JP4789886B2 - Vacuum insulation and insulation box - Google Patents

Vacuum insulation and insulation box Download PDF

Info

Publication number
JP4789886B2
JP4789886B2 JP2007204400A JP2007204400A JP4789886B2 JP 4789886 B2 JP4789886 B2 JP 4789886B2 JP 2007204400 A JP2007204400 A JP 2007204400A JP 2007204400 A JP2007204400 A JP 2007204400A JP 4789886 B2 JP4789886 B2 JP 4789886B2
Authority
JP
Japan
Prior art keywords
heat insulating
organic fiber
insulating material
vacuum heat
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007204400A
Other languages
Japanese (ja)
Other versions
JP2009041592A5 (en
JP2009041592A (en
Inventor
京子 野村
修一 岩田
司 高木
祥 花岡
雅法 辻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007204400A priority Critical patent/JP4789886B2/en
Priority to GB0812583A priority patent/GB2451614B/en
Priority to CN2008101334786A priority patent/CN101363566B/en
Priority to BE2008/0420A priority patent/BE1018383A5/en
Publication of JP2009041592A publication Critical patent/JP2009041592A/en
Publication of JP2009041592A5 publication Critical patent/JP2009041592A5/ja
Application granted granted Critical
Publication of JP4789886B2 publication Critical patent/JP4789886B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • B32B2509/10Refrigerators or refrigerating equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Laminated Bodies (AREA)

Description

本発明は真空断熱材および断熱箱、特に、冷熱機器への使用に好適な真空断熱材および断熱箱に関するものである。   The present invention relates to a vacuum heat insulating material and a heat insulating box, and more particularly to a vacuum heat insulating material and a heat insulating box suitable for use in a cooling / heating apparatus.

従来、断熱材としてウレタンが用いられていたが、昨今、ウレタンよりも断熱性能が優れた真空断熱材が、ウレタンと併用して使用されるようになった。かかる真空断熱材は、冷蔵庫の他に、保温庫、車両空調機、給湯器などの冷熱機器にも使用されるものである。   Conventionally, urethane has been used as a heat insulating material, but nowadays, vacuum heat insulating materials having better heat insulating performance than urethane are used in combination with urethane. Such a vacuum heat insulating material is used not only for a refrigerator but also for a cooling device such as a heat insulation box, a vehicle air conditioner, and a water heater.

真空断熱材とは、ガスバリア性(空気遮断性に同じ)のアルミ箔でできた外包材の中に粉末、発泡体、繊維体などを芯材として挿入し、内部が数Paの真空度に保たれているものである。
真空断熱材の断熱性能が下がる原因の一つとして外気から進入する空気・水分の他に、芯材から発生するアウトガス、芯材そのものに存在する水分があるが、これらを吸着するために吸着剤が外包材の中に挿入されている。
真空断熱材の芯材としてシリカなどの粉末、ウレタンなどの発泡体、ガラスなどの繊維体などのものがあるが、現状は断熱性能の最も優れる繊維体のものが主流になっている。
A vacuum insulation material is a powder, foam, fiber, etc. inserted as a core material into an envelope made of aluminum foil with gas barrier properties (same as air barrier properties), and the inside is kept at a vacuum level of several Pa. It is what is leaning.
In addition to air and moisture entering from the outside air as one of the causes of the deterioration of the heat insulation performance of the vacuum heat insulating material, there are outgas generated from the core material and moisture present in the core material itself. Is inserted into the outer packaging.
There are powders such as silica, foams such as urethane, and fiber bodies such as glass as the core material of the vacuum heat insulating material. Currently, fiber bodies having the best heat insulation performance are mainly used.

繊維体のものには大きく分けて、無機繊維、有機繊維の2種類がある。
無機繊維には、ガラス繊維、炭素繊維などがある(例えば、特許文献1、8参照。)。
有機繊維には、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエチレンテレフタレート繊維、ポリエステル繊維、ポリエチレン繊維、セルロース繊維などがある(例えば、特許文献2、7参照。)。
There are two types of fiber bodies: inorganic fibers and organic fibers.
Examples of inorganic fibers include glass fibers and carbon fibers (see, for example, Patent Documents 1 and 8).
Examples of the organic fiber include polypropylene fiber, polylactic acid fiber, aramid fiber, LCP (liquid crystal polymer) fiber, polyethylene terephthalate fiber, polyester fiber, polyethylene fiber, and cellulose fiber (see, for example, Patent Documents 2 and 7).

繊維体の形状には、綿状のもの、シートを積層したものなどがある(例えば、特許文献3、4参照。)。
また、繊維体の形状には、シートを繊維の配向が交互になるように積層したものもある(特許文献5、6参照。)。
Examples of the shape of the fibrous body include a cotton-like shape and a laminate of sheets (for example, see Patent Documents 3 and 4).
In addition, some fiber bodies are formed by laminating sheets so that fiber orientations alternate (see Patent Documents 5 and 6).

特開平8−028776号公報(第2−3頁)JP-A-8-028776 (page 2-3) 特開2002−188791号公報(第4−6頁、図1)JP 2002-188791 A (page 4-6, FIG. 1) 特開2005−344832号公報(第3−4頁、図1)Japanese Patent Laying-Open No. 2005-344832 (page 3-4, FIG. 1) 特開2006−307921号公報(第5−6頁、図2)Japanese Patent Laying-Open No. 2006-307921 (page 5-6, FIG. 2) 特開2006−017151号公報(第3頁、図1)JP 2006-017151 A (page 3, FIG. 1) 特公平7−103955号公報(第2頁、図2)Japanese Examined Patent Publication No. 7-103955 (second page, FIG. 2) 特開2006−283817号公報(第7−8頁)JP 2006-283817 A (pages 7-8) 特開2005−344870号公報(第7頁、図2)Japanese Patent Laying-Open No. 2005-344870 (page 7, FIG. 2)

従来の真空断熱には、ガラス繊維やポリエステル繊維が芯材として使用されている。
ガラス繊維は硬くて脆いため、真空断熱材の製造時に粉塵が飛び散り作業者の皮膚・粘膜などに付着すると刺激を受ける可能性があり、その取り扱い性、作業性が問題となっている。また、リサイクルの場面を考えた場合、例えば、冷蔵庫ではリサイクル工場で製品ごとに粉砕され、ガラス繊維はウレタン屑などに混じってサーマルリサイクルに供されるが、燃焼効率を落としたり、残渣となったりするなどリサイクル性が良くないという欠点がある。
In conventional vacuum insulation, glass fiber or polyester fiber is used as a core material.
Since glass fiber is hard and brittle, dust may scatter during the manufacture of vacuum heat insulating material and adhere to the skin, mucous membrane, etc. of the worker, which may cause irritation, and its handling and workability are problematic. Also, when considering the scene of recycling, for example, in a refrigerator, each product is pulverized in a recycling factory, and glass fiber is mixed with urethane scraps and used for thermal recycling. There is a disadvantage that recyclability is not good.

一方、ポリエステルなどの有機繊維は、取り扱い性、リサイクル性に優れるものの、断熱性能を表す指標である熱伝導率が、0.0030W/mK(特許文献7参照)であるのに対し、ガラス繊維では0.0013W/mK(特許文献8参照)となっており、断熱性能に劣るという欠点があった。   On the other hand, although organic fibers such as polyester are excellent in handleability and recyclability, the thermal conductivity, which is an indicator of heat insulation performance, is 0.0030 W / mK (see Patent Document 7), whereas in glass fibers, It was 0.0013 W / mK (refer to Patent Document 8), and there was a defect that the heat insulation performance was poor.

この発明は、上記のような課題を解決するためになされたものであって、取り扱い性と断熱性能に優れた真空断熱材、および該真空断熱材を具備する断熱箱を提供するものである。   The present invention has been made in order to solve the above-described problems, and provides a vacuum heat insulating material excellent in handleability and heat insulating performance, and a heat insulating box including the vacuum heat insulating material.

本発明に係る真空断熱材は、ガスバリア性容器の内部に芯材を収容して、内部を減圧状態にした真空断熱材であって、
前記芯材が、有機繊維をシート状に形成した第1の有機繊維集合体と、有機繊維をシート状に形成した第2の有機繊維集合体との積層構造であり、
前記第1の有機繊維集合体の厚さおよび前記第2の有機繊維集合体の厚さが、前記ガスバリア性容器の内部に減圧状態で収容された際、前記有機繊維の直径の1〜18倍であり、
前記第1の有機繊維集合体と前記第2の有機繊維集合体とが、互いに交わるように折り畳まれて積層され、
該積層された部分において、前記第1の有機繊維集合体の両面がそれぞれ前記第2の有機繊維集合体の同一の面に当接し、前記第2の有機繊維集合体の両面がそれぞれ前記第1の有機繊維集合体の同一の面に当接するものである。
The vacuum heat insulating material according to the present invention is a vacuum heat insulating material in which a core material is housed in a gas barrier container and the inside is in a reduced pressure state.
The core material is a laminated structure of a first organic fiber assembly in which organic fibers are formed in a sheet shape and a second organic fiber assembly in which organic fibers are formed in a sheet shape,
When the thickness of the first organic fiber aggregate and the thickness of the second organic fiber aggregate are accommodated in the gas barrier container in a reduced pressure state, the diameter of the organic fiber is 1 to 18 times. And
The first organic fiber aggregate and the second organic fiber aggregate are folded and laminated so as to cross each other,
In the laminated portion, both surfaces of the first organic fiber assembly are in contact with the same surface of the second organic fiber assembly, and both surfaces of the second organic fiber assembly are respectively in the first portion. In contact with the same surface of the organic fiber assembly.

したがって、本発明に係る真空断熱材は、シート状の有機繊維集合体を積層して構成されているので、取り扱い性およびリサイクル性に優れ、且つ、断熱性能に優れる。   Therefore, since the vacuum heat insulating material according to the present invention is configured by laminating sheet-like organic fiber aggregates, it is excellent in handling property and recyclability and excellent in heat insulating performance.

[実施の形態1:真空断熱材]
図1〜図4は本発明の実施形態1に係る真空断熱材を模式的に示すものであって、図1は芯材を薄く積層した斜視図、図2はシート1枚における繊維の配向を表した側面図、図3は厚みがある場合の繊維の配向具合を示す側面図、図4は真空断熱材の構成を示す分解斜視図である。
図4において、真空断熱材7は、空気遮断性を有するガスバリア性容器(以下、「外包材」と称す)4と、外包材4の内部に封入された芯材5およびガス吸着剤6と、を有している。そして、外包材4の内部は所定の真空度に減圧されている。
[Embodiment 1: Vacuum heat insulating material]
1 to 4 schematically show a vacuum heat insulating material according to Embodiment 1 of the present invention. FIG. 1 is a perspective view in which core materials are thinly laminated, and FIG. 2 shows fiber orientation in one sheet. FIG. 3 is a side view showing the orientation of the fiber when there is a thickness, and FIG. 4 is an exploded perspective view showing the configuration of the vacuum heat insulating material.
In FIG. 4, the vacuum heat insulating material 7 includes a gas barrier container (hereinafter referred to as “external packaging material”) 4 having an air barrier property, a core material 5 and a gas adsorbent 6 enclosed inside the external packaging material 4, have. And the inside of the outer packaging material 4 is depressurized to a predetermined degree of vacuum.

(積層構造)
図1において、芯材5は、シート状有機繊維集合体(以下、「繊維集合体」と称す)1を積層した積層構造を有している。
図2において、繊維集合体1は、所定の間隔を空けて配置された複数本の有機繊維2xと、有機繊維2xと直交する方向で、所定の間隔を空けて配置された複数本の有機繊維2yと、から形成されている。このとき、有機繊維2xと有機繊維2yとは点接触している。そして、繊維集合体1を薄く積層することで、伝熱方向への繊維の配向を抑えることができるので熱伝導率を下げることができる。
なお、以上は、有機繊維2xと有機繊維2yとが互いに直交する場合を示しているが、本発明はこれに限定するものではなく、互いに直角でない角度でもって交わってもよい。
(Laminated structure)
In FIG. 1, the core material 5 has a laminated structure in which sheet-like organic fiber aggregates (hereinafter referred to as “fiber aggregates”) 1 are laminated.
In FIG. 2, the fiber assembly 1 includes a plurality of organic fibers 2x arranged at a predetermined interval and a plurality of organic fibers arranged at a predetermined interval in a direction orthogonal to the organic fibers 2x. 2y. At this time, the organic fiber 2x and the organic fiber 2y are in point contact. And by laminating | stacking the fiber assembly 1 thinly, since the orientation of the fiber to a heat-transfer direction can be suppressed, thermal conductivity can be lowered | hung.
In addition, although the above has shown the case where the organic fiber 2x and the organic fiber 2y are orthogonal to each other, the present invention is not limited to this, and may intersect at an angle that is not perpendicular to each other.

(有機繊維)
真空断熱材7の芯材5を形成する有機繊維2に用いる材料として、実施の形態1ではポリエステルを用いたが、その他に、ポリプロピレン、ポリ乳酸、アラミド、LCP(液晶ポリマー)などを用いることができる。
ポリプロピレンは吸湿性が低いため、乾燥時間や真空引き時間を短縮でき生産性の向上が可能であり、固体熱伝導が小さいので真空断熱材の断熱性能の向上が期待できる。
また、ポリ乳酸には生分解性があるので、製品の使用後に解体、分別された芯材は埋め立て処理を行うこともできる。
また、アラミドやLCPは剛性が高いので、真空包装されて大気圧を受けたときの形状保持性が良く、空隙率を高めることができ断熱性能の向上が期待できるなどのメリットがある。
(Organic fiber)
As the material used for the organic fiber 2 forming the core material 5 of the vacuum heat insulating material 7, polyester is used in the first embodiment, but in addition, polypropylene, polylactic acid, aramid, LCP (liquid crystal polymer), or the like may be used. it can.
Since polypropylene has low hygroscopicity, drying time and evacuation time can be shortened and productivity can be improved. Since solid heat conduction is small, improvement in heat insulation performance of the vacuum heat insulating material can be expected.
Moreover, since polylactic acid is biodegradable, the core material disassembled and separated after use of the product can be subjected to landfill treatment.
In addition, since aramid and LCP have high rigidity, they have good merits such as good shape retention when vacuum-packed and subjected to atmospheric pressure, can increase the porosity, and can be expected to improve heat insulation performance.

(繊維集合体)
芯材5を形成する繊維集合体(有機繊維集合体、シート状集合体に同じ)1は、製造したい幅に対して横一列に並んだいくつものノズルから加熱溶融したポリエステル樹脂を、コンベア上に自由落下させ、コンベアを任意の速度で動かしながらローラーで加圧し巻き取って製造する。
繊維集合体1の嵩密度は溶融樹脂の吐出量とコンベアの速度により調整し、厚さの異なる繊維集合体を得ることができる。
(Fiber assembly)
A fiber assembly (same as an organic fiber assembly and a sheet-like assembly) 1 that forms the core material 5 is a polyester resin that is heated and melted from a number of nozzles arranged in a row in a row with respect to the width to be manufactured. It is allowed to drop freely, and is manufactured by pressing and winding with a roller while moving the conveyor at an arbitrary speed.
The bulk density of the fiber assembly 1 can be adjusted by the amount of molten resin discharged and the speed of the conveyor to obtain fiber assemblies having different thicknesses.

なお、前記の方法で得た繊維集合体1は、有機繊維2同士がばらばらなため真空断熱材製造時の取り扱い性が悪い場合があるので、加圧時に、有機繊維2同士を加熱溶着しても良い、この際、過度の加圧、加熱溶着は、有機繊維2間の接触面積を増大し、伝熱の増加を招くため、接触面積をできるだけ少なくした方が良く、全面積の5%以下に抑えることが望ましい。   In addition, since the fiber assembly 1 obtained by the above-mentioned method is not easy to handle at the time of manufacturing the vacuum heat insulating material because the organic fibers 2 are separated, the organic fibers 2 are heated and welded together during pressurization. In this case, excessive pressurization and heat welding increase the contact area between the organic fibers 2 and increase the heat transfer. It is desirable to keep it at a minimum.

次に、得られた繊維集合体1をA4サイズに裁断し、これを25層に積層して芯材5を形成した。なお、積層する枚数は、得られた繊維集合体1の厚さと製造したい真空断熱材7の厚さを元に任意に設定して良い。実施の形態1では繊維集合体1の繊維径は、これを成形するノズル径により調整し、約15μmとしたが、断熱性能上はより細い方が良く、理論的に繊維径は10μm以下が望ましい。   Next, the obtained fiber assembly 1 was cut into A4 size, and this was laminated in 25 layers to form the core material 5. In addition, you may set the number of sheets to laminate | stack arbitrarily based on the thickness of the obtained fiber assembly 1, and the thickness of the vacuum heat insulating material 7 to manufacture. In the first embodiment, the fiber diameter of the fiber assembly 1 is adjusted by the diameter of the nozzle for molding the fiber aggregate 1 and is about 15 μm. .

(外包材)
真空断熱材7の外包材4には、ナイロン(6μm)、アルミ蒸着PET(10μm)、アルミ箔(6μm)、高密度ポリエチレン(50μm)で構成されるガスバリア性のあるプラスチックラミネートフイルムを使用した。
その他に、ポリプロピレン、ポリビニルアルコール、ポリプロピレンの構成などのアルミ箔を含まないラミネートフイルムを用いると、ヒートブリッジによる断熱性能の低下を抑制できる。なお、4辺のうち3辺がシール包装機によってヒートシールされている。
(Outer packaging material)
As the outer packaging material 4 of the vacuum heat insulating material 7, a plastic laminate film having a gas barrier property composed of nylon (6 μm), aluminum vapor-deposited PET (10 μm), aluminum foil (6 μm), and high-density polyethylene (50 μm) was used.
In addition, when a laminate film that does not include an aluminum foil such as a configuration of polypropylene, polyvinyl alcohol, or polypropylene is used, it is possible to suppress a decrease in heat insulation performance due to a heat bridge. Of the four sides, three sides are heat sealed by a seal wrapping machine.

(製造方法)
真空断熱材7の製造は、袋である外包材4に芯材5を挿入し、残りの一辺の口が閉まらないように固定して恒温槽にて105℃の温度下で半日(約12時間)乾燥を行った後、真空包装後の残存ガスや経時的に放出される芯材5からのアウトガス、外包材4のシール層を通して進入する透過ガスを吸着するためのガス吸着剤6をフイルム袋内に挿入し、柏木式真空包装機(NPC社製;KT−650)にて真空引きを行った。真空引きは、チャンバー内真空度が1〜10Pa程度になるまで行い、そのままチャンバー内でフイルム袋の開口部をヒートシールして板状の真空断熱材7を得た。
(Production method)
The vacuum heat insulating material 7 is manufactured by inserting the core material 5 into the outer packaging material 4 which is a bag, fixing it so that the other side of the mouth is not closed, and keeping it at a temperature of 105 ° C. for half a day (about 12 hours). ) After drying, the film bag contains a gas adsorbent 6 for adsorbing residual gas after vacuum packaging, outgas from the core material 5 released over time, and permeated gas entering through the sealing layer of the outer packaging material 4. It inserted in and vacuum-evacuated with the Kashiwagi-type vacuum packaging machine (NPC company make; KT-650). Vacuuming was performed until the degree of vacuum in the chamber reached about 1 to 10 Pa, and the film bag opening was heat sealed in the chamber as it was to obtain a plate-like vacuum heat insulating material 7.

(断熱性能)
次に、繊維集合体1の厚さの断熱性能に及ぼす影響を、本発明の繊維集合体1としての実施例1〜4と、比較のための比較例と、について説明する。
比較材は、実施例1〜4の繊維径(約15μm)と同じ径である綿状ポリエステルを芯材に用い、前記と同様の方法で真空断熱材を得た。
製作した実施例1〜4および比較例(いずれも真空断熱材)は、熱伝導率計「AutoΛ HC−073(英弘精機(株)製)」を用いて、上温度37.7℃、下温度10.0℃の温度差における熱伝導率を測定した。なお、測定は真空引き工程から1日経過後に測定した。
(Insulation performance)
Next, the influence which the thickness of the fiber assembly 1 has on the heat insulation performance will be described for Examples 1 to 4 as the fiber assembly 1 of the present invention and a comparative example for comparison.
The comparative material used the cotton-like polyester which is the same diameter as the fiber diameter (about 15 micrometers) of Examples 1-4 for the core material, and obtained the vacuum heat insulating material by the method similar to the above.
The manufactured Examples 1 to 4 and Comparative Example (both vacuum heat insulating materials) were measured using a thermal conductivity meter “AutoΛ HC-073 (manufactured by Eihiro Seiki Co., Ltd.)” with an upper temperature of 37.7 ° C. and a lower temperature. The thermal conductivity at a temperature difference of 10.0 ° C. was measured. The measurement was made after 1 day from the vacuuming step.

ここで、繊維集合体1の1枚の厚さは、真空断熱材7の厚さから外包材4の厚さの2倍を引いた後、積層枚数で割った値である。また、平均繊維径はマイクロスコープを用いて測定した100箇所の測定値の平均値とした。真空引き後の1枚厚さを平均繊維径で割った結果を表1に示す。   Here, the thickness of one fiber assembly 1 is a value obtained by subtracting twice the thickness of the outer packaging material 4 from the thickness of the vacuum heat insulating material 7 and then dividing it by the number of laminated layers. Moreover, the average fiber diameter was made into the average value of 100 measured values measured using the microscope. Table 1 shows the result of dividing the thickness after vacuuming by the average fiber diameter.

Figure 0004789886
Figure 0004789886

図5は、本発明の実施形態1に係る真空断熱材の断熱性能を説明する相関図であって、横軸は繊維集合体1の枚厚さを平均繊維径で割った数値、縦軸は断熱性能比である。なお、断熱性能比は、比較例の熱伝導率を実施例1〜4の熱伝導率で、それぞれ割った数値(実施例1〜4の熱伝導率を比較例の熱伝導率で割った値の逆数に同じ)である。
図5より、繊維集合体1の厚さが平均繊維径の18倍未満になると、綿状繊維を芯材にした比較例の場合よりも断熱性能が向上していることがわかる。これは、繊維集合体1の厚さが小さいほど繊維が断熱方向と直角方向である面方向に配向しやすく、すなわち断熱方向への真空断熱材7内の固体伝熱のパスが長くできるので、断熱性能が向上できたと考えられる。
また、繊維集合体1の厚さは、平均繊維径の1倍に近づけば近づくほど断熱性能がよくなる。よって、繊維集合体1の厚さは繊維径の1〜18倍がよいことがわかった。
なお、繊維集合体1の厚さが繊維径の8倍以下になると断熱性能が急に(極端に)向上するため、繊維集合体の厚さは平均繊維径の1〜8倍であることがより望ましい。
FIG. 5 is a correlation diagram for explaining the heat insulating performance of the vacuum heat insulating material according to Embodiment 1 of the present invention, in which the horizontal axis is a numerical value obtained by dividing the sheet thickness of the fiber assembly 1 by the average fiber diameter, and the vertical axis is It is the insulation performance ratio. In addition, the heat insulation performance ratio is a numerical value obtained by dividing the thermal conductivity of the comparative example by the thermal conductivity of Examples 1 to 4, respectively (the value obtained by dividing the thermal conductivity of Examples 1 to 4 by the thermal conductivity of the comparative example. Is the same as the inverse of
From FIG. 5, it can be seen that when the thickness of the fiber assembly 1 is less than 18 times the average fiber diameter, the heat insulation performance is improved as compared with the comparative example in which the cotton-like fiber is used as the core material. This is because the smaller the thickness of the fiber assembly 1, the more easily the fibers are oriented in the plane direction perpendicular to the heat insulation direction, that is, the solid heat transfer path in the vacuum heat insulating material 7 in the heat insulation direction can be lengthened. It is thought that the heat insulation performance was improved.
Moreover, the closer the thickness of the fiber assembly 1 is to the average fiber diameter, the better the heat insulation performance. Therefore, it was found that the thickness of the fiber assembly 1 is preferably 1 to 18 times the fiber diameter.
In addition, when the thickness of the fiber assembly 1 is 8 times or less of the fiber diameter, the heat insulation performance is abruptly (extremely) improved. Therefore, the thickness of the fiber assembly is 1 to 8 times the average fiber diameter. More desirable.

[実施の形態2:真空断熱材]
図6および図7は、本発明の実施形態2に係る真空断熱材を形成する芯材の積層要領を模式的に示す斜視図である。
図6において、芯材5は、繊維集合体1を裁断せずに連続したシート状のまま折り畳みながら積層して形成される様子が表されている。
図7において、裁断せずに連続しているシート状の第1の繊維集合体1xと、裁断せずに連続しているシート状の第2の繊維集合体1yとを用い(両者をまとめて「繊維集合体1」と称す場合がある)、両者を交わるように配置して、それぞれの折り目に挟まれた範囲が一折り毎に重なるように、積層して形成される様子が表されている。
[Embodiment 2: Vacuum insulation]
6 and 7 are perspective views schematically showing a lamination procedure of core materials forming the vacuum heat insulating material according to Embodiment 2 of the present invention.
In FIG. 6, the core material 5 is shown to be formed by being laminated while being folded in a continuous sheet shape without cutting the fiber assembly 1.
In FIG. 7, a sheet-like first fiber assembly 1x that is continuous without cutting and a sheet-like second fiber assembly 1y that is continuous without cutting are used. (It may be referred to as “fiber assembly 1”), and the two layers are arranged so as to cross each other, and the state of being formed by being laminated so that the range between the folds overlaps every fold is shown. Yes.

すなわち、繊維集合体1を折りながら積層することで、裁断する手間が省け効率的に芯材5、引いては真空断熱材7を製造することができる。
ここで用いた繊維集合体1は、前記の製造方法で作ったものであるので、有機繊維2は長尺方向に配向している。このことに注目して、繊維集合体1同士が交わるように積層すると点接触に近づき断熱性能がより向上する。
That is, by laminating the fiber assembly 1 while being folded, it is possible to efficiently manufacture the core material 5 and thus the vacuum heat insulating material 7 without the need for cutting.
Since the fiber assembly 1 used here is made by the above manufacturing method, the organic fiber 2 is oriented in the longitudinal direction. If attention is paid to this and the fiber assemblies 1 are laminated so as to intersect with each other, the point of contact approaches and the heat insulation performance is further improved.

[実施の形態3:冷蔵庫]
図8は、本発明の実施形態3に係る断熱箱を説明するものであって、冷蔵庫を模式的に示す正面視の断面図である。なお、実施の形態1、2と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
図8において、冷蔵庫100は、外箱9と、外箱9の内部に配置された内箱10と、外箱9と内箱10との隙間に配置された真空断熱材7およびポリウレタンフォーム11と、内箱10内に冷熱を供給する冷凍ユニット(図示しない)と、を有している。なお、外箱9および内箱10は、共通する面にそれぞれ開口部が形成され、当該開口部に開閉扉が設置されている(何れも図示しない)。
[Embodiment 3: Refrigerator]
FIG. 8 illustrates a heat insulating box according to the third embodiment of the present invention, and is a cross-sectional view in front view schematically illustrating a refrigerator. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and a part of the description is omitted.
In FIG. 8, the refrigerator 100 includes an outer box 9, an inner box 10 disposed inside the outer box 9, a vacuum heat insulating material 7 and a polyurethane foam 11 disposed in a gap between the outer box 9 and the inner box 10. And a refrigeration unit (not shown) for supplying cold heat into the inner box 10. The outer box 9 and the inner box 10 each have an opening formed on a common surface, and an opening / closing door is installed in the opening (both not shown).

このとき、真空断熱材7の外包材4はアルミ箔を含んでいるため、該アルミ箔を通って熱が回り込むヒートブリッジが生じるおそれがある。このため、該ヒートブリッジの影響を抑制するため、真空断熱材7は樹脂成形品であるスペーサ8を用いて、外箱9の塗装鋼板から離して配設されている。なお、スペーサ8は後工程で断熱壁内に注入されるポリウレタンフォームにボイドが残らないように、流動を阻害しないための孔が、適宜設けられている。
すなわち、冷蔵庫100は、真空断熱材7、スペーサ8およびポリウレタンフォーム11によって形成された断熱壁12を有している。なお、断熱壁12が配置される範囲は限定するものではなく、外箱9と内箱10との間に形成される隙間の全範囲であっても一部であってもよく、また、前記開閉扉の内部に配置されてもよい。
At this time, since the outer packaging material 4 of the vacuum heat insulating material 7 includes the aluminum foil, there is a possibility that a heat bridge in which heat flows through the aluminum foil is generated. For this reason, in order to suppress the influence of this heat bridge, the vacuum heat insulating material 7 is arrange | positioned away from the coated steel plate of the outer box 9 using the spacer 8 which is a resin molded product. In addition, the spacer 8 is appropriately provided with a hole for not inhibiting the flow so that no void remains in the polyurethane foam injected into the heat insulating wall in a later step.
That is, the refrigerator 100 has a heat insulating wall 12 formed by the vacuum heat insulating material 7, the spacer 8, and the polyurethane foam 11. In addition, the range in which the heat insulation wall 12 is disposed is not limited, and may be the entire range or a part of the gap formed between the outer box 9 and the inner box 10, and You may arrange | position inside an opening-and-closing door.

冷蔵庫100は、使用済みとなった場合、家電リサイクル法に基づき、各地のリサイクルセンターで解体・リサイクルされる。このとき、本発明の冷蔵庫100は、繊維集合体1(有機繊維2によって形成されている)からなる芯材5が配設された真空断熱材7を有するため、真空断熱材7を取り外すことなく破砕処理を行うことができ、サーマルリサイクルに際して燃焼効率を下げたり、残渣となったりすることがなく、リサイクル性が良い。
一方、真空断熱材を配設した冷蔵庫において、当該真空断熱材の芯材が無機粉末である真空断熱パネルの場合には、粉末が飛散してしまうため、箱体のまま破砕処理は行えず、大変な手間をかけて冷蔵庫箱体から真空断熱材を取り外さなければならない。
When the refrigerator 100 is used, it is dismantled and recycled at recycling centers in various places based on the Home Appliance Recycling Law. At this time, since the refrigerator 100 of the present invention has the vacuum heat insulating material 7 in which the core material 5 made of the fiber assembly 1 (formed by the organic fibers 2) is disposed, the vacuum heat insulating material 7 is not removed. The crushing process can be performed, and the recyclability is good without causing a reduction in combustion efficiency or a residue during thermal recycling.
On the other hand, in the refrigerator in which the vacuum heat insulating material is arranged, in the case of the vacuum heat insulating panel in which the core material of the vacuum heat insulating material is an inorganic powder, the powder is scattered, so the crushing treatment cannot be performed as the box, It takes a lot of time to remove the vacuum insulation from the refrigerator box.

また、芯材がガラス繊維である真空断熱パネルの場合には、箱体のまま破砕処理は行えるものの、破砕後のガラス繊維はポリウレタンフォームの粉砕物に混じって、サーマルリサイクルに供されるが、この際、燃焼効率を低下させたり、燃焼後の残渣になったりするなどリサイクル性に難点がある。
なお、以上は、断熱箱として冷蔵庫を例示しているが、本発明はこれに限定されるものではなく、保温庫、車両空調機、給湯器などの冷熱機器あるいは温熱機器、さらには、所定の形状を具備する箱に替えて、変形自在な外袋および内袋を具備する断熱袋(断熱容器)であってもよい。
In addition, in the case of a vacuum insulation panel whose core material is glass fiber, although it can be crushed as it is in a box, the crushed glass fiber is mixed with polyurethane foam pulverized material and subjected to thermal recycling, At this time, there is a difficulty in recyclability such as lowering combustion efficiency or becoming a residue after combustion.
In addition, although the above has illustrated the refrigerator as a heat insulation box, this invention is not limited to this, Cold-heat equipment or thermal equipment, such as a heat retention box, a vehicle air conditioner, a water heater, Furthermore, predetermined | prescribed Instead of a box having a shape, a heat insulating bag (heat insulating container) having a deformable outer bag and an inner bag may be used.

以上より、本発明の真空断熱材および断熱箱は、取り扱い性、断熱性能およびリサイクル性に優れるから、各種機器に設置される真空断熱材として、さらに、各種形態の断熱箱ないし断熱容器として広く利用することができる。   As described above, since the vacuum heat insulating material and the heat insulating box of the present invention are excellent in handling property, heat insulating performance and recyclability, they are widely used as a heat insulating box or a heat insulating container in various forms as a vacuum heat insulating material installed in various devices. can do.

本発明の実施形態1に係る真空断熱材の芯材を薄く積層した斜視図。The perspective view which laminated | stacked the core material of the vacuum heat insulating material which concerns on Embodiment 1 of this invention thinly. 図1に示す真空断熱材のシート1枚における繊維の配向を表した側面図。The side view showing the orientation of the fiber in the sheet | seat of the vacuum heat insulating material shown in FIG. 図1に示す真空断熱材の厚みがある場合の繊維の配向具合を示す側面図。The side view which shows the orientation condition of the fiber in case there is thickness of the vacuum heat insulating material shown in FIG. 図1に示す真空断熱材の構成を示す分解斜視図。The disassembled perspective view which shows the structure of the vacuum heat insulating material shown in FIG. 図1に示す真空断熱材の断熱性能を説明する相関図。The correlation diagram explaining the heat insulation performance of the vacuum heat insulating material shown in FIG. 本発明の実施形態2に係る真空断熱材の芯材の積層要領を示す斜視図。The perspective view which shows the lamination | stacking point of the core material of the vacuum heat insulating material which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る真空断熱材の芯材の積層要領を示す斜視図。The perspective view which shows the lamination | stacking point of the core material of the vacuum heat insulating material which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る断熱箱(冷蔵庫)を模式的に示す断面図。Sectional drawing which shows typically the heat insulation box (refrigerator) which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1:繊維集合体(シート状有機繊維集合体)、2:有機繊維、2x:有機繊維、2y:有機繊維、3:空隙、4:外包材、5:芯材、6:ガス吸着剤、7:真空断熱材、8:スペーサ、9:外箱、10:内箱、11:ポリウレタンフォーム、12:断熱壁、100:冷蔵庫。   1: fiber aggregate (sheet-like organic fiber aggregate), 2: organic fiber, 2x: organic fiber, 2y: organic fiber, 3: gap, 4: outer packaging material, 5: core material, 6: gas adsorbent, 7 : Vacuum heat insulating material, 8: spacer, 9: outer box, 10: inner box, 11: polyurethane foam, 12: heat insulating wall, 100: refrigerator.

Claims (5)

ガスバリア性容器の内部に芯材を収容して、内部を減圧状態にした真空断熱材であって、
前記芯材が、有機繊維をシート状に形成した第1の有機繊維集合体と、有機繊維をシート状に形成した第2の有機繊維集合体との積層構造であり、
前記第1の有機繊維集合体の厚さおよび前記第2の有機繊維集合体の厚さが、前記ガスバリア性容器の内部に減圧状態で収容された際、前記有機繊維の直径の1〜18倍であり、
前記第1の有機繊維集合体と前記第2の有機繊維集合体とが、互いに交わるように折り畳まれて積層され、
該積層された部分において、前記第1の有機繊維集合体の両面がそれぞれ前記第2の有機繊維集合体の同一の面に当接し、前記第2の有機繊維集合体の両面がそれぞれ前記第1の有機繊維集合体の同一の面に当接することを特徴とする真空断熱材。
It is a vacuum heat insulating material in which a core material is housed in a gas barrier container and the inside is in a reduced pressure state,
The core material is a laminated structure of a first organic fiber assembly in which organic fibers are formed in a sheet shape and a second organic fiber assembly in which organic fibers are formed in a sheet shape,
When the thickness of the first organic fiber aggregate and the thickness of the second organic fiber aggregate are accommodated in the gas barrier container in a reduced pressure state, the diameter of the organic fiber is 1 to 18 times. And
The first organic fiber aggregate and the second organic fiber aggregate are folded and laminated so as to cross each other,
In the laminated portion, both surfaces of the first organic fiber assembly are in contact with the same surface of the second organic fiber assembly, and both surfaces of the second organic fiber assembly are respectively in the first portion. A vacuum heat insulating material which is in contact with the same surface of the organic fiber assembly.
前記有機繊維集合体は、連続した有機繊維を加圧溶着してシート状に形成されたものであることを特徴とする請求項記載の真空断熱材。 The organic fiber aggregate, the vacuum heat insulator of claim 1, wherein the by press-welding wear continuous organic fiber and is formed into a sheet. 外箱と、
該外箱の内部に配置された内箱と、
該外箱と前記内箱との隙間の全部または一部に、請求項1又は2に記載の真空断熱材が配置されていることを特徴とする断熱箱。
An outer box,
An inner box disposed inside the outer box;
A heat insulating box, wherein the vacuum heat insulating material according to claim 1 or 2 is disposed in all or part of a gap between the outer box and the inner box.
前記外箱と前記真空断熱材との間または前記内箱と前記真空断熱材との間の両方または一方に、断熱材が充填されていることを特徴とする請求項3に記載の断熱箱。 The heat insulating box according to claim 3, wherein a heat insulating material is filled in both or one of the space between the outer box and the vacuum heat insulating material or between the inner box and the vacuum heat insulating material. 前記内箱の内部の温度を調整する温度調整手段を具備することを特徴とする請求項または記載の断熱箱。 The heat insulation box according to claim 3 or 4 , further comprising temperature adjusting means for adjusting a temperature inside the inner box.
JP2007204400A 2007-08-06 2007-08-06 Vacuum insulation and insulation box Expired - Fee Related JP4789886B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007204400A JP4789886B2 (en) 2007-08-06 2007-08-06 Vacuum insulation and insulation box
GB0812583A GB2451614B (en) 2007-08-06 2008-07-09 Vacuum thermal insulating structure and thermal insulating case
CN2008101334786A CN101363566B (en) 2007-08-06 2008-07-25 Vacuum insulating structure
BE2008/0420A BE1018383A5 (en) 2007-08-06 2008-07-25 VACUUM THERMOSOLATING STRUCTURE AND THERMOISOLANT HOUSING.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204400A JP4789886B2 (en) 2007-08-06 2007-08-06 Vacuum insulation and insulation box

Publications (3)

Publication Number Publication Date
JP2009041592A JP2009041592A (en) 2009-02-26
JP2009041592A5 JP2009041592A5 (en) 2009-08-13
JP4789886B2 true JP4789886B2 (en) 2011-10-12

Family

ID=39718233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204400A Expired - Fee Related JP4789886B2 (en) 2007-08-06 2007-08-06 Vacuum insulation and insulation box

Country Status (4)

Country Link
JP (1) JP4789886B2 (en)
CN (1) CN101363566B (en)
BE (1) BE1018383A5 (en)
GB (1) GB2451614B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2538125A3 (en) 2008-12-26 2013-02-20 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
JP5388603B2 (en) 2009-01-29 2014-01-15 三菱電機株式会社 Vacuum heat insulating material and heat insulating box equipped with the same
JP5236550B2 (en) * 2009-03-30 2013-07-17 三菱電機株式会社 Vacuum heat insulating material and manufacturing method thereof, and heat insulating box provided with the vacuum heat insulating material
JP2011027204A (en) * 2009-07-28 2011-02-10 Mitsubishi Electric Corp Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material
JP2011074934A (en) * 2009-09-29 2011-04-14 Mitsubishi Electric Corp Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
CN102575804A (en) * 2009-10-16 2012-07-11 三菱电机株式会社 Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator
WO2011045947A1 (en) * 2009-10-16 2011-04-21 三菱電機株式会社 Vacuum heat insulation material and refrigerator
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
JP5380313B2 (en) * 2010-01-13 2014-01-08 日立アプライアンス株式会社 Vacuum heat insulating material and refrigerator using the same
JP5424929B2 (en) * 2010-02-19 2014-02-26 三菱電機株式会社 Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
JP5448937B2 (en) * 2010-03-03 2014-03-19 三菱電機株式会社 Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
CN101963267A (en) * 2010-10-09 2011-02-02 上海海事大学 Air insulating structure of vacuum insulation panel and packaging method thereof
JP5664297B2 (en) * 2011-02-04 2015-02-04 三菱電機株式会社 Vacuum insulation and insulation box
SG194627A1 (en) * 2011-05-30 2013-12-30 Mitsubishi Electric Corp Vacuum heat insulator and heat-insulating box formed using same
JP5798942B2 (en) * 2011-09-12 2015-10-21 日立アプライアンス株式会社 Vacuum heat insulating material and refrigerator and equipment using the same
JP5856091B2 (en) * 2013-01-30 2016-02-09 三菱電機株式会社 Heat insulation wall, refrigerator, equipment
JP5512011B2 (en) * 2013-03-27 2014-06-04 三菱電機株式会社 Vacuum insulation for insulation box
DE102013104712A1 (en) 2013-05-07 2014-11-13 Saint-Gobain Isover Method for producing vacuum insulation panels
CN104373751A (en) * 2013-08-12 2015-02-25 苏州维艾普新材料股份有限公司 Different-length-diameter-ratio VIP (vacuum insulated panel) glass fiber core material
CN104373750A (en) * 2013-08-12 2015-02-25 苏州维艾普新材料股份有限公司 Laminated VIP (vacuum insulation panel) fiberglass core material
KR20210084534A (en) * 2018-11-02 2021-07-07 라이프 테크놀로지스 코포레이션 Thermal Insulation Packaging Systems and Related Methods
JP7287642B2 (en) * 2018-12-27 2023-06-06 アクア株式会社 refrigerator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB715174A (en) * 1951-07-14 1954-09-08 Gen Electric Improvements in and relating to thermal insulation
US4055268A (en) * 1975-11-18 1977-10-25 Union Carbide Corporation Cryogenic storage container
JP3298260B2 (en) * 1993-10-05 2002-07-02 ダイソー株式会社 Chromatographic packing material
US5609934A (en) * 1995-01-05 1997-03-11 Schuller International, Inc. Method of manufacturing heat bonded glass fiber insulation boards
JP4251463B2 (en) * 1997-07-02 2009-04-08 パナソニック株式会社 Thermal insulation sheet and thermal insulation
DE19960694B4 (en) * 1999-12-16 2005-02-10 Johns Manville Europe Gmbh Process for producing an insulating body molding and Isolierkörperformteil for cryogenic insulation
JP2004251303A (en) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd Vacuum heat insulation material, freezing and cooling devices using vacuum heat insulation material
JP2006017151A (en) * 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd Vacuum heat insulating material
WO2006009146A1 (en) * 2004-07-20 2006-01-26 Kurashiki Boseki Kabushiki Kaisha Vacuum heat insulation material
JP4012903B2 (en) * 2004-11-30 2007-11-28 倉敷紡績株式会社 Vacuum insulation
JP2006307921A (en) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Vacuum thermal insulating material
JP2009228886A (en) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp Vacuum heat insulating material and heat insulating box using the same

Also Published As

Publication number Publication date
GB2451614A (en) 2009-02-11
CN101363566A (en) 2009-02-11
GB0812583D0 (en) 2008-08-13
BE1018383A5 (en) 2010-10-05
GB2451614B (en) 2009-11-04
JP2009041592A (en) 2009-02-26
CN101363566B (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4789886B2 (en) Vacuum insulation and insulation box
JP5388603B2 (en) Vacuum heat insulating material and heat insulating box equipped with the same
JP5236550B2 (en) Vacuum heat insulating material and manufacturing method thereof, and heat insulating box provided with the vacuum heat insulating material
JP2011074934A (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
US9546481B2 (en) Vacuum insulation material
JP5362024B2 (en) Vacuum heat insulating material, heat insulating box, refrigerator, refrigeration / air conditioning device, hot water supply device and equipment, and method for manufacturing vacuum heat insulating material
JP3942189B2 (en) Manufacturing method of vacuum insulation
JP2011094807A (en) Vacuum insulation material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device, and appliance each employing vacuum insulation material, and process for producing vacuum insulation material
JP5111331B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JP2010127421A (en) Vacuum thermal-insulating material and thermal insulation box
EP2105648B1 (en) Vacuum heat insulating material and heat insulating box using the same
JP2010281444A (en) Heat insulating material
JP5627773B2 (en) Vacuum heat insulating material and heat insulating box using the same
JP2010007806A (en) Vacuum thermal insulation panel and thermal insulation box body with this
JPWO2017029727A1 (en) Vacuum insulation and insulation box
JP4969555B2 (en) Vacuum insulation and insulation box
JP5968004B2 (en) Refrigerator using vacuum heat insulating material and vacuum heat insulating material
JP6793571B2 (en) Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material
JP5448937B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
EP2985376B1 (en) Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same
KR102217150B1 (en) Vacuum Insulation Material
JP6184841B2 (en) Vacuum insulation material and equipment using the same
JP2011027204A (en) Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material
JP2014077478A (en) Vacuum heat insulation material and heat insulation box comprising the same
JP2016142345A (en) Manufacturing method of vacuum heat insulation material, vacuum heat insulation material and equipment including vacuum heat insulation material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees