JP2014025537A - Vacuum heat insulation material and refrigerator - Google Patents

Vacuum heat insulation material and refrigerator Download PDF

Info

Publication number
JP2014025537A
JP2014025537A JP2012166486A JP2012166486A JP2014025537A JP 2014025537 A JP2014025537 A JP 2014025537A JP 2012166486 A JP2012166486 A JP 2012166486A JP 2012166486 A JP2012166486 A JP 2012166486A JP 2014025537 A JP2014025537 A JP 2014025537A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
fiber
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012166486A
Other languages
Japanese (ja)
Other versions
JP5953159B2 (en
Inventor
Yasuto Terauchi
康人 寺内
Hisashi Echigoya
恒 越後屋
Daigoro Kamoto
大五郎 嘉本
Yushi Arai
祐志 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012166486A priority Critical patent/JP5953159B2/en
Publication of JP2014025537A publication Critical patent/JP2014025537A/en
Application granted granted Critical
Publication of JP5953159B2 publication Critical patent/JP5953159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Landscapes

  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulation material and a refrigerator which are improved in thermal insulation performance.SOLUTION: A vacuum heat insulation material 50 including a core material 51 being a fiber assembly and a sheath 53 covering the core material 51 and having gas barrier properties, is characterized in that an average fiber diameter of the fiber assembly is 5.2 μm or less and that a compression strength (mm/(kg/m)), which is a value calculated by dividing a thickness (mm) of the fiber assembly under a predetermined load by a weight per 1 m(kg/m) of the fiber assembly, is 24 or more.

Description

本発明は、真空断熱材及び冷蔵庫に関する。   The present invention relates to a vacuum heat insulating material and a refrigerator.

近年、地球環境保護の観点また省エネルギー化の観点から家電製品や産業機器の断熱性向上が検討されている。機器を断熱する断熱材としては、樹脂フォームや有機、無機の繊維が用いられているが、断熱性を向上しようとした場合、断熱材の厚さを厚くする必要がある。断熱材の厚さが厚くなると機器全体の容積が増大し、容積を変更しない場合には部品等を実装できるスペースの割合が低くなってしまう。そこで、樹脂フォームや無機繊維等より断熱性に優れる真空断熱材が提案されている。真空断熱材はガスバリヤ性を有する外被材を袋状にし、内部に繊維集合体からなる芯材及びガス吸着用のゲッター剤を入れ、袋内部を減圧した後、袋の端部を封止して作製する。従来の樹脂フォームや無機繊維等の断熱材と比較して、20から40倍の断熱性を持つことから、断熱材の厚さを薄くしても十分な断熱を行うことが可能である。   In recent years, improvement in heat insulation of home appliances and industrial equipment has been studied from the viewpoint of global environmental protection and energy saving. Resin foam, organic, and inorganic fibers are used as the heat insulating material for heat insulating the device. However, in order to improve heat insulating properties, it is necessary to increase the thickness of the heat insulating material. When the thickness of the heat insulating material is increased, the volume of the entire device is increased, and if the volume is not changed, the proportion of the space where components and the like can be mounted is reduced. Then, the vacuum heat insulating material which is excellent in heat insulation than a resin foam, an inorganic fiber, etc. is proposed. The vacuum heat insulating material is made of a gas barrier outer covering material in a bag shape, a core material made of a fiber assembly and a getter agent for gas adsorption are put inside, the inside of the bag is decompressed, and the end of the bag is sealed. To make. Compared to conventional heat insulating materials such as resin foam and inorganic fibers, the heat insulating property is 20 to 40 times, so that sufficient heat insulation can be performed even if the thickness of the heat insulating material is reduced.

また、真空断熱材の断熱性向上、機能性を高めるための検討が種々行われている。   Various studies have been made to improve the heat insulation and functionality of the vacuum heat insulating material.

本技術分野の背景技術として、特開2006−38122号公報(特許文献1)がある。この公報には、芯材と水分吸着剤と前記芯材と前記水分吸着剤を被覆するガスバリヤ性を有する外包材とからなり、前記芯材が平均繊維径3〜5μmのガラス短繊維をガラスの融点より低い450℃で5分間加熱プレスしボード状に成形された真空断熱材が記載されている。   As background art of this technical field, there is JP-A-2006-38122 (Patent Document 1). This gazette includes a core material, a moisture adsorbent, the core material, and an outer packaging material having a gas barrier property that covers the moisture adsorbent, and the core material is made of glass short fibers having an average fiber diameter of 3 to 5 μm. A vacuum heat insulating material formed by heating and pressing at 450 ° C., which is lower than the melting point, for 5 minutes is described.

特開2006−38122号公報JP 2006-38122 A

しかし、特許文献1に記載の真空断熱材は、熱プレス法を用いており、グラスウールの繊維径が3〜5μmと細く繊維が溶解しやすい。   However, the vacuum heat insulating material described in Patent Document 1 uses a hot press method, and the fiber diameter of glass wool is as thin as 3 to 5 μm, and the fibers are easily dissolved.

また、プレスによる圧力が繊維間の接触点に作用することで、繊維同士が溶着してしまう。   Moreover, fibers are welded because the pressure by the press acts on the contact points between the fibers.

また、溶着した部分は断熱材中で熱を伝播する熱パスとなるため、真空断熱材の熱伝導率が低下してしまう。   Moreover, since the welded part becomes a heat path for propagating heat in the heat insulating material, the thermal conductivity of the vacuum heat insulating material is lowered.

このように、従来の真空断熱材に用いる芯材を構成する繊維は、溶着により起こる熱の伝播、及び繊維の破断により起こる熱の伝播、すなわち真空断熱材における熱伝導率の悪化が問題となる。   As described above, the fibers constituting the core material used in the conventional vacuum heat insulating material have a problem of heat propagation caused by welding and heat propagation caused by fiber breakage, that is, deterioration of heat conductivity in the vacuum heat insulating material. .

そこで本発明は、断熱性能を向上させた真空断熱材及び冷蔵庫を提供することを目的とする。   Then, an object of this invention is to provide the vacuum heat insulating material and refrigerator which improved the heat insulation performance.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、繊維集合体の芯材と、前記芯材を覆うガスバリヤ性を有する外被材と、を備えた真空断熱材において、前記繊維集合体の平均繊維径は5.2μm以下であって、繊維集合体に所定荷重を加えた際の厚さ(mm)を繊維集合体の1m2当たりの重量(kg/m2)で割った値である圧縮強度(mm/(kg/m2))が24以上であることを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. For example, a vacuum heat insulating material including a core material of a fiber assembly and a jacket material having a gas barrier property covering the core material. The average fiber diameter of the fiber assembly is 5.2 μm or less, and the thickness (mm) when a predetermined load is applied to the fiber assembly is defined as the weight (kg / m 2 ) per 1 m 2 of the fiber assembly. ) Is a compressive strength (mm / (kg / m 2 )) that is a value divided by 24) or more.

本発明によれば、断熱性能を向上させた真空断熱材及び冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material and refrigerator which improved the heat insulation performance can be provided.

本実施形態に係る冷蔵庫を示す正面図である。It is a front view which shows the refrigerator which concerns on this embodiment. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 真空断熱材を示す斜視図である。It is a perspective view which shows a vacuum heat insulating material. 図3のC−C線断面図である。It is CC sectional view taken on the line of FIG. ガラス繊維の製造方法を説明する図である。It is a figure explaining the manufacturing method of glass fiber. 本発明の実施例1から2及び比較例1から2の測定結果の表図である。It is a table | surface figure of the measurement result of Examples 1-2 of this invention and Comparative Examples 1-2. 比較例における外被材の皺の発生を説明する図である。It is a figure explaining generation | occurrence | production of the wrinkle of the jacket material in a comparative example. 実施例における外被材の皺の発生抑制を説明する図である。It is a figure explaining generation | occurrence | production suppression of the flaw of the jacket material in an Example. 図8Aの状態からの時間経過後を説明する図である。It is a figure explaining after time progress from the state of FIG. 8A.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(冷蔵庫1の構成)
図1は実施形態に係る冷蔵庫1を示す正面図である。図2は図1のA−A線断面図である。
(Configuration of refrigerator 1)
FIG. 1 is a front view showing a refrigerator 1 according to the embodiment. 2 is a cross-sectional view taken along line AA in FIG.

実施形態の冷蔵庫1は、上から冷蔵温度で冷却する冷蔵室2、製氷した氷を貯蔵する製氷(貯氷)室3a、冷凍温度で冷却する上段冷凍室(切替え室又は急冷凍室)3bおよび下段冷凍室4、野菜を収納する野菜室5を有している。   The refrigerator 1 of the embodiment includes a refrigerating chamber 2 that cools from the top at a refrigerating temperature, an ice making (ice storage) chamber 3a that stores the ice that has been made, an upper freezing chamber (switching chamber or quick freezing chamber) 3b that cools at a freezing temperature, and a lower stage It has a freezer compartment 4 and a vegetable compartment 5 for storing vegetables.

冷蔵室扉6a、6b、製氷(貯氷)室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9は、それぞれ冷蔵室2、製氷室3a、上段冷凍室3b、下段冷凍室4、野菜室5の各室の手前側の前面開口部を開閉する。各扉内には、発泡断熱材23と真空断熱材50が配置されている。   The refrigerator compartment doors 6a and 6b, the ice making (ice storage) compartment door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are the refrigerator compartment 2, the ice making compartment 3a, the upper freezer compartment 3b, and the lower freezer compartment, respectively. 4. Open and close the front opening on the front side of each room of the vegetable room 5. A foam heat insulating material 23 and a vacuum heat insulating material 50 are disposed in each door.

図1に示す冷蔵室扉6a、6bは、ヒンジ10等を中心に回動する扉であり、これ以外の製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9は、全て引き出し式の扉である。   Refrigeration room doors 6a and 6b shown in FIG. 1 are doors that rotate around a hinge 10 or the like. Other ice making room doors 7a, upper freezing room doors 7b, lower freezing room doors 8 and vegetable room doors 9 include All are drawer type doors.

引き出し式の製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9を引き出すと、各室を構成する容器が扉と共に引き出されてくる。   When the drawer-type ice making room door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are pulled out, the containers constituting each room are drawn out together with the doors.

各冷蔵室扉6a、6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9には、冷蔵庫本体1H(図2参照)との間を密閉するためのパッキン(図示せず)が、冷蔵庫本体1H側の外周縁部に取り付けられている。   Each of the refrigerator compartment doors 6a and 6b, the ice making compartment door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8 and the vegetable compartment door 9 is provided with a packing for sealing between the refrigerator main body 1H (see FIG. 2). (Not shown) is attached to the outer peripheral edge of the refrigerator body 1H side.

冷蔵温度の冷蔵室2と冷凍温度の製氷(貯氷)室3a及び上段冷凍室3bとの間には、それぞれを区画して断熱するための仕切断熱壁12を配置している。仕切断熱壁12は厚さ30〜50mm程度の断熱壁で、スチロフォーム、発泡断熱材(硬質ウレタンフォーム)、真空断熱材等、それぞれを単独使用、或いは、これらの複数の断熱材を組み合わせて形成されている。   A partition heat insulation wall 12 is provided between the refrigerating room 2 for refrigerating temperature, the ice making (ice storage) room 3a for freezing temperature, and the upper freezing room 3b for partitioning and insulating. The partition heat insulating wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and each of them is made of a single material such as styrofoam, foam heat insulating material (hard urethane foam), vacuum heat insulating material, or a combination of these heat insulating materials. Has been.

製氷室3a及び上段冷凍室3bと下段冷凍室4との間は、同じ冷凍の温度帯であり温度差が同じまたは小さいため、区画して断熱する仕切り断熱壁ではなく、パッキン受面を形成した仕切り部材13を設けている。   The ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4 are in the same freezing temperature zone and the temperature difference is the same or small, so a packing receiving surface is formed instead of a partition heat insulating wall that partitions and insulates. A partition member 13 is provided.

冷凍温度の下段冷凍室4と野菜保存温度の野菜室5の間には、それぞれを区画して断熱するための仕切断熱壁14を設けている。仕切断熱壁14は、仕切断熱壁12と同様に30〜50mm程度の断熱壁であり、同様に、スチロフォーム、或いは発泡断熱材(硬質ウレタンフォーム)、真空断熱材等で作られている。このように、基本的に冷蔵温度と冷凍温度との貯蔵温度帯が異なる貯蔵室の仕切りには断熱性がある仕切断熱壁12、14を設置している。   A partition heat insulation wall 14 is provided between the lower freezing room 4 at the freezing temperature and the vegetable room 5 at the vegetable storage temperature to partition and insulate each. The partition heat insulation wall 14 is a heat insulation wall of about 30 to 50 mm similarly to the partition heat insulation wall 12, and is similarly made of styrofoam, foam heat insulation (hard urethane foam), vacuum heat insulation or the like. Thus, the partition heat insulation walls 12 and 14 which have heat insulation are installed in the partition of the storage room from which the storage temperature zone | band of refrigeration temperature and freezing temperature differs fundamentally.

仕切断熱壁12、14は、図2に示すように、発泡ポリスチレン33と真空断熱材50bとを用いて構成してもよく、特に限定されない。   As shown in FIG. 2, the partition heat insulating walls 12 and 14 may be configured using a polystyrene foam 33 and a vacuum heat insulating material 50 b, and are not particularly limited.

なお、冷蔵庫本体1Hの内部は、図1に示すように、上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a、6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9に関しても回転による開閉、引き出しによる開閉及び扉の分割数等、特に限定されない。   In addition, as shown in FIG. 1, the inside of the refrigerator main body 1H partitions and forms the storage room of the refrigerator compartment 2, the ice making room 3a, the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 from the top, respectively. The arrangement of the storage chambers is not particularly limited to this. Also, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer door 7b, the lower freezer door 8, and the vegetable door 9 are not particularly limited, such as opening / closing by rotation, opening / closing by drawer, and the number of divided doors.

図2に示す冷蔵庫本体1Hは、PCM(Pre−Coated−Metal)鋼板等の鋼板製の外箱21と、ABS(Acrylonitrile Butadiene Styrene)樹脂等の樹脂製の内箱22とを備えている。内箱22は、冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5を形成している。   The refrigerator main body 1H shown in FIG. 2 includes an outer box 21 made of a steel plate such as a PCM (Pre-Coated-Metal) steel plate, and an inner box 22 made of a resin such as ABS (Acrylonitrile Butadiene Styrene). The inner box 22 forms a refrigerator compartment 2, an ice making compartment 3a, an upper freezer compartment 3b, a lower freezer compartment 4, and a vegetable compartment 5.

外箱21と内箱22との間に形成される空間は、断熱空間1sとして断熱部を設け、冷蔵庫本体1H内の各貯蔵室と外部空間とを断熱している。   The space formed between the outer box 21 and the inner box 22 is provided with a heat insulating portion as the heat insulating space 1s to insulate each storage room and the external space in the refrigerator main body 1H.

この外箱21と内箱22との間の断熱空間1sに、真空断熱材50を配置し、真空断熱材50以外の断熱空間1sには硬質ウレタンフォーム等の発泡断熱材23を充填している。真空断熱材50については後記するが、図示しない固定部材、支持部材等で外箱21または内箱22に固定支持されるか、接着剤で外箱21または内箱22に固定されている。   A vacuum heat insulating material 50 is disposed in the heat insulating space 1s between the outer box 21 and the inner box 22, and the heat insulating space 1s other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as rigid urethane foam. . As will be described later, the vacuum heat insulating material 50 is fixedly supported on the outer box 21 or the inner box 22 by a fixing member, a supporting member or the like (not shown), or fixed to the outer box 21 or the inner box 22 by an adhesive.

また、冷蔵室2、製氷室3a、上段冷凍室3b、下段冷凍室4、野菜室5等の各室を所定の温度に冷却するために製氷室3a、下段冷凍室4の背側には冷却器28(図2参照)が備えられている。   Further, in order to cool each room such as the refrigerator compartment 2, the ice making room 3a, the upper freezing room 3b, the lower freezing room 4, and the vegetable room 5 to a predetermined temperature, the ice making room 3a and the lower freezing room 4 are cooled on the back side. A device 28 (see FIG. 2) is provided.

この冷却器28と、圧縮機30と、凝縮機31と、図示しないキャピラリーチューブとを接続し、冷凍サイクルを構成している。   The cooler 28, the compressor 30, the condenser 31, and a capillary tube (not shown) are connected to constitute a refrigeration cycle.

冷却器28の上方には、冷却器28にて冷却された冷気を冷蔵庫1の内部を循環させて所定の低温温度に保持する送風機27が配設されている。   Above the cooler 28, a blower 27 that circulates the cold air cooled by the cooler 28 through the inside of the refrigerator 1 and holds it at a predetermined low temperature is disposed.

また、図2に示す冷蔵庫本体1Hの上面1H1の後方部には、電気部品41が実装された電源基板等を収納するための凹部40が形成されている。電気部品41が実装された電源基板等の制御手段によって、冷蔵庫1の各種冷却運転や諸機能の駆動/停止等を制御している。さらに、凹部40の上方には、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性、冷蔵庫1の内容積確保、及び耐熱性を考慮して、冷蔵庫本体1Hの天面1H1とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが冷蔵庫本体1Hの天面1H1よりも外側に突き出る場合は、10mm以内の範囲に収めることが望ましい。   Moreover, the recessed part 40 for accommodating the power supply board etc. in which the electrical component 41 was mounted is formed in the back part of the upper surface 1H1 of the refrigerator main body 1H shown in FIG. Various cooling operations of the refrigerator 1 and driving / stopping of various functions are controlled by a control means such as a power supply board on which the electrical component 41 is mounted. Further, a cover 42 that covers the electrical component 41 is provided above the recess 40. The height of the cover 42 is arranged so as to be substantially the same height as the top surface 1H1 of the refrigerator main body 1H in consideration of the appearance design, securing the internal volume of the refrigerator 1, and heat resistance. Although it does not specifically limit, when the height of the cover 42 protrudes outside from the top | upper surface 1H1 of the refrigerator main body 1H, it is desirable to set it in the range within 10 mm.

これに伴って、凹部40は発泡断熱材23側(庫内側)に電気部品41を収納する空間の凹部40だけ窪んだ状態で配置されるため、断熱厚さを確保しようとする場合、庫内側に突き出し、必然的に冷蔵庫1の内容積が犠牲になってしまう。一方、冷蔵庫1の内容積をより大きくとる場合には、凹部40と内箱22間の発泡断熱材23の厚さが薄くなってしまう。このため、図2に示すように、凹部40に対向する発泡断熱材23の中に真空断熱材50aを配置して断熱性能を確保、強化している。本実施形態では、真空断熱材50aを図示しない庫内灯のケースと電気部品41に跨るように略Z形状に成形した1枚の真空断熱材50aとしている。   Accordingly, the concave portion 40 is arranged in a state where only the concave portion 40 of the space for storing the electrical component 41 is recessed on the foamed heat insulating material 23 side (inside the warehouse). The internal volume of the refrigerator 1 is inevitably sacrificed. On the other hand, when taking the internal volume of the refrigerator 1 larger, the thickness of the foam heat insulating material 23 between the recessed part 40 and the inner box 22 will become thin. For this reason, as shown in FIG. 2, the vacuum heat insulating material 50a is arrange | positioned in the foam heat insulating material 23 which opposes the recessed part 40, and the heat insulation performance is ensured and strengthened. In this embodiment, the vacuum heat insulating material 50a is a single vacuum heat insulating material 50a formed in a substantially Z shape so as to straddle the interior lamp case (not shown) and the electrical component 41.

また、図2に示す冷蔵庫本体1Hの背面下部(図2の冷蔵庫本体1Hの右下)の機械室に配置された圧縮機30や凝縮機31は発熱の大きい部品であるため、庫内の内箱22への熱侵入を防止するため、圧縮機30や凝縮機31の内箱22側への投影面に真空断熱材50cを配置している。なお、図2において真空断熱材50は複数に分割されているが、単一の真空断熱材50cを複数箇所折り曲げて機械室前方と野菜室5後方との間の熱移動を遮断する構成としてもよい。この場合、真空断熱材50の外被材(詳細は後述)を通した熱移動、いわゆるヒートブリッジ現象が抑制されて、断熱性能が向上する。   Moreover, since the compressor 30 and the condenser 31 which are arrange | positioned in the machine room of the back lower part of the refrigerator main body 1H shown in FIG. 2 (lower right of the refrigerator main body 1H of FIG. 2) are components with big heat_generation | fever, In order to prevent heat from entering the box 22, the vacuum heat insulating material 50 c is disposed on the projection surface of the compressor 30 and the condenser 31 toward the inner box 22. In FIG. 2, the vacuum heat insulating material 50 is divided into a plurality of parts, but a single vacuum heat insulating material 50 c may be bent at a plurality of locations to block the heat transfer between the front of the machine room and the rear of the vegetable room 5. Good. In this case, heat transfer through a jacket material (details will be described later) of the vacuum heat insulating material 50, that is, a so-called heat bridge phenomenon is suppressed, and heat insulating performance is improved.

(真空断熱材50の基本構成)
次に、真空断熱材50(50a、50b、50c)の構成について、図3、図4を用いて説明する。図3は、真空断熱材を示す斜視図である。図4は、図3のC−C線断面図である。
(Basic configuration of the vacuum heat insulating material 50)
Next, the structure of the vacuum heat insulating material 50 (50a, 50b, 50c) is demonstrated using FIG. 3, FIG. FIG. 3 is a perspective view showing a vacuum heat insulating material. 4 is a cross-sectional view taken along the line CC of FIG.

真空断熱材50は、真空のスペースを形成するための芯材51と、該芯材51を圧縮状態に保持するための内包材52と、水分やガス等を吸着する吸着剤54と、内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53とを有し構成している。なお、図4においては、吸着剤54を強調して示している。   The vacuum heat insulating material 50 includes a core material 51 for forming a vacuum space, an inner packaging material 52 for holding the core material 51 in a compressed state, an adsorbent 54 that adsorbs moisture, gas, and the like, and an inner packaging material And an outer jacket material 53 having a gas barrier layer covering the core material 51 held in a compressed state at 52. In FIG. 4, the adsorbent 54 is highlighted.

外被材53は真空断熱材50の両面外側に配置され、同等の大きさのラミネートフィルムの外縁から一定の幅の部分を熱溶着により貼り合わせた袋状で構成されている。なお、貼り合わせ箇所50hは、中央側に折り返してヒートブリッジを形成するのを防止している。   The outer covering material 53 is disposed on both outer sides of the vacuum heat insulating material 50, and is configured in a bag shape in which portions of a certain width are bonded together by thermal welding from the outer edge of a laminate film of the same size. In addition, the bonding location 50h prevents folding back to the center side to form a heat bridge.

真空断熱材50の芯材51については、バインダ等で接着や結着していない無機繊維の積層体として、平均繊維径が以下の実施例のグラスウールを用いている。   About the core material 51 of the vacuum heat insulating material 50, the glass fiber of an Example whose average fiber diameter is the following is used as a laminated body of the inorganic fiber which is not adhere | attached or bound with a binder etc.

芯材51については、無機系繊維材料の積層体を使用することによりアウトガス(ガスの発生)が少なくなるため、断熱性能的に有利であるが、特にこれに限定するものではなく、例えばセラミック繊維やロックウール、グラスウール、グラスファイバー、アルミナ、シリカアルミナ、シリカ、ロックウール、炭化ケイ素等の無機繊維等でもよい。芯材51の種類によっては内包材52が不要の場合もある。   The core material 51 is advantageous in terms of heat insulation performance because the use of a laminate of inorganic fiber materials reduces outgas (gas generation), but is not particularly limited to this. For example, ceramic fibers In addition, inorganic fibers such as rock wool, glass wool, glass fiber, alumina, silica alumina, silica, rock wool, and silicon carbide may be used. Depending on the type of the core material 51, the inner packaging material 52 may be unnecessary.

また、芯材51については、無機系繊維材料の他に、有機系樹脂繊維材料を用いることができる。有機系樹脂繊維の場合、耐熱温度等の芯材51としての性能をクリヤしていれば特に使用に際しては制約されるものではない。具体的には、ポリスチレンやポリエチレンテレフタレート、ポリプロピレン等をメルトブローン法やスパンボンド法等で以下の実施例の繊維径になるように繊維化するが、繊維化できる有機系樹脂や繊維化方法であれば特に限定されない。   Moreover, about the core material 51, an organic resin fiber material other than an inorganic fiber material can be used. In the case of organic resin fibers, there are no particular restrictions on the use as long as the performance as the core material 51 such as the heat resistant temperature is cleared. Specifically, polystyrene, polyethylene terephthalate, polypropylene, and the like are fiberized by the melt blown method or the spunbond method so as to have the fiber diameters of the following examples. There is no particular limitation.

繊維集合体は無機繊維又は有機繊維からなり嵩密度が低いものが好ましく、繊維集合体の圧縮強度は以下のように測定する。繊維集合体を所定の大きさ(100mm×100mm)に切断し、100mm2当たり25gとなるよう荷重を加える。加重を加えた状態で繊維集合体の厚さ(単位:mm)を測定した後、目付け(繊維集合体の1m2当たりの重量 単位:kg/m2)で割った値を圧縮強度(単位:mm/(kg/m2))とする。この、圧縮強度が高いほど加重に対する抵抗力が大きくなり、形状維持に適した芯材となる。また、繊維同士を接着する方法としてバインダ剤の使用、熱プレス等があり、これらの手法を用いると繊維同士が接着することで圧縮強度が高くなるが、繊維を接着している点が熱パスとなり熱伝導率が悪化することから好ましくない。 The fiber assembly is preferably made of inorganic fibers or organic fibers and has a low bulk density. The compressive strength of the fiber assembly is measured as follows. The fiber assembly is cut into a predetermined size (100 mm × 100 mm), and a load is applied so as to be 25 g per 100 mm 2 . After measuring the thickness (unit: mm) of the fiber assembly in a state where a load is applied, the value obtained by dividing by the basis weight (weight unit per 1 m 2 of the fiber assembly: kg / m 2 ) is the compressive strength (unit: mm / (kg / m 2 )). The higher the compressive strength, the greater the resistance to weighting, and the core material is suitable for shape maintenance. In addition, as a method of bonding fibers, there are use of a binder agent, heat press, etc. When these methods are used, the fibers are bonded to each other to increase the compressive strength, but the point of bonding the fibers is the heat path. It is not preferable because the thermal conductivity is deteriorated.

繊維径の測定方法は、繊維を紡糸して繊維集合体としたものを、顕微鏡で拡大して30本の測定値の平均値とした。   The fiber diameter was measured by spinning a fiber to obtain a fiber assembly, which was magnified with a microscope to obtain an average value of 30 measured values.

なお、本実施例においては、顕微鏡にて拡大測定を行う方法や、マイクロネア測定器による測定方法がある。マイクロネア測定器は、綿等の繊維繊度を測定する計器であり、一定量の繊維塊の空気流に対する抵抗を測定して、繊維繊度を測定するものである。具体的には、一定重量の繊維を一定容積になるように試料ホルダに収納して、一定圧力の空気を送風する。そして、その時の空気流量を読み取ることで、繊維径をμオーダーで測定するものである。   In addition, in a present Example, there exist the method of performing an enlarged measurement with a microscope, and the measuring method by a micronaire measuring device. The micronaire measuring instrument is a measuring instrument for measuring the fiber fineness of cotton or the like, and measures the resistance to air flow of a certain amount of fiber lump to measure the fiber fineness. Specifically, a constant weight of fibers is stored in a sample holder so as to have a constant volume, and air of a constant pressure is blown. Then, the fiber diameter is measured in μ order by reading the air flow rate at that time.

繊維径については細い方が好ましいが、環境への配慮、工業的な生産性を考慮し10μm以下であることが望ましく、更には5.2μm以下であることがより好ましい。   The fiber diameter is preferably thinner, but is preferably 10 μm or less, more preferably 5.2 μm or less in consideration of the environment and industrial productivity.

外被材53のラミネート構成についてはガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面(保護)層、第一のガスバリヤ層、第二のガスバリヤ層、熱溶着層の4層構成からなるラミネートフィルムとする。   The laminate configuration of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In this embodiment, the surface (protective) layer, the first gas barrier layer, the second A laminated film having a four-layer structure of a gas barrier layer and a heat welding layer is used.

表面層は保護材の役割を持つ樹脂フィルムとし、第一のガスバリヤ層は樹脂フィルムに金属蒸着層を設け、第二のガスバリヤ層は酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、第一のガスバリヤ層と第二のガスバリヤ層は金属蒸着層同士が向かい合うように貼り合わせている。熱溶着層については表面層と同様に吸湿性の低いフィルムを用いた。   The surface layer is a resin film that serves as a protective material, the first gas barrier layer is provided with a metal vapor deposition layer on the resin film, the second gas barrier layer is provided with a metal vapor deposition layer on a resin film having a high oxygen barrier property, The gas barrier layer and the second gas barrier layer are bonded so that the metal vapor deposition layers face each other. For the heat-welded layer, a film having low hygroscopicity was used as in the surface layer.

具体的には、外被材53は、表面層を二軸延伸タイプのポリプロピレン、ポリアミド、ポリエチレンテレフタレート等の各フィルム、第一のガスバリヤ層をアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルム、第二のガスバリヤ層をアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン、ポリプロピレン等の各フィルムとした。   Specifically, the covering material 53 includes a biaxially-stretched polypropylene, polyamide, and polyethylene terephthalate film as a surface layer, a biaxially-stretched polyethylene terephthalate film with aluminum vapor deposition as a first gas barrier layer, The gas barrier layer is made of biaxially stretched ethylene vinyl alcohol copolymer resin film with aluminum vapor deposition, biaxially stretched polyvinyl alcohol resin film with aluminum vapor deposition, or aluminum foil, and the heat-welded layer is made of unstretched polyethylene, polypropylene, etc. A film was obtained.

この4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。例えば第一と第二のガスバリヤ層として、金属箔、或いは樹脂系のフィルムに無機層状化合物、ポリアクリル酸等の樹脂系ガスバリヤコート材、DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。表面層については第一のガスバリヤ層の保護材であるが、真空断熱材50の製造工程における真空排気効率を良くするためにも、好ましくは吸湿性の低い樹脂を配置するのが良い。   The layer structure and material of the four-layer laminate film are not particularly limited to these. For example, as the first and second gas barrier layers, a metal foil or a resin-based film provided with a gas barrier film made of an inorganic layered compound, a resin-based gas barrier coating material such as polyacrylic acid, DLC (diamond-like carbon), etc. For the heat welding layer, for example, a polybutylene terephthalate film having a high oxygen barrier property may be used. The surface layer is a protective material for the first gas barrier layer, but in order to improve the vacuum exhaust efficiency in the manufacturing process of the vacuum heat insulating material 50, it is preferable to dispose a resin having a low hygroscopic property.

また、通常、第二のガスバリヤ層に使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。これにより、先に述べた真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながる。   In addition, resin film other than the metal foil used for the second gas barrier layer usually deteriorates the gas barrier property due to moisture absorption. In addition to suppressing the deterioration of gas barrier properties, the moisture absorption amount of the entire laminate film is suppressed. Thereby, also in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought in by the jacket material 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved and the heat insulation performance is improved.

なお、各フィルムのラミネート(貼り合せ)は、二液の反応熱で硬化させる二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法には特にこれに限定するものではなく、ウェットラミネート法、サーマルラミネート法等の他の方法によるものでも良い。   In addition, the lamination (bonding) of each film is generally performed by a dry laminating method through a two-component curable urethane adhesive that is cured by two-component reaction heat. The alignment method is not particularly limited to this, and other methods such as a wet lamination method and a thermal lamination method may be used.

また、内包材52については本実施形態では熱溶着可能なポリエチレンフィルムを用い、吸着剤54については物理吸着タイプの合成ゼオライトを用いたが、いずれもこれらの材料に限定するものではない。内包材52についてはポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであれば良い。   In the present embodiment, a heat-weldable polyethylene film is used for the encapsulating material 52, and a physical adsorption type synthetic zeolite is used for the adsorbent 54. However, the material is not limited to these materials. The inner packaging material 52 may be a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film, or the like that has low hygroscopicity and can be heat-welded and has little outgas.

吸着剤54については、水分やガスを吸着するものであり、物理吸着、化学反応型吸着のどちらでも良く、シリカゲル、酸化カルシウム、合成ゼオライト、活性炭、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等を用いることができる。   The adsorbent 54 adsorbs moisture and gas, and may be either physical adsorption or chemical reaction type adsorption. Silica gel, calcium oxide, synthetic zeolite, activated carbon, potassium hydroxide, sodium hydroxide, lithium hydroxide, etc. Can be used.

(繊維集合体(ガラス繊維)の製造方法)
真空断熱材50に用いる芯材51として、繊維集合体のグラスウールを用いる場合について説明する。グラスウールは、バインダ結合や熱プレスによって熱硬化させずに、ボード状に固められずに柔軟性を有し、圧縮方向に対する反発性を有する状態で、内包材52(一例として高密度ポリエチレン)にて包装後に脱気する。この内包材52で仮圧縮された芯材51を、袋状の外被材53内に挿入して開封後、内包材52と外被材53内を共に真空包装することで、真空断熱材50として形成される。グラスウールを形成するガラスは、ホウケイ酸ガラスを用いる。
(Method for producing fiber assembly (glass fiber))
A case where fiber aggregate glass wool is used as the core material 51 used in the vacuum heat insulating material 50 will be described. Glass wool is not hardened by binder bonding or hot press, is not hardened into a board shape, has flexibility, and has resilience to the compression direction, with the inclusion material 52 (high density polyethylene as an example) Degas after packaging. The core material 51 temporarily compressed by the inner packaging material 52 is inserted into a bag-shaped outer jacket material 53 and opened, and then the inner packaging material 52 and the outer jacket material 53 are both vacuum-packed, whereby the vacuum heat insulating material 50 is obtained. Formed as. Borosilicate glass is used as the glass forming the glass wool.

ここで、図5は、ガラス繊維の製造方法を説明する図である。中空円筒状の回転体100(スピナー)の底部に向かって、ガラス溶融炉100に接続したノズル101から溶融ガラスGが投入される。中空円筒状の回転体100は回転軸103回りに高速で回転しており、投入された溶融ガラスGは遠心力の作用により、回転体100側壁部で上昇する。
そして、回転体100の側壁に複数形成された細孔105から溶融ガラスGが噴出される。噴出された溶融ガラスGは、矢印H方向に加熱する加熱手段102(バーナー等の火炎放射手段)によって加熱される。ここで、矢印H方向は、回転体100側壁に設けた複数の細孔105の上下方向に沿う方向である。
Here, FIG. 5 is a figure explaining the manufacturing method of glass fiber. The molten glass G is introduced from the nozzle 101 connected to the glass melting furnace 100 toward the bottom of the hollow cylindrical rotating body 100 (spinner). The hollow cylindrical rotating body 100 rotates at a high speed around the rotating shaft 103, and the molten glass G that has been introduced rises at the side wall of the rotating body 100 by the action of centrifugal force.
Then, molten glass G is ejected from a plurality of pores 105 formed on the side wall of the rotator 100. The ejected molten glass G is heated by heating means 102 (flame radiating means such as a burner) for heating in the direction of arrow H. Here, the arrow H direction is a direction along the vertical direction of the plurality of pores 105 provided on the side wall of the rotator 100.

また、加熱手段102の吐出口(矢印Hの矢尻近傍)の外周には、回転体100の側壁周囲に同心円状に、連続又は間隔を置いて配置されて気体を吐出する気体吐出手段104を有する。   Further, on the outer periphery of the discharge port of the heating unit 102 (in the vicinity of the arrowhead of the arrow H), there is a gas discharge unit 104 that is arranged concentrically around the side wall of the rotating body 100 and discharges gas continuously or at intervals. .

この構成において、複数の細孔105から回転体100の外部へ吐出された溶融ガラスGは、線条の繊維に形成される。この繊維は、加熱手段102の加熱方向Hに導かれて細径化しつつ下方に進行し、気体吐出手段104から吐出される矢印F方向の気体によって、繊維の長さ、繊維集合体の密度等が調整される。   In this configuration, the molten glass G discharged from the plurality of pores 105 to the outside of the rotating body 100 is formed into filament fibers. This fiber is guided in the heating direction H of the heating means 102 and progresses downward while being reduced in diameter, and the length of the fiber, the density of the fiber assembly, etc. are determined by the gas in the direction of arrow F discharged from the gas discharge means 104. Is adjusted.

このように紡糸されたガラス繊維は、集綿装置(図示せず)により均等な密度になるよう積層される。しかし、紡糸の累計時間が長くなるに伴い、回転体100の細孔105は摩擦等により次第に大きくなる。そのため、繊維径も次第に大きくなる傾向となる。   The glass fibers spun in this way are laminated so as to have a uniform density by a cotton collecting apparatus (not shown). However, as the accumulated time of spinning becomes longer, the pores 105 of the rotating body 100 gradually become larger due to friction or the like. Therefore, the fiber diameter tends to gradually increase.

繊維径が大きくなると個体熱伝導がし易くなり、熱伝導抵抗が小さくなる。そして、真空断熱材としてこの繊維を適用した場合、断熱性能としては悪化する傾向になる。   When the fiber diameter is increased, solid heat conduction is facilitated and the heat conduction resistance is reduced. And when this fiber is applied as a vacuum heat insulating material, it tends to deteriorate as heat insulation performance.

この断熱性能の悪化を防止するためには、回転体100の細孔105がある一定の大きさに達した時点で、新たな回転体100に交換すればよいが、回転体100を短期間で頻繁に交換すると、コスト高になり生産性が損なわれるため、好ましくない。   In order to prevent the deterioration of the heat insulation performance, it is sufficient to replace the rotating body 100 with a new rotating body 100 when the pores 105 of the rotating body 100 reach a certain size. Frequent replacement is undesirable because it increases costs and impairs productivity.

ここで、真空断熱材50において、真空断熱材50の断面における内包材52の内部の芯材51と芯材51以外の真空状態となるスペースのうち当該スペースが占める割合である空隙率の測定方法を以下に示す。   Here, in the vacuum heat insulating material 50, the porosity measuring method which is the ratio which the said space occupies among the space which becomes the vacuum state other than the core material 51 inside the inner packaging material 52 and the core material 51 in the cross section of the vacuum heat insulating material 50 Is shown below.

まず、所定の繊維径、繊維長に調製したグラスウール繊維を作製し、それらをコア材(芯材51)として用いた空隙率測定用の真空断熱材50(コア材サイズ20×20×10t(mm))を作製する。次に、内部を観察する際に真空断熱材50の形状変形を防止するため、エポキシ樹脂中に真空断熱材を埋め、その後切断して研磨を行い、空隙率測定用試料を作製する。   First, glass wool fibers prepared to have a predetermined fiber diameter and fiber length are prepared, and a vacuum heat insulating material 50 for measuring porosity (core material size 20 × 20 × 10 t (mm) using them as a core material (core material 51). )). Next, in order to prevent the deformation of the vacuum heat insulating material 50 when observing the inside, the vacuum heat insulating material is buried in the epoxy resin, and then cut and polished to prepare a sample for measuring the porosity.

作製した試料について、走査型電子顕微鏡(日立製 型式S−4200)を用いて二次電子像撮影を実施し、撮影した二次電子像について画像解析を行い、内包材52の内部における一定面積中においてグラスウール繊維が存在しない面積(スペース面積)を百分率で算出し空隙率とする。   The prepared sample was subjected to secondary electron image photographing using a scanning electron microscope (Hitachi model S-4200), image analysis was performed on the photographed secondary electron image, and the inside of the inner packaging material 52 was in a certain area. The area (space area) where the glass wool fiber does not exist is calculated as a percentage and is used as the porosity.

本実施例の真空断熱材の空隙率は90%以上とする。これにより、繊維同士の接点からの熱伝導が抑制されて、断熱性能が向上する。   The porosity of the vacuum heat insulating material of a present Example shall be 90% or more. Thereby, the heat conduction from the contact of fibers is suppressed and heat insulation performance improves.

以下、本発明による実施例について図を用いて詳細に説明する。なお、この実施例によって発明が限定されるものではない。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. The invention is not limited to the embodiments.

(実施例1)
実施例1の真空断熱材50は、芯材51としてグラスウールを用いる。グラスウールはガラスを溶融紡糸して作製したものである。グラスウールを形成するガラスはホウケイ酸ガラスを用いた。ガラスを溶融炉で約1300℃の温度で溶融した後、金属製の回転体100を用いた遠心法で紡糸を行った。紡糸した繊維は吸引機構を有するコンベア上に目付けが1400g/m2となるように集めた。目付けとは、単位からわかるように集めた繊維を1m2の大きさにした際の重量を規定してものである。また、紡糸した繊維の太さを調べるため、マイクロネア測定器で測定したところ、平均繊維径は5.2μmであった。
Example 1
The vacuum heat insulating material 50 according to the first embodiment uses glass wool as the core material 51. Glass wool is produced by melt spinning glass. Borosilicate glass was used as the glass forming the glass wool. The glass was melted at a temperature of about 1300 ° C. in a melting furnace, and then spun by a centrifugal method using a metal rotating body 100. The spun fibers were collected on a conveyor having a suction mechanism so that the basis weight was 1400 g / m 2 . The basis weight defines the weight when the collected fibers are sized to 1 m 2 as can be seen from the unit. Further, in order to examine the thickness of the spun fiber, the average fiber diameter was 5.2 μm as measured with a micronaire measuring device.

また、回転体100直下で採取した繊維の長さを測定したところ、平均で約250mmとなっていた。さらに、圧縮強度を測定したところ29.4となった。   Moreover, when the length of the fiber extract | collected just under the rotary body 100 was measured, it was set to about 250 mm on the average. Furthermore, when the compressive strength was measured, it was 29.4.

このようにして得られた、グラスウールを幅500mm×長さ1000mmの大きさに切断後、200℃の乾燥炉で30分間乾燥した後、目付け1400g/m2のものを2枚積層し、ゲッター剤(ユニオン昭和製、モレキュラシーブス13X)をグラスウールの層間に散在させるとともに、3方を綴じ袋状にした外被材中に入れ、袋の内部をロータリーポンプで10分間真空引きした後、拡散ポンプで10分真空引き後、袋の単部をヒートシールで封止した。 The glass wool thus obtained was cut into a size of width 500 mm × length 1000 mm, dried in a drying oven at 200 ° C. for 30 minutes, and then two sheets with a basis weight of 1400 g / m 2 were laminated to obtain a getter agent. (Made by Showa Union, Molecular Sieves 13X) is scattered between the layers of glass wool, placed in the outer cover material in the form of a three-sided binding bag, the inside of the bag is evacuated with a rotary pump for 10 minutes, and then with a diffusion pump After vacuuming for 10 minutes, a single part of the bag was sealed with a heat seal.

得られた真空断熱材(厚み:約12mm)について断熱特性を、英弘精機(株)製のAUTO−λを用いて10℃で測定した。断熱特性は200(指数)であった。断熱特性は指数で示し、高くなるほど断熱特性は良好となる。   About the obtained vacuum heat insulating material (thickness: about 12 mm), the heat insulation characteristic was measured at 10 degreeC using AUTO- (lambda) by Eihiro Seiki Co., Ltd. The heat insulating property was 200 (index). The heat insulating property is indicated by an index. The higher the heat insulating property, the better the heat insulating property.

この結果より、非常に断熱性に優れる真空断熱材を得られることが明らかとなった。   From this result, it was clarified that a vacuum heat insulating material having excellent heat insulating properties can be obtained.

(実施例2)
実施例2の真空断熱材は、実施例1と同様に芯材としてグラスウールを用いている。紡糸した繊維の太さをマイクロネア測定器で測定したところ、平均繊維径は4.5μmであった。また、回転体100直下で採取した繊維の長さを測定したところ平均で約250mmとなっていた。さらに、圧縮強度を測定したところ24.8となった。
(Example 2)
As in Example 1, the vacuum heat insulating material of Example 2 uses glass wool as the core material. When the thickness of the spun fiber was measured with a micronaire measuring device, the average fiber diameter was 4.5 μm. Moreover, when the length of the fiber extract | collected just under the rotary body 100 was measured, it was set to about 250 mm on the average. Furthermore, when the compressive strength was measured, it was 24.8.

このようにして得られた、グラスウールを幅500mm×長さ1000mmの大きさに切断後、200℃の乾燥炉で30分間乾燥した後、目付け1400g/m2のものを2枚積層し、ゲッター剤(ユニオン昭和製、モレキュラシーブス13X)とともに、3方を綴じ袋状にした外被材中に入れ、袋の内部をロータリーポンプで10分間真空引きした後、拡散ポンプで10分真空引き後、袋の単部をヒートシールで封止した。 The glass wool thus obtained was cut into a size of width 500 mm × length 1000 mm, dried in a drying oven at 200 ° C. for 30 minutes, and then two sheets with a basis weight of 1400 g / m 2 were laminated to obtain a getter agent. (Made by Showa Union, Molecular Sieves 13X), put the three sides into a jacketed bag, vacuum the inside of the bag with a rotary pump for 10 minutes, then vacuum with the diffusion pump for 10 minutes, A single part of was sealed with heat seal.

得られた真空断熱材(厚み:約12mm)について断熱特性を、英弘精機(株)製のAUTO−λを用いて10℃で測定した。断熱特性は218(指数)であった。   About the obtained vacuum heat insulating material (thickness: about 12 mm), the heat insulation characteristic was measured at 10 degreeC using AUTO- (lambda) by Eihiro Seiki Co., Ltd. The heat insulating property was 218 (index).

この結果より、非常に断熱性に優れる真空断熱材を得られることが明らかとなった。   From this result, it was clarified that a vacuum heat insulating material having excellent heat insulating properties can be obtained.

(比較例1)
比較例1は、実施例1、2と同様に芯材としてグラスウールを用いている。紡糸した繊維の太さをマイクロネア測定器で測定したところ、平均繊維径は6.0μmであった。また、回転体100直下で採取した繊維の長さを測定したところ平均で約70mmとなっていた。さらに、圧縮強度を測定したところ18.8となった。
(Comparative Example 1)
In Comparative Example 1, glass wool is used as the core material as in Examples 1 and 2. When the thickness of the spun fiber was measured with a micronaire, the average fiber diameter was 6.0 μm. Moreover, when the length of the fiber extract | collected just under the rotary body 100 was measured, it was set to about 70 mm on the average. Furthermore, when the compressive strength was measured, it was 18.8.

このようにして得られたグラスウールを幅500mm×長さ1000mmの大きさに切断後、200℃の乾燥炉で30分間乾燥した後、目付け1400g/m2のものを2枚積層し、ゲッター剤(ユニオン昭和製、モレキュラシーブス13X)とともに、3方を綴じ袋状にした外被材中に入れ、袋の内部をロータリーポンプで10分間真空引きした後、拡散ポンプで10分真空引き後、袋の単部をヒートシールで封止した。 The glass wool thus obtained was cut into a size of width 500 mm × length 1000 mm, dried in a drying oven at 200 ° C. for 30 minutes, and then laminated with two pieces having a basis weight of 1400 g / m 2 to obtain a getter agent ( Combined with union Showa, Molecular Sieves 13X), put the three sides into a jacketed bag, vacuum the inside of the bag with a rotary pump for 10 minutes, then vacuum with the diffusion pump for 10 minutes, A single part was sealed with heat seal.

得られた真空断熱材(厚み:約12mm)について断熱特性を、英弘精機(株)製のAUTO−λを用いて10℃で測定した。断熱特性は100(指数)であった。   About the obtained vacuum heat insulating material (thickness: about 12 mm), the heat insulation characteristic was measured at 10 degreeC using AUTO- (lambda) by Eihiro Seiki Co., Ltd. The heat insulating property was 100 (index).

この結果より、実施例1、2と比較して繊維径が太く、圧縮強度が低い場合は断熱特性が低くなるということが明らかとなった。   From this result, it has been clarified that the heat insulating properties are low when the fiber diameter is large and the compressive strength is low as compared with Examples 1 and 2.

(比較例2)
比較例2は、比較例1と同様に芯材としてグラスウールを用いている。紡糸した繊維の太さをマイクロネア測定器で測定したところ、平均繊維径は6.8μmであった。また、回転体100直下で採取した繊維の長さを測定したところ平均で約180mmとなっていた。さらに、圧縮強度を測定したところ19.8となった。
(Comparative Example 2)
In Comparative Example 2, glass wool is used as the core material as in Comparative Example 1. When the thickness of the spun fiber was measured with a micronaire measuring device, the average fiber diameter was 6.8 μm. Moreover, when the length of the fiber extract | collected just under the rotary body 100 was measured, it was about 180 mm on the average. Furthermore, when the compressive strength was measured, it was 19.8.

このようにして得られたグラスウールを幅500mm×長さ1000mmの大きさに切断後、200℃の乾燥炉で30分間乾燥した後、目付け1400g/m2のものを2枚積層し、ゲッター剤(ユニオン昭和製、モレキュラシーブス13X)とともに、3方を綴じ袋状にした外包材中に入れ、袋の内部をロータリーポンプで10分間真空引きした後、拡散ポンプで10分真空引き後、袋の単部をヒートシールで封止した。 The glass wool thus obtained was cut into a size of width 500 mm × length 1000 mm, dried in a drying oven at 200 ° C. for 30 minutes, and then laminated with two pieces having a basis weight of 1400 g / m 2 to obtain a getter agent ( Combined with union Showa, Molecular Sieves 13X), put the three sides into a bag-like outer packaging material, vacuum the inside of the bag with a rotary pump for 10 minutes, vacuum with a diffusion pump for 10 minutes, The part was sealed with heat seal.

得られた真空断熱材(厚み:約12mm)について断熱特性を、英弘精機(株)製のAUTO−λを用いて10℃で測定した。断熱特性は126(指数)であった。   About the obtained vacuum heat insulating material (thickness: about 12 mm), the heat insulation characteristic was measured at 10 degreeC using AUTO- (lambda) by Eihiro Seiki Co., Ltd. The heat insulating property was 126 (index).

この結果より、実施例1、2と比較して繊維径が太く、圧縮強度が低い場合は断熱特性が低くなるということが明らかとなった。   From this result, it has been clarified that the heat insulating properties are low when the fiber diameter is large and the compressive strength is low as compared with Examples 1 and 2.

以上の結果をまとめると、図6より、繊維径が小さくなると熱伝導性も低くなり、真空断熱材の断熱性能は向上する傾向になる。   To summarize the above results, as shown in FIG. 6, when the fiber diameter is reduced, the thermal conductivity is also lowered, and the heat insulating performance of the vacuum heat insulating material tends to be improved.

また、比較例より、圧縮強度が小さいと断熱性能の大幅な向上は見込めない。そのため、実施例より、繊維長を長くして圧縮強度が24以上になるよう制御する。これにより、断熱性に優れた真空断熱材を得ることができる。更に好ましくは、24.8以上となるように制御すれば、断熱性能がより向上する。   Further, as compared with the comparative example, if the compressive strength is small, a significant improvement in the heat insulation performance cannot be expected. Therefore, the fiber length is increased and the compressive strength is controlled to be 24 or more according to the embodiment. Thereby, the vacuum heat insulating material excellent in heat insulation can be obtained. More preferably, if it is controlled to be 24.8 or more, the heat insulation performance is further improved.

また、紡糸時間が長くなると回転体の細孔径は摩擦等により大きくなり、紡糸する繊維径も次第に大きくなる傾向となる。また、繊維径が大きくなると熱伝導抵抗が小さくなり、熱伝導性が高くなってしまう。そこで、本実施例では繊維長を長くして圧縮強度が24以上になるよう制御することで、断熱性能の低下を抑制することができる。   Further, when the spinning time becomes longer, the pore diameter of the rotating body becomes larger due to friction and the like, and the diameter of the fiber to be spun tends to gradually increase. Further, when the fiber diameter is increased, the heat conduction resistance is decreased and the heat conductivity is increased. Therefore, in this embodiment, the fiber length is increased and the compressive strength is controlled to be 24 or more, so that the deterioration of the heat insulation performance can be suppressed.

また、圧縮強度が24以上で空隙率を90%以上とすることで、絡み合った繊維の接点での熱伝導が抑制されて、断熱性能に優れた真空断熱材とすることができる。   Further, by setting the compressive strength to 24 or more and the porosity to 90% or more, heat conduction at the contact point of the intertwined fibers is suppressed, and a vacuum heat insulating material having excellent heat insulating performance can be obtained.

次に、外被材の皺の発生抑制について説明する。図7は、比較例における外被材の皺の発生を説明する図である。図8Aは、実施例における外被材の皺の発生抑制を説明する図である。図8Bは、図8Aの状態からの時間経過後を説明する図である。なお、各図における芯材51は、繊維の方向を把握しやすくするために、模式的に示している。   Next, suppression of wrinkling of the outer cover material will be described. FIG. 7 is a diagram for explaining the generation of wrinkles on the jacket material in the comparative example. FIG. 8A is a diagram illustrating the suppression of wrinkles of the outer cover material in the example. FIG. 8B is a diagram for explaining after a lapse of time from the state of FIG. 8A. In addition, the core material 51 in each figure is typically shown in order to make it easy to grasp the fiber direction.

図7において、繊維長が短い場合の比較例を示す。芯材51の繊維長が短い場合、外被材53に収納した繊維集合体は、繊維の配向性が不均一であり、厚み方向に沿う繊維が平面方向に沿う繊維に対して相当の割合で存在する。この場合、外被材内53を減圧すると、厚み方向に延在する繊維が比較的多数存在する位置において、外被材53が芯材51側に引き込まれる。すると、引き込まれた部分の外被材53に皺53aが発生する。比較例の真空断熱材50において皺53aが発生すると、繊維が短く反発力や弾性力が弱い芯材51では、皺53aを減圧力に抗して押し戻す力を備えていない。すると、一度発生した外被材53の皺53aを修復する手立てがない。   FIG. 7 shows a comparative example when the fiber length is short. When the fiber length of the core material 51 is short, the fiber assembly housed in the jacket material 53 has a non-uniform fiber orientation, and the fibers along the thickness direction have a considerable ratio to the fibers along the plane direction. Exists. In this case, when the pressure inside the jacket material 53 is reduced, the jacket material 53 is drawn to the core material 51 side at a position where a relatively large number of fibers extending in the thickness direction exist. Then, a collar 53a is generated in the jacket material 53 in the drawn portion. When the flange 53a is generated in the vacuum heat insulating material 50 of the comparative example, the core material 51 having a short fiber and a weak repulsive force or elastic force does not have a force to push the flange 53a back against the decompression force. Then, there is no way to repair the ridge 53a of the jacket material 53 once generated.

一方、実施例の繊維長は、図8A、図8Bに示すように長く、平面方向に沿う配向性が得られやすい。この構成において減圧すると、図8Aのように一部で外被材53が芯材51側に引き込まれて皺53aが一時的に形成されそうになる。しかし、芯材51を構成する繊維集合体は繊維長が長く平面方向に沿う配向性を有し、圧縮強度が24以上である。
そのため、減圧力に抗して皺53aを外方に押し伸ばす力を備えている。よって、図8Bの状態に復元する力を備えているので、外被材53の皺53aの形成を抑制できる。外被材53の皺53aが発生してしまうと、その部分にクラックが生じて、ガスバリヤ性が低下してしまい、真空度の長期維持が困難となる。
On the other hand, the fiber length of the example is long as shown in FIGS. 8A and 8B, and orientation along the plane direction is easily obtained. When the pressure is reduced in this configuration, as shown in FIG. 8A, the covering material 53 is partially drawn toward the core material 51 side, and the flange 53a is likely to be temporarily formed. However, the fiber assembly constituting the core material 51 has a long fiber length and orientation along the plane direction, and a compressive strength of 24 or more.
Therefore, it has a force to push the eaves 53a outward against the decompression force. Therefore, since the force which restores to the state of FIG. 8B is provided, formation of the collar 53a of the jacket material 53 can be suppressed. If wrinkles 53a of the covering material 53 are generated, cracks are generated in the portion, and the gas barrier property is lowered, and it is difficult to maintain the degree of vacuum for a long time.

本実施例では、皺53aの形成が抑制されるので、外被材53のガスバリヤ性を長期維持することができ、断熱性能を長期間維持することができる。   In this embodiment, since the formation of the flange 53a is suppressed, the gas barrier property of the jacket material 53 can be maintained for a long time, and the heat insulation performance can be maintained for a long time.

1 冷蔵庫
50、50a、50b、50c 真空断熱材
51 芯材
52 内包材
53 外被材
53a 皺
100 回転体
DESCRIPTION OF SYMBOLS 1 Refrigerator 50, 50a, 50b, 50c Vacuum heat insulating material 51 Core material 52 Inner packaging material 53 Outer covering material 53a 皺 100 Rotating body

Claims (4)

繊維集合体の芯材と、前記芯材を覆うガスバリヤ性を有する外被材と、を備えた真空断熱材において、
前記繊維集合体の平均繊維径は5.2μm以下であって、繊維集合体に所定空荷重を加えた際の厚さ(mm)を繊維集合体の1m2当たりの重量(kg/m2)で割った値である圧縮強度(mm/(kg/m2))が24以上であることを特徴とする真空断熱材。
In a vacuum heat insulating material comprising a core material of a fiber assembly and a jacket material having a gas barrier property covering the core material,
The average fiber diameter of the fiber assembly is 5.2 μm or less, and the thickness (mm) when a predetermined air load is applied to the fiber assembly is the weight per 1 m 2 of the fiber assembly (kg / m 2 ). A vacuum heat insulating material having a compressive strength (mm / (kg / m 2 )) of 24 or more, which is a value divided by.
前記圧縮強度を備えた前記芯材は、前記外被材内の減圧によって前記外被材が前記芯材側に引き込まれて形成される皺を外方に押し伸ばすことを特徴とする、請求項1に記載の真空断熱材。   The core material having the compressive strength is characterized by extending outwardly a ridge formed by the outer shell material being drawn into the core material side by decompression in the outer jacket material. The vacuum heat insulating material according to 1. 前記芯材の空隙率は90%以上であることを特徴とする、請求項1又は2に記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein a porosity of the core material is 90% or more. 外箱と内箱との間に真空断熱材と発泡断熱材とを配置した冷蔵庫において、前記真空断熱材は請求項1乃至3のずれかに記載の構成であることを特徴とする冷蔵庫。   In the refrigerator which arrange | positioned the vacuum heat insulating material and the foam heat insulating material between the outer box and the inner box, the said vacuum heat insulating material is a structure in the shift | offset | difference in any one of Claims 1 thru | or 3, The refrigerator characterized by the above-mentioned.
JP2012166486A 2012-07-27 2012-07-27 Vacuum insulation and refrigerator Expired - Fee Related JP5953159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166486A JP5953159B2 (en) 2012-07-27 2012-07-27 Vacuum insulation and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166486A JP5953159B2 (en) 2012-07-27 2012-07-27 Vacuum insulation and refrigerator

Publications (2)

Publication Number Publication Date
JP2014025537A true JP2014025537A (en) 2014-02-06
JP5953159B2 JP5953159B2 (en) 2016-07-20

Family

ID=50199359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166486A Expired - Fee Related JP5953159B2 (en) 2012-07-27 2012-07-27 Vacuum insulation and refrigerator

Country Status (1)

Country Link
JP (1) JP5953159B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025538A (en) * 2012-07-27 2014-02-06 Hitachi Appliances Inc Vacuum heat insulation material, refrigerator, and apparatus using vacuum heat insulation material
CN108368963A (en) * 2015-12-09 2018-08-03 松下知识产权经营株式会社 Vacuum heat insulator, the manufacturing method with its heat insulation device and vacuum heat insulator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167376A (en) * 1993-12-17 1995-07-04 Nippon Muki Co Ltd Vacuum heat insulating material and manufacture thereof
JP2002081596A (en) * 2000-09-06 2002-03-22 Matsushita Refrig Co Ltd Vacuum heat insulating material, method of manufacturing the same, refrigerating, equipment notebook type computer, electric water boiler and oven range
JP2004011705A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator
JP2005180594A (en) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, refrigerator-freezer, and refrigeration machine
JP2006316873A (en) * 2005-05-12 2006-11-24 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2011058538A (en) * 2009-09-08 2011-03-24 Hitachi Appliances Inc Vacuum heat insulating material, and cooling equipment or insulated container using the same
JP2011236953A (en) * 2010-05-10 2011-11-24 Hitachi Appliances Inc Vacuum heat insulating material, heat insulating box and refrigerator using the same
JP2012026059A (en) * 2010-07-26 2012-02-09 Teijin Fibers Ltd Core material for vacuum heat insulator and vacuum heat insulator using the core material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167376A (en) * 1993-12-17 1995-07-04 Nippon Muki Co Ltd Vacuum heat insulating material and manufacture thereof
JP2002081596A (en) * 2000-09-06 2002-03-22 Matsushita Refrig Co Ltd Vacuum heat insulating material, method of manufacturing the same, refrigerating, equipment notebook type computer, electric water boiler and oven range
JP2004011705A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator
JP2005180594A (en) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd Vacuum heat insulating material, refrigerator-freezer, and refrigeration machine
JP2006316873A (en) * 2005-05-12 2006-11-24 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2011058538A (en) * 2009-09-08 2011-03-24 Hitachi Appliances Inc Vacuum heat insulating material, and cooling equipment or insulated container using the same
JP2011236953A (en) * 2010-05-10 2011-11-24 Hitachi Appliances Inc Vacuum heat insulating material, heat insulating box and refrigerator using the same
JP2012026059A (en) * 2010-07-26 2012-02-09 Teijin Fibers Ltd Core material for vacuum heat insulator and vacuum heat insulator using the core material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025538A (en) * 2012-07-27 2014-02-06 Hitachi Appliances Inc Vacuum heat insulation material, refrigerator, and apparatus using vacuum heat insulation material
CN108368963A (en) * 2015-12-09 2018-08-03 松下知识产权经营株式会社 Vacuum heat insulator, the manufacturing method with its heat insulation device and vacuum heat insulator

Also Published As

Publication number Publication date
JP5953159B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
KR101560355B1 (en) Vacuum insulation material, refrigerator, equipment using vacuum insulation material
JP5798942B2 (en) Vacuum heat insulating material and refrigerator and equipment using the same
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP3478771B2 (en) refrigerator
WO2003076855A1 (en) Refrigerator
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
KR101087395B1 (en) Vaccum heat insulating material, refrigerator using the same, boiler using the same and manufacturing method thereof
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP2002090048A (en) Refrigerator
JP5779555B2 (en) Vacuum insulation and refrigerator
JP5953159B2 (en) Vacuum insulation and refrigerator
JP5548025B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2009299764A (en) Vacuum heat insulation material and heat insulation vessel using the same
JP5982211B2 (en) Vacuum insulation, refrigerator, equipment using vacuum insulation
JP2017133615A (en) Heat insulation material, vacuum heat insulation material, method for manufacturing heat insulation material and equipment using heat insulation material or vacuum heat insulation material
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2012229849A (en) Refrigerator and freezer
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP5810054B2 (en) Vacuum insulation and refrigerator
JP2015001290A (en) Vacuum heat insulation material and refrigerator
JP2014119081A (en) Vacuum insulation material and refrigerator using vacuum insulation material
JP2020034209A (en) refrigerator
JP2004011706A (en) Vacuum heat insulating material, and equipment using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5953159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees