
The heat insulation box 20 is composed of an outer box 21 made of, for example, a thin steel plate, and an inner box 22 formed by vacuum molding of, for example, ABS resin provided on the inner side of the space G, with an opening on the front side. Is provided with a door 23 that can be freely opened and closed.

外箱21と内箱22との間に形成された空間部G内には、外箱21(又は内箱22)に沿って、実施の形態1に係る真空断熱パネル1が配設され、両面テープあるいは接着剤などにより外箱21(又は内箱22)に貼り付けられている。そして、外箱21と内箱22の間の残りの空間部G内には、充填材24である例えば硬質ウレタンフォームが注入され、発泡させて充填されている。   In the space G formed between the outer box 21 and the inner box 22, the vacuum heat insulation panel 1 according to the first embodiment is disposed along the outer box 21 (or the inner box 22). It is affixed to the outer box 21 (or inner box 22) with a tape or an adhesive. The remaining space G between the outer box 21 and the inner box 22 is filled with, for example, hard urethane foam, which is the filler 24, and is filled with foam.

上記の説明では、真空断熱パネル1を外箱21と内箱22との間に形成された空間部G内に配設し、外箱21(又は内箱22)に貼り付けて残りの空間部Gに充填材24を充填した場合を示したが、真空断熱パネル1を上記空間部G内に浮かせて配置し、真空断熱パネル1と外箱21及び内箱22との間又は何れか一方に充填材24を充填してもよい。   In the above description, the vacuum heat insulation panel 1 is disposed in the space G formed between the outer box 21 and the inner box 22, and is attached to the outer box 21 (or the inner box 22) to remain the remaining space. Although the case where the filler 24 is filled in G is shown, the vacuum heat insulation panel 1 is arranged to float in the space G, and between the vacuum heat insulation panel 1 and the outer box 21 and the inner box 22 or any one of them. The filler 24 may be filled.

また、上記の説明では、外箱21と内箱22との間に形成された空間部の一部に真空断熱パネル1を配設し、残りの空間部Gに充填材24を充填した場合を示したが、上記空間部Gの全領域に真空断熱パネル1を配設し、充填材24の充填を省略してもよい。   In the above description, the vacuum heat insulation panel 1 is disposed in a part of the space formed between the outer box 21 and the inner box 22 and the remaining space G is filled with the filler 24. Although shown, the vacuum heat insulation panel 1 may be disposed in the entire region of the space G, and the filling of the filler 24 may be omitted.

本実施の形態によれば、断熱箱体20の外箱21と内箱22との間に形成された空間部G内に、断熱性能に優れ、剛性及び耐クリープ性の高い真空断熱パネル1を配設したので、低熱伝導率を保持すると共に断熱箱体20の強度を高めることができ、その上、断熱箱体20の経時的な変形を抑制することができる。   According to the present embodiment, the vacuum heat insulation panel 1 having excellent heat insulation performance and high rigidity and creep resistance is provided in the space G formed between the outer box 21 and the inner box 22 of the heat insulation box 20. Since it arrange | positioned, while maintaining low heat conductivity, the intensity | strength of the heat insulation box 20 can be raised, and also the deformation | transformation with time of the heat insulation box 20 can be suppressed.

本発明の実施の形態1に係る真空断熱パネルの斜視図である。It is a perspective view of the vacuum heat insulation panel which concerns on Embodiment 1 of this invention. 図1の分解斜視図である。FIG. 2 is an exploded perspective view of FIG. 1. 図2の有機繊維体の素材の説明図及び有機繊維体の説明図である。It is explanatory drawing of the raw material of the organic fiber body of FIG. 2, and explanatory drawing of an organic fiber body. 図3の有機繊維体の積層状態を示す斜視図である。It is a perspective view which shows the lamination | stacking state of the organic fiber body of FIG. 図3の有機繊維体の他の積層状態を示す斜視図である。It is a perspective view which shows the other lamination | stacking state of the organic fiber body of FIG. 有機繊維体の凹凸部の他の形状を示す説明図である。It is explanatory drawing which shows the other shape of the uneven | corrugated | grooved part of an organic fiber body. 本発明の実施の形態2に係る断熱箱体の模式的説明図である。It is typical explanatory drawing of the heat insulation box which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 真空断熱パネル、2 芯材、3 有機繊維体、5 円弧部(凹凸部)、8 縫製、9 吸着剤、10 外包材、20 断熱箱体、21 外箱、22 内箱、24 充填材、G 空間部。   DESCRIPTION OF SYMBOLS 1 Vacuum insulation panel, 2 core material, 3 organic fiber body, 5 circular arc part (uneven part), 8 sewing, 9 adsorbent, 10 outer packaging material, 20 heat insulation box, 21 outer box, 22 inner box, 24 filler, G Space part.

Claims (9)

ガスバリア性の外包材内に芯材を収容して密封し、該外包材内を減圧状態にした真空断熱パネルであって、
前記芯材を、厚み方向に凹凸部を有する有機繊維体で構成したことを特徴とする真空断熱パネル。
A vacuum insulation panel in which a core material is housed and sealed in a gas barrier outer packaging material, and the outer packaging material is in a reduced pressure state,
A vacuum heat insulating panel, wherein the core material is composed of an organic fiber body having an uneven portion in the thickness direction.
ガスバリア性の外包材内に芯材を収容して密封し、該外包材内を減圧状態にした真空断熱パネルであって、
前記芯材を、厚み方向に凹凸部を有するシート状の複数の有機繊維体を積層して構成したことを特徴とする真空断熱パネル。
A vacuum insulation panel in which a core material is housed and sealed in a gas barrier outer packaging material, and the outer packaging material is in a reduced pressure state,
A vacuum heat insulating panel, wherein the core material is formed by laminating a plurality of sheet-like organic fiber bodies having uneven portions in a thickness direction.
前記芯材を構成する有機繊維体を、凹凸部によって形成された空間部を介して積層し、又は前記有機繊維体を凹凸部を交差するように積層したことを特徴とする請求項2記載の真空断熱パネル。   The organic fiber body which comprises the said core material is laminated | stacked through the space part formed of the uneven | corrugated | grooved part, or the said organic fiber body was laminated | stacked so that an uneven | corrugated | grooved part might be crossed. Vacuum insulation panel. 前記芯材を構成する有機繊維体の凹凸部が、波形形状、三角形形状又は台形形状であることを特徴とする請求項1〜3のいずれかに記載の真空断熱パネル。   The unevenness part of the organic fiber body which constitutes the core material is wave shape, triangle shape, or trapezoid shape, The vacuum heat insulation panel according to any one of claims 1 to 3 characterized by things. 前記芯材を構成する有機繊維体の凹凸部を、縫製、接着剤による接着、熱融着又は熱加工によって形成したことを特徴とする請求項1〜4のいずれかに記載の真空断熱パネル。   The vacuum heat insulating panel according to any one of claims 1 to 4, wherein the concavo-convex portion of the organic fiber body constituting the core material is formed by sewing, bonding with an adhesive, heat fusion, or heat processing. 前記芯材を構成する有機繊維体の凹凸部の高さが、真空断熱パネルの内部圧力における気体の平均自由行程以下であることを特徴とする請求項1〜5のいずれかに記載の真空断熱パネル。   The vacuum heat insulation according to any one of claims 1 to 5, wherein the height of the concavo-convex portion of the organic fiber body constituting the core material is equal to or less than the mean free path of gas at the internal pressure of the vacuum heat insulation panel. panel. 前記芯材を構成する有機繊維体は、有機繊維による不織布を素材としたものであることを特徴とする請求項1〜6のいずれかに記載の真空断熱パネル。   The vacuum insulation panel according to any one of claims 1 to 6, wherein the organic fiber body constituting the core material is made of a nonwoven fabric made of organic fibers. 外箱と、該外箱の内側に空間部を介して配置された内箱とを有し、前記空間部の一部又は全域にわたり請求項1〜7のいずれかの真空断熱パネルを配設したことを特徴とする断熱箱体。   It has an outer box and an inner box arranged through the space inside the outer box, and the vacuum heat insulation panel according to any one of claims 1 to 7 is arranged over a part or the entire area of the space. A heat insulating box characterized by that. 前記外箱と内箱との間に形成された空間部の一部に前記真空断熱パネルを配設し、残りの空間部に充填材を充填したことを特徴とする請求項8記載の断熱箱体。   9. The heat insulation box according to claim 8, wherein the vacuum heat insulation panel is disposed in a part of a space formed between the outer box and the inner box, and the remaining space is filled with a filler. body.
JP2008169810A 2008-06-30 2008-06-30 Vacuum thermal insulation panel and thermal insulation box body with this Pending JP2010007806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008169810A JP2010007806A (en) 2008-06-30 2008-06-30 Vacuum thermal insulation panel and thermal insulation box body with this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169810A JP2010007806A (en) 2008-06-30 2008-06-30 Vacuum thermal insulation panel and thermal insulation box body with this

Publications (1)

Publication Number Publication Date
JP2010007806A true JP2010007806A (en) 2010-01-14

Family

ID=41588540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169810A Pending JP2010007806A (en) 2008-06-30 2008-06-30 Vacuum thermal insulation panel and thermal insulation box body with this

Country Status (1)

Country Link
JP (1) JP2010007806A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061085A (en) * 2011-09-12 2013-04-04 Hitachi Appliances Inc Refrigerator
EP2631524A2 (en) * 2010-10-18 2013-08-28 Mitsubishi Electric Corporation Vacuum insulation material, and manufacturing method for same
CN104908626A (en) * 2015-04-21 2015-09-16 郭茂 Vehicle-mounted portable thermostat
WO2023203874A1 (en) * 2022-04-18 2023-10-26 三菱重工業株式会社 Insulation structure and insulation structure manufacturing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201376A (en) * 1998-01-12 1999-07-30 Mitsubishi Electric Corp Vacuum heat insulation panel
JP2005344870A (en) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, and refrigerator having the same
JP2006017151A (en) * 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd Vacuum heat insulating material
JP2008111493A (en) * 2006-10-31 2008-05-15 Matsushita Electric Ind Co Ltd Vacuum container
JP2009275801A (en) * 2008-05-14 2009-11-26 Nippon Oil Corp Vacuum insulation material and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201376A (en) * 1998-01-12 1999-07-30 Mitsubishi Electric Corp Vacuum heat insulation panel
JP2005344870A (en) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, and refrigerator having the same
JP2006017151A (en) * 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd Vacuum heat insulating material
JP2008111493A (en) * 2006-10-31 2008-05-15 Matsushita Electric Ind Co Ltd Vacuum container
JP2009275801A (en) * 2008-05-14 2009-11-26 Nippon Oil Corp Vacuum insulation material and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2631524A2 (en) * 2010-10-18 2013-08-28 Mitsubishi Electric Corporation Vacuum insulation material, and manufacturing method for same
JP2014051993A (en) * 2010-10-18 2014-03-20 Mitsubishi Electric Corp Vacuum heat insulation material and method for manufacturing the same
US8911847B2 (en) 2010-10-18 2014-12-16 Mitsubishi Electric Corporation Vacuum insulation material and manufacturing method thereof
EP2631524A4 (en) * 2010-10-18 2015-01-07 Mitsubishi Electric Corp Vacuum insulation material, and manufacturing method for same
JP2013061085A (en) * 2011-09-12 2013-04-04 Hitachi Appliances Inc Refrigerator
CN104908626A (en) * 2015-04-21 2015-09-16 郭茂 Vehicle-mounted portable thermostat
WO2023203874A1 (en) * 2022-04-18 2023-10-26 三菱重工業株式会社 Insulation structure and insulation structure manufacturing device

Similar Documents

Publication Publication Date Title
JP5388603B2 (en) Vacuum heat insulating material and heat insulating box equipped with the same
JP4789886B2 (en) Vacuum insulation and insulation box
US8211523B2 (en) Vacuum thermal insulating material and method of manufacturing the same, and thermal insulating box having the vacuum thermal insulating material
KR20090017645A (en) Vacuum heat insulation material
JP5193713B2 (en) Freezer refrigerator
JP2008030790A (en) Heat insulating container
JP2011102622A (en) Insulating container
JP2011074934A (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
JP5111331B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JP2010007806A (en) Vacuum thermal insulation panel and thermal insulation box body with this
JP2008185220A (en) Vacuum heat insulation material
JP2010090905A (en) Vacuum heat insulation material
EP2105648B1 (en) Vacuum heat insulating material and heat insulating box using the same
JP2010127421A (en) Vacuum thermal-insulating material and thermal insulation box
JP2012092870A (en) Vacuum heat insulating material and heat insulating box using the same
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP2011089740A (en) Bag body and vacuum heat insulating material
JP2012026512A (en) Bag body and vacuum heat insulating material
JP5448937B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
US10391738B2 (en) Vacuum heat-insulation material
EP2985376B1 (en) Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same
JP2006029413A (en) Vacuum heat insulating material and its manufacturing method
JP2010121652A (en) Vacuum thermal insulating material and thermal insulation box
JP2017100799A (en) Folding type cold insulation/heat insulation box and folding method thereof, and cage carriage
KR102217150B1 (en) Vacuum Insulation Material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703