JP2010127421A - Vacuum thermal-insulating material and thermal insulation box - Google Patents

Vacuum thermal-insulating material and thermal insulation box Download PDF

Info

Publication number
JP2010127421A
JP2010127421A JP2008303917A JP2008303917A JP2010127421A JP 2010127421 A JP2010127421 A JP 2010127421A JP 2008303917 A JP2008303917 A JP 2008303917A JP 2008303917 A JP2008303917 A JP 2008303917A JP 2010127421 A JP2010127421 A JP 2010127421A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
box
organic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008303917A
Other languages
Japanese (ja)
Inventor
Kyoko Nomura
京子 野村
Shuichi Iwata
修一 岩田
Tsukasa Takagi
司 高木
Masanori Tsujihara
雅法 辻原
Shohei Abiko
尚平 安孫子
Sho Hanaoka
祥 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008303917A priority Critical patent/JP2010127421A/en
Publication of JP2010127421A publication Critical patent/JP2010127421A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material excellent in handleability, heat insulating performance, and productivity, and to provide a thermal insulation box equipped with the vacuum heat insulating material. <P>SOLUTION: In the vacuum heat insulating material 1, a core material 3 is accommodated inside a gas barrier vessel 2 and the inside thereof is kept in a decompressed state. The core material 3 is structured with organic fiber assemblies 50, in which organic fibers 5 are formed in a sheet form and the organic fibers 5 are not thermally deposited with each other. These organic fibers 5 are continuous in the longitudinal direction. The core material 3 can be in a laminate structure of the organic fiber assemblies 50. The organic fibers 5 of the organic fiber assemblies 50 are made of either one of polyester, polystyrene, polypropylene, polylactic acid, aramid, and liquid crystal polymers. The thermal insulation box includes an outer box 10 and an inner box 11 arranged inside the outer box 10. The vacuum heat insulating material 1 is arranged in a gap between the outer box 10 and inner box 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は真空断熱材および断熱箱に係り、特に、冷熱機器へ使用して好適な真空断熱材および断熱箱に関する。   The present invention relates to a vacuum heat insulating material and a heat insulating box, and more particularly, to a vacuum heat insulating material and a heat insulating box suitable for use in a cooling / heating apparatus.

従来、断熱材としてウレタンが用いられていたが、昨今、ウレタンよりも断熱性能に優れた真空断熱材がウレタンと併用して使用されるようになっている。かかる真空断熱材は冷蔵庫に用いられるほか、保温庫、車両空調機、給湯器などの冷熱機器にも用いられている。   Conventionally, urethane has been used as a heat insulating material, but recently, a vacuum heat insulating material having better heat insulating performance than urethane is used in combination with urethane. Such vacuum heat insulating materials are used not only for refrigerators but also for refrigeration equipment such as heat insulation cabinets, vehicle air conditioners, and water heaters.

真空断熱材は、ガスバリア性(空気遮断性)のアルミ箔でできた外包材の中に、粉末、発泡体、繊維体などが芯材として挿入され、内部が数Paの真空度に保持されている。
斯かる真空断熱材は、外部から侵入する空気、水分の他に、芯材から発生するアウトガス、芯材そのものに存在する水分によって断熱性能が低下するが、これらを吸着するために外包材の中に吸着剤が挿入されている。
真空断熱材の芯材として、シリカなどの粉末、ウレタンなどの発泡体、ガラスなどの繊維体があるが、現在では断熱性能が最も優れた繊維体が主流になっている。
A vacuum heat insulating material is a powder, foam, fiber, etc. inserted as a core material in an outer packaging material made of gas barrier (air barrier) aluminum foil, and the inside is maintained at a vacuum level of several Pa. Yes.
Such a vacuum heat insulating material is deteriorated in heat insulation performance due to air and moisture entering from the outside, outgas generated from the core material, and moisture present in the core material itself. An adsorbent is inserted in
As core materials for vacuum heat insulating materials, there are powders such as silica, foams such as urethane, and fiber bodies such as glass. At present, however, fiber bodies having the most excellent heat insulation performance are mainly used.

繊維体には、無機繊維、および有機繊維がある。無機繊維には、ガラス繊維、炭素繊維などがあり(例えば、特許文献1、8参照)、有機繊維には、ポリスチレン繊維、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエチレンテレフタレート繊維、ポリエステル繊維、ポリエチレン繊維、セルロース繊維などがある(例えば、特許文献2、7、9参照)。   The fibrous body includes inorganic fibers and organic fibers. Examples of inorganic fibers include glass fibers and carbon fibers (see, for example, Patent Documents 1 and 8), and examples of organic fibers include polystyrene fibers, polypropylene fibers, polylactic acid fibers, aramid fibers, LCP (liquid crystal polymer) fibers, and polyethylene. Examples include terephthalate fiber, polyester fiber, polyethylene fiber, and cellulose fiber (see, for example, Patent Documents 2, 7, and 9).

また、繊維体の形状には、綿状のものや、シートを積層したものなどがあり(例えば、特許文献3、4参照)、また、シートを繊維の配向が交互になるようにして積層したものがある(特許文献5、6参照)。   Further, the shape of the fibrous body includes a cotton-like one and a laminate of sheets (for example, see Patent Documents 3 and 4), and the sheets are laminated so that fiber orientations are alternated. There are some (see Patent Documents 5 and 6).

特開平8−028776号公報(第2−3頁)JP-A-8-028776 (page 2-3) 特許第3656028号公報(第5頁)Japanese Patent No. 3656028 (page 5) 特開2005−344832号公報(第3−4頁、図1)Japanese Patent Laying-Open No. 2005-344832 (page 3-4, FIG. 1) 特開2006−307921号公報(第5−6頁、図2)Japanese Patent Laying-Open No. 2006-307921 (page 5-6, FIG. 2) 特開2006−017151号公報(第3頁、図1)JP 2006-017151 A (page 3, FIG. 1) 特公平7−103955号公報(第2頁、図2)Japanese Examined Patent Publication No. 7-103955 (second page, FIG. 2) 特開2006−283817号公報(第7−8頁)JP 2006-283817 A (pages 7-8) 特開2005−344870号公報(第7頁、図2)Japanese Patent Laying-Open No. 2005-344870 (page 7, FIG. 2) 特許第4012903号公報(第3頁)Japanese Patent No. 4012903 (page 3)

特許文献1〜9では、真空断熱材に、ガラス繊維やポリエステル繊維などが芯材として使用されている。
ガラス繊維は断熱性能に優れるが、硬くて脆いため、真空断熱材の製造時に粉塵が飛び散り、作業者の皮膚、粘膜などに付着すると刺激を受けるおそれがあり、その取り扱い性、作業性が問題となる。また、リサイクルを考えた場合、例えば、冷蔵庫ではリサイクル工場で製品ごとに粉砕され、ガラス繊維はウレタン屑などに混じってサーマルリサイクルに供されるが、燃焼効率を落としたり、残渣となったりするなどリサイクル性が良くない。
In patent documents 1-9, glass fiber, a polyester fiber, etc. are used as a core material for a vacuum heat insulating material.
Glass fiber is excellent in heat insulation performance, but it is hard and brittle, so dust may scatter during the manufacture of vacuum insulation, and may cause irritation if it adheres to the skin, mucous membrane, etc. of workers, and its handling and workability are problematic. Become. In addition, when considering recycling, for example, in a refrigerator, each product is crushed in a recycling factory, and glass fiber is mixed with urethane waste and is used for thermal recycling, but it reduces combustion efficiency and becomes a residue, etc. Recyclability is not good.

一方、ポリエステルなどの有機繊維は、取り扱い性、リサイクル性に優れるが、断熱性能を表す指標である熱伝導率が、0.0030W/mK(特許文献7参照)であり、ガラス繊維の0.0013W/mK(特許文献8参照)と比べて、断熱性能に劣る。   On the other hand, organic fibers such as polyester are excellent in handleability and recyclability, but have a thermal conductivity of 0.0030 W / mK (see Patent Document 7), which is an index representing heat insulation performance, and 0.0013 W of glass fiber. Compared with / mK (see Patent Document 8), the heat insulation performance is inferior.

このため、有機繊維の層を薄くし繊維の配向を伝熱方向と垂直にし断熱性能を向上させることもできるが、それでは積層枚数が数百枚以上になり、生産性が悪い。   For this reason, the organic fiber layer can be made thin and the fiber orientation can be made perpendicular to the heat transfer direction to improve the heat insulation performance. However, the number of laminated layers becomes several hundred or more, and the productivity is poor.

本発明は、上記のような課題を解決するためになされたものであって、取り扱い性と断熱性能及び生産性に優れた真空断熱材、およびこの真空断熱材を備えた断熱箱を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a vacuum heat insulating material excellent in handling property, heat insulating performance, and productivity, and a heat insulating box including the vacuum heat insulating material. With the goal.

本発明に係る真空断熱材は、ガスバリア性容器の内部に芯材を収容して、内部を減圧状態にした真空断熱材であって、芯材が、有機繊維をシート状に形成し、かつ有機繊維同士が熱溶着されていない有機繊維集合体により構成されている。   The vacuum heat insulating material according to the present invention is a vacuum heat insulating material in which a core material is housed in a gas barrier container and the inside is in a reduced pressure state, and the core material forms an organic fiber in a sheet shape, and is organic It is composed of an organic fiber aggregate in which the fibers are not thermally welded.

本発明によれば、芯材が、熱溶着されていないシート状の有機繊維集合体で構成されているので、取り扱い性およびリサイクル性に優れ、かつ断熱性能に優れた真空断熱部材及びこれを使用した断熱箱を得ることができる。   According to the present invention, since the core material is composed of a sheet-like organic fiber aggregate that is not thermally welded, a vacuum heat insulating member excellent in handleability and recyclability and excellent in heat insulating performance and the use thereof are used. An insulated box can be obtained.

[実施の形態1:真空断熱材]
図1は本発明の実施形態1に係る真空断熱材の分解斜視図、図2は図1の真空断熱材のシート1枚における繊維の配向を示す側面図である。
図1において、真空断熱材1は、空気遮断性を有するガスバリア性容器2(以下、「外包材」という)、外包材2の内部に封入された芯材3、ガス吸着剤4を有しており、外包材2の内部は所定の真空度に減圧されている。
[Embodiment 1: Vacuum heat insulating material]
FIG. 1 is an exploded perspective view of a vacuum heat insulating material according to Embodiment 1 of the present invention, and FIG. 2 is a side view showing fiber orientation in one sheet of the vacuum heat insulating material of FIG.
In FIG. 1, a vacuum heat insulating material 1 includes a gas barrier container 2 (hereinafter referred to as “outer packaging material”) having air barrier properties, a core material 3 enclosed in the outer packaging material 2, and a gas adsorbent 4. The inside of the outer packaging material 2 is depressurized to a predetermined degree of vacuum.

(芯材の構成)
図2において、真空断熱材1の芯材3は、ポリエステルからなる有機繊維5(5a、5b)をシート状に形成した集合体50(以下、有機繊維集合体、またはシート状集合体ともいう)から形成されている。芯材2は、複数のシートを積層してもよいし、シート1枚で構成してもよい。
(Configuration of core material)
In FIG. 2, the core material 3 of the vacuum heat insulating material 1 is an aggregate 50 in which organic fibers 5 (5a, 5b) made of polyester are formed in a sheet shape (hereinafter also referred to as an organic fiber aggregate or a sheet-like aggregate). Formed from. The core material 2 may be formed by laminating a plurality of sheets or a single sheet.

(有機繊維集合体)
図2において、有機繊維集合体50は、所定の間隔を隔てて配置された複数本の有機繊維5aと、有機繊維5aと直交する方向で所定の間隔を設けて配置された複数本の有機繊維5bとから構成されている。このとき、有機繊維5aと有機繊維5bとは、点接触している。なお、図には有機繊維5aと有機繊維5bとが互いに直交する場合を示してあるが、これに限定するものではない。
そして、有機繊維集合体50を構成する有機繊維5a、5b同士は、断熱性を向上させるために、加熱溶着を施していない。これは、熱溶着部があると余計な伝熱のパスができ、断熱性能が悪くなるためである。
よって、本願発明は、熱溶着されていない有機繊維5から形成されたシート状の有機繊維集合体50である。なお、矢印はそれぞれ伝熱方向を示し、6は有機繊維5a、5b間の空隙を示す。
(Organic fiber aggregate)
In FIG. 2, the organic fiber assembly 50 includes a plurality of organic fibers 5a arranged at predetermined intervals, and a plurality of organic fibers arranged at predetermined intervals in a direction orthogonal to the organic fibers 5a. 5b. At this time, the organic fiber 5a and the organic fiber 5b are in point contact. In addition, although the figure has shown the case where the organic fiber 5a and the organic fiber 5b mutually orthogonally cross, it is not limited to this.
And in order to improve heat insulation, the organic fibers 5a and 5b which comprise the organic fiber assembly 50 are not heat-welded. This is because if there is a heat-welded part, an extra heat transfer path is formed, and the heat insulation performance deteriorates.
Therefore, this invention is the sheet-like organic fiber assembly 50 formed from the organic fiber 5 which is not heat-welded. In addition, each arrow shows a heat transfer direction, and 6 shows the space | gap between organic fiber 5a, 5b.

(有機繊維の繊維長)
有機繊維集合体50の有機繊維5は、断熱性能上、短繊維よりも長繊維であることが好ましい。従って、本願発明は、長尺方向に連続した有機繊維5から形成されたシート状の有機繊維集合体50である。
(Fiber length of organic fiber)
The organic fibers 5 of the organic fiber assembly 50 are preferably long fibers rather than short fibers in view of heat insulation performance. Therefore, this invention is the sheet-like organic fiber assembly 50 formed from the organic fiber 5 continuous in the elongate direction.

(有機繊維の材料)
有機繊維集合体50の繊維材料は本実施の形態においてはポリエステルであるが、その他に、ポリスチレン、ポリプロピレン、ポリ乳酸、アラミド、LCP(液晶ポリマー)であってもよい。ポリプロピレンは吸湿性が低いため、乾燥時間や真空引き時間を短縮でき生産性の向上が可能であり、固体熱伝導が小さいので真空断熱材の断熱性能が向上する。また、ポリ乳酸には生分解性があるので、製品の使用後に解体、分別された芯材は埋め立て処理を行うこともできる。さらに、ポリスチレン、アラミドやLCPは剛性が高いので、真空包装されて大気圧を受けたときの形状保持性が良く、空隙率を高めることができ断熱性能の向上が期待できる。特に、ポリスチレンは固体熱伝導が小さいので、さらに真空断熱材の断熱性能の向上が期待できる。
(Material of organic fiber)
The fiber material of the organic fiber assembly 50 is polyester in the present embodiment, but may be polystyrene, polypropylene, polylactic acid, aramid, or LCP (liquid crystal polymer). Since polypropylene has low hygroscopicity, drying time and evacuation time can be shortened and productivity can be improved, and since the solid heat conduction is small, the heat insulating performance of the vacuum heat insulating material is improved. Moreover, since polylactic acid is biodegradable, the core material disassembled and separated after use of the product can be subjected to landfill treatment. Furthermore, since polystyrene, aramid, and LCP have high rigidity, shape retention is good when they are vacuum-packed and subjected to atmospheric pressure, the porosity can be increased, and improvement in heat insulation performance can be expected. In particular, since polystyrene has a small solid heat conduction, further improvement in the heat insulation performance of the vacuum heat insulating material can be expected.

(外包材料)
真空断熱材1の外包材2は、ナイロン(例えば6μm)、アルミ蒸着PET(例えば10μm)、アルミ箔(例えば6μm)、高密度ポリエチレン(例えば50μm)で構成されるガスバリア性のあるプラスチックラミネートフイルムからなる。その他に、ポリプロピレン、ポリビニルアルコール、ポリプロピレンなどのアルミ箔を含まないラミネートフイルムを用いることができ、ヒートブリッジによる断熱性能の低下を抑制することができる。なお、外包材5は、4辺のうち3辺がシール包装機によってヒートシールされている。
(Outer packaging material)
The outer packaging material 2 of the vacuum heat insulating material 1 is made of a plastic laminate film having a gas barrier property composed of nylon (for example, 6 μm), aluminum vapor-deposited PET (for example, 10 μm), aluminum foil (for example, 6 μm), and high-density polyethylene (for example, 50 μm). Become. In addition, a laminate film that does not include an aluminum foil such as polypropylene, polyvinyl alcohol, or polypropylene can be used, and a decrease in heat insulation performance due to a heat bridge can be suppressed. The outer packaging material 5 is heat-sealed on three sides of the four sides by a seal wrapping machine.

(製造方法)
上記のように構成した真空断熱材1の製造方法について説明する。
有機繊維集合体50は、製造したい幅に対して横一列に並んだいくつものノズルから加熱溶融したポリエステル樹脂を、コンベア上に自由落下させ、コンベアを任意の速度で動かしながら巻き取って製造する。
有機繊維集合体50の嵩密度は溶融樹脂の吐出量とコンベアの速度により調整し、厚さの異なる有機繊維集合体50を得ることができる。
(Production method)
The manufacturing method of the vacuum heat insulating material 1 comprised as mentioned above is demonstrated.
The organic fiber aggregate 50 is manufactured by freely dropping polyester resin heated and melted from a number of nozzles arranged in a row horizontally with respect to the width to be manufactured onto the conveyor and winding the conveyor while moving the conveyor at an arbitrary speed.
The bulk density of the organic fiber assembly 50 is adjusted by the amount of molten resin discharged and the speed of the conveyor, so that organic fiber assemblies 50 having different thicknesses can be obtained.

なお、従来は取り扱い性の問題から、有機繊維集合体50のシートを形成した後に、有機繊維5a、5b同士を熱ローラーなどで加熱溶融をする場合が多いが、本発明に係る有機繊維集合体50は、伝熱パスを減らすため、上述したように、加熱溶着をしていない。   Conventionally, due to handling problems, after forming the sheet of the organic fiber assembly 50, the organic fibers 5a and 5b are often heated and melted with a heat roller or the like. However, the organic fiber assembly according to the present invention is often used. No. 50 is not heat-welded as described above to reduce the heat transfer path.

そして、得られた有機繊維集合体50を、例えばA4サイズに裁断し、芯材3を形成する。積層する枚数は、得られた有機繊維集合体50の厚さと製造したい真空断熱材1の厚さをもとに任意に設定する。有機繊維5は断熱性能上は繊維径がより細い方が良く、理論的に繊維径は10μm以下が望ましい。
なお、要求される芯材3の厚さによっては、有機繊維集合体50を積層しなくてもよい。
Then, the obtained organic fiber assembly 50 is cut into, for example, an A4 size to form the core material 3. The number of layers to be laminated is arbitrarily set based on the thickness of the obtained organic fiber assembly 50 and the thickness of the vacuum heat insulating material 1 to be manufactured. The organic fiber 5 should have a smaller fiber diameter in view of heat insulation performance, and theoretically, the fiber diameter is desirably 10 μm or less.
Note that the organic fiber assembly 50 may not be laminated depending on the required thickness of the core material 3.

上記のようにして形成した芯材3を、袋である外包材2に挿入し、残りの一辺の口が閉まらないように固定して、恒温槽にて例えば100℃の温度下で半日(約12時間)乾燥する。次に、真空包装後の残存ガスや経時的に放出される芯材3からのアウトガス、外包材2のシール層を通して侵入する透過ガスを吸着するためのガス吸着剤4を、フイルム袋内に挿入し、例えば柏木式真空包装機(NPC社製;KT−650)により真空引きを行う。真空引きは、チャンバー内真空度が例えば1Pa〜10Pa程度になるまで行い、そのままチャンバー内でフイルム袋の開口部をヒートシールして、板状の真空断熱材1を得る。   The core material 3 formed as described above is inserted into the outer packaging material 2 that is a bag, and is fixed so that the other side of the mouth is not closed. 12 hours) Dry. Next, a gas adsorbent 4 for adsorbing residual gas after vacuum packaging, outgas from the core material 3 released over time, and permeated gas entering through the sealing layer of the outer packaging material 2 is inserted into the film bag. For example, vacuuming is performed using a Kashiwagi-type vacuum packaging machine (NPC; KT-650). The vacuuming is performed until the degree of vacuum in the chamber becomes, for example, about 1 Pa to 10 Pa, and the opening of the film bag is heat-sealed in the chamber as it is to obtain the plate-like vacuum heat insulating material 1.

(断熱性能)
次に、有機繊維集合体50の熱溶着の有無による断熱性能への影響を、本発明の有機繊維集合体50としての実施例1、2と、比較のための比較例1とについて説明する。なお、有機繊維5は約10μmの径のポリエステルを用いた。
実施の形態1の製造方法に従って真空断熱材1を製造した。
この際、実施例1、2では、製造工程において熱溶着を施さず、長尺方向に連続した有機繊維から形成されたシート状の有機繊維集合体50からなる真空断熱材1を製造し、比較例1では、製造工程において熱溶着処理を施し、長尺方向に連続した有機繊維から形成されたシート状の有機繊維集合体からなる真空断熱材を製造した。なお、芯材3は、有機繊維集合体50を裁断せずに、長尺方向に連続したシート状のまま形成した。
そして、製作した実施例1、2及び比較例1の有機繊維集合体は、熱伝導率計「AutoΛ HC−073(英弘精機(株)製)」を用いて、上温度37.7℃、下温度10.0℃の温度差における熱伝導率を測定した。なお、測定は真空引き工程から1日経過後に行った。
ここで、平均繊維径はマイクロスコープを用いて測定した10箇所の測定値の平均値とした。
(Insulation performance)
Next, the influence on the heat insulation performance by the presence or absence of the thermal welding of the organic fiber assembly 50 will be described in Examples 1 and 2 as the organic fiber assembly 50 of the present invention and Comparative Example 1 for comparison. The organic fiber 5 was a polyester having a diameter of about 10 μm.
The vacuum heat insulating material 1 was manufactured according to the manufacturing method of Embodiment 1.
At this time, in Examples 1 and 2, the vacuum heat insulating material 1 made of a sheet-like organic fiber assembly 50 formed from organic fibers continuous in the longitudinal direction without being subjected to heat welding in the manufacturing process, was compared. In Example 1, the heat insulation process was performed in the manufacturing process, and the vacuum heat insulating material which consists of a sheet-like organic fiber assembly formed from the organic fiber continuous in the elongate direction was manufactured. In addition, the core material 3 was formed with the sheet form continuous in the longitudinal direction without cutting the organic fiber assembly 50.
The organic fiber assemblies of Examples 1 and 2 and Comparative Example 1 were manufactured using a thermal conductivity meter “AutoΛ HC-073 (manufactured by Eihiro Seiki Co., Ltd.)” with an upper temperature of 37.7 ° C. The thermal conductivity at a temperature difference of 10.0 ° C. was measured. The measurement was carried out after 1 day from the evacuation step.
Here, the average fiber diameter was an average value of 10 measured values measured using a microscope.

図3は実施例1、2及び比較例1の真空断熱材の断熱性能の関係を示す線図である。横軸が単位面積当たりの重量(目付)、縦軸が断熱性能比を示す。なお、実施例1、2の断熱性能比は、比較例1の熱伝導率を実施例1、2の熱伝導率で、それぞれ割った数値(実施例1、2の熱伝導率の逆数を比較例1の熱伝導率の逆数で割った値に同じ)である。この場合、比較例2の断熱性能比は1となる。   FIG. 3 is a diagram showing the relationship of the heat insulating performance of the vacuum heat insulating materials of Examples 1 and 2 and Comparative Example 1. The horizontal axis represents the weight (unit weight) per unit area, and the vertical axis represents the heat insulation performance ratio. In addition, the heat insulation performance ratio of Examples 1 and 2 is a numerical value obtained by dividing the thermal conductivity of Comparative Example 1 by the thermal conductivity of Examples 1 and 2 (comparing the reciprocal of the thermal conductivity of Examples 1 and 2). The same as the value obtained by dividing by the reciprocal of the thermal conductivity of Example 1). In this case, the heat insulation performance ratio of Comparative Example 2 is 1.

実施例1、2では、比較例1とは異なり、有機繊維集合体50の有機繊維5同士の熱溶着がないが、その分、熱のパスが短くなっている。そのため、図3に示すように、実施例1、2では、断熱性能がより向上する。また、実施例2からわかるように、目付が高くても断熱性能が向上しているので、積層枚数を減らすことができ、生産性に優れる。   In Examples 1 and 2, unlike Comparative Example 1, there is no thermal welding between the organic fibers 5 of the organic fiber assembly 50, but the heat path is shortened accordingly. Therefore, as shown in FIG. 3, in Example 1, 2, heat insulation performance improves more. Further, as can be seen from Example 2, since the heat insulation performance is improved even if the basis weight is high, the number of stacked layers can be reduced, and the productivity is excellent.

次に、有機繊維集合体の繊維長の差による断熱性能への影響について、本発明の有機繊維集合体50としての実施例3と、比較のための比較例2とについて説明する。
この際、実施例3では、熱溶着を施さず、長尺方向に連続した有機繊維5から形成されたシート状の有機繊維集合体50からなる真空断熱材1を製造し、比較例2では、熱溶着を施さず、短繊維である有機繊維集合体からなる真空断熱材を製造した。
熱伝導率の測定方法は、実施の形態1で示した場合と同様である。
Next, about the influence on the heat insulation performance by the difference in the fiber length of an organic fiber assembly, Example 3 as the organic fiber assembly 50 of the present invention and Comparative Example 2 for comparison will be described.
At this time, in Example 3, the vacuum heat insulating material 1 made of the sheet-like organic fiber assembly 50 formed from the organic fibers 5 continuous in the longitudinal direction without performing heat welding was manufactured, and in Comparative Example 2, The vacuum heat insulating material which consists of an organic fiber assembly which is a short fiber, without heat-welding was manufactured.
The method for measuring the thermal conductivity is the same as that shown in the first embodiment.

実施例3の真空断熱材1の断熱性能は、比較例2の真空断熱材の断熱性能の1.9倍であった。
これは、有機繊維集合体50の繊維長が長いことによって有機繊維5が断熱方向と直角方向である面方向に配向しやすく、すなわち断熱方向への真空断熱材1内の固体伝熱のパスが長くできるので、断熱性能が向上するためである。
よって、短繊維ではなく、長尺方向に連続した有機繊維から形成された有機繊維集合体50を芯材3に用いた真空断熱材1のほうが、断熱性能に優れる。
The heat insulating performance of the vacuum heat insulating material 1 of Example 3 was 1.9 times that of the vacuum heat insulating material of Comparative Example 2.
This is because the organic fiber 5 is likely to be oriented in the plane direction perpendicular to the heat insulation direction due to the long fiber length of the organic fiber assembly 50, that is, the path of solid heat transfer in the vacuum heat insulating material 1 in the heat insulation direction. This is because the heat insulating performance is improved because the length can be increased.
Therefore, the vacuum heat insulating material 1 using the organic fiber aggregate 50 formed from organic fibers continuous in the longitudinal direction instead of the short fibers as the core material 3 is superior in heat insulating performance.

[実施の形態2:冷蔵庫]
図4は、本発明の実施形態2に係る冷蔵庫(断熱箱)の断面図である。
図4において、断熱箱である冷蔵庫は、外箱10と、外箱10の内部に配置された内箱11と、外箱10と内箱11との隙間に配置された真空断熱材1およびポリウレタンフォーム12と、内箱11内に冷熱を供給する冷凍ユニット(図示しない)とを有している。なお、外箱10および内箱11は、共通する面にそれぞれ開口部(図示せず)が形成されており、この開口部に開閉扉(図示せず)が設けられている。
[Embodiment 2: Refrigerator]
FIG. 4 is a cross-sectional view of a refrigerator (heat insulation box) according to Embodiment 2 of the present invention.
In FIG. 4, the refrigerator which is a heat insulation box includes an outer box 10, an inner box 11 arranged inside the outer box 10, a vacuum heat insulating material 1 and polyurethane arranged in a gap between the outer box 10 and the inner box 11. A foam 12 and a refrigeration unit (not shown) for supplying cold heat to the inner box 11 are provided. The outer box 10 and the inner box 11 each have an opening (not shown) formed on a common surface, and an opening / closing door (not shown) is provided in the opening.

上記の冷蔵庫において、真空断熱材1の外包材2はアルミ箔を含んでいるため(図1参照)、このアルミ箔を通って熱が回り込むヒートブリッジが生じるおそれがある。このため、ヒートブリッジの影響を抑制するため、真空断熱材1は樹脂成形品であるスペーサ13を用いて、外箱10の塗装鋼板から離して配設されている。
なお、スペーサ13は後工程で断熱壁内に注入されるポリウレタンフォーム12にボイドが残らないように、流動を阻害しないための孔が、適宜設けられている。
すなわち、冷蔵庫は、真空断熱材1、スペーサ13およびポリウレタンフォーム12によって形成された断熱壁14を有している。なお、断熱壁14が配置される範囲は限定するものではなく、外箱10と内箱11との間に形成される隙間の全範囲であっても、あるいは一部であってもよく、また、前記開閉扉の内部に配置されてもよい。
In the above refrigerator, since the outer packaging material 2 of the vacuum heat insulating material 1 includes an aluminum foil (see FIG. 1), there is a possibility that a heat bridge in which heat flows around the aluminum foil may occur. For this reason, in order to suppress the influence of a heat bridge, the vacuum heat insulating material 1 is arrange | positioned away from the coated steel plate of the outer case 10 using the spacer 13 which is a resin molded product.
In addition, the spacer 13 is appropriately provided with holes for preventing the flow so that voids do not remain in the polyurethane foam 12 to be injected into the heat insulating wall in a later step.
That is, the refrigerator has a heat insulating wall 14 formed by the vacuum heat insulating material 1, the spacer 13 and the polyurethane foam 12. The range in which the heat insulating wall 14 is disposed is not limited, and may be the entire range of the gap formed between the outer box 10 and the inner box 11 or may be a part thereof. , May be arranged inside the opening / closing door.

上記のように構成した冷蔵庫は、使用済みとなった場合、家電リサイクル法に基づき、各地のリサイクルセンターで解体、リサイクルされる。
この際、従来のように冷蔵庫の真空断熱材の芯材が無機粉末である場合は、破砕処理を行う際、粉末が飛散して、箱体のまま破砕処理を行うことはできず、冷蔵庫箱体から真空断熱材を取り外すに際して非常に手間がかかる。
また、従来のように冷蔵庫の真空断熱材の芯材がガラス繊維である場合は、箱体のまま破砕処理することができ、破砕後のガラス繊維はポリウレタンフォームの粉砕物に混じってサーマルリサイクルに供されるが、この際、燃焼効率を低下させたり、燃焼後の残渣になったりするなどリサイクル性に難点がある。
これに対して、本発明では、冷蔵庫は、有機繊維集合体50によって形成された芯材3が配設された真空断熱材1を有するため、真空断熱材1を取り外すことなく破砕処理を行うことができ、サーマルリサイクルに際して燃焼効率を下げたり、残渣となったりすることがなく、リサイクル性が良い。
When the refrigerator configured as described above is used, it is dismantled and recycled at recycling centers in various places based on the Home Appliance Recycling Law.
At this time, when the core material of the vacuum heat insulating material of the refrigerator is an inorganic powder as in the conventional case, when the crushing process is performed, the powder is scattered, and the crushing process cannot be performed as it is in the box. It takes a lot of work to remove the vacuum insulation from the body.
In addition, when the core material of the vacuum heat insulating material of the refrigerator is glass fiber as in the past, it can be crushed as it is in the box, and the crushed glass fiber is mixed with the pulverized polyurethane foam for thermal recycling. At this time, however, there is a difficulty in recyclability such as lowering the combustion efficiency or becoming a residue after combustion.
On the other hand, in this invention, since the refrigerator has the vacuum heat insulating material 1 in which the core material 3 formed by the organic fiber aggregate 50 is disposed, the crushing process is performed without removing the vacuum heat insulating material 1. It does not reduce combustion efficiency or become a residue during thermal recycling, and is highly recyclable.

なお、以上の説明では、断熱箱が冷蔵庫である場合を示したが、本発明はこれに限定するものではなく、保温庫、車両空調機、給湯器などの冷熱機器あるいは温熱機器、さらには、所定の形状を具備する箱に替えて、変形自在な外袋および内袋を具備する断熱袋(断熱容器)であってもよい。
これらの場合に、断熱箱では、温度調整手段を設けて、内箱の内部の温度を調整するようにしてもよい。
In the above description, the case where the heat insulation box is a refrigerator has been shown, but the present invention is not limited to this, and cold or hot equipment such as a heat storage, a vehicle air conditioner, and a water heater, Instead of a box having a predetermined shape, a heat insulating bag (heat insulating container) having a deformable outer bag and an inner bag may be used.
In these cases, the heat insulating box may be provided with temperature adjusting means to adjust the temperature inside the inner box.

本発明の実施形態1に係る真空断熱材の分解斜視図である。It is a disassembled perspective view of the vacuum heat insulating material which concerns on Embodiment 1 of this invention. 図1の真空断熱材のシート1枚における繊維の配向を示す側面図である。It is a side view which shows the orientation of the fiber in the sheet | seat of the vacuum heat insulating material of FIG. 真空断熱材の目付と断熱性能比の関係を示す線図である。It is a diagram which shows the relationship between the fabric weight of a vacuum heat insulating material, and a heat insulation performance ratio. 本発明の実施形態2に係る冷蔵庫の断面図である。It is sectional drawing of the refrigerator which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 真空断熱材、2 外包材(ガスバリア性容器)、3 芯材、4 ガス吸着剤、5(5a、5b) 有機繊維、10 外箱、11 内箱、 13 スペーサ、50 有機繊維集合体。   DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material, 2 Outer packaging material (gas barrier container), 3 Core material, 4 Gas adsorbent, 5 (5a, 5b) Organic fiber, 10 Outer box, 11 Inner box, 13 Spacer, 50 Organic fiber aggregate.

Claims (8)

ガスバリア性容器の内部に芯材を収容して、内部を減圧状態にした真空断熱材であって、
前記芯材が、有機繊維をシート状に形成し、かつ前記有機繊維同士が熱溶着されていない有機繊維集合体により構成されていることを特徴とする真空断熱材。
It is a vacuum heat insulating material in which a core material is housed in a gas barrier container and the inside is in a reduced pressure state,
The vacuum heat insulating material characterized by the said core material being comprised by the organic fiber aggregate | assembly which forms the organic fiber in a sheet form, and the said organic fibers are not heat-welded.
前記有機繊維は長尺方向に連続していることを特徴とする請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the organic fibers are continuous in the longitudinal direction. 前記芯材が、前記有機繊維集合体の積層構造であることを特徴とする請求項1または2記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein the core material has a laminated structure of the organic fiber assembly. 前記有機繊維集合体の有機繊維が、ポリエステル、ポリスチレン、ポリプロピレン、ポリ乳酸、アラミド、および液晶ポリマーのいずれかであることを特徴とする請求項1〜3のいずれかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein the organic fiber of the organic fiber aggregate is any one of polyester, polystyrene, polypropylene, polylactic acid, aramid, and liquid crystal polymer. 外箱と、前記外箱の内部に配置された内箱とを備え、
前記外箱と内箱との隙間に請求項1〜4のいずれかに記載の真空断熱材を配設したことを特徴とする断熱箱。
An outer box, and an inner box disposed inside the outer box,
The heat insulation box characterized by arrange | positioning the vacuum heat insulating material in any one of Claims 1-4 in the clearance gap between the said outer box and an inner box.
前記外箱と前記真空断熱材との間、および前記内箱と前記真空断熱材との間の、両方またはいずれか一方に、断熱材が充填されたことを特徴とする請求項5記載の断熱箱。   The heat insulation according to claim 5, wherein a heat insulating material is filled in both or any one of the outer box and the vacuum heat insulating material and the inner box and the vacuum heat insulating material. box. 前記外箱と前記真空断熱材との間にスペーサを配設したことを特徴とする請求項5または6記載の断熱箱。   The heat insulating box according to claim 5 or 6, wherein a spacer is disposed between the outer box and the vacuum heat insulating material. 温度調整手段によって前記内箱の内部温度を調整することを特徴とする請求項5〜7のいずれかに記載の断熱箱。   The heat insulation box according to any one of claims 5 to 7, wherein an internal temperature of the inner box is adjusted by a temperature adjusting means.
JP2008303917A 2008-11-28 2008-11-28 Vacuum thermal-insulating material and thermal insulation box Pending JP2010127421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303917A JP2010127421A (en) 2008-11-28 2008-11-28 Vacuum thermal-insulating material and thermal insulation box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303917A JP2010127421A (en) 2008-11-28 2008-11-28 Vacuum thermal-insulating material and thermal insulation box

Publications (1)

Publication Number Publication Date
JP2010127421A true JP2010127421A (en) 2010-06-10

Family

ID=42327961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303917A Pending JP2010127421A (en) 2008-11-28 2008-11-28 Vacuum thermal-insulating material and thermal insulation box

Country Status (1)

Country Link
JP (1) JP2010127421A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276167A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Vacuum heat insulating material, heat insulated box using the same, and equipment
JP2012013158A (en) * 2010-07-01 2012-01-19 Mitsubishi Electric Corp Vacuum heat insulating material, heat insulating box, and method of manufacturing vacuum heat insulating material
JP2014020473A (en) * 2012-07-19 2014-02-03 Mitsubishi Electric Corp Vacuum heat insulation material, method for manufacturing the same and heat insulator
JP2016517939A (en) * 2013-04-08 2016-06-20 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Vacuum insulation core material containing organic synthetic fiber and vacuum insulation material containing the same
US9664325B2 (en) 2013-01-28 2017-05-30 Nippon Pillar Packaging Co., Ltd. Pipe connecting device with fastening completion structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266282A (en) * 1999-03-16 2000-09-26 Kuraray Co Ltd Laminated heat insulating material and its manufacture
JP2004286050A (en) * 2003-03-19 2004-10-14 Matsushita Refrig Co Ltd Vacuum heat insulation material, heat insulation box, and method for checking recess in vacuum heat insulation material
JP2005299972A (en) * 2004-04-08 2005-10-27 Sanyo Electric Co Ltd Refrigerator
JP2006161939A (en) * 2004-12-07 2006-06-22 Kurabo Ind Ltd Vacuum thermal insulating material
JP2007070792A (en) * 2005-08-10 2007-03-22 Toray Ind Inc Sponge-like structure comprising fiber dispersion and process for production thereof
JP2008232372A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Vacuum heat insulating material and heat insulating structure using the same
JP2010117097A (en) * 2008-11-14 2010-05-27 Hitachi Appliances Inc Water heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266282A (en) * 1999-03-16 2000-09-26 Kuraray Co Ltd Laminated heat insulating material and its manufacture
JP2004286050A (en) * 2003-03-19 2004-10-14 Matsushita Refrig Co Ltd Vacuum heat insulation material, heat insulation box, and method for checking recess in vacuum heat insulation material
JP2005299972A (en) * 2004-04-08 2005-10-27 Sanyo Electric Co Ltd Refrigerator
JP2006161939A (en) * 2004-12-07 2006-06-22 Kurabo Ind Ltd Vacuum thermal insulating material
JP2007070792A (en) * 2005-08-10 2007-03-22 Toray Ind Inc Sponge-like structure comprising fiber dispersion and process for production thereof
JP2008232372A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Vacuum heat insulating material and heat insulating structure using the same
JP2010117097A (en) * 2008-11-14 2010-05-27 Hitachi Appliances Inc Water heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276167A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Vacuum heat insulating material, heat insulated box using the same, and equipment
JP2012013158A (en) * 2010-07-01 2012-01-19 Mitsubishi Electric Corp Vacuum heat insulating material, heat insulating box, and method of manufacturing vacuum heat insulating material
JP2014020473A (en) * 2012-07-19 2014-02-03 Mitsubishi Electric Corp Vacuum heat insulation material, method for manufacturing the same and heat insulator
US9664325B2 (en) 2013-01-28 2017-05-30 Nippon Pillar Packaging Co., Ltd. Pipe connecting device with fastening completion structure
JP2016517939A (en) * 2013-04-08 2016-06-20 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Vacuum insulation core material containing organic synthetic fiber and vacuum insulation material containing the same

Similar Documents

Publication Publication Date Title
JP4789886B2 (en) Vacuum insulation and insulation box
JP5388603B2 (en) Vacuum heat insulating material and heat insulating box equipped with the same
JP2011074934A (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
US8211523B2 (en) Vacuum thermal insulating material and method of manufacturing the same, and thermal insulating box having the vacuum thermal insulating material
JP5111331B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JP2010127421A (en) Vacuum thermal-insulating material and thermal insulation box
JP2008185220A (en) Vacuum heat insulation material
JP4969436B2 (en) Vacuum insulation material and equipment using the same
JP2010281444A (en) Heat insulating material
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
JP2010007806A (en) Vacuum thermal insulation panel and thermal insulation box body with this
EP2985376B1 (en) Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same
JP5448937B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
JP5216510B2 (en) Vacuum insulation material and equipment using the same
EP3393803B1 (en) Method for manufacturing vacuum insulation panels
JP4969555B2 (en) Vacuum insulation and insulation box
KR102217150B1 (en) Vacuum Insulation Material
JP2011027204A (en) Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material
JP2006029413A (en) Vacuum heat insulating material and its manufacturing method
JP2014077478A (en) Vacuum heat insulation material and heat insulation box comprising the same
JPH11132388A (en) Vacuum heat insulating material
JP2016142345A (en) Manufacturing method of vacuum heat insulation material, vacuum heat insulation material and equipment including vacuum heat insulation material
JP2013164161A (en) Vacuum heat insulator for heat insulating box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703