JP4183657B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4183657B2
JP4183657B2 JP2004166528A JP2004166528A JP4183657B2 JP 4183657 B2 JP4183657 B2 JP 4183657B2 JP 2004166528 A JP2004166528 A JP 2004166528A JP 2004166528 A JP2004166528 A JP 2004166528A JP 4183657 B2 JP4183657 B2 JP 4183657B2
Authority
JP
Japan
Prior art keywords
inorganic fiber
heat insulating
core material
waste
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004166528A
Other languages
Japanese (ja)
Other versions
JP2005345025A (en
Inventor
恒 越後屋
邦成 荒木
克美 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2004166528A priority Critical patent/JP4183657B2/en
Priority to KR1020050015607A priority patent/KR100695378B1/en
Priority to CNB2005100538392A priority patent/CN100359272C/en
Publication of JP2005345025A publication Critical patent/JP2005345025A/en
Application granted granted Critical
Publication of JP4183657B2 publication Critical patent/JP4183657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/126Insulation with respect to heat using an insulating packing material of cellular type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/064Walls defining a cabinet formed by moulding, e.g. moulding in situ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

本発明は冷蔵庫に関する。 The present invention relates to the refrigerator.

近年、地球温暖化に対する観点から、家電品の消費電力量削減の必要性が叫ばれている。特に、冷蔵庫は家電品の中で特に消費電力量を多く費やす製品であり、冷蔵庫の消費電力量削減は地球温暖化対策として必要不可欠な状況にある。冷蔵庫の消費電力は、庫内の負荷量が一定であれば、庫内冷却用圧縮機の効率と庫内からの熱漏洩量に関係する断熱材の断熱性能とによってその大部分が決まるため、冷蔵庫では圧縮機の効率向上と断熱材の性能向上を行なうことが重要となっている。   In recent years, from the viewpoint of global warming, the necessity of reducing the power consumption of home appliances has been screamed. In particular, refrigerators are products that consume a large amount of power consumption among household electrical appliances, and reducing the power consumption of refrigerators is indispensable as a measure against global warming. If the load in the refrigerator is constant, the power consumption of the refrigerator is largely determined by the efficiency of the compressor for cooling the refrigerator and the heat insulation performance of the heat insulating material related to the amount of heat leakage from the refrigerator, In the refrigerator, it is important to improve the efficiency of the compressor and the performance of the heat insulating material.

そこで、断熱材の高性能化のために、冷蔵庫に真空断熱材を使用することが行なわれるようになってきている。従来の真空断熱材を用いた冷蔵庫としては、特開2001−165557号公報(特許文献1)に開示されたものがある。この特許文献1の冷蔵庫は、シート状無機繊維集合体からなるコア材をガスバリヤ性フィルムからなる外被材で覆って内部を減圧封止した真空断熱材を形成し、この真空断熱材を外箱と内箱とで形成される空間に配置し、その周囲に発泡断熱材を充填して断熱壁を形成したものである。   Therefore, in order to improve the performance of the heat insulating material, the use of a vacuum heat insulating material in a refrigerator has been performed. As a refrigerator using the conventional vacuum heat insulating material, there exists what was disclosed by Unexamined-Japanese-Patent No. 2001-165557 (patent document 1). The refrigerator of Patent Document 1 forms a vacuum heat insulating material in which a core material made of sheet-like inorganic fiber aggregates is covered with a jacket material made of a gas barrier film, and the inside thereof is sealed under reduced pressure. It is arranged in a space formed by the inner box and a heat insulating wall formed by filling a foam heat insulating material around the space.

一方、冷蔵庫の断熱材をリサイクルして資源の有効利用を図るため、発泡断熱材の廃材を真空断熱材に用いることが考えられている。廃材利用の真空断熱材を用いた冷蔵庫としては、特開2001−349664号公報(特許文献2)に開示されたものがある。この特許文献2の冷蔵庫に用いる真空断熱材は、廃材の発泡断熱材を気流粉砕方式粉砕装置を用いて独立気泡がほとんど残存しないように微粉砕して、オープンセル構造の発泡断熱粉末を作り、この発泡断熱粉末に結合材を混合し、混合物を型内に入れて熱プレス成形して得られる発泡断熱粉末が結合材を介して接着されたコア材を備えたものである。   On the other hand, in order to recycle the heat insulating material of the refrigerator and effectively use resources, it is considered that the waste material of the foam heat insulating material is used as the vacuum heat insulating material. As a refrigerator using the vacuum heat insulating material of waste materials, there exists what was disclosed by Unexamined-Japanese-Patent No. 2001-349664 (patent document 2). The vacuum heat insulating material used in the refrigerator of Patent Document 2 is a finely pulverized waste foam heat insulating material using an airflow pulverization method pulverizer so that almost no closed cells remain, thereby creating a foam heat insulating powder having an open cell structure. A foamed heat insulating powder obtained by mixing a foamed heat insulating powder with a binder and placing the mixture in a mold and hot press molding is provided with a core material bonded via the binder.

特開2001−165557号公報JP 2001-165557 A

特開2001−349664号公報JP 2001-349664 A

特許文献1の冷蔵庫では、真空断熱材のコア材としてシート状無機繊維集合体を用いているため、断熱性能及び強度が優れているという利点を有している。しかし、特許文献1には、廃コア材を利用してシート状無機繊維集合体のコア材を形成することについては開示されておらず、資源の有効利用に関して課題があった。   In the refrigerator of patent document 1, since the sheet-like inorganic fiber aggregate is used as the core material of the vacuum heat insulating material, it has an advantage that heat insulating performance and strength are excellent. However, Patent Document 1 does not disclose that the core material of the sheet-like inorganic fiber aggregate is formed using the waste core material, and there is a problem regarding effective use of resources.

また、特許文献2の冷蔵庫では、廃材の発泡断熱材を発泡断熱粉末にして真空断熱材のコア材としているため、無機繊維集合体からなるコア材を用いた真空断熱材のような断熱性能及び強度を得ることが難しいという課題があった。また、特許文献2には、真空断熱材のコア材の廃棄物をリサイクルすることについては開示されていない。   Moreover, in the refrigerator of patent document 2, since the foam insulation material of a waste material is made into a foam insulation powder as the core material of a vacuum insulation material, the heat insulation performance like a vacuum insulation material using the core material which consists of an inorganic fiber aggregate, and There was a problem that it was difficult to obtain strength. Further, Patent Document 2 does not disclose recycling the waste of the core material of the vacuum heat insulating material.

さらには、シート状無機繊維集合体からなるコア材はシート状無機繊維集合体を複数層に重ねて結合材で結合した積層体であることが多く、その端部はその稜線が揃っていない等の理由で切断されてコア材として用いられていなかった。この切断された端材は、細長い短冊状であり、再利用されることなく一般に廃棄されており、この端材の有効利用を図ることが課題となっている。   Furthermore, the core material composed of the sheet-like inorganic fiber aggregate is often a laminate in which the sheet-like inorganic fiber aggregates are stacked in a plurality of layers and bonded with a binder, and the edges thereof are not aligned. For this reason, it was cut and not used as a core material. The cut end material has a long and narrow strip shape and is generally discarded without being reused. There is a problem in effectively using the end material.

そこで、無機繊維集合体の端材を粗粉砕したものをシート状無機繊維集合体の間に挟み、これらに結合材を供給して熱プレス成形して真空断熱材とすることが考えられる。しかし、かかる真空断熱材のコア材は、シート状無機繊維集合体と共に熱プレスされるため、各粉砕物間の結合が必ずしも十分に行なわれず、強度的に脆くなってしまうという課題があった。   Therefore, it is conceivable that coarsely pulverized end materials of the inorganic fiber aggregates are sandwiched between the sheet-like inorganic fiber aggregates, a binder is supplied to these, and hot press molding is performed to obtain a vacuum heat insulating material. However, since the core material of the vacuum heat insulating material is hot-pressed together with the sheet-like inorganic fiber aggregate, there is a problem in that the pulverized materials are not sufficiently bonded to each other and become brittle in strength.

本発明の目的は、資源の有効利用を図りつつ断熱性能に優れ且つ強度的に強い冷蔵庫を提供することにある。 An object of the present invention is to provide an effective while achieving utilization excellent thermal insulation performance and strength strong refrigerators resources.

記目的を達成するために、本発明は、外被材内にコア材を収納して減圧封止した真空断熱材を外箱と内箱との間に配設すると共に、前記外箱と前記内箱との間の空間に発泡断熱材を充填して断熱体を構成した冷蔵庫において、前記コア材は、複数のシート状の新材無機繊維集合体の間に、無機繊維集合体からなる廃コア材を粉砕した粉砕物が結合材と共に熱プレスされて繊維の方向が揃えられ且つシート状にされた廃材無機繊維集合体を挟持して積層されていると共に、これらの積層された無機繊維集合体が熱プレスされ結合材で結合された積層体で構成されていることを特徴とする冷蔵庫としたことにある。 To achieve the pre-Symbol object, the present invention is to provided a housing the core material into the enveloping member vacuum thermal insulator sealed vacuum seal between the outer box and the inner box, said outer box In the refrigerator in which the space between the inner box and the foamed heat insulating material is filled to form a heat insulator, the core material is composed of an inorganic fiber aggregate between a plurality of sheet-like new inorganic fiber aggregates. with pulverized product obtained by pulverizing waste core material is laminated to sandwich the heat-pressed by waste inorganic fiber assembly in which the direction of the fibers are in collated and sheet with binder, these laminated inorganic fibers It is in a refrigerator characterized in that the assembly is composed of a laminate that is hot-pressed and bonded with a binder.

係る本発明のより好ましい具体的な構成は次の通りである。
(1)前記シート状にされた廃材無機繊維集合体は繊維方向がほぼ平行に揃えられたものであること。
(2)前記コア材は、結合材を含まない前記新材無機繊維集合体と、結合材が残る前記廃材無機繊維集合体とが積層された積層体で構成されていること。
A more preferable specific configuration of the present invention is as follows.
(1) The waste material inorganic fiber aggregates formed into a sheet form have fiber directions aligned substantially in parallel .
(2) The said core material is comprised with the laminated body by which the said new material inorganic fiber assembly which does not contain a binding material, and the said waste material inorganic fiber assembly with which a binding material remains were laminated | stacked.

本発明によれば、資源の有効利用を図りつつ断熱性能に優れ且つ強度的に強い冷蔵庫を得ることができる。
According to the present invention, it is possible to obtain an effective while achieving utilization excellent thermal insulation performance and strength strong refrigerators resources.

以下、本発明の複数の実施例について図を用いて説明する。本発明でいう冷蔵庫には、家庭用及び業務用の冷蔵・冷凍庫の他に、自動販売機、商品陳列棚、商品陳列ケース、保冷庫、クーラボックス、冷蔵・冷凍車等が含まれる。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The refrigerator in the present invention includes vending machines, merchandise display shelves, merchandise display cases, cool storage boxes, cooler boxes, refrigeration / freezer cars, etc., in addition to household and commercial refrigeration / freezers.

本発明の第1実施例の冷蔵庫及び真空断熱材について図1から図7を用いて説明する。   The refrigerator and the vacuum heat insulating material of 1st Example of this invention are demonstrated using FIGS. 1-7.

本実施例の冷蔵庫の全体構成及びその製造方法に関して、図1及び図2を参照しながら説明する。図1は本発明の第1実施例の冷蔵庫の斜視図、図2は図1の要部断面模式図である。   The overall configuration of the refrigerator of this embodiment and the manufacturing method thereof will be described with reference to FIGS. FIG. 1 is a perspective view of a refrigerator according to a first embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of an essential part of FIG.

本実施例の冷蔵庫は、真空断熱材50を有する断熱体を構成する断熱箱体21と、真空断熱材を有する断熱体を構成する断熱扉とを備えて構成されている。断熱箱体21は、金属製の外箱22と、合成樹脂製の内箱23と、外箱22の内側に配設した複数の真空断熱材50と、外箱22と内箱23との間に充填された発泡断熱材24とからなっている。真空断熱材50は外箱22の内側の所定位置に密着してそれぞれ設置されている。具体的には、真空断熱材50は、外箱22の天井、左右側面、底面、背面の内側に密着して設置されている。係る真空断熱材50を用いた断熱箱体21とすることによって、発泡断熱材24単独で断熱体を構成する場合と比較して、熱漏洩量や消費電力量の少ない冷蔵庫を提供することができる。発泡断熱材24は、例えば硬質ウレタンフォームが用いられる。   The refrigerator according to the present embodiment includes a heat insulating box 21 that forms a heat insulating body having a vacuum heat insulating material 50 and a heat insulating door that forms a heat insulating body having a vacuum heat insulating material. The heat insulation box 21 includes a metal outer box 22, a synthetic resin inner box 23, a plurality of vacuum heat insulating materials 50 disposed inside the outer box 22, and the outer box 22 and the inner box 23. And a foam heat insulating material 24 filled in. The vacuum heat insulating material 50 is installed in close contact with a predetermined position inside the outer box 22. Specifically, the vacuum heat insulating material 50 is installed in close contact with the ceiling, left and right side surfaces, the bottom surface, and the back surface of the outer box 22. By setting it as the heat insulation box 21 using the vacuum heat insulating material 50 which concerns, compared with the case where a heat insulating body is comprised only by the foam heat insulating material 24, the refrigerator with little heat leak amount and power consumption can be provided. . As the foam heat insulating material 24, for example, a hard urethane foam is used.

かかる冷蔵庫は、真空断熱材50を外箱22の内側に配設した後、外箱22と内箱23との間の空間に発泡断熱材を充填することにより製作される。   Such a refrigerator is manufactured by filling the space between the outer box 22 and the inner box 23 with a foam heat insulating material after the vacuum heat insulating material 50 is disposed inside the outer box 22.

なお、断熱箱体21には、前面を開口した複数の貯蔵室が形成されている。これらの貯蔵室は、上から冷凍室及び冷蔵室の順に区画形成され、庫内に配置された冷却器によりそれぞれに適した所定の低温度に冷却される。なお、断熱箱体21の壁厚は、20mm〜50mm程度である。   The heat insulating box 21 is formed with a plurality of storage chambers whose front surfaces are open. These storage rooms are partitioned from the top in the order of the freezing room and the refrigerating room, and are cooled to a predetermined low temperature suitable for each by a cooler disposed in the storage. In addition, the wall thickness of the heat insulation box 21 is about 20 mm-50 mm.

断熱扉は、図示していないが、各貯蔵室の前面開口を開閉するように設けられている。断熱扉は、断熱箱体21と同様に、金属製の外箱と、合成樹脂製の内箱と、外箱の内側に配設した複数の真空断熱材と、外箱と内箱との間に充填された発泡断熱材とからなっている。この真空断熱材は、断熱箱体21側の真空断熱材50と同じ製造方法で製作される。   Although not shown, the heat insulating door is provided so as to open and close the front opening of each storage chamber. As with the heat insulation box 21, the heat insulation door is formed between a metal outer box, a synthetic resin inner box, a plurality of vacuum heat insulating materials disposed inside the outer box, and the outer box and the inner box. It consists of foam insulation material filled in. This vacuum heat insulating material is manufactured by the same manufacturing method as the vacuum heat insulating material 50 on the heat insulating box 21 side.

次に、本実施例の真空断熱パネル1の基本的な構成に関して、図2及び図3を参照しながら説明する。図3は図2に示す真空断熱パネル1の単独状態の断面模式図である。   Next, a basic configuration of the vacuum heat insulation panel 1 of the present embodiment will be described with reference to FIGS. FIG. 3 is a schematic sectional view of the vacuum heat insulation panel 1 shown in FIG.

真空断熱材50は、コア材2と、吸着部材3と、コア材2及び吸着部材3を収納し且つガスバリヤ性フィルムからなる外被材1とを備えて構成されている。この真空断熱材50は、コア材2と包装材で覆われた吸着部材3とを外被材1に収納した状態で、外被材1の内部を減圧し、外被材1の周縁部を熱融着して封止することにより作製されている。真空断熱材50の形状は、特に限定されず、適用される箇所と作業性に応じて各種形状及び厚さのものが適用可能である。   The vacuum heat insulating material 50 includes a core material 2, an adsorbing member 3, and an outer covering material 1 that houses the core material 2 and the adsorbing member 3 and is made of a gas barrier film. The vacuum heat insulating material 50 decompresses the inside of the jacket material 1 in a state where the core material 2 and the adsorbing member 3 covered with the packaging material are housed in the jacket material 1, and the peripheral portion of the jacket material 1 is removed. It is manufactured by heat sealing and sealing. The shape of the vacuum heat insulating material 50 is not specifically limited, The thing of various shapes and thickness is applicable according to the location and workability | operativity applied.

コア材2は、廃コア材を用いたシート状の廃材無機繊維集合体6と、シート状の新材無機繊維集合体7とが積層され、これらの積層された無機繊維集合体6、7が熱プレスされて結合材で結合された積層体で構成されている。   The core material 2 is formed by laminating a sheet-like waste inorganic fiber aggregate 6 using a waste core material and a sheet-like new inorganic fiber aggregate 7, and these laminated inorganic fiber aggregates 6, 7 are It is composed of a laminate that is hot-pressed and bonded with a binder.

外被材1の片側は、最外層であるナイロン層の内側にアルミニウム等の金属を蒸着した金属蒸着膜を介在させてガスバリヤ性を良好としたポリエチレンテレフタレート樹脂(PET)やガスバリヤ性の良好なアルミニウム等の金属箔を有し、高密度ポリエチレン樹脂やポリアクリロニトリル樹脂等の熱溶着可能な内層フィルムとを一体にして構成されている。外被材1の反対側は、アルミニウム等の金属を蒸着した金属蒸着膜を介在させてガスバリヤ性を良好としたポリエチレンテレフタレート樹脂(PET)を有し、更にその内側によりガスバリヤ性の良好なエチレン−ビニルアルコール共重合体フィルム(EVOH)、高密度ポリエチレン樹脂及びポリアクリロニトリル樹脂等の熱溶着可能な内層フィルムを一体に構成している。以上の2種類のラミネートされたフィルムを最内層である高密度ポリエチレン樹脂やポリアクリロニトリル樹脂等の熱溶着層で溶着し、コア材を封止する袋もしくは容器として外被材1が成形されている。   One side of the jacket material 1 is a polyethylene terephthalate resin (PET) that has a good gas barrier property by interposing a metal deposition film in which a metal such as aluminum is deposited inside the nylon layer that is the outermost layer, or an aluminum that has a good gas barrier property. And an inner layer film such as high-density polyethylene resin or polyacrylonitrile resin that can be heat-welded. The opposite side of the jacket material 1 has a polyethylene terephthalate resin (PET) having a good gas barrier property by interposing a metal vapor deposition film on which a metal such as aluminum is deposited, and further, an ethylene- A heat-weldable inner layer film such as a vinyl alcohol copolymer film (EVOH), a high density polyethylene resin and a polyacrylonitrile resin is integrally formed. The above two kinds of laminated films are welded with a heat welding layer such as a high-density polyethylene resin or polyacrylonitrile resin as the innermost layer, and the jacket material 1 is formed as a bag or container for sealing the core material. .

次に、本実施例の真空断熱材50の製造方法に関して、図4から図7を参照しながら説明する。図4は本実施例におけるコア素材からコア材2と端材4とを分離した状態を示す斜視図、図5は本実施例における端材4から廃材無機繊維集合体6を作製する工程を説明する図、図6は本実施例におけるコア素材2Aの作製方法の説明図、図7は本実施例のコア材2及び吸着剤3を外被材1内に収納した状態の断面図である。   Next, the manufacturing method of the vacuum heat insulating material 50 of a present Example is demonstrated, referring FIGS. 4-7. FIG. 4 is a perspective view illustrating a state in which the core material 2 and the end material 4 are separated from the core material in the present embodiment, and FIG. 5 illustrates a process for producing the waste material inorganic fiber aggregate 6 from the end material 4 in the present embodiment. FIG. 6 is an explanatory view of a method for producing the core material 2A in this embodiment, and FIG. 7 is a cross-sectional view of the core material 2 and the adsorbent 3 of this embodiment stored in the jacket material 1.

新材無機繊維集合体7を平均繊維径3〜4μmのガラス短繊維材を集合してシート状に作製する。この新材無機繊維集合体7は、廃コア材を用いることなく、新たな無機繊維集合体として作製される。   A new material inorganic fiber aggregate 7 is made into a sheet by collecting short glass fiber materials having an average fiber diameter of 3 to 4 μm. The new inorganic fiber aggregate 7 is produced as a new inorganic fiber aggregate without using a waste core material.

一方、その稜線が揃っていない等の理由で、先に作製したコア素材の端部を切断し、図4に示すように端材4を除去する。端材4を除去された部分がコア材2となる。端材4が除去されるコア素材は無機繊維集合体を積層して構成されているので、端材4も無機繊維集合体で構成されている。本実施例で用いられる端材4は、本実施例で製作されたコア素材2A(図6(b)参照)から切断されたものであるが、他の方法で製作された無機繊維集合体からなるコア素材から切断されたものであってもよい。   On the other hand, the edge part of the core material produced previously is cut | disconnected for the reason that the ridgeline is not aligned, etc., and the end material 4 is removed as shown in FIG. The portion from which the end material 4 is removed becomes the core material 2. Since the core material from which the end material 4 is removed is configured by laminating inorganic fiber aggregates, the end material 4 is also configured by inorganic fiber aggregates. The end material 4 used in this embodiment is cut from the core material 2A manufactured in this embodiment (see FIG. 6B), but from an inorganic fiber assembly manufactured by other methods. It may be cut from the core material.

これらの端材4を図5(a)に示すように集めて粗粉砕機に投入し、この粗粉砕機により端材4を粗粉砕して図5(b)に示す粉砕物5とする。この粉砕物5は、繊維長さがある程度残る状態に粗粉砕された粗粉砕繊維物であり、本実施例のコア材は後述するように新材無機繊維集合体7よりも平均繊維長の短い廃材無機繊維集合体6の層を有することとなる。
る。
These end materials 4 are collected as shown in FIG. 5A and put into a coarse pulverizer, and the end material 4 is coarsely pulverized by this coarse pulverizer to obtain a pulverized product 5 shown in FIG. 5B. The pulverized product 5 is a coarsely pulverized fiber product that has been coarsely pulverized so that the fiber length remains to some extent, and the core material of this example has a shorter average fiber length than the new inorganic fiber aggregate 7, as will be described later. It will have the layer of the waste material inorganic fiber assembly 6. FIG.
The

これらの粉砕物5を熱プレスして図5(c)に示すようにシート状の廃材無機繊維集合体6とする。即ち、粉砕物5は、所定の幅、厚さに揃えられ、必要に応じてホウ酸水溶液を適量含浸させて脱水して繊維がほぼ水平になるように圧縮加工が行なわれる。これによって、図5(d)の拡大図に模式的に示すように廃材無機繊維集合体6の繊維6aがほぼ水平に揃うので、廃材無機繊維集合体6の強度アップを図りつつ断熱性能を向上することができる。また、予めシート状の廃材無機繊維集合体6とすることにより、その取扱いが極めて容易になる。   These pulverized products 5 are hot-pressed to form sheet-like waste inorganic fiber aggregates 6 as shown in FIG. That is, the pulverized product 5 is made to have a predetermined width and thickness, and is compressed so that the fiber is almost horizontal by impregnating with an appropriate amount of an aqueous boric acid solution as necessary and dewatering. As a result, as shown schematically in the enlarged view of FIG. 5 (d), the fibers 6a of the waste inorganic fiber aggregate 6 are aligned substantially horizontally, so that the heat insulation performance is improved while increasing the strength of the waste inorganic fiber aggregate 6. can do. Moreover, by using the sheet-like waste material inorganic fiber aggregate 6 in advance, the handling becomes extremely easy.

次いで、廃材無機繊維集合体6と新材無機繊維集合体7とを図6(a)に示すようにして積層する。即ち、2枚の新材無機繊維集合体7の間に廃材無機繊維集合体6を挟むように積層する。なお、廃材無機繊維集合体6を複数枚用意して新材無機繊維集合体7の間に挟むようにしてもよく、廃材無機繊維集合体6の厚さを厚くする必要がある場合に、より一層の省資源を図る上で効果的である。本実施例では、廃材無機繊維集合体6を1層とし、その使用量割合はコア材全体の1/3になる量とし、同じく1/3ずつの量の新材無機繊維集合体7で廃材無機繊維集合体6を挟んでいる。廃材無機繊維集合体6及び新材無機繊維集合体7は何れもシート状であるので、その積層作業を容易に行なうことができる。   Next, the waste material inorganic fiber aggregate 6 and the new material inorganic fiber aggregate 7 are laminated as shown in FIG. That is, the waste material inorganic fiber aggregates 6 are laminated so as to sandwich the two new material inorganic fiber aggregates 7. In addition, a plurality of waste material inorganic fiber aggregates 6 may be prepared and sandwiched between the new material inorganic fiber aggregates 7. When the thickness of the waste material inorganic fiber aggregates 6 needs to be increased, further increase It is effective in saving resources. In the present embodiment, the waste material inorganic fiber aggregate 6 is made into one layer, the amount of use thereof is set to an amount that is 1/3 of the entire core material, and the waste material is also composed of the new material inorganic fiber aggregate 7 in an amount of 1/3 each. The inorganic fiber assembly 6 is sandwiched. Since both the waste material inorganic fiber aggregate 6 and the new material inorganic fiber aggregate 7 are in sheet form, the laminating operation can be easily performed.

この積層体に結合材を含浸させて熱プレスすることによりこの積層体を結合材を介して結合すると共に所定の厚さに圧縮してコア素材2Aを作製する。具体的には、結合材として無機系或いは天然有機系結合材の水溶液を用い、これを積層体全体に適量含浸させ、熱プレスによって結合材中の水分を除去して積層体を構成する無機繊維を結合材を介して結合し、コア素材2Aを作製する。廃材無機繊維集合体6は予めシート状に形成されているため、このコア素材2Aの強度は、新材無機繊維集合体7間に粉砕物を単に介在させたものと比較して、廃材無機繊維集合体6の量を多くしても強いものとすることができる。   The laminated body is impregnated with a binder and hot-pressed so that the laminated body is bonded via the binder and compressed to a predetermined thickness to produce the core material 2A. Specifically, an inorganic fiber that uses an aqueous solution of an inorganic or natural organic binder as a binder, impregnates the entire laminate in an appropriate amount, and removes moisture in the binder by hot pressing to constitute the laminate. Are bonded via a bonding material to produce the core material 2A. Since the waste material inorganic fiber aggregate 6 is formed in the form of a sheet in advance, the strength of the core material 2A is higher than that of a new material inorganic fiber aggregate 7 simply having a pulverized material interposed between them. Even if the amount of the aggregate 6 is increased, it can be made strong.

次いで、コア素材2Aから端材4を図4と同様な方法で除去し、コア材2を製作する。次いで、このコア材2を図7に示すように吸着剤3と共に外被材1内に収納し、真空包装機を用いて2.0Pa以下に一定時間保持した後、封止することにより図3に示すように真空断熱材50を作製する。   Next, the end material 4 is removed from the core material 2 </ b> A by the same method as in FIG. 4, and the core material 2 is manufactured. Next, the core material 2 is housed in the jacket material 1 together with the adsorbent 3 as shown in FIG. 7 and held at a pressure of 2.0 Pa or less for a certain time using a vacuum packaging machine, and then sealed. The vacuum heat insulating material 50 is produced as shown in FIG.

このようにして作製された真空断熱材は、外被材1の表面平滑性が従来の新材無機繊維集合体のみによる真空断熱材と同等なレベルであることが確認できた。また、この真空断熱材の熱伝導率を英弘精機社製熱伝導率測定機オートλHC−071で測定したところ、初期値で2.8mW/m・Kという低い値が得られた。   It was confirmed that the vacuum heat insulating material produced in this way has a surface smoothness of the jacket material 1 at a level equivalent to that of a conventional vacuum heat insulating material using only new inorganic fiber aggregates. Further, when the thermal conductivity of the vacuum heat insulating material was measured with a thermal conductivity measuring device Auto λHC-071 manufactured by Eiko Seiki Co., Ltd., a low value of 2.8 mW / m · K was obtained as an initial value.

本実施例によれば、資源の有効利用を図りつつ断熱性能に優れ且つ強度的に強い真空断熱材を用いた冷蔵庫並びに真空断熱材及びその製造方法を得ることができる。   According to the present embodiment, it is possible to obtain a refrigerator, a vacuum heat insulating material, and a manufacturing method thereof using a vacuum heat insulating material that is excellent in heat insulating performance and strong in strength while effectively utilizing resources.

次に、本発明の第2実施例について図8及び図9を用いて説明する。図8は本発明の第2実施例におけるコア素材から端材を分割した状態の斜視図、図9は第2実施例におけるコア素材の作製方法を説明する斜視図である。この第2実施例は、以下に述べる点で第1実施例と相違するものであり、その他の点については第1実施例と基本的には同一である。   Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a perspective view showing a state in which the end material is divided from the core material in the second embodiment of the present invention, and FIG. 9 is a perspective view for explaining a method for producing the core material in the second embodiment. The second embodiment is different from the first embodiment in the following points, and is basically the same as the first embodiment in other points.

第2実施例では、図8に示すように、コア素材から分離された端材4を上下2つにさらに分離して分離端材4aとする。この分離端材4aを平面上に水平方向に隙間が無いように複数並べて1層目の端材集合体4bをつくり、該端材集合体4bの上に端材同士の合わせ目或いは合わせ目に生じた隙間を塞ぐように別の端材4aを1層目の端材とほぼ平行になるように重ねて2層目の端材集合体4cをつくる。4b、4c等の端材集合体はコア材の強度を形成する意味から2層以上になるように積層することが好ましい。   In 2nd Example, as shown in FIG. 8, the end material 4 isolate | separated from the core raw material is further isolate | separated into two upper and lower parts, and it is set as the separated end material 4a. A plurality of the separated end materials 4a are arranged on a plane so as not to have a gap in the horizontal direction to form a first layer end material aggregate 4b, and the end material aggregate 4b has a joint or a joint between the end materials. Another end material 4a is overlapped so as to be substantially parallel to the first layer end material so as to close the generated gap, thereby forming a second layer end material assembly 4c. The end material aggregates such as 4b and 4c are preferably laminated so as to have two or more layers from the viewpoint of forming the strength of the core material.

更に、2層に積層した端材集合体4dを新材無機繊維集合体7で挟み、この積層体を熱プレスで加熱圧縮して水分を除去しコア素材2Aを作製する。ここで使用した新材無機繊維集合体7は通常使用目付量の半分の量にしたものを使用した。このコア素材2Aを図8に示すように、コア材2と端材4とに分離する。   Further, the end material aggregate 4d laminated in two layers is sandwiched between new material inorganic fiber aggregates 7, and this laminated body is heated and compressed by a hot press to remove moisture, thereby producing the core material 2A. The new material inorganic fiber aggregate 7 used here was one that was half the normal weight per unit area. As shown in FIG. 8, the core material 2 </ b> A is separated into the core material 2 and the end material 4.

この製法により得られたコア材2は、ハンドリング強度としては問題ない程度の強度を有し、十分に量産適用可能なレベルが得られた。また、この第2実施例によれば、端材4を2つに分離して並べるのみで端材集合体4dを容易に作ることができる。   The core material 2 obtained by this manufacturing method has a strength that does not cause any problem in handling strength, and a level that can be applied to mass production is obtained. Further, according to the second embodiment, the end material assembly 4d can be easily made only by separating the end materials 4 into two and arranging them.

このコア材2を吸着剤3と共にガスバリヤ性の外被材1で構成された袋に挿入し、真空包装機を用いて2.0Pa以下に一定時間保持した後に封止して得られた真空断熱材は、外皮材1の表面に端材6a同士の合わせ目が若干線状に現れるが、表面平滑性に従来の製法による真空断熱材と大差ないものとなった。この真空断熱材の熱伝導率を英弘精機社製熱伝導率測定機オートλHC−071で測定したところ、初期値で2.4mW/m・Kという低い値が得られた。   Vacuum insulation obtained by inserting the core material 2 into a bag composed of the gas barrier outer covering material 1 together with the adsorbent 3 and holding it at 2.0 Pa or less for a certain period of time using a vacuum packaging machine. In the material, the joint between the end materials 6a appears slightly linearly on the surface of the outer skin material 1, but the surface smoothness is not much different from the vacuum heat insulating material by the conventional manufacturing method. When the thermal conductivity of this vacuum heat insulating material was measured with a thermal conductivity measuring device Auto λHC-071 manufactured by Eiko Seiki Co., Ltd., a low value of 2.4 mW / m · K was obtained as an initial value.

次に、本発明の第3実施例について図10を用いて説明する。図10は本発明の第3実施例におけるコア素材の作製工程を説明する斜視図である。この第3実施例は、以下に述べる点で第2実施例と相違するものであり、その他の点については第2実施例と基本的には同一である。   Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 10 is a perspective view for explaining a core material manufacturing process in the third embodiment of the present invention. The third embodiment is different from the second embodiment in the following points, and is basically the same as the second embodiment in other points.

この第3実施例では、分離端材4aを平面上に水平方向に隙間が無いように複数並べて1層目の端材集合体4bをつくり、端材集合体4bの上に同様な端材集合体4cを、端材集合体4bとは平行にならないように水平方向に回転させた状態、好ましくは90°の向きでお互いの端材同士の合わせ目或いは合わせ目に生じた隙間を塞ぐように重ね合わせる。コア材の強度を形成する意味から端材集合体4b、4cは井桁状に2層以上になるように積層することが好ましい。この第3実施例では、1層目の端材集合体4bと2層目の端材集合体4cが概略90°になる略井桁状に積層し、新材無機繊維集合体7で挟み、この積層体を熱プレスで加熱圧縮して水分を除去しコア素材2Aを作製する。ここで使用した新材無機繊維集合体7は通常使用目付量の半分の量にしたものを使用した。このコア素材2Aを第2実施例と同様にコア材2と端材4とに分離する。   In the third embodiment, a plurality of separated end members 4a are arranged on a plane so that there are no gaps in the horizontal direction to form a first layer end member assembly 4b, and a similar end member assembly is formed on the end member assembly 4b. The body 4c is rotated in the horizontal direction so as not to be parallel to the end material assembly 4b, preferably in a direction of 90 ° so as to close the joint between the end materials or the gap formed in the joint. Overlapping. In order to form the strength of the core material, the end material assemblies 4b and 4c are preferably laminated so as to have two or more layers in a cross-beam shape. In this third embodiment, the first-layer end material aggregate 4b and the second-layer end material aggregate 4c are laminated in a substantially parallel beam shape that is approximately 90 °, and sandwiched between the new material inorganic fiber aggregates 7, The laminated body is heated and compressed by a hot press to remove moisture and produce the core material 2A. The new material inorganic fiber aggregate 7 used here was one that was half the normal weight per unit area. The core material 2A is separated into the core material 2 and the end material 4 as in the second embodiment.

この製法により得られたコア材2は、ハンドリング強度としては第2実施例より強い強度を有する。   The core material 2 obtained by this manufacturing method has higher handling strength than the second embodiment.

このコア材9を吸着剤3と共にガスバリヤ性の外被材1で構成された袋に挿入し、真空包装機を用いて2.0Pa以下に一定時間保持した後封止して得られた真空断熱材は、実施例1と同様に、外皮材1の表面に端材4a同士の合わせ目が若干線状に現れるが、表面平滑性は従来の製法による真空断熱材と大差ないものとなった。この真空断熱材の熱伝導率を英弘精機社製熱伝導率測定機オートλHC−071で測定したところ、初期値で2.2mW/m・Kという低い値が得られた。   Vacuum insulation obtained by inserting the core material 9 into a bag composed of the gas barrier outer covering material 1 together with the adsorbent 3 and holding it at a pressure of 2.0 Pa or less for a certain time using a vacuum packaging machine. In the same manner as in Example 1, the joints between the end materials 4a appear slightly linear on the surface of the outer skin material 1, but the surface smoothness is not much different from the vacuum heat insulating material by the conventional manufacturing method. When the thermal conductivity of the vacuum heat insulating material was measured with a thermal conductivity measuring device Auto λHC-071 manufactured by Eiko Seiki Co., Ltd., a low value of 2.2 mW / m · K was obtained as an initial value.

本発明の第1実施例の冷蔵庫の斜視図である。It is a perspective view of the refrigerator of 1st Example of this invention. 図1の要部断面模式図である。It is a principal part cross-sectional schematic diagram of FIG. 図2に示す真空断熱パネルの単独状態の断面模式図である。It is a cross-sectional schematic diagram of the single state of the vacuum heat insulation panel shown in FIG. 第1実施例におけるコア素材からコア材と端材とを分離した状態を示す斜視図である。It is a perspective view which shows the state which isolate | separated the core material and the end material from the core raw material in 1st Example. 第1実施例における端材から廃材無機繊維集合体を作製する工程を説明する図である。It is a figure explaining the process of producing a waste material inorganic fiber aggregate | assembly from the end material in 1st Example. 第1実施例におけるコア素材の作製方法の説明図である。It is explanatory drawing of the preparation methods of the core raw material in 1st Example. 第1実施例のコア材2及び吸着剤3を外被材1内に収納した状態の断面図である。It is sectional drawing of the state which accommodated the core material 2 and the adsorbent 3 of 1st Example in the jacket material 1. FIG. 本発明の第2実施例の冷蔵庫の製造方法におけるコア素材から端材を分割した状態の斜視図である。It is a perspective view of the state which divided the end material from the core material in the manufacturing method of the refrigerator of the 2nd example of the present invention. 第2実施例におけるコア素材の作製方法を説明する斜視図である。It is a perspective view explaining the preparation methods of the core raw material in 2nd Example. 本発明の第3実施例におけるコア素材の作製工程を説明する斜視図である。It is a perspective view explaining the preparation process of the core raw material in 3rd Example of this invention.

符号の説明Explanation of symbols

1…外被材、2…コア材、2A…コア素材、3…吸着剤、4…端材、4a…分割端材、4b、4c、4d…端材集合体、5…粉砕物、6…廃材無機繊維集合体、6a…繊維、7…新材無機繊維集合体、21…断熱箱体、22…外箱、23…内箱、50…真空断熱材。   DESCRIPTION OF SYMBOLS 1 ... Cover material, 2 ... Core material, 2A ... Core material, 3 ... Adsorbent, 4 ... End material, 4a ... Divided end material, 4b, 4c, 4d ... End material aggregate, 5 ... Ground material, 6 ... Waste inorganic fiber aggregates, 6a ... fibers, 7 ... new inorganic fiber aggregates, 21 ... heat insulation box, 22 ... outer box, 23 ... inner box, 50 ... vacuum insulation.

Claims (3)

外被材内にコア材を収納して減圧封止した真空断熱材を外箱と内箱との間に配設すると共に、前記外箱と前記内箱との間の空間に発泡断熱材を充填して断熱体を構成した冷蔵庫において、
前記コア材は、
複数のシート状の新材無機繊維集合体の間に、無機繊維集合体からなる廃コア材を粉砕した粉砕物が結合材と共に熱プレスされて繊維の方向が揃えられ且つシート状にされた廃材無機繊維集合体を挟持して積層されていると共に、
これらの積層された無機繊維集合体が熱プレスされ結合材で結合された積層体で構成されている
ことを特徴とする冷蔵庫。
A vacuum heat insulating material housed in the outer cover material and sealed under reduced pressure is disposed between the outer box and the inner box, and a foam heat insulating material is provided in the space between the outer box and the inner box. In refrigerators that are filled to form insulation,
The core material is
Waste material in which a pulverized product obtained by pulverizing a waste core material composed of inorganic fiber aggregates is hot-pressed together with a binding material between a plurality of sheet-like new inorganic fiber aggregates so that the directions of the fibers are aligned and formed into a sheet shape While being sandwiched and laminated with inorganic fiber aggregates,
A refrigerator characterized by comprising a laminated body in which these laminated inorganic fiber aggregates are hot-pressed and bonded with a binder.
請求項1に記載された冷蔵庫において、前記シート状にされた廃材無機繊維集合体は繊維方向がほぼ平行に揃えられたものであることを特徴とする冷蔵庫。   2. The refrigerator according to claim 1, wherein the waste inorganic fiber aggregate formed into a sheet shape has a fiber direction aligned substantially in parallel. 請求項1または2に記載された冷蔵庫において、前記コア材は、結合材を含まない前記新材無機繊維集合体と、結合材が残る前記廃材無機繊維集合体とが積層された積層体で構成されていることを特徴とする冷蔵庫。   3. The refrigerator according to claim 1, wherein the core material includes a laminate in which the new material inorganic fiber aggregate that does not include a binder and the waste inorganic fiber aggregate in which the binder remains are laminated. A refrigerator characterized by being.
JP2004166528A 2004-06-04 2004-06-04 refrigerator Expired - Fee Related JP4183657B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004166528A JP4183657B2 (en) 2004-06-04 2004-06-04 refrigerator
KR1020050015607A KR100695378B1 (en) 2004-06-04 2005-02-25 Refrigerator and vacuum heat insulation material and method of production thereof
CNB2005100538392A CN100359272C (en) 2004-06-04 2005-03-11 Refrigerator and vacuum thermal insulating material and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166528A JP4183657B2 (en) 2004-06-04 2004-06-04 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008113861A Division JP2008185220A (en) 2008-04-24 2008-04-24 Vacuum heat insulation material

Publications (2)

Publication Number Publication Date
JP2005345025A JP2005345025A (en) 2005-12-15
JP4183657B2 true JP4183657B2 (en) 2008-11-19

Family

ID=35497577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166528A Expired - Fee Related JP4183657B2 (en) 2004-06-04 2004-06-04 refrigerator

Country Status (3)

Country Link
JP (1) JP4183657B2 (en)
KR (1) KR100695378B1 (en)
CN (1) CN100359272C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107009719A (en) * 2017-04-11 2017-08-04 南京创维家用电器有限公司 Antimicrobial sheet material and preparation method, inner bag and preparation method, refrigeration plant

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774320B2 (en) * 2006-03-30 2011-09-14 日立アプライアンス株式会社 Vacuum heat insulating material and manufacturing method thereof
EP1916465B1 (en) 2006-10-26 2013-10-23 Vestel Beyaz Esya Sanayi Ve Ticaret A.S. Vacuumed heat barrier
JP5195494B2 (en) * 2009-02-16 2013-05-08 三菱電機株式会社 Vacuum heat insulating material and manufacturing method thereof
CN101979233A (en) * 2010-10-18 2011-02-23 合肥美菱股份有限公司 Process for producing negative pressure foamed refrigerator
US9140481B2 (en) 2012-04-02 2015-09-22 Whirlpool Corporation Folded vacuum insulated structure
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
JP6192554B2 (en) * 2014-02-03 2017-09-06 三菱電機株式会社 Manufacturing method of vacuum insulation
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
EP3443284B1 (en) 2016-04-15 2020-11-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
EP3443285B1 (en) 2016-04-15 2021-03-10 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
EP3500804B1 (en) 2016-08-18 2022-06-22 Whirlpool Corporation Refrigerator cabinet
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186558C (en) * 2000-04-21 2005-01-26 松下冷机株式会社 Heat insulation box and heat insulation material used therefor
TW470837B (en) * 2000-04-21 2002-01-01 Matsushita Refrigeration Vacuum heat insulator
JP3527730B2 (en) * 2002-07-30 2004-05-17 松下冷機株式会社 Vacuum insulation material and method of manufacturing core material
JP2004012125A (en) * 2003-07-31 2004-01-15 Matsushita Refrig Co Ltd Heat insulating box

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107009719A (en) * 2017-04-11 2017-08-04 南京创维家用电器有限公司 Antimicrobial sheet material and preparation method, inner bag and preparation method, refrigeration plant

Also Published As

Publication number Publication date
CN100359272C (en) 2008-01-02
KR20060042182A (en) 2006-05-12
CN1707204A (en) 2005-12-14
KR100695378B1 (en) 2007-03-15
JP2005345025A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4183657B2 (en) refrigerator
JP2008185220A (en) Vacuum heat insulation material
TWI277707B (en) Vacuum insulation panel and refrigerator incorporating the same
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
CN201852403U (en) Refrigerator
US20030157284A1 (en) Vacuum insulating material and device using the same
JP2017106526A (en) Vacuum heat insulation body, heat insulation equipment including the same, and manufacturing method of vacuum heat insulation body
JP5544338B2 (en) Vacuum heat insulating material and refrigerator using the same
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
WO2010007706A1 (en) Vacuum heat insulating material
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP2011153721A (en) Refrigerator
JP5548025B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2013024440A (en) Refrigerator
JP5401422B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2019113078A (en) Vacuum heat insulation material and refrigerator disposed with the same
JP2015055368A (en) Vacuum heat insulation material and refrigerator using the same
JP5982276B2 (en) Refrigerator using vacuum heat insulating material and vacuum heat insulating material
JP2015001290A (en) Vacuum heat insulation material and refrigerator
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2015200361A (en) Vacuum heat insulation material and refrigerator using the same
JP2014206225A (en) Vacuum heat insulation material and refrigerator using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4183657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees