JP2006307921A - Vacuum thermal insulating material - Google Patents

Vacuum thermal insulating material Download PDF

Info

Publication number
JP2006307921A
JP2006307921A JP2005129206A JP2005129206A JP2006307921A JP 2006307921 A JP2006307921 A JP 2006307921A JP 2005129206 A JP2005129206 A JP 2005129206A JP 2005129206 A JP2005129206 A JP 2005129206A JP 2006307921 A JP2006307921 A JP 2006307921A
Authority
JP
Japan
Prior art keywords
core material
fibers
insulating material
fiber
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005129206A
Other languages
Japanese (ja)
Inventor
Masamichi Hashida
昌道 橋田
Tomonao Amayoshi
智尚 天良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005129206A priority Critical patent/JP2006307921A/en
Publication of JP2006307921A publication Critical patent/JP2006307921A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum thermal insulating material capable of preventing rupture of fibers in compression by atmospheric pressure applied in vacuum packing and suppressing heat conduction of a solid component to a low value. <P>SOLUTION: In this vacuum thermal insulating material constituted by covering a core material 4 with an outer covering material made of a laminate film and reducing pressure in the inside of the outer covering material and sealing it, the core material 4 is constituted by laminating glass fibers 2a, 2b having such characteristic that they are not easily broken off even when deformed by external force by increasing distortion limit of rupture like layers in such a way that the direction of length of the glass fibers 2a, 2b becomes substantially vertical to the direction of heat transfer and the glass fibers 2a, 2b being adjacent in the direction of heat transfer cross mutually. Since the glass fibers 2a, 2b are not easily broken off even when the core material 4 is compressed by atmospheric pressure, contact of a rupture part with the other fibers is suppressed and heat conduction of the solid component is suppressed. As a result, the vacuum thermal insulating material capable of suppressing heat conduction of the solid component to a low value can be manufactured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、優れた断熱性能を有する真空断熱材に関するものである。   The present invention relates to a vacuum heat insulating material having excellent heat insulating performance.

真空断熱材に使用する芯材は、熱伝導率が小さく、ガス発生の少ない無機化合物が適している。特に、ガラス繊維の積層体を芯材とした真空断熱材は、優れた断熱性能を有していることが知られており、その真空断熱材を構成する芯材の一例として、図5に示すものがある。   As the core material used for the vacuum heat insulating material, an inorganic compound having a small thermal conductivity and less gas generation is suitable. In particular, a vacuum heat insulating material using a glass fiber laminate as a core material is known to have excellent heat insulating performance, and an example of the core material constituting the vacuum heat insulating material is shown in FIG. There is something.

図5は、無機質細径繊維1aがその長さ方向を伝熱方向と直角になるように、且つ、この無機質細径繊維1aの長さ方向が相互に交差するように、ランダムに積層されて相互に点接触とされ、積層された無機質細径繊維1aに伝熱方向と平行に打込まれて、高密度の無機質細径繊維マット1を構成するペネトレーション繊維1bを備え、無機質細径繊維マット1を複数枚重ね合わすことで、芯材を形成することが提案されている(例えば、特許文献1参照)。   FIG. 5 shows that the inorganic fine fibers 1a are randomly laminated so that the length direction thereof is perpendicular to the heat transfer direction and the length directions of the inorganic fine fibers 1a intersect each other. Point-to-point contact with each other, driven into the laminated inorganic fine fiber 1a in parallel with the heat transfer direction, and provided with a penetration fiber 1b constituting the high-density inorganic fine fiber mat 1, an inorganic fine fiber mat It has been proposed to form a core material by superimposing a plurality of sheets 1 (for example, see Patent Document 1).

以上のように構成された従来の真空断熱材は、無機質細径繊維1aが、伝熱方向に対して直角に、かつランダムに配置されているため、その繊維相互が点接触となることから、接触点での接触熱抵抗が大きく、芯材厚み方向の伝熱量は小さくなる。   In the conventional vacuum heat insulating material configured as described above, since the inorganic small-diameter fibers 1a are arranged at right angles to the heat transfer direction and randomly, the fibers are in point contact with each other. The contact thermal resistance at the contact point is large, and the amount of heat transfer in the core material thickness direction is small.

しかし、伝熱方向と垂直に配置された繊維のみでは、伝熱方向に作用する大気圧に対する耐圧縮性が低下し、真空包装後に作用する大気圧により、芯材が圧縮され厚みの確保が困難になるため、部分的に、伝熱方向と平行に、ペネトレーション繊維1bを配置している。   However, with only the fibers arranged perpendicular to the heat transfer direction, the compression resistance against atmospheric pressure acting in the heat transfer direction decreases, and the core material is compressed by the atmospheric pressure acting after vacuum packaging, making it difficult to ensure thickness Therefore, the penetration fibers 1b are partially arranged in parallel with the heat transfer direction.

しかしながら、ペネトレーション繊維1bにより、断熱性能が低下するため、無機質細径繊維マット1を複数枚重ね合わすことで芯材を形成し、ペネトレーション繊維1bによる伝熱量を低減するものである。
特公平7−103955号公報
However, since the heat insulation performance is lowered by the penetration fibers 1b, a core material is formed by superimposing a plurality of inorganic fine fiber mats 1 and the amount of heat transferred by the penetration fibers 1b is reduced.
Japanese Examined Patent Publication No. 7-103955

しかしながら、上記従来の構成では、伝熱方向に水平な繊維による熱伝導の寄与度が大きいため、無機質細径繊維マット1を複数枚重ね合わした場合でも熱伝導を十分に低減することが困難なので、固体成分の熱伝導が大きくなるという課題を有していた。   However, in the above conventional configuration, since the contribution of heat conduction by fibers horizontal in the heat transfer direction is large, it is difficult to sufficiently reduce heat conduction even when a plurality of inorganic thin fiber mats 1 are overlapped, There was a problem that the heat conduction of the solid component was increased.

一方、無機質細径繊維の一種であるガラス繊維が伝熱方向と水平方向にのみ積層されて構成された芯材では、以下に示す要因により固体成分の熱伝導が増加する。   On the other hand, in the core material formed by laminating glass fibers, which are a kind of inorganic fine fiber, only in the heat transfer direction and the horizontal direction, the heat conduction of the solid component increases due to the following factors.

ガラス繊維には外被材を介して圧縮力が加えられる。ガラス繊維から構成されている芯材内部ではガラス繊維同士が絡み合っており、大気圧により圧縮力が加わると、ガラス繊維には引張り応力や曲げ応力が加えられ歪みが生じる。   A compressive force is applied to the glass fiber through the jacket material. Glass fibers are intertwined inside a core material made of glass fibers, and when compressive force is applied by atmospheric pressure, tensile stress and bending stress are applied to the glass fibers to cause distortion.

ガラス繊維の破断のひずみ限界が小さい場合は、僅かな歪みで破断してしまい、この繊維の存在により保持されていた空間が無くなり、接触していなかった繊維同士が接触することにより熱が伝わりやすくなる。さらに、繊維の破断部が付近の繊維と接触することによっても熱が伝わりやすくなる。   If the strain limit of breakage of the glass fiber is small, it breaks with a slight strain, the space held by the presence of this fiber disappears, and heat is easily transferred by the fibers that are not in contact with each other Become. Furthermore, heat is easily transferred also when the broken portion of the fiber comes into contact with the nearby fiber.

本発明は、上記従来の課題を解決するもので、伝熱方向と水平方向の繊維が要因となる固体成分の熱伝導を抑制し、熱伝導率が小さい真空断熱材を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and aims to provide a vacuum heat insulating material that suppresses heat conduction of a solid component caused by fibers in the heat transfer direction and the horizontal direction and has low heat conductivity. To do.

上記従来の課題を解決するため、本発明の真空断熱材は、芯材が、破断の歪み限界を大きくすることにより外力により変形しても破断しにくい特性をもったガラス繊維を、前記ガラス繊維の長さ方向が伝熱方向と略垂直となり、伝熱方向に隣接する前記ガラス繊維同士が交差するように層状に積層してなることを特徴とするものである。   In order to solve the above-mentioned conventional problems, the vacuum heat insulating material of the present invention is a glass fiber having a characteristic that the core material is not easily broken even if it is deformed by an external force by increasing the strain limit of breaking. The glass fiber is laminated in layers so that the length direction is substantially perpendicular to the heat transfer direction and the glass fibers adjacent to each other in the heat transfer direction intersect.

これによって、大気圧により圧縮されても繊維が破断し難いため、周囲の空間が保持され、周囲の繊維同士が接触しにくくなるため、固体成分の熱伝導の増大が抑制される。従って、固体成分の熱伝導を低く抑えた真空断熱材となる。   As a result, the fibers are difficult to break even when compressed by atmospheric pressure, so that the surrounding space is maintained and the surrounding fibers are less likely to come into contact with each other, so that an increase in the heat conduction of the solid component is suppressed. Therefore, it becomes a vacuum heat insulating material which suppressed the heat conduction of the solid component low.

本発明の真空断熱材は、同一の熱伝導率を有するガラスを用いて作製された芯材を用いた真空断熱材に比較して優れた断熱性能を有する真空断熱材を得ることができる。   The vacuum heat insulating material of this invention can obtain the vacuum heat insulating material which has the heat insulation performance outstanding compared with the vacuum heat insulating material using the core material produced using the glass which has the same thermal conductivity.

請求項1に記載の真空断熱材の発明は、芯材をラミネートフィルムからなる外被材で覆って前記外被材の内部を減圧して封止してなり、前記芯材が、破断の歪み限界を大きくすることにより外力により変形しても破断しにくい特性をもったガラス繊維を、前記ガラス繊維の長さ方向が伝熱方向と略垂直となり、伝熱方向に隣接する前記ガラス繊維同士が交差するように層状に積層してなることを特徴とするものである。   The invention of the vacuum heat insulating material according to claim 1 is formed by covering the core material with a cover material made of a laminate film and sealing the cover material by reducing the pressure inside the cover material. The glass fiber having the characteristic that it is difficult to break even if deformed by an external force by increasing the limit, the length direction of the glass fiber is substantially perpendicular to the heat transfer direction, and the glass fibers adjacent to each other in the heat transfer direction are It is characterized by being laminated in layers so as to intersect.

ガラス繊維が外力により変形しても破断しにくいと、大気圧により芯材中で絡み合った繊維に歪みが生じても破断しにくく、この繊維の存在により空間が保持される。芯材としては、大気圧によって芯材が圧縮されにくく、芯材中の空間を維持することにより熱が伝わりにくく、固体成分の熱伝導を低く抑えた真空断熱材を得ることができる。   If the glass fiber is difficult to break even if it is deformed by an external force, even if the fiber entangled in the core material is distorted by atmospheric pressure, it is difficult to break, and the presence of this fiber keeps the space. As the core material, a vacuum heat insulating material in which the core material is hardly compressed by atmospheric pressure, heat is not easily transmitted by maintaining the space in the core material, and the heat conduction of the solid component is kept low can be obtained.

請求項2に記載の真空断熱材の発明は、請求項1に記載の発明における芯材が、圧縮復元率が70%以上のガラス繊維集合体からなるものである。   According to a second aspect of the present invention, the core material according to the first aspect of the present invention is made of a glass fiber aggregate having a compression recovery rate of 70% or more.

圧縮復元率とは、ガラス繊維集合体の圧縮前後の嵩高さの比を示す。例えば、嵩高さ100mmのガラス繊維集合体を圧縮した場合に嵩高さが70mmとなった場合は、前記ガラス繊維集合体の圧縮復元率は70%である。   The compression restoration rate indicates a ratio of bulkiness before and after compression of the glass fiber aggregate. For example, when the bulkiness is 70 mm when a glass fiber aggregate having a bulkiness of 100 mm is compressed, the compression recovery rate of the glass fiber aggregate is 70%.

ガラス繊維集合体は、構成するガラス繊維の脆さの度合いにより種々の圧縮復元率を有するものがある。真空断熱材の熱伝導率は、芯材を構成するガラス繊維集合体の圧縮復元率が大きくなるに従って小さくなる。種々の圧縮復元率を有するガラス繊維集合体により作製した真空断熱材の熱伝導率を測定した。圧縮復元率が70%未満の場合、真空断熱材の熱伝導率は圧縮復元率には依存しないが、圧縮復元率が70%以上になると圧縮復元率が大きくなるに従って熱伝導率が減少する。このことから、圧縮復元率が70%を超えると、芯材内部でのガラス繊維による伝熱が減少し、要因は以下の様に推測される。   Some glass fiber aggregates have various compression recovery rates depending on the degree of brittleness of the glass fibers constituting the glass fiber aggregate. The thermal conductivity of the vacuum heat insulating material decreases as the compression recovery rate of the glass fiber aggregate constituting the core increases. The heat conductivity of the vacuum heat insulating material produced with the glass fiber aggregate which has various compression recovery rates was measured. When the compression recovery rate is less than 70%, the thermal conductivity of the vacuum heat insulating material does not depend on the compression recovery rate, but when the compression recovery rate is 70% or more, the thermal conductivity decreases as the compression recovery rate increases. From this, when the compression recovery rate exceeds 70%, the heat transfer by the glass fiber inside the core material decreases, and the cause is estimated as follows.

ガラス繊維が破断すると、破断部が他の繊維と接触することにより熱伝導が増加するため、ガラス繊維が破断しにくいガラス繊維集合体を芯材に用いることにより、熱伝導率を低減できる。   When the glass fiber breaks, the thermal conductivity increases because the broken portion comes into contact with other fibers. Therefore, the thermal conductivity can be reduced by using a glass fiber aggregate that is difficult to break the glass fiber as a core material.

圧縮復元率が大きいガラス繊維集合体は、圧縮された場合に内部のガラス繊維が破断しにくく、破断していない繊維の曲げが解消される力により、ガラス繊維集合体の嵩を大きくするためである。圧縮されたガラス繊維集合体の嵩高さが復元するためには、破断していないガラス繊維が多く存在することが必要であり、破断していないガラス繊維が多くなると圧縮復元率が70%以上となる。   The glass fiber aggregate with a high compression recovery rate is used to increase the bulk of the glass fiber aggregate due to the force that breaks the unbroken fiber when the glass fiber inside is hard to break when compressed. is there. In order to restore the bulkiness of the compressed glass fiber aggregate, it is necessary that there are many unbroken glass fibers, and when the unbroken glass fibers increase, the compression recovery rate is 70% or more. Become.

従って、圧縮復元率が70%以上のガラス繊維集合体を芯材に用いることにより、熱伝導率を低減した真空断熱材をえることができる。   Therefore, a vacuum heat insulating material with reduced thermal conductivity can be obtained by using a glass fiber aggregate having a compression recovery rate of 70% or more as a core material.

圧縮復元率を測定する場合、ガラス繊維集合体に加える圧力は20kPaで1分間とし、圧縮した後の嵩高さは圧力開放後24時間後に測定するものとする。また、種々の密度を有するガラス繊維集合体が存在し、密度が小さいものを圧縮した場合は嵩高さが復元しないため圧縮復元率を正確に測定できない。圧縮復元率を正確に算出するため、密度が小さいガラス繊維集合体は一旦仮に圧縮することにより密度を20kg/m3以上にした状態の嵩高さを圧縮前の嵩高さとする。 When the compression recovery rate is measured, the pressure applied to the glass fiber aggregate is 20 kPa for 1 minute, and the bulk after compression is measured 24 hours after the pressure is released. Further, when there are glass fiber aggregates having various densities, and those having a low density are compressed, the bulkiness is not restored, and the compression restoration rate cannot be measured accurately. In order to accurately calculate the compression recovery rate, the glass fiber aggregate having a low density is temporarily compressed, and the bulkiness when the density is set to 20 kg / m 3 or more is defined as the bulkiness before compression.

上記の特徴を有するガラス繊維集合体を成形した芯材を作製しても、前記ガラス繊維の特徴は保持される。このため、前記ガラス繊維集合体を成形した芯材は、芯材に大きな圧縮力が働いた場合でも、芯材中のガラス繊維で破断するものの割合が小さい。真空断熱材の芯材には大気圧により、約1kg/cm2の圧力が加わり密度が大きくなるが、前記特徴を有する芯材であれば大気圧により圧縮されても破断する繊維が少ないため、固体成分の熱伝導を抑制した真空断熱材を得ることができる。 Even if a core material formed by molding a glass fiber aggregate having the above characteristics is produced, the characteristics of the glass fiber are maintained. For this reason, the core material which shape | molded the said glass fiber assembly has a small ratio of what fractures | ruptures with the glass fiber in a core material, even when a big compressive force acts on the core material. The pressure of about 1 kg / cm 2 is applied to the core material of the vacuum heat insulating material due to atmospheric pressure to increase the density. However, if the core material has the above characteristics, there are few fibers that break even when compressed by atmospheric pressure. A vacuum heat insulating material in which the heat conduction of the solid component is suppressed can be obtained.

従って、前記特徴を有するガラス繊維集合体から作製した芯材は、圧縮を繰り返した場合であっても破断する繊維の割合が小さくなる。すなわち圧縮することにより圧縮強度が低下しにくい。   Therefore, the core material produced from the glass fiber aggregate having the above characteristics has a small percentage of fibers that are broken even when compression is repeated. That is, the compression strength is unlikely to be reduced by compression.

従って、一回目の圧縮強度で二回目の圧縮強度を除した値が大きくなる。一回目の圧縮強度で二回目の圧縮強度を除した値を圧縮強度比とする。   Therefore, the value obtained by dividing the second compression strength by the first compression strength is increased. A value obtained by dividing the second compression strength by the first compression strength is defined as a compression strength ratio.

例えば、芯材を密度が350kg/m3になるように圧縮する過程において250kg/m3時に加わる圧縮強度に対して、圧縮力を開放した後に再び250kg/m3になるように圧縮した場合の圧縮強度比は35%以上となる。 For example, when the core material is compressed so that the density becomes 350 kg / m 3 , the compression strength applied at 250 kg / m 3 is compressed again to 250 kg / m 3 after releasing the compression force. The compressive strength ratio is 35% or more.

また、芯材を密度が270kg/m3になるように圧縮する過程において250kg/m3時に加わる圧縮強度に対して、圧縮力を開放した後に再び250kg/m3になるように圧縮した場合の圧縮強度比は80%以上となる。これらは、いずれも一回目の圧縮の際に破断するガラス繊維の割合が少ないため、二回目の圧縮の際に圧縮強度に寄与する繊維の割合が多いためである。 Further, when the core material density relative to the compressive strength applied to at 250 kg / m 3 in the process of compressing so that 270 kg / m 3, and compressed again become 250 kg / m 3 after opening the compressive force The compressive strength ratio is 80% or more. These are because the ratio of the glass fiber that breaks during the first compression is small, and the ratio of the fiber that contributes to the compressive strength is large during the second compression.

請求項3に記載の真空断熱材の発明は、請求功1または2に記載の発明におけるガラス繊維の引張り破断伸度が1%以上であるものである。   According to a third aspect of the present invention, the glass fiber according to the first or second aspect of the present invention has a tensile elongation at break of 1% or more.

種々の引張り破断伸度を有するガラス繊維集合体により作製した真空断熱材の熱伝導率を測定すると、引張り破断伸度が1%未満の場合、真空断熱材の熱伝導率は引張り破断伸度には依存しないが、引張り破断伸度が1%以上になると引張り破断伸度が大きくなるに従って熱伝導率が減少する。このことから、引張り破断伸度が1%を超えると、芯材内部でのガラス繊維による伝熱が減少し、要因は以下の様に推測される。   When the thermal conductivity of a vacuum heat insulating material produced from glass fiber aggregates having various tensile breaking elongations is measured, when the tensile breaking elongation is less than 1%, the thermal conductivity of the vacuum insulating material is equal to the tensile breaking elongation. However, when the tensile elongation at break becomes 1% or more, the thermal conductivity decreases as the tensile elongation at break increases. From this, when the tensile elongation at break exceeds 1%, the heat transfer by the glass fiber inside the core material decreases, and the cause is estimated as follows.

芯材内部では繊維同士は複雑に絡みあっているため、芯材が均一な圧力で圧縮された場合でも、各繊維に対する力の加わり方が異なる。例えば、主に引張り力が加えられる繊維、主に圧縮力が加えられる繊維、主に曲げの力が加えられる繊維があり、破断する繊維の大部分は引張り力によるものである。また、加えられる引張り力の大きさも各繊維によって異なり、引張り力により引張り破断伸度を越えた繊維が破断する。繊維の引張り破断伸度が1%以上であれば、大部分の繊維が弾性変形領域となるため、破断する繊維の割合が小さくなる。破断する繊維の割合が小さいことにより、繊維の破断部と他の繊維との接触による伝熱が抑制される。   Since the fibers are intertwined in a complicated manner inside the core material, even when the core material is compressed with a uniform pressure, the way in which the force is applied to each fiber is different. For example, there are fibers that are mainly subjected to tensile force, fibers that are mainly subjected to compressive force, and fibers that are mainly subjected to bending force, and most of the fibers that break are due to tensile force. Further, the magnitude of the tensile force applied varies depending on each fiber, and the fiber exceeding the tensile elongation at break breaks due to the tensile force. If the tensile elongation at break of the fiber is 1% or more, most of the fibers are in the elastic deformation region, so that the proportion of the fibers that break is small. Since the ratio of the breaking fiber is small, heat transfer due to contact between the broken portion of the fiber and another fiber is suppressed.

従って、固体成分の熱伝導を低く抑えた真空断熱材を得ることができる。   Accordingly, it is possible to obtain a vacuum heat insulating material in which the heat conduction of the solid component is kept low.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the present embodiment.

(実施の形態1)
図1は本実施の形態1における真空断熱材の断面図である。図2は同実施の形態における真空断熱材に用いる芯材の断面図である。図3は同芯材の真空包装後の状態を示す断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of the vacuum heat insulating material in the first embodiment. FIG. 2 is a cross-sectional view of a core material used for the vacuum heat insulating material in the same embodiment. FIG. 3 is a cross-sectional view showing a state after vacuum packaging of the concentric material.

真空断熱材3は、芯材4と外被材5と吸着剤6からなり、吸着剤6を埋設した芯材4をラミネートフィルムからなる外被材5で覆って外被材5の内部を減圧して封止してなる。   The vacuum heat insulating material 3 includes a core material 4, a jacket material 5, and an adsorbent 6. The core material 4 in which the adsorbent 6 is embedded is covered with a jacket material 5 made of a laminate film, and the inside of the jacket material 5 is decompressed. And sealed.

芯材4は、繊維の長さ方向が伝熱方向に垂直で且つ芯材4断面に略平行に配置した複数のガラス繊維2aと、繊維の長さ方向が伝熱方向に垂直で且つ芯材4断面に略垂直に配置した複数のガラス繊維2bとを、伝熱方向に交互に積層したもので、ガラス繊維2a,2bを成形し板状にしたものである。   The core material 4 includes a plurality of glass fibers 2a in which the fiber length direction is perpendicular to the heat transfer direction and substantially parallel to the cross section of the core material 4, and the fiber length direction is perpendicular to the heat transfer direction and the core material. A plurality of glass fibers 2b arranged substantially perpendicularly to the four cross sections are laminated alternately in the heat transfer direction, and the glass fibers 2a and 2b are formed into a plate shape.

外被材5は、シーラント層として直鎖型低密度ポリエチレン、金属箔にアルミニウム、最外層にナイロンを用いて構成されているラミネートフィルムである。吸着剤6は酸化カルシウムである。   The jacket material 5 is a laminate film configured using linear low-density polyethylene as a sealant layer, aluminum as a metal foil, and nylon as an outermost layer. The adsorbent 6 is calcium oxide.

芯材4を構成しているガラス繊維2a,2bは引張り破断伸度を大きくしたガラス繊維である。ガラス繊維2a,2bは、溶融状態で高速回転する繊維化装置から吐出され、高速の空気流で引き伸ばされることにより作製されたものである。溶融状態の繊維を引き伸ばす空気流の温度が低いほどガラス繊維が急冷による焼き入れ効果で引張り破断伸度が大きくなる。このガラス繊維2a,2bを集綿したものを原綿として芯材4を作製した。本実施の形態では、ガラス繊維2a,2bを引き伸ばす空気流の温度を−20℃とした。   The glass fibers 2a and 2b constituting the core material 4 are glass fibers having increased tensile elongation at break. The glass fibers 2a and 2b are produced by being discharged from a fiberizing apparatus that rotates at high speed in a molten state and stretched by a high-speed air flow. The lower the temperature of the air stream that stretches the melted fiber, the higher the tensile elongation at break due to the quenching effect of the glass fiber due to quenching. A core material 4 was produced by using a collection of the glass fibers 2a and 2b as raw cotton. In the present embodiment, the temperature of the air flow that stretches the glass fibers 2a and 2b is set to -20 ° C.

上記の方法で作製した100mmの嵩高さの原綿を20kPaで1分間圧縮した後、24時間経過後の嵩高さは75mmであり、圧縮復元率は75%であった。また圧縮前の原綿の密度は22kg/m3であった。圧縮した原綿の復元率が大きいことは、圧縮により破断しない繊維が多いためである。 After the 100 mm bulk raw cotton produced by the above method was compressed at 20 kPa for 1 minute, the bulk after 24 hours was 75 mm, and the compression recovery rate was 75%. The density of the raw cotton before compression was 22 kg / m 3 . The high restoration rate of the compressed raw cotton is because there are many fibers that are not broken by compression.

芯材4は原綿を加熱しながら圧縮することにより成形し作製した。このようにして作製した芯材を予め3方シールにより製袋した外被材5に挿入後、13Paまで減圧後封止し、真空断熱材3を作製した。以上のように構成された真空断熱材について、以下その動作、作用を説明する。   The core material 4 was formed and formed by compressing raw cotton while heating. The core material thus produced was inserted into the jacket material 5 which was made in advance by a three-side seal, and then the pressure was reduced to 13 Pa, followed by sealing, whereby the vacuum heat insulating material 3 was produced. About the vacuum heat insulating material comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

図3に示しているように、断面に略水平を向いたガラス繊維2aは、断面に略垂直を向いたガラス繊維2bのみを通して接触している。   As shown in FIG. 3, the glass fiber 2 a facing the substantially horizontal section is in contact only through the glass fiber 2 b facing the substantially vertical section.

外被材に大気圧が加わるため、芯材4は外被材より圧縮力を受ける。圧縮力が働くことにより、ガラス繊維2同士が接触している点は押し付けられているため、ガラスの摩擦力により固定されている。   Since the atmospheric pressure is applied to the jacket material, the core material 4 receives a compressive force from the jacket material. Since the point at which the glass fibers 2 are in contact with each other is pressed by the compressive force, the glass fiber 2 is fixed by the frictional force of the glass.

従って、一本のガラス繊維2a,2bにおいて複数の接点が離れる方向に力が加わると、ガラス繊維2a,2bには引張り応力が加えられる。ガラス繊維2a,2bの引張り破断伸度が小さい場合は接触している点同士が僅かに離れただけで破断してしまう。ガラス繊維2a,2bが破断すると、破断部が自由端となる。この結果、破断部が他のガラス繊維2a,2bと接触することにより固体成分の熱伝導が大きくなる。   Accordingly, when a force is applied in the direction in which the plurality of contacts are separated from each other in one glass fiber 2a, 2b, a tensile stress is applied to the glass fibers 2a, 2b. When the tensile breaking elongation of the glass fibers 2a and 2b is small, the glass fibers 2a and 2b are broken only when the contact points are slightly separated from each other. When the glass fibers 2a and 2b are broken, the broken portion becomes a free end. As a result, the heat conduction of the solid component increases due to the broken portion coming into contact with the other glass fibers 2a and 2b.

芯材4の中でのガラス繊維2a,2b同士の接触方法は多様であるため、芯材4全体に同一の圧力が加わった場合であっても、各繊維が固定されている点同士の距離の変化の度合いが多様である。ガラス繊維2a,2bの引張り破断伸度が1%以上であれば大気圧が加わっても大部分の繊維が破断せず固体成分の熱伝導の増大を抑制できる。   Since the contact methods between the glass fibers 2a and 2b in the core material 4 are diverse, even when the same pressure is applied to the entire core material 4, the distance between the points where the fibers are fixed. The degree of change is diverse. If the tensile elongation at break of the glass fibers 2a and 2b is 1% or more, even if atmospheric pressure is applied, most of the fibers are not broken and an increase in heat conduction of the solid component can be suppressed.

本実施の形態における真空断熱材の熱伝導率を測定したところ0.0015W/mKであった。   It was 0.0015 W / mK when the heat conductivity of the vacuum heat insulating material in this Embodiment was measured.

本実施の形態における原綿のガラス繊維2a,2bの引張り破断伸度は1.5%であった。また、芯材のガラス繊維2a,2bの引張り破断伸度は1.4%であり、加熱による引張り破断伸度への影響は小さいことが判る。引張り破断伸度はガラス繊維2a,2bを20mm離して2点固定し引張り力を加え、破断までに長くなった長さを20mmで割ることにより算出した。引張り破断伸度はばらつきが大きいため100回測定したものの平均値を用いた。   The tensile breaking elongation of the glass fibers 2a and 2b of the raw cotton in the present embodiment was 1.5%. Further, the tensile breaking elongation of the glass fibers 2a and 2b as the core material is 1.4%, and it can be seen that the influence on the tensile breaking elongation by heating is small. The tensile elongation at break was calculated by applying a tensile force with the glass fibers 2a and 2b separated by 20mm and fixing at two points, and dividing the length increased until the break by 20mm. Since the tensile elongation at break was highly variable, the average value of those measured 100 times was used.

(実施の形態2)
図4は実施の形態2における芯材の断面図である。
(Embodiment 2)
FIG. 4 is a cross-sectional view of the core material in the second embodiment.

ガラス繊維2a,2bはイオン交換により破断の限界を大きくしたものである。イオン交換を行うと、ガラス繊維表面に圧縮力が付与されるため屈曲の外側が引き伸ばされた場合に破断しにくくなる。このガラス繊維を用いて真空断熱材を作製した。   The glass fibers 2a and 2b are obtained by increasing the breaking limit by ion exchange. When ion exchange is performed, a compressive force is applied to the surface of the glass fiber, so that it is difficult to break when the outside of the bend is stretched. A vacuum heat insulating material was produced using this glass fiber.

この真空断熱材の熱伝導率は0.0015W/mKであった。真空断熱材を解体し、芯材の圧縮試験を行った。一旦、密度が350kg/m3になるように圧縮する過程で、密度が250kg/m3の時の圧縮強度は、89kPaであり、圧縮力を開放した後に再び250kg/m3になるように圧縮するために必要な圧縮強度は33kPaであり、圧縮強度比は37.1%であった。 The heat conductivity of this vacuum heat insulating material was 0.0015 W / mK. The vacuum heat insulating material was disassembled and a core material compression test was performed. Once the process of compressing such that the density is 350 kg / m 3, the compressive strength when the density is 250 kg / m 3, a 89KPa, compressed so again 250 kg / m 3 after opening the compressive force The compressive strength required to achieve this was 33 kPa, and the compressive strength ratio was 37.1%.

また、一旦、密度が270kg/m3になるように圧縮する過程で、密度が250kg/m3の時の圧縮強度は、90kPaであり、圧縮力を開放した後に再び250kg/m3になるように圧縮するために必要な圧縮強度は74kPaであり、圧縮強度比は82.2%であった。原綿の各部分での圧縮前における密度を均一にすることが困難であるため、圧縮力にはばらつきが生じる。このため、10回測定したものの平均値を圧縮力とする。 Also, once in the course of compression such that the density is 270 kg / m 3, compression strength when the density is 250 kg / m 3 is 90 kPa, so that again a 250 kg / m 3 after opening the compressive force The compression strength required for compression was 74 kPa, and the compression strength ratio was 82.2%. Since it is difficult to make the density before compression in each part of the raw cotton uniform, the compressive force varies. For this reason, let the average value of what was measured 10 times be compression force.

圧縮を繰り返す場合に、必要な圧縮強度の低減が少ない要因は、圧縮により破断する繊維が少ないためである。圧縮により破断する繊維が少ないと、破断部が他の繊維と接触することによる固体成分の熱伝導の増大が抑制される。従って、優れた断熱性能を得ることができる。   When compression is repeated, the reason why the required reduction in compression strength is small is that there are few fibers that break due to compression. When the number of fibers that breaks due to compression is small, an increase in the heat conduction of the solid component due to the broken portion coming into contact with other fibers is suppressed. Therefore, excellent heat insulation performance can be obtained.

原綿から芯材を作製する方法、外被材の製袋方法等、真空断熱材の作製方法および、各物性の測定方法は実施の形態1と同等である。   A method for producing a vacuum heat insulating material, such as a method for producing a core material from raw cotton, a bag making method for an outer covering material, and a method for measuring each physical property are the same as those in the first embodiment.

本発明において、破断の歪み限界とは、加えられた力によりガラス繊維が破断するまでのひずみの大きさを示す。例えば、引張り試験においては破断するまでに伸びた長さを初期長さで割ったものである。曲げ等他の試験でも同様である。   In the present invention, the strain limit of breakage indicates the magnitude of strain until the glass fiber breaks due to the applied force. For example, in the tensile test, the length that is extended until the fracture occurs is divided by the initial length. The same applies to other tests such as bending.

本発明では、ガラス繊維の破断の歪み限界を大きくする手段として急冷による焼き入れ、イオン交換による強化を行っているが、破断の歪み限界を大きくする手段はこれらに限定するものではなく、所定の物性が得られれば優れた熱伝導率を得ることができる。   In the present invention, quenching by quenching and strengthening by ion exchange are performed as means for increasing the strain limit of breakage of glass fiber, but means for increasing the strain limit of breakage is not limited to these, If physical properties are obtained, excellent thermal conductivity can be obtained.

圧縮復元率の算出においては、原綿を圧縮した後の嵩高さは、圧縮後24時間経過後に測定した値を用いるものとする。   In the calculation of the compression recovery rate, the bulkiness after compressing the raw cotton is a value measured after 24 hours have elapsed after compression.

芯材の圧縮試験は、5mm/minの圧縮速度で行い、芯材が所定の密度に到達した時点の圧縮強度を、それぞれの密度における圧縮強度とする。   The compression test of the core material is performed at a compression speed of 5 mm / min, and the compression strength when the core material reaches a predetermined density is defined as the compression strength at each density.

実施の形態1において、繊維化装置からと出され、溶融状態のガラス繊維を引き伸ばす空気流の温度を変えて検討を行った結果を実施例1から実施例4に示す。各実施例において、ガラス繊維を集綿して得られた原綿を加熱しながら板状に成形した芯材を外被材で覆い、内部を減圧後封止して真空断熱材を作製した。実施の形態2においてイオン交換により繊維を強化して検討を行った結果を実施例5に示す。真空断熱材の作製方法は実施例1から4と同等である。   Example 1 to Example 4 show the results obtained by examining the temperature of the air flow extending from the fiberizing apparatus and extending the glass fiber in the molten state in the first embodiment. In each Example, a core material formed into a plate shape while heating raw cotton obtained by collecting glass fibers was covered with a jacket material, and the inside was sealed after decompression to prepare a vacuum heat insulating material. Example 5 shows the results of investigation by reinforcing the fiber by ion exchange in the second embodiment. The method for producing the vacuum heat insulating material is the same as in Examples 1 to 4.

(実施例1)
繊維を引き伸ばす空気流が90℃の場合、真空断熱材の熱伝導率は、0.0018W/mKであった。芯材の繊維の引張り破断伸度は1.1%であった。350kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は35.5%であった。270kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は80.1%であった。芯材の繊維の引張り破断伸度、芯材の圧縮強度比が大きいため、芯材内の繊維が破断しにくく、破断部と他の繊維との接触が抑制され優れた断熱性能を有する真空断熱材が得られた。
(Example 1)
When the air flow for stretching the fibers was 90 ° C., the thermal conductivity of the vacuum heat insulating material was 0.0018 W / mK. The tensile elongation at break of the core fiber was 1.1%. Compressive strength ratio in 250 kg / m 3 when compressed to 350 kg / m 3 was 35.5%. Compressive strength ratio in 250 kg / m 3 when compressed to 270 kg / m 3 was 80.1%. Vacuum insulation that has excellent heat insulation performance because the fiber in the core material is not easily broken because the tensile breaking elongation of the fiber of the core material and the compression strength ratio of the core material are large, and the contact between the broken part and other fibers is suppressed. A material was obtained.

(実施例2)
繊維を引き伸ばす空気流が70℃の場合、真空断熱材の熱伝導率は、0.0018W/mKであった。芯材の繊維引張り破断伸度は1.2%であった。350kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は36.0%であった。270kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は80.7%であった。芯材の繊維の引張り破断伸度、芯材の圧縮強度比が大きいため、芯材内の繊維が破断しにくく、破断部と他の繊維との接触が抑制され優れた断熱性能を有する真空断熱材が得られた。
(Example 2)
When the air flow for stretching the fibers was 70 ° C., the thermal conductivity of the vacuum heat insulating material was 0.0018 W / mK. The fiber tensile elongation at break of the core material was 1.2%. Compressive strength ratio in 250 kg / m 3 when compressed to 350 kg / m 3 was 36.0%. Compressive strength ratio in 250 kg / m 3 when compressed to 270 kg / m 3 was 80.7%. Vacuum insulation that has excellent heat insulation performance because the fiber in the core material is not easily broken because the tensile breaking elongation of the fiber of the core material and the compression strength ratio of the core material are large, and the contact between the broken part and other fibers is suppressed. A material was obtained.

(実施例3)
繊維を引き伸ばす空気流が50℃の場合、真空断熱材の熱伝導率は、0.0016W/mKであった。芯材の繊維引張り破断伸度は1.3%であった。350kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は36.8%であった。270kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は80.9%であった。芯材の繊維の引張り破断伸度、芯材の圧縮強度比が大きいため、芯材内の繊維が破断しにくく、破断部と他の繊維との接触が抑制され優れた断熱性能を有する真空断熱材が得られた。
Example 3
When the air flow for stretching the fiber was 50 ° C., the thermal conductivity of the vacuum heat insulating material was 0.0016 W / mK. The fiber tensile breaking elongation of the core material was 1.3%. Compressive strength ratio in 250 kg / m 3 when compressed to 350 kg / m 3 was 36.8%. Compressive strength ratio in 250 kg / m 3 when compressed to 270 kg / m 3 was 80.9%. Vacuum insulation that has excellent heat insulation performance because the fiber in the core material is not easily broken because the tensile breaking elongation of the fiber of the core material and the compression strength ratio of the core material are large, and the contact between the broken part and other fibers is suppressed. A material was obtained.

(実施例4)
繊維を引き伸ばす空気流が−20℃の場合、真空断熱材の熱伝導率は、0.0015W/mKであった。芯材の繊維引張り破断伸度は1.4%であった。350kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は37.0%であった。270kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は82.4%であった。芯材の繊維の引張り破断伸度、芯材の圧縮強度比が大きいため、芯材内の繊維が破断しにくく、破断部と他の繊維との接触が抑制され優れた断熱性能を有する真空断熱材が得られた。
Example 4
When the air flow for stretching the fibers was −20 ° C., the thermal conductivity of the vacuum heat insulating material was 0.0015 W / mK. The fiber tensile breaking elongation of the core material was 1.4%. Compressive strength ratio in 250 kg / m 3 when compressed to 350 kg / m 3 was 37.0%. Compressive strength ratio in 250 kg / m 3 when compressed to 270 kg / m 3 was 82.4%. Vacuum insulation that has excellent heat insulation performance because the fiber in the core material is not easily broken because the tensile breaking elongation of the fiber of the core material and the compression strength ratio of the core material are large, and the contact between the broken part and other fibers is suppressed. A material was obtained.

(実施例5)
イオン交換によりガラス繊維の破断の歪み限界を強化した場合、真空断熱材の熱伝導率は、0.0015W/mKであった。芯材の繊維引張り破断伸度は1.4%であった。350kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は37.1%であった。270kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は82.2%であった。芯材の繊維の引張り破断伸度、芯材の圧縮強度比が大きいため、芯材内の繊維が破断しにくく、破断部と他の繊維との接触が抑制され優れた断熱性能を有する真空断熱材が得られた。
(Example 5)
When the strain limit of breakage of the glass fiber was reinforced by ion exchange, the thermal conductivity of the vacuum heat insulating material was 0.0015 W / mK. The fiber tensile breaking elongation of the core material was 1.4%. Compressive strength ratio in 250 kg / m 3 when compressed to 350 kg / m 3 was 37.1%. Compressive strength ratio in 250 kg / m 3 when compressed to 270 kg / m 3 was 82.2%. Vacuum insulation that has excellent heat insulation performance because the fiber in the core material is not easily broken because the tensile breaking elongation of the fiber of the core material and the compression strength ratio of the core material are large, and the contact between the broken part and other fibers is suppressed. A material was obtained.

各条件で強化を行ったガラス繊維を芯材の構成要素として用いた真空断熱材の熱伝導率及び繊維、芯材の物性の関係を(表1)に示す。   Table 1 shows the relationship between the thermal conductivity of the vacuum heat insulating material using the glass fiber reinforced under each condition as a constituent element of the core material, and the physical properties of the fiber and the core material.

Figure 2006307921
急冷を行う条件を変えて作製したガラス繊維を芯材に用いた真空断熱材の熱伝導率測定結果と、芯材とガラス繊維の物性を説明する。
Figure 2006307921
The thermal conductivity measurement result of the vacuum heat insulating material using the glass fiber produced by changing the conditions for rapid cooling as the core material, and the physical properties of the core material and the glass fiber will be described.

(比較例1)
繊維を引き伸ばす空気流が200℃の場合、真空断熱材の熱伝導率は、0.0020W/mKであった。芯材の繊維の引張り破断伸度は0.8%であった。350kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は33.3%であった。270kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は78.8%であった。繊維を引き伸ばす空気流の温度が高いため十分な焼き入れ効果が得られず、芯材の繊維の引張り破断伸度、芯材の圧縮強度比が十分ではなく、繊維が破断し、破断部と他の繊維が接触することにより熱伝導率が大きくなっている。
(Comparative Example 1)
When the air flow for stretching the fibers was 200 ° C., the thermal conductivity of the vacuum heat insulating material was 0.0020 W / mK. The tensile elongation at break of the core fiber was 0.8%. Compressive strength ratio in 250 kg / m 3 when compressed to 350 kg / m 3 was 33.3%. Compressive strength ratio in 250 kg / m 3 when compressed to 270 kg / m 3 was 78.8%. Since the temperature of the air flow that stretches the fiber is high, a sufficient quenching effect cannot be obtained, the tensile fracture elongation of the core fiber and the compressive strength ratio of the core material are not sufficient, the fiber breaks, the fracture part and others The thermal conductivity is increased by the contact of the fibers.

(比較例2)
繊維を引き伸ばす空気流が150℃の場合、真空断熱材の熱伝導率は、0.0020W/mKであった。芯材の繊維の引張り破断伸度は0.8%であった。350kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は33.7%であった。270kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は79.3%であった。繊維を引き伸ばす空気流の温度が高いため十分な焼き入れ効果が得られず、芯材の繊維の引張り破断伸度、芯材の圧縮強度比が十分ではなく、繊維が破断し、破断部と他の繊維が接触することにより熱伝導率が大きくなっている。
(Comparative Example 2)
When the air flow for stretching the fibers was 150 ° C., the thermal conductivity of the vacuum heat insulating material was 0.0020 W / mK. The tensile elongation at break of the core fiber was 0.8%. Compressive strength ratio in 250 kg / m 3 when compressed to 350 kg / m 3 was 33.7%. Compressive strength ratio in 250 kg / m 3 when compressed to 270 kg / m 3 was 79.3%. Since the temperature of the air flow that stretches the fiber is high, a sufficient quenching effect cannot be obtained, the tensile fracture elongation of the core fiber and the compressive strength ratio of the core material are not sufficient, the fiber breaks, the fracture part and others The thermal conductivity is increased by the contact of the fibers.

(比較例3)
繊維を引き伸ばす空気流が100℃の場合、真空断熱材の熱伝導率は、0.0020W/mKであった。芯材の繊維の引張り破断伸度は0.8%であった。350kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は34.7%であった。270kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は79.5%であった。繊維を引き伸ばす空気流の温度が高いため十分な焼き入れ効果が得られず、芯材の繊維の引張り破断伸度、芯材の圧縮強度比が十分ではなく、繊維が破断し、破断部と他の繊維が接触することにより熱伝導率が大きくなっている。
(Comparative Example 3)
When the air flow for stretching the fibers was 100 ° C., the thermal conductivity of the vacuum heat insulating material was 0.0020 W / mK. The tensile elongation at break of the core fiber was 0.8%. Compressive strength ratio in 250 kg / m 3 when compressed to 350 kg / m 3 was 34.7%. Compressive strength ratio in 250 kg / m 3 when compressed to 270 kg / m 3 was 79.5%. Since the temperature of the air flow that stretches the fiber is high, a sufficient quenching effect cannot be obtained, the tensile fracture elongation of the core fiber and the compressive strength ratio of the core material are not sufficient, the fiber breaks, the fracture part and others The thermal conductivity is increased by the contact of the fibers.

各条件でのガラス繊維の性質と熱伝導率の関係を(表2)に示す。   Table 2 shows the relationship between the properties of glass fibers and thermal conductivity under each condition.

Figure 2006307921
(表1)と(表2)に示しているように、冷却を行う空気の温度が低くなるに従って引張り破断伸度が大きくなっており、熱伝導率は小さくなっていることが判る。ここで、引張り破断伸度が1%以上になると真空断熱材の熱伝導率が低減することがわかる。また、350kg/m3まで圧縮した場合の250kg/m3における圧縮強度比が35%以上、270kg/m3まで圧縮した場合の250kg/m3における圧縮強度比は80%以上になると熱伝導率が低減することが判る。
Figure 2006307921
As shown in (Table 1) and (Table 2), it can be understood that the tensile elongation at break increases as the temperature of the cooling air decreases, and the thermal conductivity decreases. Here, it can be seen that the thermal conductivity of the vacuum heat insulating material is reduced when the tensile elongation at break is 1% or more. Further, 350 kg / m 3 compression strength ratio in 250 kg / m 3 when compressed to 35% or more, the compressive strength ratio in 250 kg / m 3 when compressed to 270 kg / m 3 comes to 80% or more thermal conductivity Is found to be reduced.

繊維を引き伸ばす空気流の温度を−20℃とした場合及び、イオン交換を行った場合の両方で同一の熱伝導率が得られている。また、ガラス繊維の引張り破断伸度、芯材の圧縮強度比は同等であり、ガラス繊維または芯材の物性が得られれば、ガラス繊維の歪みの破断限界を向上する手段によらないことが判る。   The same thermal conductivity is obtained both when the temperature of the air flow for stretching the fibers is set to -20 ° C and when ion exchange is performed. In addition, the tensile elongation at break of the glass fiber and the compressive strength ratio of the core material are the same, and if the physical properties of the glass fiber or the core material are obtained, it can be seen that it is not due to means for improving the strain limit of the glass fiber strain. .

ガラス繊維の引張り破断伸度が大きくなると、芯材が大気圧により圧縮された場合に破断する割合が少なく、破断部が他のガラス繊維と接触することが抑制され、固体成分の熱伝導を低く抑えることができる。   When the tensile elongation at break of the glass fiber is increased, the ratio of fracture when the core material is compressed by atmospheric pressure is reduced, the contact of the fractured part with other glass fibers is suppressed, and the heat conduction of the solid component is reduced. Can be suppressed.

また、急冷やイオン交換を行ったガラス繊維を用いた芯材は、繰り返し同密度まで圧縮する場合に必要な圧縮強度減少の割合が小さくなっている。つまり、圧縮強度比が大きくなっている。これは、急冷やイオン交換を行ったガラスは、圧縮を行っても破断する繊維の割合が少ないため、圧縮を繰り返しても圧縮強度に寄与する繊維の割合が多いためである。従って、圧縮強度比が大きい芯材では、破断部が他のガラス繊維と接触することが抑制され、固体成分の熱伝導を低く抑えることができる。この結果、芯材の圧縮強度比が大きくなるに従って熱伝導率が小さくなっている。   Moreover, the core material using the glass fiber which has been subjected to rapid cooling or ion exchange has a reduced compression strength reduction rate required for repeated compression to the same density. That is, the compressive strength ratio is increased. This is because glass that has been subjected to rapid cooling or ion exchange has a small proportion of fibers that break even when compressed, and therefore has a large proportion of fibers that contribute to compressive strength even after repeated compression. Therefore, in the core material having a large compressive strength ratio, the broken portion is prevented from coming into contact with other glass fibers, and the heat conduction of the solid component can be kept low. As a result, the thermal conductivity decreases as the compressive strength ratio of the core increases.

以上の結果から、ガラス繊維の破断の歪み限界が大きくなると、破断部と他の繊維の接触による固体成分の熱伝導の増大が抑制され、優れた断熱性能が得られることがわかる。   From the above results, it can be seen that when the strain limit of the breakage of the glass fiber is increased, an increase in the heat conduction of the solid component due to the contact between the breakage part and other fibers is suppressed, and an excellent heat insulation performance is obtained.

以上のように、本発明にかかる真空断熱材は優れた断熱性能を有しているので、より薄い厚さで高い断熱性能が得られる。従って、冷蔵庫、クーラーボックスなどの用途に加えて、液晶プロジェクター、コピー機、ノートパソコン等のようにより狭い空間で高い断熱性能が必要とされる用途に適用可能である。   As mentioned above, since the vacuum heat insulating material concerning this invention has the outstanding heat insulation performance, high heat insulation performance is obtained by thinner thickness. Therefore, in addition to uses such as a refrigerator and a cooler box, the present invention can be applied to uses such as a liquid crystal projector, a copy machine, and a notebook computer that require high heat insulation performance in a narrow space.

本発明の実施の形態1における真空断熱材の断面図Sectional drawing of the vacuum heat insulating material in Embodiment 1 of this invention 本発明の実施の形態1における真空断熱材の芯材の断面図Sectional drawing of the core material of the vacuum heat insulating material in Embodiment 1 of this invention 本発明の実施の形態1における真空断熱材の真空包装後の芯材の断面図Sectional drawing of the core material after vacuum packaging of the vacuum heat insulating material in Embodiment 1 of this invention 本発明の実施の形態2における真空断熱材の芯材の断面図Sectional drawing of the core material of the vacuum heat insulating material in Embodiment 2 of this invention 従来の真空断熱材の芯材の断面図Cross-sectional view of a conventional vacuum insulation core

符号の説明Explanation of symbols

2a,2b ガラス繊維
3 真空断熱材
4 芯材
5 外被材
2a, 2b Glass fiber 3 Vacuum heat insulating material 4 Core material 5 Jacket material

Claims (3)

芯材をラミネートフィルムからなる外被材で覆って前記外被材の内部を減圧して封止してなり、前記芯材が、破断の歪み限界を大きくすることにより外力により変形しても破断しにくい特性をもったガラス繊維を、前記ガラス繊維の長さ方向が伝熱方向と略垂直となり、伝熱方向に隣接する前記ガラス繊維同士が交差するように層状に積層してなることを特徴とする真空断熱材。   The core material is covered with a cover film made of a laminate film, and the inside of the cover material is sealed under reduced pressure, and the core material breaks even if it is deformed by an external force by increasing the strain limit of breakage. The glass fiber having the characteristic that it is difficult to perform is laminated in layers so that the length direction of the glass fiber is substantially perpendicular to the heat transfer direction and the glass fibers adjacent to each other in the heat transfer direction intersect each other. Vacuum insulation material. 芯材は、圧縮復元率が70%以上のガラス繊維集合体からなる請求項1に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the core material is a glass fiber aggregate having a compression recovery rate of 70% or more. ガラス繊維の引張り破断伸度が1%以上である請求項1または2に記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein the glass fiber has a tensile elongation at break of 1% or more.
JP2005129206A 2005-04-27 2005-04-27 Vacuum thermal insulating material Pending JP2006307921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005129206A JP2006307921A (en) 2005-04-27 2005-04-27 Vacuum thermal insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005129206A JP2006307921A (en) 2005-04-27 2005-04-27 Vacuum thermal insulating material

Publications (1)

Publication Number Publication Date
JP2006307921A true JP2006307921A (en) 2006-11-09

Family

ID=37475045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129206A Pending JP2006307921A (en) 2005-04-27 2005-04-27 Vacuum thermal insulating material

Country Status (1)

Country Link
JP (1) JP2006307921A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164078A (en) * 2006-12-28 2008-07-17 Nichias Corp Heat insulating material for reformer
JP2009019697A (en) * 2007-07-12 2009-01-29 Panasonic Corp Vacuum heat insulating material and construction member applying vacuum heat insulating material
GB2451614A (en) * 2007-08-06 2009-02-11 Mitsubishi Electric Corp Vacuum insulating structure
JP2009074604A (en) * 2007-09-20 2009-04-09 Sharp Corp Vacuum heat insulating material
JP2010106876A (en) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp Vacuum heat insulating material and insulated box using the same
WO2010073762A1 (en) 2008-12-26 2010-07-01 三菱電機株式会社 Vacuum insulation material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device, and appliance each employing vacuum insulation material, and process for producing vacuum insulation material
WO2010087039A1 (en) 2009-01-29 2010-08-05 三菱電機株式会社 Vacuum insulation material and insulation box using the same
EP2306128A2 (en) 2009-09-29 2011-04-06 Mitsubishi Electric Corporation Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
WO2011045946A1 (en) 2009-10-16 2011-04-21 三菱電機株式会社 Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator
WO2011045947A1 (en) 2009-10-16 2011-04-21 三菱電機株式会社 Vacuum heat insulation material and refrigerator
WO2011048824A1 (en) 2009-10-19 2011-04-28 三菱電機株式会社 Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
JP2019184020A (en) * 2018-04-16 2019-10-24 アクア株式会社 Vacuum heat insulation material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226850A (en) * 1988-07-13 1990-01-29 Shimadzu Corp Short fiber of oxynitride
JPH07167376A (en) * 1993-12-17 1995-07-04 Nippon Muki Co Ltd Vacuum heat insulating material and manufacture thereof
JP2002363962A (en) * 2001-06-13 2002-12-18 Maeda Kosen Co Ltd Resin net for civil engineering works and manufacturing method therefor
JP2004251303A (en) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd Vacuum heat insulation material, freezing and cooling devices using vacuum heat insulation material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226850A (en) * 1988-07-13 1990-01-29 Shimadzu Corp Short fiber of oxynitride
JPH07167376A (en) * 1993-12-17 1995-07-04 Nippon Muki Co Ltd Vacuum heat insulating material and manufacture thereof
JP2002363962A (en) * 2001-06-13 2002-12-18 Maeda Kosen Co Ltd Resin net for civil engineering works and manufacturing method therefor
JP2004251303A (en) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd Vacuum heat insulation material, freezing and cooling devices using vacuum heat insulation material

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164078A (en) * 2006-12-28 2008-07-17 Nichias Corp Heat insulating material for reformer
JP2009019697A (en) * 2007-07-12 2009-01-29 Panasonic Corp Vacuum heat insulating material and construction member applying vacuum heat insulating material
GB2451614A (en) * 2007-08-06 2009-02-11 Mitsubishi Electric Corp Vacuum insulating structure
GB2451614B (en) * 2007-08-06 2009-11-04 Mitsubishi Electric Corp Vacuum thermal insulating structure and thermal insulating case
JP2009074604A (en) * 2007-09-20 2009-04-09 Sharp Corp Vacuum heat insulating material
JP2010106876A (en) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp Vacuum heat insulating material and insulated box using the same
EP2500617A1 (en) 2008-12-26 2012-09-19 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating /air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
WO2010073762A1 (en) 2008-12-26 2010-07-01 三菱電機株式会社 Vacuum insulation material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device, and appliance each employing vacuum insulation material, and process for producing vacuum insulation material
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
EP2538124A2 (en) 2008-12-26 2012-12-26 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
EP2538125A2 (en) 2008-12-26 2012-12-26 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US8617684B2 (en) 2009-01-29 2013-12-31 Mitsubishi Electric Corporation Vacuum thermal insulating material and thermal insulating box including the same
WO2010087039A1 (en) 2009-01-29 2010-08-05 三菱電機株式会社 Vacuum insulation material and insulation box using the same
EP2306128A2 (en) 2009-09-29 2011-04-06 Mitsubishi Electric Corporation Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
WO2011045947A1 (en) 2009-10-16 2011-04-21 三菱電機株式会社 Vacuum heat insulation material and refrigerator
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
WO2011045946A1 (en) 2009-10-16 2011-04-21 三菱電機株式会社 Device for manufacturing core of vacuum heat insulation member and method for manufacturing vacuum heat insulation member, as well as vacuum heat insulation member and refrigerator
US8920899B2 (en) 2009-10-16 2014-12-30 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
JP5362024B2 (en) * 2009-10-19 2013-12-11 三菱電機株式会社 Vacuum heat insulating material, heat insulating box, refrigerator, refrigeration / air conditioning device, hot water supply device and equipment, and method for manufacturing vacuum heat insulating material
WO2011048824A1 (en) 2009-10-19 2011-04-28 三菱電機株式会社 Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
CN102686929A (en) * 2009-10-19 2012-09-19 三菱电机株式会社 Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
JP2019184020A (en) * 2018-04-16 2019-10-24 アクア株式会社 Vacuum heat insulation material
JP7233070B2 (en) 2018-04-16 2023-03-06 アクア株式会社 vacuum insulation

Similar Documents

Publication Publication Date Title
JP2006307921A (en) Vacuum thermal insulating material
CN107043538B (en) Thermal conductive sheet
KR100943374B1 (en) Manufacturing method of the vacuum heat insulator
Ponnamma et al. Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites
JP6512105B2 (en) Metal resin composite
JP6505874B2 (en) Thermal conduction sheet
WO1998001389A1 (en) Seal stock of inflated graphite and method of manufacturing same
US20170369660A1 (en) Carbon nanotube-elastomer composite material, seal material and sealing material each produced using same, and method for producing carbon nanotube-elastomer composite material
US20120272686A1 (en) Disk Roll and Base Material Thereof
TW201945450A (en) Method of producing heat conductive sheet
JP2010007683A (en) Vacuum thermal insulating material
TW200804631A (en) Protective sheet for crucible and crucible device using the same
JP2007155082A (en) Vacuum heat insulating material
JP4591197B2 (en) Vacuum insulation
JP2008019137A (en) Crucible protective sheet
JP6512106B2 (en) Metal resin composite
JPH0243786B2 (en)
WO2008015952A1 (en) Mold release sheet
JP5013836B2 (en) Vacuum insulation
JP2006161972A (en) Vacuum heat insulating material
TW201736713A (en) Glass panel unit
JP4591288B2 (en) Manufacturing method of vacuum insulation
WO2020186384A1 (en) Wire, electronic device, and method for manufacturing wire
JP5798136B2 (en) Method for producing thermoplastic resin composition and thermoplastic resin composition
JP2006220214A (en) Vacuum heat-insulating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221