JP2010106876A - Vacuum heat insulating material and insulated box using the same - Google Patents
Vacuum heat insulating material and insulated box using the same Download PDFInfo
- Publication number
- JP2010106876A JP2010106876A JP2008276855A JP2008276855A JP2010106876A JP 2010106876 A JP2010106876 A JP 2010106876A JP 2008276855 A JP2008276855 A JP 2008276855A JP 2008276855 A JP2008276855 A JP 2008276855A JP 2010106876 A JP2010106876 A JP 2010106876A
- Authority
- JP
- Japan
- Prior art keywords
- heat insulating
- insulating material
- vacuum heat
- fiber
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Thermal Insulation (AREA)
Abstract
Description
本発明は、真空断熱材およびこの真空断熱材を用いた断熱箱、特に冷熱機器への使用に好適な真空断熱材および断熱箱に関する。 The present invention relates to a vacuum heat insulating material and a heat insulating box using the vacuum heat insulating material, and more particularly to a vacuum heat insulating material and a heat insulating box suitable for use in a refrigeration apparatus.
従来、例えば冷蔵庫などの断熱箱に使用される断熱材としては、ウレタンフォームが用いられてきたが、近年、省エネや省スペース大容量化に対する市場要請からウレタンフォームよりも断熱性能がよい真空断熱材をウレタンフォーム中に埋設して併用する形態が用いられるようになってきている。かかる真空断熱材は、冷蔵庫のほかに保温庫、車両用空調機、給湯器などの冷熱機器の断熱箱にも使用されるものである。 Conventionally, urethane foam has been used as a heat insulating material used in a heat insulating box such as a refrigerator. However, in recent years, vacuum heat insulating material has better heat insulating performance than urethane foam due to market demand for energy saving and space saving and large capacity. The form which embeds in urethane foam and uses together has come to be used. Such a vacuum heat insulating material is used not only for a refrigerator but also for a heat insulating box of a cooling device such as a heat storage, a vehicle air conditioner, and a water heater.
真空断熱材は、ガスバリア層にアルミ箔を使用したプラスチックラミネートフィルムなどでできた外包材の中に、粉末、発泡体、繊維体などを芯材として挿入し、内部が数Pa 以下の真空度に保たれている。また、真空断熱材の断熱性能の低下要因となる真空度劣化を抑制するために、ガスや水分を吸着する吸着剤が外包材の中に配置されている。真空断熱材の芯材としては、シリカなどの粉末、ウレタンなどの発泡体、繊維体などあるが、現状は断熱性能に優れるガラス繊維のものが主流になっている。 The vacuum insulation material is made by inserting powder, foam, fiber, etc. as a core material into an outer packaging material made of a plastic laminate film using aluminum foil for the gas barrier layer, and the inside has a degree of vacuum of several Pa or less. It is kept. Further, an adsorbent that adsorbs gas and moisture is disposed in the outer packaging material in order to suppress the deterioration of the degree of vacuum, which is a factor of lowering the heat insulating performance of the vacuum heat insulating material. As the core material of the vacuum heat insulating material, there are powders such as silica, foams such as urethane, and fiber bodies, but at present, glass fibers having excellent heat insulating performance are mainly used.
繊維の素材としては、ガラス繊維、セラミック繊維などの無機繊維(例えば、特許文献1及び特許文献8参照)、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエチレンテレフタレート繊維、ポリエステル繊維、ポリエチレン繊維、セルロース繊維などの有機繊維(例えば、特許文献2及び特許文献7参照)がある。
Examples of fiber materials include inorganic fibers such as glass fibers and ceramic fibers (for example, see
繊維体の形状には、綿状のもの、シートを積層したもの(例えば、特許文献3及び特許文献4参照)や、シートを繊維配向が交互になるように積層したもの(例えば、特許文献5及び特許文献6参照)がある。
The shape of the fibrous body is cotton-like, laminated sheets (for example, see
このように、現在の真空断熱材には、主にガラス繊維が芯材として使用されているが、ガラス繊維は硬くて脆いため、真空断熱材の製造時に粉塵が飛び散り作業者の皮膚・粘膜などに付着すると刺激を受ける可能性があり、その取り扱い性、作業性が問題となっている。 In this way, glass fibers are mainly used as the core material in current vacuum insulation materials, but glass fibers are hard and brittle, so dust is scattered during the manufacture of vacuum insulation materials, such as the skin and mucous membranes of workers. If it adheres to the surface, it may be stimulated, and its handling and workability are problematic.
また、リサイクルの観点からみた場合、例えば冷蔵庫では、リサイクル工場で製品ごと粉砕され、ガラス繊維はウレタン屑などに混じってサーマルリサイクルに供されるが、燃焼効率を落としたり、残渣となるなど、リサイクル性が良くないという欠点がある。 From the viewpoint of recycling, for example, in refrigerators, products are crushed at recycling factories, and glass fibers are mixed with urethane scraps and used for thermal recycling. There is a disadvantage that it is not good.
一方、ポリエステル繊維を芯材として用いたものは、取り扱い性、リサイクル性に優れるものの、断熱性能を表す指標である熱伝導率が0.0030[W/mK](特許文献7)程度であり、ガラス繊維を芯材として用いた一般的な真空断熱材の熱伝導率0.0020[W/mK]に比べて断熱性能に劣るという難点がある。 On the other hand, those using polyester fiber as the core material are excellent in handleability and recyclability, but have a thermal conductivity of about 0.0030 [W / mK] (Patent Document 7), which is an index representing heat insulation performance, and glass fiber. As compared with the thermal conductivity of 0.0020 [W / mK] of a general vacuum heat insulating material using as a core material, there is a problem that the heat insulating performance is inferior.
本発明は、以上の点に鑑み、取り扱い性と断熱性能に優れた真空断熱材およびこの真空断熱材を用いた断熱箱を提供しようとするものである。 In view of the above points, the present invention intends to provide a vacuum heat insulating material excellent in handleability and heat insulating performance and a heat insulating box using the vacuum heat insulating material.
本発明に係る真空断熱材は、下記の構成からなるものである。すなわち、繊維集合体を複数枚積層した構造である芯材を、ガスバリア性容器で封止して、内部を真空にしてなる真空断熱材において、繊維集合体がエンボス加工を施した不織布で構成されたものである。 The vacuum heat insulating material according to the present invention has the following configuration. That is, in a vacuum heat insulating material in which a core material having a structure in which a plurality of fiber assemblies are laminated is sealed with a gas barrier container and the inside is evacuated, the fiber assembly is made of an embossed nonwoven fabric. It is a thing.
本発明の真空断熱材によれば、芯材をエンボス加工を施した不織布の積層構造としたので、芯材の取り扱い性が良く、かつ断熱性能が向上する。 According to the vacuum heat insulating material of the present invention, since the core material is a laminated structure of embossed nonwoven fabric, the core material is easy to handle and the heat insulating performance is improved.
以下、図示実施形態により本発明を説明する。
図1は本発明の一実施形態に係る真空断熱材の模式図である。
The present invention will be described below with reference to illustrated embodiments.
FIG. 1 is a schematic view of a vacuum heat insulating material according to an embodiment of the present invention.
本実施形態の真空断熱材は、図1のように外包材1が、そのガスバリヤ層に約6μmアルミ箔、その最内層のシール層にポリエチレンを使用したプラスチックラミネートフィルムに構成され、内部に、真空度の経時劣化を抑制するための水分吸着剤2として不織布袋に入ったCaOが配置されている。
As shown in FIG. 1, the vacuum heat insulating material of the present embodiment is composed of a plastic laminate film in which the
芯材3は、このようなプラスチックラミネートフィルムを外包材1に用いる真空断熱材において、大気圧を支えて真空断熱材内の空間を確保する役割と、空間を細かく分割してガスの熱伝導などを低減する役割を担っている。なお、ガスの熱伝導抑制の観点から、前述の空間の距離をその真空度における空気分子の自由行程距離より小さくなるようにすることが望ましい。
The
本実施形態では、断熱方向である厚さ方向に対して略垂直となる方向に繊維の配向方向を整えるため、繊維集合体3aを複数重ねた多層構造としている。また、繊維集合体3aは長繊維不織布とした。 In this embodiment, in order to arrange the fiber orientation direction in a direction substantially perpendicular to the thickness direction, which is a heat insulation direction, a multilayer structure in which a plurality of fiber assemblies 3a are stacked is used. The fiber assembly 3a was a long-fiber nonwoven fabric.
材質はポリエステルを用い、繊維集合体3aである長繊維不織布は、押出機で溶融させて紡糸ノズルから押出した連続繊維を、コンベア上に捕集し、コンベアを任意の速度で送り、熱ローラでドット状の溶着部をつけるエンボス加工を行うことで、取り扱い強度を確保しながら巻き取って得た。なお、熱ローラの温度は195℃とした。過度の溶着は断熱性能の低下を引き起こすため、溶着部の面積は少ないほうがよく、本実施形態では7%とした。 Polyester is used as the material, and the long-fiber nonwoven fabric that is the fiber assembly 3a is obtained by collecting continuous fibers melted by an extruder and extruded from a spinning nozzle on a conveyor, feeding the conveyor at an arbitrary speed, and using a heat roller. By carrying out embossing to attach a dot-like welded part, the film was wound up while securing the handling strength. The temperature of the heat roller was 195 ° C. Since excessive welding causes a decrease in heat insulation performance, it is better that the area of the welded portion is small, and in this embodiment, it is 7%.
紡糸は、ノズル直下で樹脂を冷風などで冷却した後、圧縮空気などで延伸を行って繊維化する方法や、ノズル穴脇から樹脂の溶融温度と同等の高温エアで吹いて繊維化する方法を用いることができる。 Spinning involves cooling the resin directly under the nozzle with cold air etc. and then drawing it into fiber by drawing with compressed air or the like, or blowing it with high-temperature air equivalent to the melting temperature of the resin from the side of the nozzle. Can be used.
繊維径は、真空断熱材の内部真空度と繊維で細分化される空間距離、気体分子の自由行程距離の関係から小さいほうが好ましく、平均繊維径を9μmとした。 The fiber diameter is preferably smaller from the relationship between the internal vacuum degree of the vacuum heat insulating material, the spatial distance subdivided by the fiber, and the free stroke distance of the gas molecules, and the average fiber diameter is 9 μm.
実施例1
まず、エンボス加工の熱溶着部が表面から裏面、つまり厚さ方向へ貫通するように、前述の方法で、捕集コンベアの速度などの製造条件を調整し、目付け(単位面積あたりの重量)を変えて繊維集合体である長繊維不織布を製造した。
Example 1
First, adjust the manufacturing conditions such as the speed of the collection conveyor by the above-mentioned method so that the heat-welded part of embossing penetrates from the front surface to the back surface, that is, the thickness direction, and the basis weight (weight per unit area) A long-fiber non-woven fabric, which is a fiber assembly, was produced.
次に、得られた不織布をそれぞれ300枚積層して芯材として、アルミ箔ラミネートフィルムの外包材に挿入して100℃で5時間乾燥した。乾燥後、芯材の入った外包材内に通気性袋に入ったCaO5gを配置して、チャンバ式の真空包装機内にセットし、真空引きを行った。真空引きは、チャンバ内が3Pa になるまで行い、真空チャンバ内で開口部をヒートシールして真空断熱パネルとした。 Next, 300 sheets of the obtained nonwoven fabrics were laminated to form a core material, which was inserted into the outer packaging material of an aluminum foil laminate film and dried at 100 ° C. for 5 hours. After drying, 5 g of CaO contained in a breathable bag was placed in the outer packaging material containing the core material, set in a chamber-type vacuum packaging machine, and evacuated. Vacuuming was performed until the inside of the chamber reached 3 Pa, and the opening was heat sealed in the vacuum chamber to obtain a vacuum heat insulating panel.
得られた真空断熱材の熱伝導率測定結果を図3のグラフに示す。図3のグラフは、縦軸に熱伝導率[W/mK]を、横軸に体積目付け[cc/m2]をとったものである。通常、目付けは1m2あたりの繊維の重量目付け[g/m2]で表されるが、ここでは比重の異なるその他の材質でも比較できるように1m2あたりの体積目付け[cc/m2]で表した。測定結果より、13cc/m2以下の目付けで、綿状の芯材を用いた場合の熱伝導率0.003[W/mK]よりも熱伝導率が小さく、すなわち断熱性能が高くなることが分かった。 The graph of FIG. 3 shows the thermal conductivity measurement result of the obtained vacuum heat insulating material. In the graph of FIG. 3, the vertical axis represents thermal conductivity [W / mK], and the horizontal axis represents volume basis [cc / m 2 ]. Normally, the basis weight is represented by the fabric weight [g / m 2] of the fibers per 1 m 2, where the different volumes basis weight per 1 m 2 so as to be compared in other materials [cc / m 2] specific gravity expressed. From the measurement results, it was found that with a basis weight of 13 cc / m 2 or less, the thermal conductivity is smaller than that of 0.003 [W / mK] when a cotton-like core material is used, that is, the heat insulation performance is improved. .
これは、目付けを低くするとともに、エンボス加工の熱溶着部が厚さ方向へ貫通するようにすることにより、不織布の厚さが薄くなり、不織布中の繊維が厚さ方向に向きにくくなり、断熱方向と直交する方向である面方向により向きやすくできたからであると考えられる。したがって、本実施形態では、綿状の芯材の場合の熱伝導率0.003[W/mK]よりも小さくなる範囲で製造バラツキ等を考慮して目付けの上限を13cc/m2(以下)とした。 This is because the fabric weight is reduced and the embossed heat-welded part penetrates in the thickness direction, so that the thickness of the nonwoven fabric is reduced and the fibers in the nonwoven fabric are less likely to be oriented in the thickness direction. This is considered to be because the surface direction, which is a direction orthogonal to the direction, can be more easily oriented. Therefore, in the present embodiment, the upper limit of the basis weight is set to 13 cc / m 2 (below) in consideration of manufacturing variation and the like within a range smaller than the thermal conductivity 0.003 [W / mK] in the case of the cotton-like core material. .
13cc/m2を超える目付けでは、繊維の配向方向が断熱方向である厚さ方向に向きやすいことと、エンボス加工の熱溶着部が厚さ方向への伝熱経路となって断熱性能が低下したと考えられる。 When the basis weight exceeds 13 cc / m 2 , the orientation direction of the fibers is likely to be in the thickness direction, which is the heat insulation direction, and the heat-welded part of the embossing becomes a heat transfer path in the thickness direction, resulting in a decrease in heat insulation performance. it is conceivable that.
なお、目付けは低くするほど不織布中の繊維が面方向に向きやすくなり、また、熱溶着部の影響も小さくできると考えられるが、目付けを低くしすぎると不織布の均一性が低下するなどの要因で強度が弱くなり、3.5cc/m2以下では不織布として巻き取ることができなかった。したがって、本実施例の真空断熱材は、エンボス加工を施した不織布の目付けを3.5cc/m2乃至13cc/m2とした。 The lower the basis weight, the easier it is for the fibers in the nonwoven fabric to face in the surface direction, and the influence of the heat-welded part is considered to be small, but if the fabric weight is too low, the uniformity of the nonwoven fabric will be reduced. The strength became weak, and at 3.5 cc / m 2 or less, it could not be wound as a nonwoven fabric. Thus, the vacuum heat insulator of this example was the basis weight of the nonwoven fabric embossed with 3.5 cc / m 2 to 13 cc / m 2.
また、このような熱伝導率が小さく、断熱性能が高い真空断熱材を用いた断熱箱は、壁の厚みを薄くすることができるので、外形が同じ従来の断熱箱と比し、内容積を大きくすることができ、また内容積が同じであれば、外形を小さくすることができる。 In addition, the heat insulation box using a vacuum heat insulating material with such a low thermal conductivity and high heat insulation performance can reduce the wall thickness, so that the inner volume is smaller than that of a conventional heat insulation box having the same outer shape. If the inner volume can be increased, the outer shape can be reduced.
実施例2
図2は本実施例の真空断熱材の繊維集合体である不織布の断面図である。
前述の実施例1の真空断熱材では、低目付けにすることで断熱性能を向上することができたが、低目付けの不織布では、所望の厚さの真空断熱材を得るための積層枚数が多くなってしまうため、不織布製造ラインのスピードが不足したり、積層工程の時間が長くなるなど、生産性が低下する。
Example 2
FIG. 2 is a cross-sectional view of a nonwoven fabric which is a fiber assembly of the vacuum heat insulating material of this example.
In the vacuum heat insulating material of Example 1 described above, it was possible to improve the heat insulating performance by lowering the weight per unit area. However, in the case of the low weight non-woven fabric, the number of laminated layers for obtaining a vacuum heat insulating material having a desired thickness is large. Therefore, productivity decreases, for example, the speed of the nonwoven fabric production line is insufficient or the time for the lamination process is increased.
そこで、エンボス加工の熱溶着部3bが厚さ方向へ貫通しないように、熱ローラの温度、クリアランスを調整して、目付けを変えて不織布を製造した。ここでは、熱ローラの温度を180℃とし、クリアランスは熱溶着を施す前の厚さの1/2となるように設定した。
Therefore, the temperature and clearance of the heat roller were adjusted so that the embossed heat welded
得られた不織布(繊維集合体3a)は前述の実施例1と同様の方法で真空断熱材に製造した。そして、熱溶着部が厚さ方向へ貫通したもの(比較例)との間で性能の比較を行った。 The obtained nonwoven fabric (fiber assembly 3a) was manufactured as a vacuum heat insulating material by the same method as in Example 1 described above. And the performance comparison was performed between what the heat welding part penetrated to the thickness direction (comparative example).
得られた真空断熱材の断熱性能の評価結果を、図4のグラフに示す。図4のグラフも、前述の図3のグラフと同様、縦軸に熱伝導率[W/mK]を、横軸に体積目付け[cc/m2]をとったものである。測定結果より、熱溶着部を不織布の厚さ方向へ貫通しない構造とすることにより、特に10cc/m2以上の目付けでは、前述の実施例1の熱伝導率との差が大きくなり75cc/m2まで、綿状の繊維芯材よりも断熱性能に優れた真空断熱材を得ることができた。これにより、所望の厚さの真空断熱材を得るための繊維集合体3aである不織布の積層枚数を低減できるので、生産性が向上する。なお、3.5〜10cc/m2では、前述の実施例1の熱伝導率との差は小さいものの、熱伝導率が0.0002W/mK小さくなっており、生産性に支障がなければ低目付けの不織布を用いて断熱性能の改善を行っても良い。したがって、本実施形態では、製造バラツキ等を考慮して綿状の芯材の熱伝導率0.003[W/mK]よりも小さくなる範囲として目付けの上限を75cc/m2(以下)とした。 The evaluation result of the heat insulation performance of the obtained vacuum heat insulating material is shown in the graph of FIG. The graph of FIG. 4 also has the thermal conductivity [W / mK] on the vertical axis and the volume basis [cc / m 2 ] on the horizontal axis, as in the graph of FIG. From the measurement results, by adopting a structure that does not penetrate the heat-welded portion in the thickness direction of the nonwoven fabric, particularly with a basis weight of 10 cc / m 2 or more, the difference from the thermal conductivity of Example 1 described above becomes large and 75 cc / m. Up to 2 , it was possible to obtain a vacuum heat insulating material having better heat insulating performance than a cotton-like fiber core material. Thereby, since the lamination | stacking number of sheets of the nonwoven fabric which is the fiber assembly 3a for obtaining the vacuum heat insulating material of desired thickness can be reduced, productivity improves. At 3.5 to 10 cc / m 2 , although the difference from the thermal conductivity of Example 1 is small, the thermal conductivity is 0.0002 W / mK smaller. The non-woven fabric may be used to improve the heat insulation performance. Therefore, in the present embodiment, the upper limit of the basis weight is set to 75 cc / m 2 (below) as a range smaller than the thermal conductivity 0.003 [W / mK] of the cotton-like core material in consideration of manufacturing variations and the like.
また、このような熱伝導率が小さく、断熱性能が高い真空断熱材を用いた断熱箱も、前述の実施例1と同様に壁の厚みを薄くすることができるので、外形が同じ従来の断熱箱と比し、内容積を大きくすることができ、また内容積が同じであれば、外形を小さくすることができる。 In addition, the heat insulation box using the vacuum heat insulating material having such a low thermal conductivity and high heat insulating performance can also reduce the thickness of the wall in the same manner as in the first embodiment. Compared with the box, the internal volume can be increased, and if the internal volume is the same, the outer shape can be reduced.
1 外包材、2 水分吸着剤、3 芯材、3a 繊維集合体、3b エンボス加工の熱溶着部。 1 Outer packaging material, 2 moisture adsorbent, 3 core material, 3a fiber assembly, 3b Embossed heat welding part.
Claims (6)
繊維集合体がエンボス加工を施した不織布であることを特徴とする真空断熱材。 In a vacuum heat insulating material in which a core material having a structure in which a plurality of fiber assemblies are laminated is sealed with a gas barrier container, and the inside is evacuated,
A vacuum heat insulating material, wherein the fiber assembly is an embossed nonwoven fabric.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008276855A JP5111331B2 (en) | 2008-10-28 | 2008-10-28 | Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008276855A JP5111331B2 (en) | 2008-10-28 | 2008-10-28 | Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010106876A true JP2010106876A (en) | 2010-05-13 |
JP5111331B2 JP5111331B2 (en) | 2013-01-09 |
Family
ID=42296533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008276855A Expired - Fee Related JP5111331B2 (en) | 2008-10-28 | 2008-10-28 | Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5111331B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011179635A (en) * | 2010-03-03 | 2011-09-15 | Mitsubishi Electric Corp | Vacuum heat insulating material and insulating box equipped with this vacuum heat insulating material |
WO2016143779A1 (en) * | 2015-03-10 | 2016-09-15 | 株式会社 東芝 | Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator |
JP2016166660A (en) * | 2015-03-10 | 2016-09-15 | 株式会社東芝 | Vacuum heat insulation panel core material, vacuum heat insulation panel and refrigerator |
JP2016173150A (en) * | 2015-03-17 | 2016-09-29 | 株式会社東芝 | Vacuum heat insulation panel for refrigerator and method for recycling refrigerator |
CN107791634A (en) * | 2016-09-07 | 2018-03-13 | 株式会社东芝 | Core, vacuum heat-insulating plate and the refrigerator of vacuum heat-insulating plate |
JPWO2018029997A1 (en) * | 2016-08-09 | 2019-06-20 | パナソニックIpマネジメント株式会社 | Thermal insulation sheet and method of manufacturing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112207418B (en) * | 2020-09-25 | 2021-12-28 | 西安交通大学 | Micro-channel aluminum heat pipe pre-extrusion narrow-weld-joint spherical friction stir welding perfusion packaging process |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5513070Y2 (en) * | 1975-01-10 | 1980-03-24 | ||
JPS5913070Y2 (en) * | 1978-11-10 | 1984-04-19 | 東洋ゴム工業株式会社 | Pad for outer surface coating |
JPS6394834A (en) * | 1986-10-09 | 1988-04-25 | 有限会社 大機スリツタ−工業 | Composite material into which granule is sealed |
JPH07189107A (en) * | 1993-12-27 | 1995-07-25 | New Oji Paper Co Ltd | Laminated nonwoven fabric |
JPH08121684A (en) * | 1994-10-18 | 1996-05-17 | Kubota Corp | Filler for vacuum insulator |
JPH0921498A (en) * | 1995-07-06 | 1997-01-21 | Daido Hoxan Inc | Heat insulating material |
JP2005344870A (en) * | 2004-06-04 | 2005-12-15 | Matsushita Electric Ind Co Ltd | Vacuum heat insulating material, and refrigerator having the same |
JP2006017151A (en) * | 2004-06-30 | 2006-01-19 | Fuji Electric Retail Systems Co Ltd | Vacuum heat insulating material |
JP2006194340A (en) * | 2005-01-13 | 2006-07-27 | Toyobo Co Ltd | Heat insulating material, dew proofing cold insulating container and heat insulating container using the same |
JP2006307921A (en) * | 2005-04-27 | 2006-11-09 | Matsushita Electric Ind Co Ltd | Vacuum thermal insulating material |
-
2008
- 2008-10-28 JP JP2008276855A patent/JP5111331B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5513070Y2 (en) * | 1975-01-10 | 1980-03-24 | ||
JPS5913070Y2 (en) * | 1978-11-10 | 1984-04-19 | 東洋ゴム工業株式会社 | Pad for outer surface coating |
JPS6394834A (en) * | 1986-10-09 | 1988-04-25 | 有限会社 大機スリツタ−工業 | Composite material into which granule is sealed |
JPH07189107A (en) * | 1993-12-27 | 1995-07-25 | New Oji Paper Co Ltd | Laminated nonwoven fabric |
JPH08121684A (en) * | 1994-10-18 | 1996-05-17 | Kubota Corp | Filler for vacuum insulator |
JPH0921498A (en) * | 1995-07-06 | 1997-01-21 | Daido Hoxan Inc | Heat insulating material |
JP2005344870A (en) * | 2004-06-04 | 2005-12-15 | Matsushita Electric Ind Co Ltd | Vacuum heat insulating material, and refrigerator having the same |
JP2006017151A (en) * | 2004-06-30 | 2006-01-19 | Fuji Electric Retail Systems Co Ltd | Vacuum heat insulating material |
JP2006194340A (en) * | 2005-01-13 | 2006-07-27 | Toyobo Co Ltd | Heat insulating material, dew proofing cold insulating container and heat insulating container using the same |
JP2006307921A (en) * | 2005-04-27 | 2006-11-09 | Matsushita Electric Ind Co Ltd | Vacuum thermal insulating material |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011179635A (en) * | 2010-03-03 | 2011-09-15 | Mitsubishi Electric Corp | Vacuum heat insulating material and insulating box equipped with this vacuum heat insulating material |
WO2016143779A1 (en) * | 2015-03-10 | 2016-09-15 | 株式会社 東芝 | Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator |
JP2016166660A (en) * | 2015-03-10 | 2016-09-15 | 株式会社東芝 | Vacuum heat insulation panel core material, vacuum heat insulation panel and refrigerator |
CN107429873A (en) * | 2015-03-10 | 2017-12-01 | 株式会社东芝 | Vacuum insulation panel, core, refrigerator, the manufacture method of vacuum insulation panel, the recycling method of refrigerator |
US20180238605A1 (en) * | 2015-03-10 | 2018-08-23 | Kabushiki Kaisha Toshiba | Vacuum heat insulation panel, core material, refrigerator, manufacturing method of vacuum heat insulation panel, and recycling method of refrigerator |
KR20190092602A (en) * | 2015-03-10 | 2019-08-07 | 도시바 라이프스타일 가부시키가이샤 | Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator |
KR102279401B1 (en) | 2015-03-10 | 2021-07-20 | 도시바 라이프스타일 가부시키가이샤 | Vacuum insulated panel, core material, refrigerator, method for producing vacuum insulated panel, and method for recycling refrigerator |
JP2016173150A (en) * | 2015-03-17 | 2016-09-29 | 株式会社東芝 | Vacuum heat insulation panel for refrigerator and method for recycling refrigerator |
JPWO2018029997A1 (en) * | 2016-08-09 | 2019-06-20 | パナソニックIpマネジメント株式会社 | Thermal insulation sheet and method of manufacturing the same |
JP7050230B2 (en) | 2016-08-09 | 2022-04-08 | パナソニックIpマネジメント株式会社 | Insulation sheet and its manufacturing method |
CN107791634A (en) * | 2016-09-07 | 2018-03-13 | 株式会社东芝 | Core, vacuum heat-insulating plate and the refrigerator of vacuum heat-insulating plate |
JP2018040421A (en) * | 2016-09-07 | 2018-03-15 | 株式会社東芝 | Core material for vacuum heat insulation panel, vacuum heat insulation panel and refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JP5111331B2 (en) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5111331B2 (en) | Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material | |
JP4789886B2 (en) | Vacuum insulation and insulation box | |
JP5388603B2 (en) | Vacuum heat insulating material and heat insulating box equipped with the same | |
JP5372029B2 (en) | Vacuum heat insulating material, heat insulation box using vacuum heat insulating material, refrigerator, freezing / air conditioning device, hot water supply device and equipment | |
JP5362024B2 (en) | Vacuum heat insulating material, heat insulating box, refrigerator, refrigeration / air conditioning device, hot water supply device and equipment, and method for manufacturing vacuum heat insulating material | |
KR20090017645A (en) | Vacuum heat insulation material | |
JP2010236558A (en) | Vacuum heat insulating material, manufacturing method of the same, and insulating box having the vacuum heat insulating material | |
JP2011074934A (en) | Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator | |
JP2010025182A (en) | Vacuum heat insulating material | |
JP2008185220A (en) | Vacuum heat insulation material | |
EP2105648B1 (en) | Vacuum heat insulating material and heat insulating box using the same | |
JP2010127421A (en) | Vacuum thermal-insulating material and thermal insulation box | |
JP2010281444A (en) | Heat insulating material | |
JP2012092870A (en) | Vacuum heat insulating material and heat insulating box using the same | |
JP5548025B2 (en) | Vacuum heat insulating material and refrigerator using the same | |
KR100965971B1 (en) | Vacuum heat insulation material | |
KR101576158B1 (en) | Heat insulation sheet, hybrid heat insulation sheet, method for manufacturing the same and heat insulating panel | |
JP2010007806A (en) | Vacuum thermal insulation panel and thermal insulation box body with this | |
JP4969555B2 (en) | Vacuum insulation and insulation box | |
KR20160054437A (en) | Hybrid Heat Insulation Sheet, Method for Manufacturing the Same and Heat Insulating Panel | |
JP5216510B2 (en) | Vacuum insulation material and equipment using the same | |
EP2985376B1 (en) | Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same | |
KR102217150B1 (en) | Vacuum Insulation Material | |
JP2006029413A (en) | Vacuum heat insulating material and its manufacturing method | |
JP2011027204A (en) | Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120321 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120508 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120703 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120911 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121009 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |