JP2011027204A - Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material - Google Patents

Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material Download PDF

Info

Publication number
JP2011027204A
JP2011027204A JP2009175034A JP2009175034A JP2011027204A JP 2011027204 A JP2011027204 A JP 2011027204A JP 2009175034 A JP2009175034 A JP 2009175034A JP 2009175034 A JP2009175034 A JP 2009175034A JP 2011027204 A JP2011027204 A JP 2011027204A
Authority
JP
Japan
Prior art keywords
heat insulating
thickness
insulating material
vacuum heat
long fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009175034A
Other languages
Japanese (ja)
Inventor
Shuichi Iwata
修一 岩田
Tetsuya Yagi
哲也 八木
Toshio Shinoki
俊雄 篠木
Kyoko Nomura
京子 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009175034A priority Critical patent/JP2011027204A/en
Publication of JP2011027204A publication Critical patent/JP2011027204A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulation material having excellent heat insulation properties, handling properties, productivity, and recyclability by properly heat-embossing a long fiber assembly. <P>SOLUTION: The vacuum heat insulation material 4 is produced by accommodating a core material 1 in a gas barrier container and sealing the container while decompressing the interior of the container, wherein the core material 1 is formed by laminating a thermoplastic resin long fiber assembly 1a, the long fiber assembly 1a is heat-embossed and formed in a sheet form, the thickness t of the heat-embossed long fiber assembly 1a under a decompression sealing condition is 80% or more of the thickness T of a long fiber assembly 10a not subjected to heat-embossing 5 under the decompression sealing condition, preferably 80 to 90%. The thickness of the heat-embossed long fiber assembly 1a is controlled by controlling the clearance of a calendar roll. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、真空断熱材およびこの真空断熱材を備えた断熱箱に係り、特に、冷熱機器へ使用して好適な真空断熱材、およびこの真空断熱材を備えた断熱箱に関する。   The present invention relates to a vacuum heat insulating material and a heat insulating box provided with the vacuum heat insulating material, and more particularly to a vacuum heat insulating material suitable for use in a refrigeration apparatus and a heat insulating box provided with the vacuum heat insulating material.

近年、地球温暖化防止の観点から、家電製品の電力消費量削減が求められている。特に一般家庭における冷蔵庫が占める電力消費量の割合は大きく、その削減は必要不可欠である。冷蔵庫の電力消費量削減のためには、圧縮機の高効率化と、断熱材の高性能化が重要になっている。   In recent years, from the viewpoint of preventing global warming, reduction of power consumption of home appliances has been demanded. In particular, the percentage of power consumption of refrigerators in general households is large, and the reduction is indispensable. In order to reduce the power consumption of the refrigerator, it is important to improve the efficiency of the compressor and the performance of the heat insulating material.

従来、断熱材としてポリウレタンフォーム(以下、PUFと称す)が用いられているが、近年、PUFよりも断熱性能が優れた真空断熱材がPUFと併用して使用されるようになっている。かかる真空断熱材は冷蔵庫に用いられるほか、保温庫、車両空調機、給湯器などの冷熱機器にも用いられている。   Conventionally, polyurethane foam (hereinafter referred to as PUF) is used as a heat insulating material, but in recent years, a vacuum heat insulating material having better heat insulating performance than PUF has been used in combination with PUF. Such vacuum heat insulating materials are used not only for refrigerators but also for refrigeration equipment such as heat insulation boxes, vehicle air conditioners, and water heaters.

真空断熱材とは、ガスバリア性(空気遮断性)のアルミ箔ラミネートフィルムなどからなる外包材の中に、粉末、発泡体、繊維体などが芯材として挿入され、内部が数Paの真空度に保持されているものである。   A vacuum heat insulating material is a powder, foam, fiber, etc. inserted as a core material into an outer packaging material made of a gas barrier (air barrier) aluminum foil laminate film, etc., and the inside has a degree of vacuum of several Pa. It is what is being held.

真空断熱材の芯材として、シリカなどの粉末、ウレタンなどの発泡体、ガラスなどの繊維体があるが、現在では断熱性能が最も優れた繊維体が主流になっている。   As core materials for vacuum heat insulating materials, there are powders such as silica, foams such as urethane, and fiber bodies such as glass. At present, however, fiber bodies having the most excellent heat insulation performance are mainly used.

繊維体には、無機繊維、および有機繊維がある。無機繊維には、ガラス繊維、炭素繊維などがあり(例えば、特許文献1、4、6参照)、有機繊維には、ポリスチレン繊維、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエチレンテレフタレート繊維、ポリエステル繊維、ポリエチレン繊維、セルロース繊維などがある(例えば、特許文献2、3、5、7、8参照)。   The fibrous body includes inorganic fibers and organic fibers. Examples of inorganic fibers include glass fibers and carbon fibers (see, for example, Patent Documents 1, 4, and 6). Examples of organic fibers include polystyrene fibers, polypropylene fibers, polylactic acid fibers, aramid fibers, and LCP (liquid crystal polymer) fibers. , Polyethylene terephthalate fiber, polyester fiber, polyethylene fiber, cellulose fiber and the like (for example, see Patent Documents 2, 3, 5, 7, and 8).

特開平8−028776号公報(第2頁−第3頁)JP-A-8-028776 (pages 2 to 3) 特許第3656028号公報(第5頁)Japanese Patent No. 3656028 (page 5) 特開2006−283817号公報(第7頁−第8頁)Japanese Patent Laying-Open No. 2006-283817 (pages 7-8) 特開2005−344870号公報(第7頁、図2)Japanese Patent Laying-Open No. 2005-344870 (page 7, FIG. 2) 特許第4012903号公報(第3頁)Japanese Patent No. 4012903 (page 3) 特開2008−185220号公報(第4頁−第5頁)JP 2008-185220 A (pages 4 to 5) 特開2006−29505号公報(第4頁)JP 2006-29505 A (page 4) 特開2009−41592号公報(第4頁)JP 2009-41592 A (page 4)

特許文献1〜8では、真空断熱材に、ガラス繊維のような無機繊維やポリエステル等の有機繊維が芯材として使用されている。
ガラス繊維は硬くて脆いため、真空断熱材の製造時に粉塵が飛び散り、作業者の皮膚や粘膜などに付着すると刺激を受けるおそれがあり、作業環境に問題がある。また、リサイクルの場面を考えた場合、例えば、冷蔵庫ではリサイクル工場で製品ごと粉砕され、ガラス繊維はウレタン屑などに混じってサーマルリサイクルに供されるが、燃焼効率を落としたり、残渣となるなどリサイクル性が良くない。
In Patent Literatures 1 to 8, inorganic fibers such as glass fibers and organic fibers such as polyester are used as the core material for the vacuum heat insulating material.
Since glass fiber is hard and brittle, dust is scattered during the manufacture of the vacuum heat insulating material, which may cause irritation if it adheres to the skin, mucous membrane, etc. of the worker, and there is a problem in the working environment. Also, when considering the scene of recycling, for example, in the refrigerator, the product is pulverized together at the recycling factory, and the glass fiber is mixed with urethane scraps and used for thermal recycling. Not good.

このため、特許文献7のように、ポリエステルの短繊維をニードルパンチ法によってシート状に加工した芯材を用いた真空断熱材がある。しかしながら、この芯材を用いた真空断熱材は、取り扱い性、リサイクル性に優れるものの、断熱性能を表す指標である熱伝導率が、0.0030[W/mK]程度であり、ガラス繊維を芯材として用いた一般的な真空断熱材の熱伝導率0.0020[W/mK]に比べて断熱性能に劣る。   For this reason, there exists a vacuum heat insulating material using the core material which processed the short fiber of polyester into the sheet form by the needle punch method like patent document 7. FIG. However, although the vacuum heat insulating material using this core material is excellent in handleability and recyclability, the thermal conductivity, which is an index representing the heat insulating performance, is about 0.0030 [W / mK], and the glass fiber is the core. Compared to the thermal conductivity of 0.0020 [W / mK] of a general vacuum heat insulating material used as a material, the heat insulating performance is inferior.

そこで、断熱方向である厚さ方向へ繊維をからめるニードルパンチ法は用いず、特許文献8のように、長繊維の熱可塑性樹脂を用いることにより、断熱方向である厚さ方向への繊維の配向を抑制し、繊維集合体としての形態を保持するための加工方法があり、その1つとして、熱エンボス加工を用いて得たシート状の繊維集合体を積層する方法がある。
しかしながら、熱エンボス加工による溶着箇所は断熱方向である厚さ方向への伝熱量を増やす要因となる。
Therefore, the needle punch method in which the fibers are entangled in the thickness direction which is the heat insulation direction is not used, and the fiber orientation in the thickness direction which is the heat insulation direction is achieved by using a long fiber thermoplastic resin as in Patent Document 8. There is a processing method for suppressing the above and maintaining the form as a fiber assembly, and as one of them, there is a method of laminating a sheet-like fiber assembly obtained by hot embossing.
However, the welding location by hot embossing becomes a factor of increasing the amount of heat transfer in the thickness direction, which is the heat insulating direction.

このような伝熱量の増加に対して、特許文献8には、熱エンボス加工による溶着部分の面積率を低くすることが記載されているが、溶着部分の面積率を低くすること以外には具体的に伝熱量の増加を防ぐ方法が示されておらず、その目付け(単位面積あたりの繊維重量)によっては、断熱性能の悪化(熱伝導率の上昇)をもたらすことがあった。   With respect to such an increase in the amount of heat transfer, Patent Document 8 describes that the area ratio of the welded portion by heat embossing is reduced, but it is specific other than lowering the area ratio of the welded portion. However, a method for preventing an increase in the amount of heat transfer was not shown, and depending on the basis weight (fiber weight per unit area), the heat insulation performance deteriorated (increased thermal conductivity).

本発明は、上記のような課題を解決するためになされたものであって、長繊維の熱可塑性樹脂を、熱エンボス加工によってシート状に加工した繊維集合体を積層した芯材を用いた真空断熱材において、適正な熱エンボス加工を行うことによって、断熱性に優れ、さらに取り扱い性、生産性、リサイクル性にも優れた真空断熱材、およびこの真空断熱材を備えた断熱箱を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a vacuum using a core material in which a fiber assembly obtained by processing a thermoplastic resin of long fibers into a sheet shape by hot embossing is laminated. Providing a vacuum heat insulating material with excellent heat insulation, handling properties, productivity, and recyclability, and a heat insulating box equipped with this vacuum heat insulating material by performing appropriate heat embossing on the heat insulating material. With the goal.

本発明は、ガスバリア性容器の内部に芯材を収容し内部を減圧状態にして封止した真空断熱材であって、芯材は熱可塑性樹脂の長繊維集合体を積層してなり、長繊維集合体は熱エンボス加工されてシート状に形成され、熱エンボス加工された長繊維集合体の減圧封止下における厚さが、熱エンボス加工を施されない長繊維集合体の減圧封止下における厚さの80%以上である。
また、本発明に係る断熱箱は、外箱と、外箱の内部に配置された内箱とを備え、外箱と内箱との間に上記の真空断熱材を配置したものである。
The present invention relates to a vacuum heat insulating material in which a core material is accommodated in a gas barrier container and sealed in a reduced pressure state, and the core material is formed by laminating a long-fiber aggregate of a thermoplastic resin. The aggregate is heat embossed to form a sheet, and the thickness of the heat-embossed long fiber aggregate under reduced pressure sealing is the thickness of the long fiber aggregate not subjected to hot embossing under reduced pressure sealing. 80% or more.
Moreover, the heat insulation box which concerns on this invention is equipped with an outer box and the inner box arrange | positioned inside the outer box, and arrange | positions said vacuum heat insulating material between an outer box and an inner box.

本発明によれば、真空断熱材は、長繊維の熱可塑性樹脂に適正な熱エンボス加工を行ってシート状に加工した繊維集合体を形成し、これを積層して形成した芯材を用いているので、断熱性に優れ、さらに取り扱い性、生産性、リサイクル性にも優れる。
また、断熱性に優れた断熱箱を得ることができる。
According to the present invention, the vacuum heat insulating material uses a core material formed by laminating a fiber assembly that is processed into a sheet shape by performing an appropriate hot embossing process on a long fiber thermoplastic resin. As a result, it has excellent heat insulation properties, as well as excellent handling, productivity, and recyclability.
Moreover, the heat insulation box excellent in heat insulation can be obtained.

本発明の実施の形態1に係る真空断熱材の斜視図である。It is a perspective view of the vacuum heat insulating material which concerns on Embodiment 1 of this invention. 図1の分解斜視図である。FIG. 2 is an exploded perspective view of FIG. 1. 図1の真空断熱材の芯材の積層状態を示す説明図である。It is explanatory drawing which shows the lamination | stacking state of the core material of the vacuum heat insulating material of FIG. 図1の真空断熱材の長繊維集合体の説明図である。It is explanatory drawing of the long fiber assembly of the vacuum heat insulating material of FIG. 実施の形態1に係る減圧封止下での熱エンボスを有する長繊維集合体の厚さと熱エンボスを有しない場合の長繊維集合体の厚さとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the thickness of the long-fiber assembly which has the heat embossing under pressure reduction sealing which concerns on Embodiment 1, and the thickness of the long-fiber assembly when not having a heat embossing. 比較例における長繊維集合体の目付けと熱伝導率との関係を示す線図である。It is a diagram which shows the relationship between the fabric weight of the long-fiber assembly in a comparative example, and thermal conductivity. 実施例1における、目付けを25g/m2 とし、クリアランス調整を行ったときの減圧封止時の厚さ比と熱伝導率との関係を示す線図である。In Example 1, it is a diagram which shows the relationship between the thickness ratio at the time of pressure reduction sealing | blocking, and thermal conductivity when the basis weight is 25 g / m < 2 > and clearance adjustment is performed. 実施例2における、減圧封止時厚さが熱エンボス加工を行わない場合の厚さの85%となるようにしたときの、目付けと熱伝導率との関係を示す線図である。In Example 2, it is a diagram which shows the relationship between a fabric weight and heat conductivity when it is made for the thickness at the time of pressure reduction sealing to be 85% of the thickness when not performing a heat embossing. 本発明の実施の形態2に係る断熱箱を模式的に示す断面図である。It is sectional drawing which shows typically the heat insulation box which concerns on Embodiment 2 of this invention.

[実施の形態1:真空断熱材]
図1、図2に示すように、本発明の実施の形態1に係る真空断熱材4は、空気遮断性を有するガスバリア性容器2(以下、外包材という)と、外包材2に封入された芯材1およびガス吸着剤3とからなり、外包材2の内部は所定の真空度に減圧されている。
真空断熱材4の外包材2は、ナイロン、アルミ蒸着PET、アルミ箔、高密度ポリエチレンで構成された、ガスバリア性のあるプラスチックラミネートフイルムからなる。
また、外包材2に封入された芯材1は、図3に示すように、複数のシート状の長繊維集合体1aを積層したもので、この長繊維集合体1aは熱可塑性樹脂の長繊維集合体である。
[Embodiment 1: Vacuum heat insulating material]
As shown in FIGS. 1 and 2, the vacuum heat insulating material 4 according to Embodiment 1 of the present invention is enclosed in a gas barrier container 2 (hereinafter referred to as an outer packaging material) having air barrier properties and the outer packaging material 2. It consists of the core material 1 and the gas adsorbent 3, and the inside of the outer packaging material 2 is depressurized to a predetermined degree of vacuum.
The outer packaging material 2 of the vacuum heat insulating material 4 is made of a plastic laminate film having a gas barrier property made of nylon, aluminum vapor-deposited PET, aluminum foil, and high-density polyethylene.
As shown in FIG. 3, the core material 1 enclosed in the outer wrapping material 2 is a laminate of a plurality of sheet-like long fiber aggregates 1a. The long fiber aggregates 1a are made of thermoplastic resin long fibers. It is an aggregate.

真空断熱材4の芯材1に用いる材料は、ポリエチレンテレフタレート(以下、PETともいう)のような熱可塑性樹脂である。その他に、ポリ乳酸、ポリプロピレン、ポリスチレン、LCP(液晶ポリマー)などの熱可塑性樹脂を用いることができる。   The material used for the core 1 of the vacuum heat insulating material 4 is a thermoplastic resin such as polyethylene terephthalate (hereinafter also referred to as PET). In addition, thermoplastic resins such as polylactic acid, polypropylene, polystyrene, and LCP (liquid crystal polymer) can be used.

以下に、真空断熱材4の芯材1の構成について詳述する。
真空断熱材4の芯材1を構成するシート状の長繊維集合体1aは、図4に示すように、長繊維集合体に熱エンボス加工(熱エンボス加工部分5)のようなボンディング加工をしたものである。
そして、図5に示すように、熱エンボス加工された長繊維集合体1aの減圧封止下における厚さt(図5の右側の図)が、熱エンボス加工されない長繊維集合体10aの減圧封止下における厚さT(図5の左側の図)の80%以上(t≧0.8T)になるようにしたものである。
この場合、熱エンボス加工された長繊維集合体1aの減圧封止下における厚さtは、カレンダーロールのクリアランス調整を行い、圧力を制御し、適正な厚さ調整を行った場合である(図5の右側の図参照)。
なお、上記の減圧封止下における厚さt(減圧封止時厚さ)とは、各長繊維集合体1aを複数枚積層して芯材1とした真空断熱材4の厚さから、外包材2の厚さを除き、積層枚数で割ったものである。
Below, the structure of the core material 1 of the vacuum heat insulating material 4 is explained in full detail.
As shown in FIG. 4, the sheet-like long fiber assembly 1a constituting the core material 1 of the vacuum heat insulating material 4 was subjected to bonding processing such as hot embossing (thermal embossing portion 5) on the long fiber assembly. Is.
Then, as shown in FIG. 5, the thickness t of the hot fiber embossed long fiber assembly 1a under reduced pressure sealing (the right side of FIG. 5) is reduced in pressure by the long fiber assembly 10a that is not hot embossed. The thickness T is 80% or more (t ≧ 0.8 T) of the thickness T (left side of FIG. 5).
In this case, the thickness t of the heat-embossed long fiber assembly 1a under reduced pressure sealing is the case where the clearance of the calender roll is adjusted, the pressure is controlled, and the appropriate thickness is adjusted (FIG. (See figure on the right side of 5).
The thickness t under reduced pressure sealing (thickness at reduced pressure sealing) refers to the thickness of the vacuum heat insulating material 4 obtained by laminating a plurality of the respective long fiber assemblies 1a to form the core material 1, and the outer packaging. Except for the thickness of the material 2, it is divided by the number of laminated layers.

こうして、熱エンボス加工された長繊維集合体1aの減圧封止下における厚さtを、熱エンボス加工されない場合の長繊維集合体10aの減圧封止下における厚さTの80%以上とすれば、熱エンボス加工による断熱性能の悪化を抑制することができる。
なお、減圧封止下における厚さtは、熱エンボス加工しない場合の厚さTの80%以上で任意に設定することができるが、大きくするほど長繊維集合体1aの強度が低下するため、所望の取り扱い性を確保するためには、厚さTの90%以下であることが望ましい。
Thus, if the thickness t of the heat-embossed long fiber assembly 1a under reduced pressure sealing is 80% or more of the thickness T of the long fiber assembly 10a under reduced pressure sealing when not heat embossed. The deterioration of the heat insulation performance due to heat embossing can be suppressed.
Note that the thickness t under reduced pressure sealing can be arbitrarily set at 80% or more of the thickness T in the case of not performing the heat embossing, but the strength of the long fiber aggregate 1a decreases as the thickness increases. In order to ensure the desired handleability, it is desirable that the thickness be 90% or less of the thickness T.

上記のように構成した真空断熱材4の製造方法について説明する。
まず、真空断熱材4の長繊維集合体1aの製造工程を述べる。
長繊維の熱可塑性樹脂である長繊維集合体1aは、スパンボンド法により得ることができる。
まず、原料であるポリエチレンテレフタレート(PET)について除湿乾燥を行い、その後、押出機によって例えば約280℃〜300℃にヒーター加熱し、混練、溶融する。溶融されたPET樹脂は、異物除去のためのポリマーフィルターを通った後、同じくヒーター加熱された配管を通り、ギアポンプによってノズルパックに一定量送られる。ノズルパックは複数層の分配板からなり、長尺のノズルに均一に樹脂が分配されるようになっている。均一に分配されたPET樹脂は、ノズルパック最下流のノズルプレートに開けられた多数の孔から一定量押出し紡糸される。
The manufacturing method of the vacuum heat insulating material 4 comprised as mentioned above is demonstrated.
First, the manufacturing process of the long-fiber assembly 1a of the vacuum heat insulating material 4 will be described.
The long fiber aggregate 1a, which is a long fiber thermoplastic resin, can be obtained by a spunbond method.
First, polyethylene terephthalate (PET), which is a raw material, is dehumidified and dried, and then heated by an extruder to, for example, about 280 ° C. to 300 ° C. to knead and melt. The molten PET resin passes through a polymer filter for removing foreign substances, and then passes through a heater-heated pipe, and is sent to a nozzle pack by a gear pump. The nozzle pack is composed of a plurality of distribution plates, and the resin is uniformly distributed to the long nozzles. Uniformly distributed PET resin is extruded and spun from a number of holes formed in the nozzle plate at the most downstream side of the nozzle pack.

押出されて糸状となったPET樹脂は、ノズル直下に冷風を送って冷却しながら、その下にある圧空による延伸装置により高速延伸して、所望の繊維径にするとともに、配向結晶化を行う。この場合、紡糸安定性と断熱性能を考慮し、平均繊維径が例えば10μmとなるようにする。   The extruded PET resin in the form of a thread is cooled by sending cold air directly under the nozzle, and is stretched at a high speed by a stretching device using compressed air underneath to obtain a desired fiber diameter, and orientation crystallization is performed. In this case, considering the spinning stability and the heat insulation performance, the average fiber diameter is set to 10 μm, for example.

延伸、配向結晶化された繊維は、そのまま、延伸装置の下に配されるメッシュコンベア上に捕集されて、熱エンボスロールに送られる。このとき、PET樹脂の押出量とコンベア速度を調整することで、繊維径や目付けを変えることができる。
メッシュコンベア上に捕集された多数の連続繊維は、例えば190℃〜230℃程度に加熱されたドット状のピンポイント柄のついた彫刻ロールと平滑な面を持つカレンダーロールを通して熱融着加工を行い、熱エンボス加工された長繊維集合体1aを得る。このとき、所望の厚さの長繊維集合体1aを得るため、カレンダーロールのクリアランスを調節する。
The fibers that have been stretched and oriented and crystallized are collected as they are on a mesh conveyor disposed under the stretching apparatus, and sent to a hot embossing roll. At this time, the fiber diameter and the basis weight can be changed by adjusting the extrusion amount of the PET resin and the conveyor speed.
A large number of continuous fibers collected on the mesh conveyor are heat-sealed through a sculpture roll with a dot-like pinpoint pattern heated to, for example, about 190 ° C to 230 ° C and a calender roll with a smooth surface. To obtain a heat-embossed long fiber assembly 1a. At this time, in order to obtain the long fiber aggregate 1a having a desired thickness, the clearance of the calendar roll is adjusted.

次に、真空断熱材4の外包材2の製造工程を述べる。
真空断熱材4の外包材2には、例えば6μmのナイロン、10μmのアルミ蒸着PET、6μmのアルミ箔、50μmの高密度ポリエチレンで構成されるガスバリア性のあるプラスチックラミネートフイルムを使用する。その他に、ポリプロピレン、ポリビニルアルコール、ポリプロピレンの構成などのアルミ箔を含まないラミネートフイルムを用いると、ヒートブリッジによる断熱性能の低下を抑制することができる。
Next, the manufacturing process of the outer packaging material 2 of the vacuum heat insulating material 4 will be described.
For the outer packaging material 2 of the vacuum heat insulating material 4, for example, a plastic laminate film having a gas barrier property made of 6 μm nylon, 10 μm aluminum vapor-deposited PET, 6 μm aluminum foil, and 50 μm high-density polyethylene is used. In addition, when a laminate film that does not include an aluminum foil such as polypropylene, polyvinyl alcohol, or polypropylene is used, it is possible to suppress a decrease in heat insulation performance due to a heat bridge.

次に、真空断熱材4の真空包装の工程について述べる。
真空断熱材4の製造は、袋である外包材2に芯材1を挿入し、残りの一辺の口が閉まらないように固定して恒温槽にて例えば100℃の温度下で2時間の乾燥を行った後、真空包装後の残存ガスや経時的に放出される芯材1からのアウトガス、外包材2のシール層を通して進入する透過ガスを吸着するためのガス吸着剤3を外包材2内に挿入し、例えば柏木式真空包装機(NPC社製;KT−1600)によって真空引きをおこなう。真空引きは、チャンバー内真空度が例えば1Pa〜3Pa程度になるまで行い、そのままチャンバー内で外包材2の開口部をヒートシールして、板状の真空断熱材4を得る。
Next, the vacuum packaging process of the vacuum heat insulating material 4 will be described.
The vacuum heat insulating material 4 is manufactured by inserting the core material 1 into the outer packaging material 2 that is a bag, fixing it so that the other side of the mouth is not closed, and drying it at a temperature of, for example, 100 ° C. for 2 hours. , The gas adsorbent 3 for adsorbing the residual gas after vacuum packaging, the outgas from the core material 1 released over time, and the permeated gas entering through the sealing layer of the outer packaging material 2 is contained in the outer packaging material 2. And vacuuming is performed by, for example, a Kashiwagi type vacuum packaging machine (manufactured by NPC; KT-1600). Vacuuming is performed until the degree of vacuum in the chamber becomes, for example, about 1 Pa to 3 Pa, and the opening of the outer packaging material 2 is heat-sealed in the chamber as it is to obtain the plate-like vacuum heat insulating material 4.

上記のように構成した真空断熱材4は、長繊維の熱可塑性樹脂に適正な熱エンボス加工を行ってシート状に加工した長繊維集合体1aを形成し、これを積層した芯材1を用いているので、断熱性に優れ、さらに取り扱い性、生産性、リサイクル性にも優れている。   The vacuum heat insulating material 4 configured as described above uses a core material 1 formed by laminating a long fiber assembly 1a obtained by subjecting a long fiber thermoplastic resin to an appropriate heat embossing process to form a sheet. Therefore, it is excellent in heat insulation, and also in handling, productivity, and recyclability.

[実験例]
カレンダーロールのクリアランス調整を行わず、圧力のみの制御で、減圧封止時の厚さ調整を行わずに得たシート状の長繊維集合体を用いて真空断熱材を形成した。カレンダーロールの温度は200℃、線圧は20kg/cm、シート状繊維集合体の巻取り速度は目付けによって異なり、23〜95m/minであった。
得られた真空断熱材の断熱性能は、熱伝導率計「AutoΛ HC−074(英弘精機(株)製)」を用いて、上温度37.7℃、下温度10.0℃の温度差における熱伝導率を測定して行った。なお、測定は真空包装完了から約24hr経過後に行った。
真空断熱材の断熱性能の評価結果は、表1に示す通りであった。
[Experimental example]
A vacuum heat insulating material was formed using a sheet-like long fiber aggregate obtained without adjusting the clearance of the calender roll and controlling only the pressure and not adjusting the thickness at the time of vacuum sealing. The temperature of the calendar roll was 200 ° C., the linear pressure was 20 kg / cm, and the winding speed of the sheet-like fiber assembly was 23 to 95 m / min depending on the basis weight.
The heat insulation performance of the obtained vacuum heat insulating material was measured using a thermal conductivity meter “AutoΛ HC-074 (manufactured by Eihiro Seiki Co., Ltd.)” at a temperature difference between an upper temperature of 37.7 ° C. and a lower temperature of 10.0 ° C. This was done by measuring the thermal conductivity. Note that the measurement was performed after about 24 hours from the completion of vacuum packaging.
The evaluation results of the heat insulating performance of the vacuum heat insulating material are as shown in Table 1.

Figure 2011027204
Figure 2011027204

表1に示すように、カレンダーロールのクリアランス調整をせず、減圧封止時の厚さ調整がない場合は、繊維集合体の目付けが増えるにしたがって熱伝導率が増加し、断熱性能が悪化していることがわかる。
すなわち、目付けが13.1g/m2 のとき、熱伝導率は0.0020W/mKであった。このとき、長繊維集合体の減圧封止時の厚さは、熱エンボス加工がないときはT=0.092mmであり、熱エンボス加工を行ったとき(クリアランス調整は行わず、厚さ調整はない)はt’=0.060mmであり、厚さ比(熱エンボス加工あり/熱エンボス加工なし)はt’/T=65.2%であった。また、目付けが17.5g/m2 のとき、熱伝導率は0.0021W/mKであり、このとき、長繊維集合体の減圧封止時厚さは、熱エンボス加工がないときはT=0.123mmであり、熱エンボス加工を行ったとき(クリアランス調整は行わず、厚さ調整はない)はt’=0.075mmであって、厚さ比(熱エンボス加工あり/熱エンボス加工なし)はt’/T=61.0%であった。
As shown in Table 1, when the calender roll clearance is not adjusted and the thickness is not adjusted at the time of vacuum sealing, the thermal conductivity increases as the fiber mass per unit area increases, and the heat insulation performance deteriorates. You can see that
That is, when the basis weight was 13.1 g / m 2 , the thermal conductivity was 0.0020 W / mK. At this time, the thickness at the time of vacuum sealing of the long fiber aggregate is T = 0.092 mm when there is no hot embossing, and when hot embossing is performed (clearance adjustment is not performed, thickness adjustment is No) was t ′ = 0.060 mm, and the thickness ratio (with hot embossing / without hot embossing) was t ′ / T = 65.2%. Further, when the basis weight is 17.5 g / m 2 , the thermal conductivity is 0.0021 W / mK. At this time, the thickness at the time of vacuum sealing of the long fiber aggregate is T = when there is no hot embossing. 0.123 mm, when heat embossing is performed (clearance adjustment is not performed, thickness adjustment is not performed), t ′ = 0.075 mm, and thickness ratio (with heat embossing / without heat embossing) ) Was t ′ / T = 61.0%.

また、目付けが25g/m2 のとき、熱伝導率は0.0023W/mKであり、このとき、長繊維集合体の減圧封止時厚さは、熱エンボス加工がないときはT=0.175mmであり、熱エンボス加工を行ったとき(クリアランス調整は行わず、厚さ調整はない)はt’=0.114mmであって、厚さ比(熱エンボス加工あり/熱エンボス加工なし)はt’/T=65.1%であった。また、目付けが53g/m2 のとき、熱伝導率は0.0027W/mKであり、このとき、長繊維集合体の減圧封止時厚さは、熱エンボス加工がないときはT=0.371mmであり、熱エンボス加工をおこなったとき(クリアランス調整は行わず、厚さ調整はない)はt’=0.212mmであって、厚さ比(熱エンボス加工あり/熱エンボス加工なし)はt’/T=57.1%であった。 Further, when the basis weight is 25 g / m 2 , the thermal conductivity is 0.0023 W / mK. At this time, the thickness at the time of vacuum sealing of the long fiber aggregate is T = 0. When heat embossing is performed (clearance adjustment is not performed and thickness adjustment is not performed), t ′ = 0.114 mm, and the thickness ratio (with heat embossing / without heat embossing) is t ′ / T = 65.1%. Further, when the basis weight is 53 g / m 2 , the thermal conductivity is 0.0027 W / mK. At this time, the thickness at the time of vacuum sealing of the long fiber aggregate is T = 0. When heat embossing is performed (clearance adjustment is not performed and thickness adjustment is not performed), t ′ = 0.212 mm, and the thickness ratio (with heat embossing / without heat embossing) is t ′ / T = 57.1%.

これらの結果より、クリアランス調整をせず熱エンボス加工を行った場合は、図6に示すように、目付けが13.1g/m2 、17.5g/m2 、25g/m2 、53g/m2 と増えるにしたがって、熱伝導率が0.0020W/mK、0.0021W/mK、0.0023W/mK、0.0027W/mKのように増加し、断熱性能が悪化していることがわかる。
そして、いずれも、熱エンボス加工を行った場合(ただし、クリアランス調整は行われず、厚さ調整はない)の長繊維集合体の減圧封止時の厚さ(t’)は、熱エンボス加工を行わなかった場合の減圧封止時厚さ(T)の60%前後になっている。
These results, when subjected to hot embossing without clearance adjustment, as shown in FIG. 6, a basis weight of 13.1g / m 2, 17.5g / m 2, 25g / m 2, 53g / m It can be seen that as the value increases to 2 , the thermal conductivity increases to 0.0020 W / mK, 0.0021 W / mK, 0.0023 W / mK, 0.0027 W / mK, and the heat insulation performance deteriorates.
In both cases, the thickness (t ′) of the long-fiber assembly when heat embossing is performed (however, the clearance adjustment is not performed and the thickness is not adjusted) is as follows. When not performed, it is about 60% of the thickness (T) during reduced pressure sealing.

[実施例1]
目付けをすべて25g/m2とし、カレンダーロールのクリアランス調整を行い、減圧封止時の厚さ調整を行ったシート状の長繊維集合体1aを用いて真空断熱材4を形成した。
真空断熱材4の断熱性能の評価結果は、表2に示す通りであった。
[Example 1]
The vacuum heat insulating material 4 was formed using the sheet-like long fiber aggregate 1a in which the basis weight was all 25 g / m 2 , the calender roll clearance was adjusted, and the thickness was adjusted at the time of vacuum sealing.
The evaluation results of the heat insulating performance of the vacuum heat insulating material 4 are as shown in Table 2.

Figure 2011027204
Figure 2011027204

表2に示すように、長繊維集合体1aの減圧封止時の厚さは、熱エンボス加工がないときT=0.175mmとし(図5の左図参照)、熱エンボス加工時はクリアランス調整を行い、減圧封止時の厚さ調整を行って、t=0.114mmとし(図5の右図参照)、厚さ比(熱エンボス加工あり/熱エンボス加工なし)をt/T=65%とした。このときの熱伝導率は0.0023W/mKであった。また、熱エンボス加工がないときT=0.175mmとし、熱エンボス加工時はクリアランス調整を行い、減圧封止時の厚さ調整を行って、t=0.125mmとし、厚さ比(熱エンボス加工あり/熱エンボス加工なし)をt/T=71%とした。このときの熱伝導率は0.0021W/mKであった。   As shown in Table 2, the thickness of the long-fiber assembly 1a when sealed under reduced pressure is T = 0.175 mm when there is no hot embossing (see the left figure in FIG. 5), and the clearance is adjusted during hot embossing. The thickness at the time of vacuum sealing is adjusted to t = 0.114 mm (see the right figure in FIG. 5), and the thickness ratio (with hot embossing / without hot embossing) is t / T = 65 %. The thermal conductivity at this time was 0.0023 W / mK. In addition, T = 0.175 mm when there is no hot embossing, clearance adjustment during hot embossing, and thickness adjustment during decompression sealing, t = 0.125 mm, thickness ratio (hot embossing) With processing / without heat embossing) was set to t / T = 71%. The thermal conductivity at this time was 0.0021 W / mK.

また、熱エンボス加工がないときT=0.175mmとし、熱エンボス加工時はクリアランス調整を行い、減圧封止時の厚さ調整を行って、t=0.146mmとし、厚さ比(熱エンボス加工あり/熱エンボス加工なし)をt/T=83%とした。このときの熱伝導率は0.0020W/mKであった。また、熱エンボス加工がないときT=0.175mmとし、熱エンボス加工時はクリアランス調整を行い、減圧封止時の厚さ調整を行って、t=0.157mmとし、厚さ比(熱エンボス加工あり/熱エンボス加工なし)をt/T=90%とした。このときの熱伝導率は0.0020W/mKであった。
一方、熱エンボス加工がないときで、長繊維集合体10aの減圧封止時の厚さを、T=0.175mmとしたときは、この繊維集合体の熱伝導率は0.0020であった(図7参照)。
In addition, T = 0.175 mm when there is no hot embossing, clearance adjustment during hot embossing, and thickness adjustment during decompression sealing, t = 0.146 mm, and thickness ratio (heat embossing) With processing / without heat embossing) was set to t / T = 83%. The thermal conductivity at this time was 0.0020 W / mK. In addition, T = 0.175 mm when there is no hot embossing, clearance adjustment during hot embossing, and thickness adjustment during decompression sealing, t = 0.157 mm, thickness ratio (heat embossing) With processing / without heat embossing) was set to t / T = 90%. The thermal conductivity at this time was 0.0020 W / mK.
On the other hand, when there was no heat embossing and the thickness of the long-fiber aggregate 10a at the time of vacuum sealing was T = 0.175 mm, the thermal conductivity of the fiber aggregate was 0.0020. (See FIG. 7).

これらの結果より、図7に示すように、熱エンボス加工を行った場合(このとき、クリアランス調整を行い、減圧封止時の厚さ調整を行った)の長繊維集合体1aの減圧封止時の厚さtを、熱エンボス加工を行わなかった場合の長繊維集合体10aの減圧封止時厚さT(図5の左図参照)の80%以上にすれば、熱エンボス加工による断熱性能の悪化を抑制できることがわかった(図7参照)。   From these results, as shown in FIG. 7, reduced pressure sealing of the long fiber aggregate 1a when heat embossing is performed (at this time, clearance adjustment is performed and thickness adjustment is performed during reduced pressure sealing). If the thickness t at the time is set to 80% or more of the reduced pressure sealing thickness T of the long fiber aggregate 10a when the hot embossing is not performed (see the left figure in FIG. 5), the heat insulation by the hot embossing is performed. It turned out that the deterioration of performance can be suppressed (refer FIG. 7).

[実施例2]
上記の結果をふまえ、各目付けにおいて、熱エンボス加工を行った場合の長繊維集合体1aの減圧封止時の厚さtが、熱エンボス加工を行わない場合の長繊維集合体10aの厚さTの85%になるようにシート状長繊維集合体1aを製造し(図5参照)、真空断熱材4の断熱性能の評価を行った。その結果は表3に示す通りであった。
[Example 2]
Based on the above results, the thickness t at the time of vacuum sealing of the long fiber assembly 1a when heat embossing is performed in each basis weight is the thickness of the long fiber assembly 10a when heat embossing is not performed. The sheet-like long fiber assembly 1a was manufactured so as to be 85% of T (see FIG. 5), and the heat insulating performance of the vacuum heat insulating material 4 was evaluated. The results were as shown in Table 3.

Figure 2011027204
Figure 2011027204

表3に示すように、t/T=85%となるようにした場合、目付けが13.1g/m2 のとき熱伝導率は0.0020W/mKであり、目付けが17.5g/m2 のとき熱伝導率は0.0020W/mKであり、目付けが25g/m2 のとき熱伝導率は0.0019W/mKであり、目付けが53g/m2 のとき熱伝導率は0.0021W/mKであった。 As shown in Table 3, when t / T = 85%, when the basis weight is 13.1 g / m 2 , the thermal conductivity is 0.0020 W / mK and the basis weight is 17.5 g / m 2. , The thermal conductivity is 0.0020 W / mK, when the basis weight is 25 g / m 2 , the thermal conductivity is 0.0019 W / mK, and when the basis weight is 53 g / m 2 , the thermal conductivity is 0.0021 W / m 2. mK.

実験例(長繊維集合体のクリアランス調整は行わず、減圧封止時の厚さ調整はない)では、図6に示すように、目付けが13.1g/m2 、17.5g/m2 、25g/m2 、53g/m2 と増えるに従って熱伝導率が増加し(0.0020W/mKから0.0027W/mKまで増加し)、断熱性能が悪化していることがわかる。
これに対して、実施例2(長繊維集合体1aのクリアランス調整を行い、減圧封止時の厚さ調整をt/T=85%とした)では、図8に示すように、目付けが13.1g/m2 、17.5g/m2 、25g/m2 、53g/m2 と増えても、熱伝導率にほとんど変化はなく(0.0019W/mKから0.0021W/mKまでの間に維持される)、断熱性能の悪化はないことがわかる。
Experimental Example (without clearance adjustment of the long fiber aggregate, vacuum sealing thickness no adjustment during stop), as shown in FIG. 6, a basis weight of 13.1g / m 2, 17.5g / m 2, It can be seen that the thermal conductivity increases (increases from 0.0020 W / mK to 0.0027 W / mK) as the values increase to 25 g / m 2 and 53 g / m 2, and the heat insulation performance deteriorates.
On the other hand, in Example 2 (clearance adjustment of the long fiber aggregate 1a is performed and the thickness adjustment at the time of sealing under reduced pressure is t / T = 85%), the basis weight is 13 as shown in FIG. .1g / m 2, while also increasing the 17.5g / m 2, 25g / m 2, 53g / m 2, almost no change in the thermal conductivity from (0.0019W / mK to 0.0021W / mK It is understood that there is no deterioration in the heat insulation performance.

このように、減圧封止時の長繊維集合体1aの厚さは、熱エンボス加工を行わない場合の厚さの80%以上で任意に設定することが好ましく、この場合に良好な断熱性能を得られることがわかった。しかしながら、減圧封止時の厚さが大きくなるほど長繊維集合体1aの強度が低下するため、所望の取り扱い性を確保するためには、長繊維集合体1aの厚さは90%以下であることが望ましい。   Thus, it is preferable that the thickness of the long-fiber assembly 1a at the time of vacuum sealing is arbitrarily set at 80% or more of the thickness when heat embossing is not performed, and in this case, good thermal insulation performance is achieved. It turns out that it is obtained. However, since the strength of the long fiber assembly 1a decreases as the thickness at the time of vacuum sealing increases, the thickness of the long fiber assembly 1a is 90% or less in order to ensure the desired handleability. Is desirable.

[実施の形態2:断熱箱]
図9は本発明の実施の形態2に係る断熱箱(本実施の形態では冷蔵庫を示す)の断面図である。
図9において、断熱箱である冷蔵庫20は、外箱21と、外箱21の内部に配置された内箱22と、外箱21と内箱22との間に配置された真空断熱材4およびポリウレタンフォーム(断熱材)23と、内箱22内に冷熱を供給する冷凍ユニット(図示せず)とを備えている。なお、外箱21および内箱22は、共通する面にそれぞれ開口部(図示せず)が形成されており、この開口部に開閉扉(図示せず)が設けられている。
[Embodiment 2: Insulation box]
FIG. 9 is a cross-sectional view of a heat insulation box (in this embodiment, a refrigerator) according to Embodiment 2 of the present invention.
In FIG. 9, the refrigerator 20, which is a heat insulating box, includes an outer box 21, an inner box 22 disposed inside the outer box 21, a vacuum heat insulating material 4 disposed between the outer box 21 and the inner box 22, and A polyurethane foam (heat insulating material) 23 and a refrigeration unit (not shown) for supplying cold heat into the inner box 22 are provided. The outer box 21 and the inner box 22 each have an opening (not shown) formed on a common surface, and an opening / closing door (not shown) is provided in the opening.

上記の冷蔵庫において、真空断熱材4は外箱21から外包材2(図1参照)を通って熱が回り込むおそれがあるため、真空断熱材4は樹脂成形品であるスペーサ24を用いて、外箱21の塗装鋼板から離して配設されている。なお、スペーサ24は後工程で断熱壁内に注入されるポリウレタンフォームにボイドが残らないように、流動を阻害しないための孔が、適宜設けられている。   In the refrigerator described above, since the heat of the vacuum heat insulating material 4 may flow from the outer box 21 through the outer packaging material 2 (see FIG. 1), the vacuum heat insulating material 4 is formed by using a spacer 24 that is a resin molded product. The box 21 is disposed away from the coated steel plate. In addition, the spacer 24 is appropriately provided with holes for not inhibiting the flow so that voids do not remain in the polyurethane foam injected into the heat insulating wall in a later step.

すなわち、冷蔵庫20は、真空断熱材4、スペーサ24およびポリウレタンフォーム23によって形成された断熱壁25を有している。なお、断熱壁25が配置される範囲は限定するものではなく、外箱21と内箱22との間に形成される隙間の全範囲あるいは一部であってもよく、また、前記開閉扉の内部に配置してもよい。   That is, the refrigerator 20 has a heat insulating wall 25 formed by the vacuum heat insulating material 4, the spacer 24 and the polyurethane foam 23. In addition, the range in which the heat insulation wall 25 is arrange | positioned is not limited, The whole range or one part of the clearance gap formed between the outer box 21 and the inner box 22 may be sufficient, It may be arranged inside.

上記のように構成した冷蔵庫20は、使用済みとなった場合、家電リサイクル法に基づき、各地のリサイクルセンターで解体、リサイクルされる。
この際、冷蔵庫20は、熱可塑性樹脂の長繊維集合体1aによって形成された芯材1が配設された真空断熱材4を有するため、真空断熱材4を取り外すことなく破砕処理を行うことができ、サーマルリサイクルに際して燃焼効率を下げたり、残渣となったりすることがなく、リサイクル性がよい。
When the refrigerator 20 configured as described above is used, it is dismantled and recycled at recycling centers in various places based on the Home Appliance Recycling Law.
At this time, since the refrigerator 20 has the vacuum heat insulating material 4 in which the core material 1 formed of the long fiber aggregate 1a of the thermoplastic resin is disposed, the crushing process can be performed without removing the vacuum heat insulating material 4. It does not reduce combustion efficiency or become a residue during thermal recycling, and is highly recyclable.

上記のように構成した真空断熱材4は、長繊維の熱可塑性樹脂に適正な熱エンボス加工を行ってシート状に加工した長繊維集合体1aを形成し、これを積層して形成した芯材1を用いているので、かかる真空断熱材4を有する断熱壁25を備えた冷蔵庫20は、非常にすぐれた断熱性を有することができる。   The vacuum heat insulating material 4 configured as described above is a core material formed by laminating a long fiber assembly 1a obtained by subjecting a long fiber thermoplastic resin to an appropriate heat embossing process to form a sheet. 1 is used, the refrigerator 20 including the heat insulating wall 25 including the vacuum heat insulating material 4 can have a very good heat insulating property.

上記の説明では、断熱箱が冷蔵庫20である場合を示したが、本発明はこれに限定するものではなく、保温庫、車両空調機、給湯器などの冷熱機器あるいは温熱機器、さらには、所定の形状を具備する箱に替えて、変形自在な外袋および内袋を具備する断熱袋(断熱容器)であってもよい。
これらの場合に、断熱箱では、温度調整手段を設けて、内箱の内部の温度を調整するようにしてもよい。
In the above description, the case where the heat insulating box is the refrigerator 20 has been shown, but the present invention is not limited to this, and is not limited to this. Instead of the box having the shape, a heat insulating bag (heat insulating container) having a deformable outer bag and an inner bag may be used.
In these cases, the heat insulating box may be provided with temperature adjusting means to adjust the temperature inside the inner box.

1 芯材、1a 長繊維集合体、2 外包材、4 真空断熱材、5 熱エンボス加工部分、10a 熱エンボス加工を施されない長繊維集合体、21 外箱、22 内箱、23 断熱材、24 スペーサ。   DESCRIPTION OF SYMBOLS 1 Core material, 1a Long fiber assembly, 2 Outer packaging material, 4 Vacuum heat insulating material, 5 Hot embossing part, 10a Long fiber assembly which is not heat-embossed, 21 Outer box, 22 Inner box, 23 Heat insulating material, 24 Spacer.

Claims (9)

ガスバリア性容器の内部に芯材を収容し内部を減圧状態にして封止した真空断熱材であって、
前記芯材は熱可塑性樹脂の長繊維集合体を積層してなり、
前記長繊維集合体は熱エンボス加工されてシート状に形成され、
熱エンボス加工された前記長繊維集合体の減圧封止下における厚さが、熱エンボス加工を施されない長繊維集合体の減圧封止下における厚さの80%以上であることを特徴とする真空断熱材。
A vacuum heat insulating material that contains a core material inside a gas barrier container and seals the inside in a reduced pressure state,
The core material is formed by laminating a long fiber assembly of thermoplastic resin,
The long fiber aggregate is formed into a sheet by hot embossing,
A vacuum characterized in that a thickness of the hot fiber embossed long fiber aggregate under reduced pressure sealing is 80% or more of a thickness of the long fiber aggregate not subjected to hot embossing under reduced pressure sealing. Insulation.
熱エンボス加工された前記長繊維集合体の減圧封止下における厚さが、熱エンボス加工を施されない長繊維集合体の減圧封止下における厚さの80%〜90%であることを特徴とする請求項1記載の真空断熱材。   The thickness of the long-fiber assembly subjected to hot embossing under reduced pressure sealing is 80% to 90% of the thickness of the long-fiber assembly not subjected to hot embossing under reduced pressure sealing. The vacuum heat insulating material according to claim 1. 熱エンボス加工された前記長繊維集合体の減圧封止下における厚さが、熱エンボス加工を施されない長繊維集合体の減圧封止下における厚さの85%であることを特徴とする請求項2記載の真空断熱材。   The thickness under reduced pressure sealing of the hot fiber embossed long fiber aggregate is 85% of the thickness under reduced pressure sealing of the long fiber aggregate not subjected to hot embossing. 2. The vacuum heat insulating material according to 2. 熱エンボス加工された前記長繊維集合体の厚さを、カレンダーロールのクリアランス調整を行うことによって調整したことを特徴とする請求項1〜3のいずれかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein the thickness of the hot-fiber embossed long fiber aggregate is adjusted by adjusting the clearance of a calender roll. 前記長繊維集合体が、ポリエチレンテレフタレート、ポリ乳酸、ポリプロピレン、ポリスチレン、およびLCPのいずれかからなることを特徴とする請求項1〜4のいずれかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 4, wherein the long fiber aggregate is made of any one of polyethylene terephthalate, polylactic acid, polypropylene, polystyrene, and LCP. 外箱と、前記外箱の内部に配置された内箱とを備え、
前記外箱と内箱との間に請求項1〜5のいずれかに記載の真空断熱材を配置したことを特徴とする断熱箱。
An outer box, and an inner box disposed inside the outer box,
A heat insulating box, wherein the vacuum heat insulating material according to any one of claims 1 to 5 is disposed between the outer box and the inner box.
前記外箱と前記真空断熱材との間、および前記内箱と前記真空断熱材との間の両方またはいずれか一方に、断熱材が充填されたことを特徴とする請求項6記載の断熱箱。   The heat insulating box according to claim 6, wherein a heat insulating material is filled between the outer box and the vacuum heat insulating material and / or between the inner box and the vacuum heat insulating material. . 前記外箱と前記真空断熱材との間にスペーサを配設したことを特徴とする請求項6または7記載の断熱箱。   The heat insulating box according to claim 6 or 7, wherein a spacer is disposed between the outer box and the vacuum heat insulating material. 温度調整手段によって前記内箱の内部温度を調整することを特徴とする請求項6〜8のいずれかに記載の断熱箱。   The heat insulation box according to any one of claims 6 to 8, wherein an internal temperature of the inner box is adjusted by a temperature adjusting means.
JP2009175034A 2009-07-28 2009-07-28 Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material Pending JP2011027204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175034A JP2011027204A (en) 2009-07-28 2009-07-28 Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175034A JP2011027204A (en) 2009-07-28 2009-07-28 Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material

Publications (1)

Publication Number Publication Date
JP2011027204A true JP2011027204A (en) 2011-02-10

Family

ID=43636180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175034A Pending JP2011027204A (en) 2009-07-28 2009-07-28 Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material

Country Status (1)

Country Link
JP (1) JP2011027204A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173928A (en) * 1985-01-29 1986-08-05 松下電器産業株式会社 Vacuum heat-insulating material
JPS632080U (en) * 1986-06-23 1988-01-08
JPH07189107A (en) * 1993-12-27 1995-07-25 New Oji Paper Co Ltd Laminated nonwoven fabric
JPH08121684A (en) * 1994-10-18 1996-05-17 Kubota Corp Filler for vacuum insulator
JP2003014368A (en) * 2001-06-28 2003-01-15 Matsushita Refrig Co Ltd Refrigerator
JP2007185397A (en) * 2006-01-13 2007-07-26 Mycoal Products Corp Method for producing exothermic body, and exothermic body
JP2007216034A (en) * 2007-03-16 2007-08-30 Kao Corp Sheet for absorptive article
JP2008057793A (en) * 2007-11-21 2008-03-13 Kurabo Ind Ltd Vacuum heat insulation material
JP2008223922A (en) * 2007-03-14 2008-09-25 Sharp Corp Vacuum heat insulating material
JP2009041592A (en) * 2007-08-06 2009-02-26 Mitsubishi Electric Corp Vacuum heat insulating material and insulation box

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173928A (en) * 1985-01-29 1986-08-05 松下電器産業株式会社 Vacuum heat-insulating material
JPS632080U (en) * 1986-06-23 1988-01-08
JPH07189107A (en) * 1993-12-27 1995-07-25 New Oji Paper Co Ltd Laminated nonwoven fabric
JPH08121684A (en) * 1994-10-18 1996-05-17 Kubota Corp Filler for vacuum insulator
JP2003014368A (en) * 2001-06-28 2003-01-15 Matsushita Refrig Co Ltd Refrigerator
JP2007185397A (en) * 2006-01-13 2007-07-26 Mycoal Products Corp Method for producing exothermic body, and exothermic body
JP2008223922A (en) * 2007-03-14 2008-09-25 Sharp Corp Vacuum heat insulating material
JP2007216034A (en) * 2007-03-16 2007-08-30 Kao Corp Sheet for absorptive article
JP2009041592A (en) * 2007-08-06 2009-02-26 Mitsubishi Electric Corp Vacuum heat insulating material and insulation box
JP2008057793A (en) * 2007-11-21 2008-03-13 Kurabo Ind Ltd Vacuum heat insulation material

Similar Documents

Publication Publication Date Title
JP5388603B2 (en) Vacuum heat insulating material and heat insulating box equipped with the same
JP4789886B2 (en) Vacuum insulation and insulation box
JP5236550B2 (en) Vacuum heat insulating material and manufacturing method thereof, and heat insulating box provided with the vacuum heat insulating material
JP2011074934A (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
US7947347B2 (en) Vacuum heat insulator
CN105358893B (en) Heat shield, mixed type heat shield and heat insulating panel
JP6685238B2 (en) Plastic PCM sheet material
KR101363423B1 (en) Low Density Vacuum Insulation of Inorganic Powder with Supporting Structure Using Expended Perlite and Silica, its Manufacturing Method and Making Machine
JP5111331B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JP2010127421A (en) Vacuum thermal-insulating material and thermal insulation box
EP2105648A1 (en) Vacuum heat insulating material and heat insulating box using the same
TWI466992B (en) Vacuum insulation materials and insulation boxes using the material
JP2010281444A (en) Heat insulating material
JP2011027204A (en) Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material
KR100965971B1 (en) Vacuum heat insulation material
KR101619225B1 (en) Heat insulation sheet, method for manufacturing the same and heat insulating panel
JP4969555B2 (en) Vacuum insulation and insulation box
JP5611258B2 (en) Vacuum heat insulating material, manufacturing method thereof, heat insulator and dismantling method thereof
EP2985376B1 (en) Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same
KR20160054437A (en) Hybrid Heat Insulation Sheet, Method for Manufacturing the Same and Heat Insulating Panel
JP5448937B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
JP5512011B2 (en) Vacuum insulation for insulation box
EP3393803A1 (en) Method for manufacturing vacuum insulation panels
KR102217150B1 (en) Vacuum Insulation Material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107