JPH07167376A - Vacuum heat insulating material and manufacture thereof - Google Patents

Vacuum heat insulating material and manufacture thereof

Info

Publication number
JPH07167376A
JPH07167376A JP5343817A JP34381793A JPH07167376A JP H07167376 A JPH07167376 A JP H07167376A JP 5343817 A JP5343817 A JP 5343817A JP 34381793 A JP34381793 A JP 34381793A JP H07167376 A JPH07167376 A JP H07167376A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
inorganic
inorganic fibers
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5343817A
Other languages
Japanese (ja)
Inventor
Koichi Kawashima
孝一 川島
Sei Miyashita
聖 宮下
Ryuji Masuda
竜司 増田
Kazuhiro Kitamura
一浩 北村
Yuji Katagiri
裕治 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP5343817A priority Critical patent/JPH07167376A/en
Publication of JPH07167376A publication Critical patent/JPH07167376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)

Abstract

PURPOSE:To dissolve vacuum degradation over a long period of time without deformation such as waviness and recess by binding mutual inorganic fibers at the respective intersections by components eluted from these fibers. CONSTITUTION:Inorganic fibers of 2 mum or less in average fiber diameter are collected into the cotton state, and after the attachment of an acid aqueous solution, compression-dehydrated and dried, the eluted components of the inorganic fibers are then collected to the intersections of the inorganic fibers and hardened. If the average fiber diameter exceeds 2mum, recessions become large at the time of evacuation. Because of being formed only of such inorganic fiber without containing organic substance, there is no generation of gas, carbonization or the lowering of strength due to the burning of organic substance even during use under high temperature, nor is vacuum degradation generated at the time of use for a long period of time. Because of not using an inorganic binder, an obtained compact is made into the hard board state, so that cracking and chipping caused by compression during evacuation are not generated, nor is compression restoring performance damaged. In addition, air bubbles are not left inside heat insulating material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空断熱材およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulating material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、この種の真空断熱材としては、無
機質繊維よりなるニードリングマット、フェルト、ブラ
ンケット等を断熱容器や袋内に収納し、その後真空にし
て密封したものや、無機質繊維を無機バインダで強固に
成形したものが知られている。
2. Description of the Related Art Conventionally, as this kind of vacuum heat insulating material, a needling mat, felt, blanket and the like made of inorganic fibers are housed in a heat insulating container or bag, then vacuumed and sealed, or inorganic fibers are used. It is known that it is strongly molded with an inorganic binder.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前者の
場合は無機質繊維を断熱容器や袋に入れ真空排気した場
合、マットやフェルトの密度むら、あるいは繊維マット
の有する圧縮変形性によって、断熱容器や袋が波打ち、
あるいは凹むという問題点を有する。また、アルミ箔に
収納した場合には高温で使用するとアルミ自身からの放
射により断熱性が損なわれるという問題点を有する。ま
た、後者の場合は、真空排気時の凹みは少ないが、無機
バインダで固められているため素焼きの磁器のように弾
力性がなく、真空排気時に割れが発生し、断熱性能が低
下する。また、無機バインダにより膜が形成されるた
め、真空排気時に成形体内部の気泡からの脱気が難し
く、真空断熱材として長時間使用すると、この気泡から
発生するガスのため真空劣化が起こり断熱性能の寿命が
短くなる等の問題点を有する。一方、無機質繊維の平均
繊維径が4〜15μmの太いものを芯材として袋にいれ
真空にして用いる場合もあるが、この場合は真空排気時
の凹みに加え、真空熱伝導率が0.01kcal/m・
h・℃程度迄しか得られないという欠点を有す。本発明
は、これらの問題を解消し、有機バインダ、無機バイン
ダを含まず、真空排気時に割れ、欠けがなく、また、凹
むこともなく、更に長時間放置しても真空劣化がなく、
高い真空熱伝導率を有する所望の形状の真空断熱材とそ
れを製造する方法を提供することを目的としている。
However, in the former case, when the inorganic fibers are put into a heat insulating container or bag and evacuated, the heat insulating container or bag is formed due to the uneven density of the mat or felt or the compressive deformability of the fiber mat. Rippling,
Alternatively, it has a problem of depression. Further, when it is stored in an aluminum foil, it has a problem that when it is used at high temperature, the heat insulating property is impaired by radiation from aluminum itself. Further, in the latter case, although there are few dents during vacuum evacuation, since it is hardened with an inorganic binder, it is not elastic like unglazed porcelain, cracks occur during vacuum evacuation, and heat insulation performance deteriorates. In addition, since the film is formed by the inorganic binder, it is difficult to degas from the bubbles inside the molded body during vacuum exhaust, and when used as a vacuum heat insulating material for a long time, the gas generated from these bubbles causes vacuum deterioration and heat insulation performance. However, there is a problem that the life of the device is shortened. On the other hand, a thick inorganic fiber having an average fiber diameter of 4 to 15 μm may be used as a core material in a bag and evacuated. In this case, the vacuum thermal conductivity is 0.01 kcal in addition to the depression during vacuum evacuation. / M ・
It has a drawback that it can be obtained only up to about h · ° C. The present invention solves these problems, does not include an organic binder and an inorganic binder, does not crack or chip during vacuum evacuation, does not dent, and does not deteriorate in vacuum even when left for a long time,
It is an object of the present invention to provide a desired shape of vacuum heat insulating material having high vacuum thermal conductivity and a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】本発明の真空断熱材は、
前記目的を達成するため、無機質繊維同士がそれら繊維
より溶出した成分によって各交点で結着していることを
特徴とする。
The vacuum heat insulating material of the present invention comprises:
In order to achieve the above-mentioned object, it is characterized in that the inorganic fibers are bound to each other at each intersection by a component eluted from the fibers.

【0005】前記真空断熱材を構成する無機質繊維とし
ては、ガラス繊維、セラミック繊維、スラグウール繊
維、ロックウール繊維等が使用できるが、平均繊維径で
2μm以下が得られやすい観点から、ガラス繊維が好ま
しい。また、前記無機質繊維の繊維径を、平均繊維径2
μm以下の範囲のものを使用するようにしたのは、平均
繊維径が2μmを超えると真空排気時に凹みが大きくな
り、また、真空熱伝導率も0.01kcal/m・h・
℃以下にはならないからである。尚、繊維径は細ければ
細いほど好ましいが、平均繊維径0.5μm未満の繊維
は現況では全く汎用性がないため、無機質繊維の平均繊
維径は0.5〜1.0μmの範囲のものが好ましい。
As the inorganic fibers constituting the vacuum heat insulating material, glass fibers, ceramic fibers, slag wool fibers, rock wool fibers and the like can be used. From the viewpoint of easily obtaining an average fiber diameter of 2 μm or less, glass fibers are preferred. preferable. In addition, the fiber diameter of the inorganic fiber is the average fiber diameter 2
When the average fiber diameter exceeds 2 μm, the dents become large during vacuum evacuation, and the vacuum thermal conductivity is 0.01 kcal / m · h ·
This is because it does not fall below ℃. The smaller the fiber diameter is, the more preferable. However, since fibers having an average fiber diameter of less than 0.5 μm have no general versatility at present, the average fiber diameter of inorganic fibers is in the range of 0.5 to 1.0 μm. Is preferred.

【0006】前記真空断熱材を得るための本発明の製造
方法は、平均繊維径2μm以下の無機質繊維を集綿して
酸性水溶液を付着処理後、圧縮脱水して乾燥させ、無機
質繊維の溶出成分を無機質繊維の交点に集めて硬化させ
ることを特徴とする。
[0006] In the production method of the present invention for obtaining the above vacuum heat insulating material, inorganic fibers having an average fiber diameter of 2 µm or less are collected and treated with an acidic aqueous solution, followed by compression dehydration and drying. Is collected at the intersection of the inorganic fibers and cured.

【0007】前記無機質繊維の集綿は、例えば20〜1
00mmH2 O程度の静圧で集綿するか、あるいは該集
綿物を同程度の静圧で吸引しながら集綿可能なモールド
内に輸送するようにする。次にこの集綿物に酸性水溶液
を付着処理するが、この付着処理する酸性溶液のpHは
5以下であることが好ましい。これはpH5を超える中
性域からアルカリ性域では、無機質繊維同士の結着がほ
とんど起きないからである。また、pH5以下に調整す
るために添加する酸としては、塩酸、硫酸、硝酸、リン
酸、酢酸等が使用できるが、液の安定性および取扱い性
より硫酸が好ましい。また、前記付着処理物は一般に2
〜10kg/cm2 程度の圧力で圧縮脱水して、浸潤し
た所望の厚さおよび形状の成形体とする。その後、自然
乾燥、熱風乾燥、接触乾燥、高周波乾燥、遠赤外線乾燥
等の乾燥方法より適宜選択して乾燥し真空断熱材を得
る。
The cotton collecting of the inorganic fibers is, for example, 20 to 1.
The cotton is collected with a static pressure of about 00 mmH 2 O, or the collected cotton product is transported into a mold capable of collecting cotton while suctioning with the same static pressure. Next, an acidic aqueous solution is applied to the collected cotton material, and the pH of the acidic solution to be applied is preferably 5 or less. This is because the binding of the inorganic fibers to each other hardly occurs in the neutral to alkaline regions where the pH exceeds 5. As the acid added to adjust the pH to 5 or less, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid and the like can be used, but sulfuric acid is preferable from the stability and handling of the liquid. In addition, the adhesion-treated product is generally 2
It is compressed and dehydrated at a pressure of about 10 kg / cm 2 to obtain a wetted compact having a desired thickness and shape. Then, a vacuum heat insulating material is obtained by appropriately selecting and drying from drying methods such as natural drying, hot air drying, contact drying, high frequency drying and far infrared ray drying.

【0008】[0008]

【作用】本発明の真空断熱材は、無機質繊維からのみ構
成され有機物を含まないため、高温使用時に於いてもガ
スの発生や炭化あるいは有機物焼失による強度の低下も
生じない。また、長時間使用時の真空劣化も起こらな
い。また、無機バインダも使用しないため、得られた成
形体が硬いボード状になり、真空排気時の圧縮により割
れ、欠けが発生したり、圧縮復元性を損なうこともな
い。また、断熱材の内部に気泡が取り残されることもな
い。本発明の製造方法では、酸性水溶液を付着処理した
湿式成形体を乾燥する工程に於いて、繊維全体を覆って
いた水分が蒸発するに従って、酸性水溶液が表面張力の
働きにより繊維同士の接点に集合し、同時に濃縮され、
pH値が低下することによって、交点の繊維表面が侵食
を受ける。そして、溶出成分SiO2 によりゲル化した
表面繊維は、更に乾燥されて固化し、繊維交点において
繊維同士が結着する。また、集綿時に無機質繊維は二次
元方向に配向するため、真空断熱材は無機質繊維の方向
が伝熱方向に対して垂直方向に配向するように制御で
き、断熱効果が向上し熱伝導率の値が小さくなる。
Since the vacuum heat insulating material of the present invention is composed only of inorganic fibers and does not contain organic substances, it does not cause strength reduction due to gas generation or carbonization or organic substance burning even when used at high temperatures. Also, vacuum deterioration does not occur during long-term use. Further, since no inorganic binder is used, the obtained molded product becomes a hard board, and cracks and chips do not occur due to compression during vacuum evacuation, and the compression recoverability is not impaired. In addition, air bubbles are not left behind inside the heat insulating material. In the production method of the present invention, in the step of drying the wet-molded body to which the acidic aqueous solution has been attached, the acidic aqueous solution gathers at the contact points between the fibers due to the surface tension as the water covering the entire fiber evaporates. And at the same time concentrated
The lower pH value erodes the fiber surface at the intersection. Then, the surface fibers gelled by the eluted component SiO 2 are further dried and solidified, and the fibers are bound at the fiber intersections. In addition, since the inorganic fibers are oriented in a two-dimensional direction when collecting cotton, the vacuum heat insulating material can be controlled so that the direction of the inorganic fibers is oriented perpendicular to the heat transfer direction, improving the heat insulating effect and increasing the thermal conductivity. The value becomes smaller.

【0009】[0009]

【実施例】次に本発明の実施例を比較例と共に説明す
る。 (実施例1)まず、平均繊維径0.8μmのCガラス短
繊維(含アルカリ珪酸塩ガラス)を集綿機で集綿した。
次に、この集綿物にpH3に調整した硫酸水溶液を付着
処理し、圧縮脱水して湿潤状態の所定の形状を有する成
形体を得た。これを熱風乾燥して、厚さ30mmの成形
体を得た。この成形体を評価したところ、平均繊維径
0.8μm、平均繊維長10mm、有機物含有量は0.
01%以下であり、割れ、欠けや剥離も発生しなかっ
た。また、550℃程度の高温下で使用した場合も強度
の低下は無く、0.5kg/cm2 加圧による圧縮復元
性も100%で変化がなかった。この真空断熱材を袋に
収納し、10-3Torrまで真空排気した。このとき真
空断熱材の波打ちや凹みはなく、割れや、欠けもなかっ
た。また、室温で熱伝導率を測定した結果、0.002
kcal/m・h・℃であり、10年間に相当する真空
劣化の加速試験においても真空劣化はほとんどなく、熱
伝導率の値も変化しなかった。
EXAMPLES Next, examples of the present invention will be described together with comparative examples. Example 1 First, C glass short fibers (alkali-containing silicate glass) having an average fiber diameter of 0.8 μm were collected by a cotton collecting machine.
Next, an aqueous sulfuric acid solution adjusted to pH 3 was applied to the collected cotton product, and compression dehydration was performed to obtain a molded product having a predetermined shape in a wet state. This was dried with hot air to obtain a molded body having a thickness of 30 mm. When this molded product was evaluated, the average fiber diameter was 0.8 μm, the average fiber length was 10 mm, and the organic matter content was 0.
It was less than 01%, and neither cracking, chipping nor peeling occurred. Further, even when it was used at a high temperature of about 550 ° C., there was no decrease in strength, and the compression recovery by pressing at 0.5 kg / cm 2 was 100% and did not change. The vacuum heat insulating material was placed in a bag and evacuated to 10 -3 Torr. At this time, the vacuum heat insulating material did not have waviness or dents, nor did it crack or chip. Moreover, as a result of measuring the thermal conductivity at room temperature, it was 0.002.
It was kcal / m · h · ° C., and there was almost no vacuum deterioration even in the vacuum deterioration accelerated test corresponding to 10 years, and the value of the thermal conductivity did not change.

【0010】(比較例1)平均繊維径7μmのCガラス
繊維からなる厚さ50mm、密度0.09g/cm3
マットを袋に収納し、10-3Torr迄真空排気した。
このときマットは10mmまで収縮し、マットの密度む
らに起因する波打ちと反りが発生した。また、熱伝導率
は0.012kcal/m・h・℃であった。
Comparative Example 1 A mat made of C glass fibers having an average fiber diameter of 7 μm and having a thickness of 50 mm and a density of 0.09 g / cm 3 was placed in a bag and evacuated to 10 −3 Torr.
At this time, the mat shrank to 10 mm, and waviness and warpage due to uneven density of the mat occurred. The thermal conductivity was 0.012 kcal / m · h · ° C.

【0011】(比較例2)比較例1と同様のマットに無
機バインダである水ガラスを含浸させ、1kg/cm2
の圧力でプレスし乾燥して厚さ10mmのマットを得
た。このマットを袋に収納し、10-3Torr迄真空排
気したところ、マットに亀裂が入り、表面の平滑性がな
くなった。また、熱伝導率は0.008kcal/m・
h・℃であったが、真空劣化の加速試験終了時には0.
02kcal/m・h・℃まで劣化していた。
(Comparative Example 2) A mat similar to Comparative Example 1 was impregnated with water glass as an inorganic binder to obtain 1 kg / cm 2.
It was pressed under the pressure of and dried to obtain a mat having a thickness of 10 mm. When this mat was placed in a bag and evacuated to 10 -3 Torr, the mat was cracked and the surface was not smooth. The thermal conductivity is 0.008 kcal / m.
Although it was h · ° C., it was 0.
It had deteriorated to 02 kcal / m · h · ° C.

【0012】[0012]

【発明の効果】このように、本発明による真空断熱材
は、真空排気時の波打ちや凹み等の変形がなく、また、
有機バインダや無機バインダを含まないので長時間に渡
って真空劣化がない。更に、平均繊維径2μm以下の無
機質繊維を熱伝導の方向に対して垂直方向に配向するよ
うに積層させた場合には、550℃以下の温度であれば
真空熱伝導率の値が小さく、取扱い性もよく、優れた断
熱性を持つ。また、本発明による真空断熱材の製造方法
によれば、前記真空断熱材を簡単に製造することができ
る。
As described above, the vacuum heat insulating material according to the present invention has no deformation such as waviness and dents during vacuum evacuation, and
Since it does not contain an organic binder or an inorganic binder, it does not deteriorate in vacuum for a long time. Furthermore, when inorganic fibers having an average fiber diameter of 2 μm or less are laminated so as to be oriented in a direction perpendicular to the direction of heat conduction, the value of the vacuum thermal conductivity is small at a temperature of 550 ° C. or less. It also has good heat insulation properties. Further, according to the method for manufacturing a vacuum heat insulating material of the present invention, the vacuum heat insulating material can be easily manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 一浩 岐阜県不破郡垂井町630番地 日本無機株 式会社垂井工場内 (72)発明者 片桐 裕治 岐阜県不破郡垂井町630番地 日本無機株 式会社垂井工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kazuhiro Kitamura 630 Tarui-cho, Fuwa-gun, Gifu Japan Inorganic stock company Tarui factory (72) Inventor Yuji Katagiri 630 Tarui-machi, Fuwa-gun Gifu Japan Inorganic stock company Tarui Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均繊維径2μm以下の無機質繊維同士
がそれら繊維より溶出した成分によって各交点で結着し
ていることを特徴とする真空断熱材。
1. A vacuum heat insulating material, characterized in that inorganic fibers having an average fiber diameter of 2 μm or less are bound at each intersection by a component eluted from the fibers.
【請求項2】 前記無機質繊維は熱伝導の方向に対して
垂直方向に配向するように積層されたことを特徴とする
請求項1記載の真空断熱材。
2. The vacuum heat insulating material according to claim 1, wherein the inorganic fibers are laminated so as to be oriented in a direction perpendicular to a heat conduction direction.
【請求項3】 前記無機質繊維がガラス繊維、セラミッ
ク繊維、スラグウール繊維、あるいはロックウール繊維
のいずれかであることを特徴とする請求項1記載の真空
断熱材。
3. The vacuum heat insulating material according to claim 1, wherein the inorganic fiber is any one of glass fiber, ceramic fiber, slag wool fiber and rock wool fiber.
【請求項4】 請求項1記載の真空断熱材の製造方法で
あって、平均繊維径2μm以下の無機質繊維を集綿して
酸性水溶液を付着処理後、圧縮脱水して乾燥させ、無機
質繊維の溶出成分を無機質繊維の交点に集めて硬化させ
ることを特徴とする真空断熱材の製造方法。
4. The method for producing a vacuum heat insulating material according to claim 1, wherein the inorganic fibers having an average fiber diameter of 2 μm or less are collected, treated with an acidic aqueous solution, compressed and dehydrated, and dried. A method for producing a vacuum heat insulating material, comprising collecting elution components at intersections of inorganic fibers and curing them.
【請求項5】 前記酸性水溶液のpH値を5以下とする
ことを特徴とする請求項4記載の真空断熱材の製造方
法。
5. The method for manufacturing a vacuum heat insulating material according to claim 4, wherein the pH value of the acidic aqueous solution is 5 or less.
JP5343817A 1993-12-17 1993-12-17 Vacuum heat insulating material and manufacture thereof Pending JPH07167376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5343817A JPH07167376A (en) 1993-12-17 1993-12-17 Vacuum heat insulating material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5343817A JPH07167376A (en) 1993-12-17 1993-12-17 Vacuum heat insulating material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07167376A true JPH07167376A (en) 1995-07-04

Family

ID=18364468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5343817A Pending JPH07167376A (en) 1993-12-17 1993-12-17 Vacuum heat insulating material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07167376A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363847A (en) * 2001-06-06 2002-12-18 Nippon Glass Fiber Kogyo Kk Glass fiber molded product and method for producing the same
WO2003102460A1 (en) * 2002-05-31 2003-12-11 Matsushita Refrigeration Company Vacuum thermal insulating material, process for producing the same and refrigerator including the same
KR100449239B1 (en) * 2001-04-30 2004-09-18 주식회사 리코 Insulation sleeve and its producing method
JP2005127409A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Vacuum heat insulation material, freezing device and cooling-warming device using vacuum heat insulation material
US6938968B2 (en) 2000-04-21 2005-09-06 Matsushita Refrigeration Company Vacuum insulating material and device using the same
JP2006307921A (en) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Vacuum thermal insulating material
JP2006329226A (en) * 2005-05-23 2006-12-07 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
WO2006132001A1 (en) * 2005-06-07 2006-12-14 Mag Co., Ltd. Process for producing glass wool molding, glass wool molding and vacuum insulation material
CN1303353C (en) * 2003-12-19 2007-03-07 松下电器产业株式会社 Vacuum heat insulating material and refrigerating apparatus including the same
JP2008232257A (en) * 2007-03-20 2008-10-02 Nippon Sheet Glass Co Ltd Vacuum heat insulation material
US7638181B2 (en) 2004-02-04 2009-12-29 Panasonic Corporation Vacuum heat insulator and hot insulation/cold insulation apparatus incorporating the vacuum insulator
JP2010242975A (en) * 2010-07-13 2010-10-28 Toshiba Home Technology Corp Insulating material and its manufacturing method
CN103307409A (en) * 2013-05-29 2013-09-18 安徽循环经济技术工程院 Vacuum insulation panel adopting acupuncture cotton-glass fiber combined core material and preparation method of vacuum insulation panel
JP2014025537A (en) * 2012-07-27 2014-02-06 Hitachi Appliances Inc Vacuum heat insulation material and refrigerator
JP2018017476A (en) * 2016-07-29 2018-02-01 日立アプライアンス株式会社 Vacuum heat insulation material and refrigerator using the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938968B2 (en) 2000-04-21 2005-09-06 Matsushita Refrigeration Company Vacuum insulating material and device using the same
KR100449239B1 (en) * 2001-04-30 2004-09-18 주식회사 리코 Insulation sleeve and its producing method
JP4728506B2 (en) * 2001-06-06 2011-07-20 日本グラスファイバー工業株式会社 Molding method of glass fiber molded product
JP2002363847A (en) * 2001-06-06 2002-12-18 Nippon Glass Fiber Kogyo Kk Glass fiber molded product and method for producing the same
WO2003102460A1 (en) * 2002-05-31 2003-12-11 Matsushita Refrigeration Company Vacuum thermal insulating material, process for producing the same and refrigerator including the same
US7571582B2 (en) 2002-05-31 2009-08-11 Panasonic Corporation Vacuum heat insulator, method of manufacturing the same, and refrigerator using the same
CN1308611C (en) * 2002-05-31 2007-04-04 松下冷机株式会社 Vacuum thermal insulating material, process for producing the same and refrigerator including the same
JP2005127409A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Vacuum heat insulation material, freezing device and cooling-warming device using vacuum heat insulation material
DE112004001930T5 (en) 2003-10-23 2013-10-10 Panasonic Corporation Vacuum heat insulator and freezer and cooling device in which the insulator is used
CN1303353C (en) * 2003-12-19 2007-03-07 松下电器产业株式会社 Vacuum heat insulating material and refrigerating apparatus including the same
US7611761B2 (en) 2003-12-19 2009-11-03 Panasonic Corporation Vacuum heat insulating material and refrigerating apparatus including the same
US7638181B2 (en) 2004-02-04 2009-12-29 Panasonic Corporation Vacuum heat insulator and hot insulation/cold insulation apparatus incorporating the vacuum insulator
JP2006307921A (en) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Vacuum thermal insulating material
JP4591197B2 (en) * 2005-05-23 2010-12-01 パナソニック株式会社 Vacuum insulation
JP2006329226A (en) * 2005-05-23 2006-12-07 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
US7846371B2 (en) 2005-06-07 2010-12-07 Mag Co., Ltd. Method for producing glass wool molded product, glass wool molded product, and vacuum insulation material
WO2006132001A1 (en) * 2005-06-07 2006-12-14 Mag Co., Ltd. Process for producing glass wool molding, glass wool molding and vacuum insulation material
USRE45450E1 (en) 2005-06-07 2015-04-07 Mag-Isover K.K. Method for producing glass wool molded product, glass wool molded product, and vacuum insulation material
JP2008232257A (en) * 2007-03-20 2008-10-02 Nippon Sheet Glass Co Ltd Vacuum heat insulation material
JP2010242975A (en) * 2010-07-13 2010-10-28 Toshiba Home Technology Corp Insulating material and its manufacturing method
JP2014025537A (en) * 2012-07-27 2014-02-06 Hitachi Appliances Inc Vacuum heat insulation material and refrigerator
CN103307409A (en) * 2013-05-29 2013-09-18 安徽循环经济技术工程院 Vacuum insulation panel adopting acupuncture cotton-glass fiber combined core material and preparation method of vacuum insulation panel
JP2018017476A (en) * 2016-07-29 2018-02-01 日立アプライアンス株式会社 Vacuum heat insulation material and refrigerator using the same

Similar Documents

Publication Publication Date Title
JPH07167376A (en) Vacuum heat insulating material and manufacture thereof
JP5775825B2 (en) Surface-reinforced natural wood mold material and method for producing the same
KR101608497B1 (en) Thermal insulation and method of producing the same
US9950963B2 (en) Thermal insulator and method of manufacturing the same
US5609934A (en) Method of manufacturing heat bonded glass fiber insulation boards
JPH07139691A (en) Vacuum heat insulation material and manufacture thereof
EP2850254B1 (en) Insulating composite product comprising mineral wool and material with superior insulating properties
KR101417243B1 (en) Glass wool board including inorganic binder and manufacturing method thereof
JPH0710651A (en) Production of fine-pored body having heat insulating characteristic
US2500092A (en) Leaching of batted resin bonded glass fibers
JPH0828776A (en) Core material for vacuum heat insulation material, manufacture thereof and vacuum heat insulation material
CA2376256A1 (en) Method for the production of slabs of ceramic material
KR101525297B1 (en) Core material having glass wool for vacuum insulation, method for manufacturing the same and vacuum insulation using the same
JP3527730B2 (en) Vacuum insulation material and method of manufacturing core material
JP3580514B2 (en) Drying method to control cracking of cored pillars
CN215321110U (en) Heat preservation rock wool board for building outer wall
KR100818182B1 (en) Insulation for sound reduction and manufacturing method thereof
JP3164291B2 (en) Manufacturing method of core material for vacuum insulation structure
JP3029534B2 (en) Insulation for high temperature furnace
JPH06257041A (en) Inorganic fibrous form and its production
JP3032769B2 (en) Compressed wood and its manufacturing method
JPH0365505A (en) Low density swollen graphite molded product and preparation thereof
CN1088145A (en) Process for manufacture of high-density bamboo material
JP3986609B2 (en) Wood drying equipment
JPH09155819A (en) High-density ligneous material and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106