JP2011179635A - Vacuum heat insulating material and insulating box equipped with this vacuum heat insulating material - Google Patents

Vacuum heat insulating material and insulating box equipped with this vacuum heat insulating material Download PDF

Info

Publication number
JP2011179635A
JP2011179635A JP2010046335A JP2010046335A JP2011179635A JP 2011179635 A JP2011179635 A JP 2011179635A JP 2010046335 A JP2010046335 A JP 2010046335A JP 2010046335 A JP2010046335 A JP 2010046335A JP 2011179635 A JP2011179635 A JP 2011179635A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
core material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010046335A
Other languages
Japanese (ja)
Other versions
JP5448937B2 (en
Inventor
Kyoko Nomura
京子 野村
Yasushi Masuda
靖 増田
Yosuke Fujimori
洋輔 藤森
Hideaki Nakano
秀明 中野
Shuichi Iwata
修一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010046335A priority Critical patent/JP5448937B2/en
Publication of JP2011179635A publication Critical patent/JP2011179635A/en
Application granted granted Critical
Publication of JP5448937B2 publication Critical patent/JP5448937B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material which is good in insulating performance, and excellent in productivity, handling property and recyclability, furthermore excellent in an inserting ability of absorbent. <P>SOLUTION: In the vacuum heat insulating material 6, in which the inside is processed in decompression condition by enclosing a core material 1 in a container 2 with gas barrier property, the core material 1 is constructed in laminated structure by winding seat-like fiber aggregate in series from inner circumference to outer periphery, and one side end (A) in winding direction of the laminated structure is cut; a cutting section 4 formed in the one side end (A) of the core material 1 is formed in concave, for example rough V-character in cross section, toward an inner side of the core material 1 before being decompressed; and decompressing sealing is processed by placing an absorbent 3 in the cutting section 4 of the core material 1, and arranging it at an insertion port 5 side of the container 2 with the gas barrier property. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は真空断熱材、及びこの真空断熱材を備えた断熱箱に係り、特に、冷凍機器へ使用して好適な真空断熱材、及びこの真空断熱材を備えた断熱箱に関する。   The present invention relates to a vacuum heat insulating material and a heat insulating box provided with the vacuum heat insulating material, and more particularly to a vacuum heat insulating material suitable for use in a refrigeration apparatus and a heat insulating box provided with the vacuum heat insulating material.

従来、例えば冷蔵庫などの断熱箱に使用される断熱材としては、ウレタンフォームが用いられてきた。近年は、省エネや省スペース大容量化に対する市場要請から、ウレタンフォームよりも断熱性能がよい真空断熱材をウレタンフォーム中に埋設して併用する形態が用いられるようになってきている。かかる真空断熱材は、冷蔵庫などにも使用されるものである。   Conventionally, urethane foam has been used as a heat insulating material used in a heat insulating box such as a refrigerator. In recent years, due to market demands for energy saving and space saving and large capacity, a form in which a vacuum heat insulating material having better heat insulating performance than urethane foam is embedded in urethane foam is used. Such a vacuum heat insulating material is also used for a refrigerator or the like.

真空断熱材は、ガスバリア層にアルミ箔を使用したプラスチックラミネートフィルムなどでできた外包材の中に、粉末、発泡体、繊維体などを芯材として挿入している。この真空断熱材の内部は、数Pa(パスカル)以下の真空度に保たれている。
真空断熱材の芯材としては、シリカなどの粉末、ウレタンなどの発泡体、繊維体などが用いられている。
In the vacuum heat insulating material, powder, foam, fiber or the like is inserted as a core material into an outer packaging material made of a plastic laminate film using an aluminum foil as a gas barrier layer. The inside of this vacuum heat insulating material is kept at a degree of vacuum of several Pa (Pascal) or less.
As the core material of the vacuum heat insulating material, powders such as silica, foams such as urethane, and fiber bodies are used.

繊維体には、無機繊維、および有機繊維がある。無機繊維には、ガラス繊維、セラミック繊維などの無機繊維があり(例えば、特許文献1、8参照)、一方、有機繊維には、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエチレンテレフタレート繊維、ポリエステル繊維、ポリエチレン繊維、セルロース繊維などの有機繊維がある(例えば、特許文献2、7、9参照)。現在は、断熱性能に優れたガラス繊維が真空断熱材の芯材の主流になっている。   The fibrous body includes inorganic fibers and organic fibers. Inorganic fibers include inorganic fibers such as glass fibers and ceramic fibers (see, for example, Patent Documents 1 and 8), while organic fibers include polypropylene fibers, polylactic acid fibers, aramid fibers, and LCP (liquid crystal polymer) fibers. And organic fibers such as polyethylene terephthalate fiber, polyester fiber, polyethylene fiber, and cellulose fiber (see, for example, Patent Documents 2, 7, and 9). At present, glass fibers having excellent heat insulation performance are the mainstream of vacuum insulation core materials.

繊維体の形状には、綿状のもの、シートを積層したもの(例えば、特許文献3参照)や、シートを繊維配向が交互になるように積層したもの(例えば、特許文献4、5、6参照)、連続した帯状のシート状部材を交互に異なった方向に折り返して重ね合わせるように積層したものがある(例えば、特許文献10)。   Examples of the shape of the fibrous body include cotton-like ones, sheets laminated (for example, see Patent Document 3), and sheets laminated so that fiber orientations alternate (for example, Patent Documents 4, 5, and 6). (See, for example, Patent Document 10).

また、真空断熱材の断熱性能の低下要因となる真空度劣化を抑制するために、ガスや水分を吸着する吸着剤が外包材の中に配置されている。この場合、芯材内に任意の深さに切り込みを入れて圧力をかけて成形し、吸着剤を凹部に配置し、真空断熱材の表面の凹凸を抑えるようにしたものがある(例えば、特許文献11)。   Further, an adsorbent that adsorbs gas and moisture is disposed in the outer packaging material in order to suppress the deterioration of the degree of vacuum, which is a factor of lowering the heat insulating performance of the vacuum heat insulating material. In this case, the core material is cut at an arbitrary depth and molded by applying pressure, and the adsorbent is disposed in the recess to suppress the unevenness of the surface of the vacuum heat insulating material (for example, patents) Reference 11).

特開平8−028776号公報(第2頁−第3頁)JP-A-8-028776 (pages 2 to 3) 特開2002−188791号公報(第4頁)JP 2002-188791 A (page 4) 特開2005−344832号公報(第3頁)JP 2005-344832 A (page 3) 特開2006−307921号公報(第5頁)JP 2006-307921 A (page 5) 特開2006−017151号公報(第3頁)JP 2006-017151 A (page 3) 特公平7−103955号公報(第2頁)Japanese Examined Patent Publication No. 7-103955 (2nd page) 特開2006−283817号公報(第4頁)JP 2006-283817 A (page 4) 特開2005−344870号公報(第7頁)JP-A-2005-344870 (page 7) 特開2006−161939号公報(第4頁)JP 2006-161939 A (page 4) 特開昭62−204093号公報(第2頁、図4)Japanese Patent Laid-Open No. 62-204093 (2nd page, FIG. 4) 特開2004−218747号公報(第4頁)JP 2004-218747 A (page 4)

特許文献1、8の真空断熱材では、主にガラス繊維が芯材として使用されている。ガラス繊維を芯材として用いると断熱性能に優れるが、芯材をアルミ箔ラミネートフィルム等の外包材内に挿入して内部を減圧封止して真空断熱材を製造しなければならず、ガラス繊維が外包材を突き刺し外包材を傷つけたり破ったりする恐れがある。このため、外包材内にガラス繊維の芯材を直接挿入せず、ポリ袋などの別体の袋に挿入した状態で外包材に挿入しているが、ポリ袋などが余分に必要であり、芯材や真空断熱材の製造工程が複雑になったり、コストアップになったりする。   In the vacuum heat insulating materials of Patent Documents 1 and 8, glass fibers are mainly used as the core material. When glass fiber is used as a core material, it has excellent heat insulation performance, but the core material must be inserted into an outer packaging material such as an aluminum foil laminate film and the inside is vacuum sealed to produce a vacuum heat insulating material. May pierce the outer packaging material and damage or break the outer packaging material. For this reason, the glass fiber core material is not inserted directly into the outer packaging material, but inserted into the outer packaging material in a state of being inserted into a separate bag such as a plastic bag, but an extra plastic bag is required, The manufacturing process of the core material and the vacuum heat insulating material becomes complicated and the cost increases.

また、ガラス繊維は硬くて脆いため、真空断熱材の製造時に粉塵が飛び散り作業者の皮膚、粘膜などに付着すると刺激を受けるおそれがあり、取り扱い性、作業性において問題がある。
さらに、リサイクルの観点からみた場合、例えば冷蔵庫では、リサイクル工場で製品ごと粉砕される。このとき、ガラス繊維は、ウレタン屑などに混じってサーマルリサイクルに供されるが、ガラス繊維は、燃焼効率を落としたり、残滓になったりなど、リサイクル性が良くない。
Further, since glass fiber is hard and brittle, dust may scatter during manufacture of a vacuum heat insulating material and may be irritated if it adheres to the skin, mucous membrane, etc. of an operator, and there is a problem in handling and workability.
Furthermore, from the viewpoint of recycling, for example, in a refrigerator, each product is pulverized in a recycling factory. At this time, the glass fiber is mixed with urethane waste and subjected to thermal recycling. However, the glass fiber is not recyclable because it reduces combustion efficiency and becomes a residue.

一方、特許文献2、7、9のポリエステル繊維を芯材として用いた真空断熱材では、取り扱い性、リサイクル性に優れるが、断熱性能を表す指標である熱伝導率が0.0030[W/mK](特許文献7参照)程度であり、ガラス繊維を芯材として用いた一般的な真空断熱材(熱伝導率0.0020[W/mK]程度)に比べて断熱性能に劣る。
このため、特許文献3、4、5のように、有機繊維の層を薄くし、繊維の配向を伝熱方向と垂直にし断熱性能を向上させる真空断熱材があるが、積層枚数が数百枚以上になり、生産性が悪くなってしまう。
On the other hand, the vacuum heat insulating material using the polyester fibers of Patent Documents 2, 7, and 9 as the core material is excellent in handleability and recyclability, but has a thermal conductivity of 0.0030 [W / mK, which is an index representing the heat insulating performance. ] (Refer to Patent Document 7) and is inferior in heat insulation performance compared to a general vacuum heat insulating material (thermal conductivity of about 0.0020 [W / mK]) using glass fiber as a core material.
For this reason, as in Patent Documents 3, 4, and 5, there is a vacuum heat insulating material that thins the organic fiber layer and makes the fiber orientation perpendicular to the heat transfer direction to improve the heat insulation performance. As a result, productivity becomes worse.

特許文献10のように連続した帯状のシート状部材を交互に異なった方向に折り返し折り目をつけて重ね合わせるように積層して芯材を形成し、生産性を向上することも考えられるが、折り目をつけて折り返す装置が必要であり、折り返す装置の構造が複雑で高価であり、コストアップになる。   Although it is conceivable to improve productivity by forming a core material by laminating continuous strip-like sheet-like members alternately in different directions as in Patent Document 10 so as to overlap and fold them in a different direction, Is required, and the structure of the folding device is complicated and expensive, resulting in an increase in cost.

また、真空断熱材には断熱性能の低下要因となる真空度劣化を抑制するために、吸着剤が外包材の中に配置されているが、特許文献11のように芯材内に任意の深さに切り込みを入れて圧力をかけて成形し、吸着剤を凹部に配置し、真空断熱材の表面の凹凸を抑えると、切り込みの方向が一定でないので、切り込みを入れるのは時間がかかり、生産性が悪くなる。   In addition, in order to suppress the deterioration of the degree of vacuum, which is a cause of lowering the heat insulation performance, the vacuum heat insulating material is arranged in the outer packaging material. When cutting is made and pressure is applied, the adsorbent is placed in the recess, and the unevenness on the surface of the vacuum heat insulating material is suppressed, the direction of the cut is not constant. Sexuality gets worse.

本発明は、上記のような課題を解決するためになされたものであって、断熱性能が良く、生産性、取り扱い性、リサイクル性に優れ、さらに吸着剤の挿入性にも優れた真空断熱材及びこの真空断熱材を備えた断熱箱を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and has a good heat insulation performance, excellent productivity, handleability, recyclability, and excellent vacuum insertability. And it aims at providing the heat insulation box provided with this vacuum heat insulating material.

本発明に係る真空断熱材は、
ガスバリア性容器に芯材を封入して内部を減圧状態にした真空断熱材であって、
芯材は、シート状の繊維集合体が内周から外周に向かって連続して巻き付けられて積層構造とされ、積層構造の巻き付け方向の片側端部を切断したものである。
また、本発明に係る断熱箱は、外箱と、外箱の内部に配置された内箱とを備え、外箱と内箱との間に上記の真空断熱材を配置したものである。
The vacuum heat insulating material according to the present invention is
A vacuum heat insulating material in which a core material is sealed in a gas barrier container and the inside is in a reduced pressure state,
The core material is obtained by continuously winding a sheet-like fiber assembly from the inner periphery toward the outer periphery to form a laminated structure, and cutting one end portion in the winding direction of the laminated structure.
Moreover, the heat insulation box which concerns on this invention is equipped with an outer box and the inner box arrange | positioned inside the outer box, and arrange | positions said vacuum heat insulating material between an outer box and an inner box.

本発明によれば、資源の有効利用を図りつつ、取り扱い性、断熱性能、生産性に優れた真空断熱材を得ることができる。
また、断熱性に優れた断熱箱を得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material excellent in handling property, heat insulation performance, and productivity can be obtained, aiming at effective utilization of resources.
Moreover, the heat insulation box excellent in heat insulation can be obtained.

本発明の実施の形態1に係る真空断熱材の斜視図である。It is a perspective view of the vacuum heat insulating material which concerns on Embodiment 1 of this invention. 図1の分解斜視図である。FIG. 2 is an exploded perspective view of FIG. 1. 図1の真空断熱材の芯材の積層状態を示す説明図である。It is explanatory drawing which shows the lamination | stacking state of the core material of the vacuum heat insulating material of FIG. 図1の真空断熱材の芯材の片側端部を切断した状態の斜視図である。It is a perspective view of the state which cut | disconnected the one side edge part of the core material of the vacuum heat insulating material of FIG. 図4の真空断熱材の芯材を外包材に挿入した状態の斜視図である。It is a perspective view of the state which inserted the core material of the vacuum heat insulating material of FIG. 4 in the outer packaging material. 図5の芯材を真空引きしたあとの真空断熱材を示す斜視図である。It is a perspective view which shows the vacuum heat insulating material after evacuating the core material of FIG. 図4の真空断熱材の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the vacuum heat insulating material of FIG. 本発明の実施の形態2に係る真空断熱材の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the vacuum heat insulating material which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る真空断熱材の芯材の一部を断面で示した斜視図である。It is the perspective view which showed a part of core material of the vacuum heat insulating material which concerns on Embodiment 3 of this invention in the cross section. 図9の真空断熱材の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the vacuum heat insulating material of FIG. 本発明の実施の形態4に係る真空断熱材の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the vacuum heat insulating material which concerns on Embodiment 4 of this invention. 図11に続く真空断熱材の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the vacuum heat insulating material following FIG. 本発明の実施の形態5に係る断熱箱の断面図である。It is sectional drawing of the heat insulation box which concerns on Embodiment 5 of this invention.

[実施の形態1:真空断熱材]
図1、図2において、真空断熱材6は、空気遮断性を有するガスバリア性容器2(以下、外包材という)と、外包材2に封入された芯材1およびガス吸着剤3とを有しており、外包材2の内部は所定の真空度に減圧されている。真空断熱材6の外包材2は、ナイロン、アルミ蒸着PET、アルミ箔、高密度ポリエチレンで構成された、ガスバリア性のあるプラスチックラミネートフィルムからなる。また、外包材2に封入された芯材1は、図3に示すように、複数のシート状(帯状)の繊維集合体(不織布)を積層したもので、この繊維集合体は、長繊維の有機繊維集合体であり、例えば熱エンボス加工が施されたポリエステルの有機繊維不織布である。さらに、吸着剤3は、芯材1を構成するポリエステルの有機繊維集合体の水分を吸収することができる酸化カルシウムである。なお、吸着剤3には、合成ゼオライトなどのガス吸着剤を併用してもよい。
[Embodiment 1: Vacuum heat insulating material]
1 and 2, the vacuum heat insulating material 6 includes a gas barrier container 2 (hereinafter referred to as an outer packaging material) having an air barrier property, and a core material 1 and a gas adsorbent 3 enclosed in the outer packaging material 2. The inside of the outer packaging material 2 is depressurized to a predetermined degree of vacuum. The outer packaging material 2 of the vacuum heat insulating material 6 is made of a plastic laminated film having a gas barrier property made of nylon, aluminum vapor-deposited PET, aluminum foil, and high-density polyethylene. Moreover, the core material 1 enclosed in the outer packaging material 2 is a laminate of a plurality of sheet-like (band-like) fiber assemblies (nonwoven fabrics), as shown in FIG. An organic fiber aggregate, for example, a polyester organic fiber nonwoven fabric subjected to hot embossing. Further, the adsorbent 3 is calcium oxide that can absorb the moisture of the polyester organic fiber aggregate constituting the core material 1. The adsorbent 3 may be used in combination with a gas adsorbent such as synthetic zeolite.

以下に、真空断熱材6の芯材1の構成について述べる。
図4に示すように、芯材1は、複数枚(本実施の形態では2枚)の幅Xのシート状の有機繊維集合体を、内周から外周に向かって連続して巻き付け、ロール状にして積層したもので、巻き付け方向の片側端部A、BのA側のみを切断(カット)したものである。この切断部4は、減圧状態前は芯材1の内部側の中央部1aに向かって凹状に形成されている。例えば、芯材1の内部側の中央部1aに向かって断面ほぼV字状に形成され、外側に向かって拡がる第1、第2の傾斜面4a、4bを有している。そして、芯材1の切断部4の下部側の第1の傾斜面4aには、吸着剤3を載置してある。
Below, the structure of the core material 1 of the vacuum heat insulating material 6 is described.
As shown in FIG. 4, the core material 1 is formed by continuously winding a plurality of (two in the present embodiment) sheet-like organic fiber aggregates having a width X from the inner periphery toward the outer periphery. In this case, only the A side of one end A, B in the winding direction is cut (cut). This cutting part 4 is formed in a concave shape toward the central part 1a on the inner side of the core material 1 before the decompression state. For example, it has the 1st, 2nd inclined surface 4a, 4b which is formed in the cross-section substantially V shape toward the center part 1a of the inner side of the core 1, and expands toward the outer side. The adsorbent 3 is placed on the first inclined surface 4 a on the lower side of the cutting portion 4 of the core material 1.

そして、芯材1の切断部4は外包材2の挿入口5側に向けて挿入されており、芯材1は減圧状態(真空状態)にされ、断面ほぼV字状の切断部4は閉じられて、第1、第2の傾斜面4a、4bが合わさり、図6のように表面が平滑になる。   The cutting portion 4 of the core material 1 is inserted toward the insertion port 5 side of the outer packaging material 2, the core material 1 is in a reduced pressure state (vacuum state), and the cutting portion 4 having a substantially V-shaped cross section is closed. Thus, the first and second inclined surfaces 4a and 4b are combined, and the surface becomes smooth as shown in FIG.

上記のように構成した真空断熱材6の製造方法について説明する。
図7に示すように、幅Xの有機繊維集合体10、11をコイル状に巻いてなるロール20、21を2セット用意し、それぞれのロール20、21を前後方向ロ(ロールの軸方向イと直交する方向)に並べて、同時に巻き枠22で巻き取り、巻き枠22を外す。次に、図4に示すように、巻き付け方向の片側端部A、BのA側のみを外側に向かって拡がる断面ほぼV字状に切断する。切断部4の下側の第1の傾斜面4aに吸着剤3を載置し、図5のように、芯材1をその切断部4が外包材2の挿入口5側に向くようにして挿入し、真空包装機を用いて、外包材2を例えば2.0Pa以下に一定時間保持し、その後、図6に示すように、外包材2の挿入口5側を封止し、真空断熱材6を形成する。この際、芯材1の第1、第2の傾斜面4a、4bが閉じる。
The manufacturing method of the vacuum heat insulating material 6 comprised as mentioned above is demonstrated.
As shown in FIG. 7, two sets of rolls 20 and 21 formed by winding the organic fiber aggregates 10 and 11 having a width X in a coil shape are prepared, and the rolls 20 and 21 are arranged in the front-rear direction (the axial direction of the roll In the direction perpendicular to the sheet), and simultaneously wound up by the reel 22, and the reel 22 is removed. Next, as shown in FIG. 4, only the A side of the one-side end portions A and B in the winding direction is cut into a substantially V-shaped cross section extending outward. The adsorbent 3 is placed on the first inclined surface 4a on the lower side of the cutting portion 4 so that the core material 1 faces the insertion port 5 side of the outer packaging material 2 as shown in FIG. Insert and hold the outer packaging material 2 at, for example, 2.0 Pa or less for a certain time using a vacuum packaging machine, and then seal the insertion port 5 side of the outer packaging material 2 as shown in FIG. 6 is formed. At this time, the first and second inclined surfaces 4a and 4b of the core material 1 are closed.

このようにして形成した真空断熱材6の断熱性能を熱伝導率で評価した。熱伝導率は、英弘精機社製の熱伝導率測定機で測定した結果、従来の所望する芯材の寸法にあわせた有機繊維集合体を積層して得られる真空断熱材の熱伝導率0.0023W/m・Kに対して、0.0023W/m・Kと同等の値が得られた。   The heat insulating performance of the vacuum heat insulating material 6 thus formed was evaluated by thermal conductivity. The thermal conductivity was measured with a thermal conductivity measuring machine manufactured by Eiko Seiki Co., Ltd. As a result, the thermal conductivity of a vacuum heat insulating material obtained by laminating organic fiber aggregates matched to the dimensions of a conventional desired core material was 0. A value equivalent to 0.0023 W / m · K was obtained for 0023 W / m · K.

上記のように、複数枚の繊維集合体をロール状に積層して、巻き付け方向の片側端部Aのみを切断するようにしたので、真空引き性を向上させることができる。また、1枚1枚切断したシートを重ねるよりも生産性に優れる。さらに、端部を切断するのでこの切断部4から吸着剤3を入れやすくなり、生産性が向上する。また、片側端部Aが薄くなるので、薄くなった部分に吸着剤3を挟み込み真空断熱材1を形成すると、より表面が平滑になり、ピンホールによるスローリークによる断熱性能の悪化を防ぐこともできる。   As described above, since a plurality of fiber assemblies are laminated in a roll shape and only one end portion A in the winding direction is cut, the vacuum drawability can be improved. Further, the productivity is superior to stacking sheets cut one by one. Further, since the end portion is cut, it becomes easy to put the adsorbent 3 from the cut portion 4 and the productivity is improved. Moreover, since the one-side end portion A becomes thin, forming the vacuum heat insulating material 1 by sandwiching the adsorbent 3 in the thinned portion makes the surface smoother and also prevents deterioration of the heat insulating performance due to slow leak due to pinholes. it can.

[実施の形態2:真空断熱材]
実施の形態1では、芯材1は複数枚(2枚)のシート状の繊維集合体が内周から外周に向かって連続して巻き付けられて積層構造とされ、巻き付け方向の片側端部のみを切断するようにしたが、本実施の形態では、1枚のシート状の繊維集合体が内周から外周に向かって連続して巻き付けられて積層構造とされ、巻き付け方向の片側端部のみを切断するようにしたものである。
図8に示すように、幅Xの有機繊維集合体10をコイル状に巻いてなるロール20を1セット用意し、巻き枠22で巻き取り、巻き付け方向の片側端部のみを外側に向かって拡がる断面ほぼV字状に切断する。
その他の構成、作用、効果は、実質的に実施の形態1に示した場合と同様なので、説明を省略する。
[Embodiment 2: Vacuum insulation]
In Embodiment 1, the core material 1 has a laminated structure in which a plurality (two) of sheet-like fiber assemblies are continuously wound from the inner periphery toward the outer periphery, and only one end portion in the winding direction is formed. In this embodiment, one sheet-like fiber assembly is continuously wound from the inner periphery toward the outer periphery to form a laminated structure, and only one end in the winding direction is cut. It is what you do.
As shown in FIG. 8, one set of rolls 20 obtained by winding the organic fiber assembly 10 having a width X in a coil shape is prepared, wound by a winding frame 22, and only one end portion in the winding direction is expanded outward. Cut into a substantially V-shaped cross section.
Other configurations, operations, and effects are substantially the same as those shown in the first embodiment, and a description thereof will be omitted.

[実施の形態3:真空断熱材]
本実施の形態3では、芯材1は、実施の形態1で示したように複数枚のシートを連続して巻きつけて巻き付け方向の片側端部を切断したものであるが、さらに、同一幅のシート状の繊維集合体を幅方向に複数並列して、合わせ目部分を有するシート状の複数繊維集合体としたものである。
[Embodiment 3: Vacuum heat insulating material]
In the third embodiment, the core material 1 is obtained by continuously winding a plurality of sheets as shown in the first embodiment and cutting one end in the winding direction. A plurality of sheet-like fiber aggregates are arranged in parallel in the width direction to form a sheet-like plural fiber aggregate having a joint portion.

図9(一部簡略化してある)に示すように、芯材1は、寸法Yのシート状の長繊維の有機繊維集合体(又は有機繊維不織布)10a〜10d、11a〜11dを、幅方向イに複数個、例えば4個並列させて、幅Xのシート状の第1、第2の複数繊維集合体100、110をそれぞれ形成し、これを内周から外周に向かって連続して巻き付けてロール状に積層したものである。このとき、第1、第2の複数繊維集合体100、110を構成する有機繊維集合体10a〜10d、11a〜11dのそれぞれの合わせ目部分12、13が上下で重ならないように、幅方向イに交互にずらしており、合わせ目12、13の間の有機繊維集合体10、11の摩擦を利用してずれるのを防止し、平滑な表面を得るようにしてある。そして、第1、第2の複数繊維集合体100、110の片側端部Aを、芯材1の中央部1aから外側に向かって拡がるほぼV字状に切断している。そして、芯材1の切断部4の下部側の第1の傾斜面4aには吸着剤3を載置してある。   As shown in FIG. 9 (partially simplified), the core material 1 includes sheet-like long fiber organic fiber assemblies (or organic fiber nonwoven fabrics) 10a to 10d and 11a to 11d having a dimension Y in the width direction. A plurality of, for example, four, are arranged in parallel to form sheet-like first and second plural fiber assemblies 100, 110 each having a width X, and these are continuously wound from the inner periphery toward the outer periphery. It is laminated in a roll shape. At this time, in the width direction I, the joint portions 12 and 13 of the organic fiber assemblies 10a to 10d and 11a to 11d constituting the first and second multiple fiber assemblies 100 and 110 do not overlap each other. Are shifted alternately to prevent slippage by utilizing the friction of the organic fiber aggregates 10 and 11 between the joints 12 and 13 so as to obtain a smooth surface. And the one side edge part A of the 1st, 2nd multiple fiber aggregates 100 and 110 is cut | disconnected in the substantially V shape extended toward the outer side from the center part 1a of the core material 1. FIG. The adsorbent 3 is placed on the first inclined surface 4 a on the lower side of the cutting portion 4 of the core material 1.

上記のように構成した真空断熱材6の製造方法について説明する。
図10に示すように、幅Yの有機繊維集合体をコイル状に巻いてなる個別ロールを、幅方向イに4個並べた幅Xの複数繊維集合体(以下、集合ロール200、210という)を2セット用意し、それぞれ個別ロール20a〜20d、21a〜21dからなる集合ロール200、210を前後方向ロに並べて、同時に巻き枠22で巻き取る。この場合、第1、第2の集合ロール200、210を幅方向イにずらして、第1、第2の複数繊維集合体100、110の合わせ目部分12、13の位置をずらすようにしてある。
こうして、第1、第2の複数繊維集合体100、110を2セット分同時に巻き枠22に巻き取り、巻き付け方向の片側端部Aを切断し、図9に示すような芯材1を形成する。
その他の構成、作用、効果は、実質的に実施の形態1に示した場合と同様なので、説明を省略する。
The manufacturing method of the vacuum heat insulating material 6 comprised as mentioned above is demonstrated.
As shown in FIG. 10, a plurality of individual fiber assemblies each having a width X in which four individual rolls formed by winding organic fiber assemblies having a width Y in a coil shape are arranged in the width direction A (hereinafter referred to as aggregate rolls 200 and 210). 2 sets are prepared, and collective rolls 200 and 210 each made up of individual rolls 20a to 20d and 21a to 21d are arranged in the front-rear direction B, and are simultaneously wound around the reel 22. In this case, the positions of the joint portions 12 and 13 of the first and second multi-fiber assemblies 100 and 110 are shifted by shifting the first and second assembly rolls 200 and 210 in the width direction A. .
In this way, two sets of the first and second multi-fiber assemblies 100 and 110 are simultaneously wound on the winding frame 22, and one end A in the winding direction is cut to form the core material 1 as shown in FIG. .
Other configurations, operations, and effects are substantially the same as those shown in the first embodiment, and a description thereof will be omitted.

こうして、最初の巻き付け部を除き、合わせ目部分12、13が上下で異なる層が交互に積み重なっていくために、強度を確保することができ、平滑な表面を得ることが出来る。そして、巻き付け方向の片方端部Aを外側に向かって拡がる断面ほぼV字状に切断するようにしたので、真空引き性を向上させることができる。また、1枚1枚切断したシートを重ねるよりも生産性に優れる。   In this way, since the layers where the seam portions 12 and 13 are different from each other are alternately stacked except for the first winding portion, the strength can be ensured and a smooth surface can be obtained. And since the one end part A of the winding direction was cut | disconnected in the cross-sectional substantially V shape expanded toward an outer side, evacuation property can be improved. Also, it is more productive than stacking cut sheets one by one.

なお、本発明の芯材1と異なり、繊維集合体としてグラスウールなどの無機繊維を用いた場合は、バインダー加工のないものはロールでの巻取り加工が困難であり、また、バインダー加工が施してあっても、繊維自体が硬くて脆いため折損するなどして製造が困難で、粉が発生して作業環境の悪化や断熱性能の悪化を招くため同様の方法による実施は難しい。   In addition, unlike the core material 1 of the present invention, when inorganic fibers such as glass wool are used as the fiber aggregate, those without binder processing are difficult to wind with a roll, and binder processing is performed. Even if it exists, since the fiber itself is hard and brittle, it is difficult to manufacture due to breakage or the like, and powder is generated to cause deterioration of the working environment and heat insulation performance.

[実施の形態4:真空断熱材]
実施の形態3では、芯材は、合わせ目部分を有する2枚のシート状の複数繊維集合体を内周から外周に向かって連続して巻きつけて積層し、巻きつけ方向の片側端部を切断しているが、本実施の形態4では、芯材は、1枚のシートを連続して斜めに巻きつけて複数繊維集合体を形成し、巻き付け方向の片側端部を切断したものである。
[Embodiment 4: Vacuum insulation]
In Embodiment 3, the core material is formed by continuously winding and laminating two sheet-like multiple fiber assemblies having a joint portion from the inner periphery toward the outer periphery, and one end in the winding direction is formed. In the fourth embodiment, the core material is obtained by continuously winding one sheet obliquely to form a plurality of fiber assemblies and cutting one end portion in the winding direction. .

図11、図12に示すように、芯材1は、幅方向イの寸法Yのシート状の有機繊維集合体10を一定の角度に傾けて巻回して、幅Xの複数繊維集合体100を形成する。このとき、有機繊維集合体100の前後の合わせ目部分12が幅方向イに傾斜して平行に配設され、上下に隣接する有機繊維集合体10の合わせ目部分12は逆方向に傾斜して平行に配設されている。そして、巻き付け方向の片側端部Aに、断面ほぼV字状の切断部が形成され、吸着剤が載置される。   As shown in FIG. 11 and FIG. 12, the core material 1 is formed by winding a sheet-like organic fiber assembly 10 having a dimension Y in the width direction A with a certain angle and winding a plurality of fiber assemblies 100 having a width X. Form. At this time, the seam portions 12 before and after the organic fiber assembly 100 are disposed in parallel while being inclined in the width direction A, and the seam portions 12 of the organic fiber assemblies 10 adjacent in the vertical direction are inclined in the opposite direction. They are arranged in parallel. A cut portion having a substantially V-shaped cross section is formed at one end A in the winding direction, and the adsorbent is placed thereon.

上記のように構成した真空断熱材の製造方法について説明する。
図11に示すように、シート状の有機繊維集合体10が巻かれた個別ロール(単一ロール)20を1つ用意し、これをスライド式の巻き枠22に巻き取る。このとき、図12に示すように、個別ロール20の軸方向を、巻き枠22の軸方向に対して一定の角度傾けながら巻き付けていき、所定の寸法分の幅に巻き付けたところで折り返し、同様にして巻き付けていく。そして、巻き枠22を除去し、片側端部Aのみ切断して芯材1を形成する。
その他の構成、作用、効果は、実質的に実施の形態1に示した場合と同様なので、説明を省略する。
The manufacturing method of the vacuum heat insulating material comprised as mentioned above is demonstrated.
As shown in FIG. 11, one individual roll (single roll) 20 around which the sheet-like organic fiber assembly 10 is wound is prepared, and this is wound around a slide type reel 22. At this time, as shown in FIG. 12, the individual rolls 20 are wound while being tilted at a certain angle with respect to the axial direction of the winding frame 22, and are folded back when wound to a predetermined width. Wrap around. Then, the winding frame 22 is removed, and only the end A on one side is cut to form the core material 1.
Other configurations, operations, and effects are substantially the same as those shown in the first embodiment, and a description thereof will be omitted.

[実施の形態5:断熱箱]
図13において、断熱箱である冷蔵庫30は、外箱31と、外箱31の内部に配置された内箱32と、外箱31と内箱32との間に配置された真空断熱材6およびポリウレタンフォーム(断熱材)33と、内箱32内に冷熱を供給する冷凍ユニット(図示せず)とを有している。なお、外箱31および内箱32は、共通する面にそれぞれ開口部(図示せず)が形成されており、この開口部に開閉扉(図示せず)が設けられている。
[Embodiment 5: Insulation box]
In FIG. 13, the refrigerator 30 which is a heat insulating box includes an outer box 31, an inner box 32 disposed inside the outer box 31, a vacuum heat insulating material 6 disposed between the outer box 31 and the inner box 32, and A polyurethane foam (heat insulating material) 33 and a refrigeration unit (not shown) for supplying cold heat into the inner box 32 are provided. The outer box 31 and the inner box 32 each have an opening (not shown) on a common surface, and an opening / closing door (not shown) is provided in the opening.

上記の冷蔵庫において、真空断熱材6の外包材2はアルミ箔を含んでいるため(図1参照)、このアルミ箔を通って熱が回り込むヒートブリッジが生じるおそれがある。このため、ヒートブリッジの影響を抑制するため、真空断熱材6は樹脂成形品であるスペーサ34を用いて、外箱31の塗装鋼板から離して配設されている。なお、スペーサ34は後工程で断熱壁内に注入されるポリウレタンフォームにボイドが残らないように、流動を阻害しないための孔が、適宜設けられている。すなわち、冷蔵庫30は、真空断熱材6、スペーサ34およびポリウレタンフォーム33によって形成された断熱壁35を有している。なお、断熱壁35が配置される範囲は限定するものではなく、外箱31と内箱32との間に形成される隙間の全範囲であっても、あるいは一部であってもよく、また、前記開閉扉の内部に配置してもよい。   In the refrigerator described above, since the outer packaging material 2 of the vacuum heat insulating material 6 includes an aluminum foil (see FIG. 1), there is a possibility that a heat bridge is formed in which heat flows through the aluminum foil. For this reason, in order to suppress the influence of a heat bridge, the vacuum heat insulating material 6 is arrange | positioned away from the coated steel plate of the outer case 31 using the spacer 34 which is a resin molded product. In addition, the spacer 34 is appropriately provided with holes for not inhibiting the flow so that voids do not remain in the polyurethane foam injected into the heat insulating wall in a later step. That is, the refrigerator 30 has a heat insulating wall 35 formed by the vacuum heat insulating material 6, the spacer 34, and the polyurethane foam 33. In addition, the range in which the heat insulation wall 35 is disposed is not limited, and may be the entire range of the gap formed between the outer box 31 and the inner box 32 or a part thereof. The door may be disposed inside the opening / closing door.

上記のように構成した冷蔵庫30は、使用済みとなった場合、家電リサイクル法に基づき、各地のリサイクルセンターで解体、リサイクルされる。この際、従来のように冷蔵庫の真空断熱材の芯材が無機粉末である場合は、破砕処理を行う際、粉末が飛散して、箱体のまま破砕処理を行うことはできず、冷蔵庫箱体から真空断熱材を取り外す際、非常に手間がかかる。また、従来のように冷蔵庫の真空断熱材の芯材がガラス繊維である場合は、箱体のまま破砕処理することができ、破砕後のガラス繊維はポリウレタンフォームの粉砕物に混じってサーマルリサイクルに供されるが、この際、燃焼効率を低下させたり、燃焼後の残渣になったりするなどリサイクル性に難点がある。   When the refrigerator 30 configured as described above is used, it is dismantled and recycled at recycling centers in various places based on the Home Appliance Recycling Law. At this time, when the core material of the vacuum heat insulating material of the refrigerator is an inorganic powder as in the conventional case, when the crushing process is performed, the powder is scattered, and the crushing process cannot be performed as it is in the box. It takes a lot of work to remove the vacuum insulation from the body. In addition, when the core material of the vacuum heat insulating material of the refrigerator is glass fiber as in the past, it can be crushed as it is in the box, and the crushed glass fiber is mixed with the pulverized polyurethane foam for thermal recycling. At this time, however, there is a difficulty in recyclability such as lowering the combustion efficiency or becoming a residue after combustion.

これに対して、本発明に係る冷蔵庫30は、繊維集合体(有機繊維集合体)によって形成された芯材1が配設された真空断熱材6を有するため、真空断熱材6を取り外すことなく破砕処理を行うことができ、サーマルリサイクルに際して燃焼効率を下げたり、残渣となったりすることがなく、リサイクル性がよい。   On the other hand, since the refrigerator 30 according to the present invention includes the vacuum heat insulating material 6 in which the core material 1 formed of a fiber assembly (organic fiber assembly) is disposed, the vacuum heat insulating material 6 is not removed. The crushing process can be performed, and the recyclability is good without causing a reduction in combustion efficiency or a residue during thermal recycling.

上記の説明では、断熱箱が冷蔵庫30である場合を示したが、本発明はこれに限定するものではなく、自動販売機、保冷庫、車両空調機、給湯機、冷凍・空調装置などの冷熱機器あるいは温熱機器、さらには、所定の形状を具備する箱に替えて、変形自在な外袋および内袋を具備する断熱袋(断熱容器)であってもよい。これらの場合に、断熱箱では、温度調整手段を設けて、内箱の内部の温度を調整するようにしてもよい。   In the above description, the case where the heat insulation box is the refrigerator 30 is shown, but the present invention is not limited to this, and cold heat such as vending machines, cold storage, vehicle air conditioners, water heaters, refrigeration / air conditioners, etc. Insulating bags (insulating containers) having deformable outer bags and inner bags may be used instead of devices or thermal devices, and boxes having a predetermined shape. In these cases, the heat insulating box may be provided with temperature adjusting means to adjust the temperature inside the inner box.

1 芯材、1a 芯材の内部側の中央部、2 外包材(ガスバリア性容器)、3 吸着剤、4 切断部、5 挿入口、6 真空断熱材、10、11 繊維集合体、12、13 合わせ目部分、31 外箱、32 内箱、 33 ポリウレタンフォーム(断熱材)、34 スペーサ、100、110 複数繊維集合体、A 巻き付け方向の片側端部。   DESCRIPTION OF SYMBOLS 1 Core material, 1a Center part inside the core material, 2 Outer packaging material (gas barrier container), 3 Adsorbent, 4 Cutting part, 5 Insertion port, 6 Vacuum heat insulating material 10, 11 Fiber aggregate, 12, 13 Seam portion, 31 outer box, 32 inner box, 33 polyurethane foam (heat insulating material), 34 spacer, 100, 110 multiple fiber aggregate, A one end in the winding direction.

Claims (15)

ガスバリア性容器に芯材を封入して内部を減圧状態にした真空断熱材であって、
前記芯材は、シート状の繊維集合体が内周から外周に向かって連続して巻き付けられて積層構造とされ、前記積層構造の巻き付け方向の片側端部を切断したことを特徴とする真空断熱材。
A vacuum heat insulating material in which a core material is sealed in a gas barrier container and the inside is in a reduced pressure state,
The core material has a laminated structure in which a sheet-like fiber assembly is continuously wound from the inner periphery toward the outer periphery, and a one-side end portion in the winding direction of the laminated structure is cut. Wood.
前記芯材の巻き付け方向の片側端部に形成された切断部が、減圧状態前に前記芯材の内部側に向かって凹状に形成されたことを特徴とする請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein a cut portion formed at one end portion in the winding direction of the core material is formed in a concave shape toward the inner side of the core material before the decompression state. 前記切断部は、減圧状態前に前記芯材の内部側の中央部に向かって凹状に形成されたことを特徴とする請求項2記載の真空断熱材。   The vacuum heat insulating material according to claim 2, wherein the cut portion is formed in a concave shape toward a central portion on the inner side of the core material before the decompression state. 前記切断部は、前記芯材の内部側の中央部に向かって断面ほぼV字状に形成されたことを特徴とする請求項3記載の真空断熱材。   4. The vacuum heat insulating material according to claim 3, wherein the cut portion is formed in a substantially V-shaped cross section toward a central portion on the inner side of the core member. 前記芯材の切断部をガスバリア性容器の挿入口側に配設して減圧封止したことを特徴とする請求項1〜4のいずれかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 4, wherein a cut portion of the core material is disposed on the insertion port side of the gas barrier container and sealed under reduced pressure. 前記芯材の切断部に吸着剤を載置し、前記切断部をガスバリア性容器の挿入口側に配設して減圧封止したことを特徴とする請求項1〜4のいずれかに記載の真空断熱材。   The adsorbent is placed on the cutting portion of the core material, and the cutting portion is disposed on the insertion port side of the gas barrier container and sealed under reduced pressure. Vacuum insulation. 前記芯材は、複数枚のシート状の繊維集合体が内周から外周に向かって連続して巻き付けられて積層構造とされたものであることを特徴とする請求項1〜6のいずれかに記載の真空断熱材。   The core material is a laminate structure in which a plurality of sheet-like fiber assemblies are continuously wound from the inner periphery toward the outer periphery. The vacuum insulation material described. 前記芯材は、1枚のシート状の繊維集合体が内周から外周に向かって連続して巻き付けられて積層構造とされたものであることを特徴とする請求項1〜6のいずれかに記載の真空断熱材。   7. The core material according to claim 1, wherein a single sheet-like fiber assembly is continuously wound from the inner periphery toward the outer periphery to form a laminated structure. The vacuum insulation material described. 前記芯材は、シート状の繊維集合体を複数並列して、合わせ目部分を有するシート状の複数繊維集合体によって形成されたものであることを特徴とする請求項7または8記載の真空断熱材。   The vacuum insulation according to claim 7 or 8, wherein the core material is formed of a plurality of sheet-like fiber assemblies having a joint portion in which a plurality of sheet-like fiber assemblies are arranged in parallel. Wood. 前記シート状の複数繊維集合体が同一幅のシート状の繊維集合体からなることを特徴とする請求項9記載の真空断熱材。   The vacuum heat insulating material according to claim 9, wherein the plurality of sheet-like fiber aggregates are made of sheet-like fiber aggregates having the same width. 前記シート状の繊維集合体は、シート状の長繊維の有機繊維集合体または有機繊維不織布であることを特徴とする請求項1〜10のいずれかに記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the sheet-like fiber aggregate is a sheet-like long-fiber organic fiber aggregate or an organic fiber nonwoven fabric. 外箱と、前記外箱の内部に配置された内箱とを備え、前記外箱と内箱との間に請求項1〜11のいずれかに記載の真空断熱材6を配置したことを特徴とする断熱箱。   It comprises an outer box and an inner box arranged inside the outer box, and the vacuum heat insulating material 6 according to any one of claims 1 to 11 is arranged between the outer box and the inner box. Insulated box. 前記外箱と前記真空断熱材との間、および前記内箱と前記真空断熱材との間の両方またはいずれか一方に、断熱材が充填されたことを特徴とする請求項12記載の断熱箱。   The heat insulation box according to claim 12, wherein a heat insulation material is filled between the outer box and the vacuum heat insulation material and / or between the inner box and the vacuum heat insulation material. . 前記外箱と前記真空断熱材との間にスペーサを配設したことを特徴とする請求項12または13記載の断熱箱。   The heat insulation box according to claim 12 or 13, wherein a spacer is disposed between the outer box and the vacuum heat insulating material. 温度調整手段によって前記内箱の内部温度を調整することを特徴とする請求項12〜14のいずれかに記載の断熱箱。   The heat insulation box according to any one of claims 12 to 14, wherein an internal temperature of the inner box is adjusted by a temperature adjusting means.
JP2010046335A 2010-03-03 2010-03-03 Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material Expired - Fee Related JP5448937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046335A JP5448937B2 (en) 2010-03-03 2010-03-03 Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046335A JP5448937B2 (en) 2010-03-03 2010-03-03 Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material

Publications (2)

Publication Number Publication Date
JP2011179635A true JP2011179635A (en) 2011-09-15
JP5448937B2 JP5448937B2 (en) 2014-03-19

Family

ID=44691342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046335A Expired - Fee Related JP5448937B2 (en) 2010-03-03 2010-03-03 Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP5448937B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149720A (en) * 2011-01-20 2012-08-09 Mitsubishi Electric Corp Method and device for manufacturing vacuum heat insulating material, vacuum heat insulating material, heat insulating box using the same, and apparatus using vacuum heat insulating material
JP2013076471A (en) * 2013-01-30 2013-04-25 Mitsubishi Electric Corp Heat insulating wall, refrigerator, and equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334395A (en) * 1986-04-30 1988-02-15 新明和工業株式会社 Radiant-heat reflecting material for vacuum multilayer heat-insulating tube
US4984605A (en) * 1988-02-03 1991-01-15 Kabelmetal Electro Conducting tube
JPH07331572A (en) * 1994-06-08 1995-12-19 Osaka Gas Co Ltd Low-density laminated thermal insulation material and its production
JP2008223922A (en) * 2007-03-14 2008-09-25 Sharp Corp Vacuum heat insulating material
JP2009041592A (en) * 2007-08-06 2009-02-26 Mitsubishi Electric Corp Vacuum heat insulating material and insulation box
JP2009133336A (en) * 2007-11-28 2009-06-18 Mitsubishi Electric Corp Vacuum heat insulating material
JP2010106876A (en) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp Vacuum heat insulating material and insulated box using the same
WO2010073762A1 (en) * 2008-12-26 2010-07-01 三菱電機株式会社 Vacuum insulation material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device, and appliance each employing vacuum insulation material, and process for producing vacuum insulation material
JP2012042011A (en) * 2010-08-20 2012-03-01 Sharp Corp Vacuum heat insulating material and manufacturing method thereof
JP2012067851A (en) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp Vacuum heat insulating material, heat insulating wall, refrigerator, and manufacturing method of vacuum heat insulating material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334395A (en) * 1986-04-30 1988-02-15 新明和工業株式会社 Radiant-heat reflecting material for vacuum multilayer heat-insulating tube
US4984605A (en) * 1988-02-03 1991-01-15 Kabelmetal Electro Conducting tube
JP2662432B2 (en) * 1988-02-03 1997-10-15 カーベルメタル・エレクトロ・ゲゼル シヤフト・ミト・ベシユレンクテル・ハフツング Conduits for transporting cryogenic media
JPH07331572A (en) * 1994-06-08 1995-12-19 Osaka Gas Co Ltd Low-density laminated thermal insulation material and its production
JP2008223922A (en) * 2007-03-14 2008-09-25 Sharp Corp Vacuum heat insulating material
JP2009041592A (en) * 2007-08-06 2009-02-26 Mitsubishi Electric Corp Vacuum heat insulating material and insulation box
JP2009133336A (en) * 2007-11-28 2009-06-18 Mitsubishi Electric Corp Vacuum heat insulating material
JP2010106876A (en) * 2008-10-28 2010-05-13 Mitsubishi Electric Corp Vacuum heat insulating material and insulated box using the same
WO2010073762A1 (en) * 2008-12-26 2010-07-01 三菱電機株式会社 Vacuum insulation material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device, and appliance each employing vacuum insulation material, and process for producing vacuum insulation material
JP2012042011A (en) * 2010-08-20 2012-03-01 Sharp Corp Vacuum heat insulating material and manufacturing method thereof
JP2012067851A (en) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp Vacuum heat insulating material, heat insulating wall, refrigerator, and manufacturing method of vacuum heat insulating material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149720A (en) * 2011-01-20 2012-08-09 Mitsubishi Electric Corp Method and device for manufacturing vacuum heat insulating material, vacuum heat insulating material, heat insulating box using the same, and apparatus using vacuum heat insulating material
JP2013076471A (en) * 2013-01-30 2013-04-25 Mitsubishi Electric Corp Heat insulating wall, refrigerator, and equipment

Also Published As

Publication number Publication date
JP5448937B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5236550B2 (en) Vacuum heat insulating material and manufacturing method thereof, and heat insulating box provided with the vacuum heat insulating material
JP5388603B2 (en) Vacuum heat insulating material and heat insulating box equipped with the same
JP4789886B2 (en) Vacuum insulation and insulation box
JP4183657B2 (en) refrigerator
WO2011048824A1 (en) Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
JP2011074934A (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
JP5241925B2 (en) Vacuum heat insulating material manufacturing apparatus, vacuum heat insulating material manufacturing method, vacuum heat insulating material, refrigerator and equipment
JP5312605B2 (en) Vacuum insulation, refrigerator and equipment
WO2017195329A1 (en) Vacuum heat-insulating material and manufacturing method therefor
JP5448937B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
EP2105648B1 (en) Vacuum heat insulating material and heat insulating box using the same
JP5907204B2 (en) Manufacturing method of vacuum insulation
JP2012092870A (en) Vacuum heat insulating material and heat insulating box using the same
JP2010127421A (en) Vacuum thermal-insulating material and thermal insulation box
JP2006070923A (en) Vacuum heat insulating material and refrigerator
WO2012164888A1 (en) Vacuum heat insulator and heat-insulating box formed using same
JP5858967B2 (en) Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, equipment using vacuum heat insulating material, and method for manufacturing vacuum heat insulating material
JP5517150B2 (en) Vacuum insulation panel packaging material and vacuum insulation panel
JP5512011B2 (en) Vacuum insulation for insulation box
JP5424929B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
JP2007016834A (en) Method of bending and cutting vacuum heat insulating material
JP2011027204A (en) Vacuum heat insulation material and insulation box provided with this vacuum heat insulation material
JP2006090499A (en) Vacuum heat insulating material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees