JP2009074604A - Vacuum heat insulating material - Google Patents

Vacuum heat insulating material Download PDF

Info

Publication number
JP2009074604A
JP2009074604A JP2007243598A JP2007243598A JP2009074604A JP 2009074604 A JP2009074604 A JP 2009074604A JP 2007243598 A JP2007243598 A JP 2007243598A JP 2007243598 A JP2007243598 A JP 2007243598A JP 2009074604 A JP2009074604 A JP 2009074604A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
core material
insulating material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007243598A
Other languages
Japanese (ja)
Other versions
JP4907480B2 (en
Inventor
Takeshi Uchida
武 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007243598A priority Critical patent/JP4907480B2/en
Publication of JP2009074604A publication Critical patent/JP2009074604A/en
Application granted granted Critical
Publication of JP4907480B2 publication Critical patent/JP4907480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material of high insulation efficiency, using easily available textile materials. <P>SOLUTION: The vacuum heat insulating material 1 is provided with an external capsule material 200 and a core material 100 accommodated inside the external capsule material 200 and the external capsule material 200 is composed capable of maintaining the inside thereof to a reduced pressure state. The core material 100 is composed by stacking a plurality of sheets of non-woven fabric 110. The non-woven fabric 110 is formed by using a glass fiber 111 and a bit of binders through the paper making process, by which the glass fiber 111 is included, thereby disposing in the parallel direction with the surface of the non-woven fabric 110. In the glass fiber 111, the aspect ratio (L/D) between an average textile length L and an average textile diameter D is 3,000 or less and the maximum deflection volume δ is represented as the maximum deflection volume δ of the two points beams δ=(5WL<SP>4</SP>)/(6ED<SP>4</SP>) using the Young's modulus E of the core material 100 and the self weight W per unit length of the glass fiber 111 and using the average textile length L and the average textile diameter D and satisfies the relation δ<2D. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、真空断熱材に関するものである。   The present invention relates to a vacuum heat insulating material.

従来、各種食品を加温、冷却、保温することを目的として使用される冷蔵庫、保冷箱、保温箱等には、種々の構造や性能を有する断熱材が使用されている。その中でも真空断熱材は非常に優れた断熱性を実現することができるため、多くの用途に用いられている。真空断熱材は、一般的に、芯材を外包材に充填した後、外包材を密閉し、外包材の内部を減圧状態に維持することで断熱性能を発揮する。真空断熱材の断熱性能は、芯材の材質や構造によって左右される。   Conventionally, a heat insulating material having various structures and performances is used for a refrigerator, a cold box, a warm box, and the like that are used for heating, cooling, and warming various foods. Among them, the vacuum heat insulating material can realize a very excellent heat insulating property and is used for many applications. The vacuum heat insulating material generally exhibits heat insulating performance by filling the outer packaging material with the core material, sealing the outer packaging material, and maintaining the inside of the outer packaging material in a reduced pressure state. The heat insulating performance of the vacuum heat insulating material depends on the material and structure of the core material.

従来の真空断熱材については、芯材としては主に無機繊維集合体が用いられている。芯材に用いられる無機繊維集合体の形成時に、種々の処理や加工を施すことによって、真空断熱材の断熱性能を向上させている。   As for the conventional vacuum heat insulating material, an inorganic fiber aggregate is mainly used as a core material. The heat insulating performance of the vacuum heat insulating material is improved by performing various treatments and processing when forming the inorganic fiber aggregate used for the core material.

例えば、実開昭61−69795号公報(特許文献1)に記載の断熱パネルと実開昭62−141184号公報(特許文献2)に記載の真空断熱パネルにおいては、芯材として用いるシートの積層体は、故紙またはプラスチック製のシートによって構成されている。   For example, in the heat insulation panel described in Japanese Utility Model Laid-Open No. 61-69795 (Patent Document 1) and the vacuum heat insulation panel described in Japanese Utility Model Publication No. 62-141184 (Patent Document 2), lamination of sheets used as a core material is performed. The body is composed of waste paper or plastic sheets.

また、例えば、特開2002−81596号公報(特許文献3)と特開2005−265038号公報(特許文献4)に記載の真空断熱材は、芯材を構成する1層のシート内の繊維を、伝熱方向、すなわち、真空断熱材の厚み方向に垂直な方向に配列させて、このシートを多層積層して断熱効果を向上させている。また、シート内の繊維の平均繊維径を6μm以下にすることによって、繊維自体の熱抵抗を大きくし、また、繊維集合体内の空隙径を小さくすることによって、芯材内部の気体による熱伝導を抑制している。
実開昭61−69795号公報 実開昭62−141184号公報 特開2002−81596号公報 特開2005−265038号公報
Moreover, for example, the vacuum heat insulating material described in Japanese Patent Application Laid-Open No. 2002-81596 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2005-265038 (Patent Document 4) uses fibers in a single layer sheet constituting a core material. The sheets are arranged in the heat transfer direction, that is, in the direction perpendicular to the thickness direction of the vacuum heat insulating material, and this sheet is laminated to improve the heat insulating effect. In addition, by making the average fiber diameter of the fibers in the sheet 6 μm or less, the thermal resistance of the fibers themselves is increased, and by reducing the void diameter in the fiber assembly, heat conduction by the gas inside the core material is performed. Suppressed.
Japanese Utility Model Publication No. 61-69795 Japanese Utility Model Publication No. 62-141184 JP 2002-81596 A JP 2005-265038 A

しかしながら、実開昭61−69795号公報(特許文献1)に記載の断熱パネルと実開昭62−141184号公報(特許文献2)に記載の真空断熱パネルでは、シートの熱抵抗が小さく、断熱性能指標の熱伝導率が約6(mW/m・K)となり、現状の断熱材の値としては高いという不都合がある。   However, in the heat insulation panel described in Japanese Utility Model Laid-Open No. 61-69795 (Patent Document 1) and the vacuum heat insulation panel described in Japanese Utility Model Laid-Open No. 62-141184 (Patent Document 2), the thermal resistance of the sheet is small. The thermal conductivity of the performance index is about 6 (mW / m · K), which is disadvantageous in that it is high as a current heat insulating material.

また、特開2002−81596号公報(特許文献3)と特開2005−265038号公報(特許文献4)に記載の真空断熱材では、繊維径が6μm以下の細い繊維を用いることによって、積層抵抗が増えて断熱効果が得られる反面、芯材を構成する繊維同士の交絡が多くなる。芯材の内部において繊維同士の交絡が多くなると、繊維同士の接触面積が大きくなり、シート内の固体熱伝導が増大する。また、繊維が交絡することによって、伝熱方向の熱ショートカットによる熱伝導が生じやすく、断熱効果の阻害要因となっている。さらに、特開2002−81596号公報(特許文献3)と特開2005−265038号公報(特許文献4)に記載の真空断熱材では、繊維径が6μm以下の細い繊維を芯材に使用することが想定されている。このような、通常、使用される繊維よりもかなり細い繊維は、容易に入手することができず、材料コストの上でも不都合がある。   Moreover, in the vacuum heat insulating material described in Japanese Patent Application Laid-Open No. 2002-81596 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2005-265038 (Patent Document 4), by using thin fibers having a fiber diameter of 6 μm or less, the lamination resistance Increases the heat insulation effect, but increases the entanglement of the fibers constituting the core material. When the entanglement between the fibers increases inside the core material, the contact area between the fibers increases, and the solid heat conduction in the sheet increases. In addition, when the fibers are entangled, heat conduction due to a heat shortcut in the heat transfer direction is likely to occur, which is an impediment to the heat insulation effect. Furthermore, in the vacuum heat insulating material described in JP-A-2002-81596 (Patent Document 3) and JP-A-2005-265038 (Patent Document 4), a thin fiber having a fiber diameter of 6 μm or less is used as a core material. Is assumed. Such fibers that are usually much thinner than the fibers that are usually used are not readily available and are disadvantageous in terms of material costs.

そこで、この発明の目的は、容易に入手することができる繊維材料を用いて、断熱性能の高い真空断熱材を提供することである。   Accordingly, an object of the present invention is to provide a vacuum heat insulating material having high heat insulating performance using a fiber material that can be easily obtained.

この発明に従った真空断熱材は、外包材と、外包材の内部に収容される芯材とを備え、外包材は、内部を減圧状態に保つことが可能であるように構成され、芯材は、複数の不織布が積層されて構成され、不織布においては、不織布が無機繊維と少量のバインダとを用いて抄紙法によって作製されることによって、無機繊維が不織布の表面と平行な方向に配列して含まれ、無機繊維においては、平均繊維長Lと平均繊維径Dとのアスペクト比(L/D)が3000以下であり、最大たわみ量δは、無機繊維のヤング率Eと無機繊維の単位長さあたりの自重Wと、平均繊維長Lと平均繊維径Dとを用いて、二点支持梁の最大たわみ量δとしてδ=(5WL)/(6ED)と表され、最大たわみ量δは、δ<2Dの関係式を満たす。 The vacuum heat insulating material according to the present invention includes an outer packaging material and a core material housed in the outer packaging material, and the outer packaging material is configured to be able to keep the inside in a reduced pressure state. Is formed by laminating a plurality of non-woven fabrics. In the non-woven fabric, the non-woven fabric is produced by a paper making method using inorganic fibers and a small amount of binder, so that the inorganic fibers are arranged in a direction parallel to the surface of the non-woven fabric. In the inorganic fiber, the aspect ratio (L / D) of the average fiber length L and the average fiber diameter D is 3000 or less, and the maximum deflection δ is the Young's modulus E of the inorganic fiber and the unit of the inorganic fiber. The maximum deflection amount is expressed as δ = (5WL 4 ) / (6ED 4 ) as the maximum deflection amount δ of the two-point support beam using the own weight W per length, the average fiber length L, and the average fiber diameter D. δ satisfies the relational expression δ <2D.

芯材を構成する不織布が抄紙法で作製されることによって、不織布の内部においては、不織布を構成する無機繊維が不織布の表面に沿った方向に平行に配列される。このようにすることにより、不織布の片方の面から他方の面までを貫通する無機繊維が発生しにくい。そのため、複数の不織布を積層して芯材を構成した場合にも、芯材の片方の面から他方の面までを貫通する無機繊維が発生しにくいので、芯材の片方の面から他方の面までの熱のショートカットが生じにくくなる。   By producing the nonwoven fabric constituting the core material by the papermaking method, the inorganic fibers constituting the nonwoven fabric are arranged in parallel in the direction along the surface of the nonwoven fabric within the nonwoven fabric. By doing in this way, the inorganic fiber which penetrates from one side of a nonwoven fabric to the other side is hard to generate. Therefore, even when a core material is configured by laminating a plurality of non-woven fabrics, inorganic fibers that penetrate from one surface of the core material to the other surface are unlikely to be generated, and therefore, from one surface of the core material to the other surface This makes it difficult to create a heat shortcut.

一方、無機繊維は、平均繊維長Lと平均繊維径Dとのアスペクト比(L/D)が3000以下の繊維である。平均繊維長Lは、一本の繊維の繊維長の方向に沿った、繊維と繊維との接点間の平均の長さとする。アスペクト比が大きい繊維は、繊維径に対して繊維長が大きく、繊維どうしが交絡しやすいと考えられる。発明者が種々の検討をした結果、アスペクト比が3000以下の無機繊維であれば、無機繊維どうしが交絡しにくくなるという知見が得られた。このように、アスペクト比が3000以下の無機繊維を用いて不織布を作製することによって、無機繊維どうしの交絡が少ない不織布となり、繊維を通しての伝熱を抑えることができる。   On the other hand, the inorganic fiber is a fiber having an aspect ratio (L / D) of 3000 or less between the average fiber length L and the average fiber diameter D. The average fiber length L is an average length between the contact points of the fibers along the fiber length direction of one fiber. A fiber having a large aspect ratio has a large fiber length with respect to the fiber diameter, and the fibers are considered to be easily entangled. As a result of various studies by the inventor, it was found that inorganic fibers having an aspect ratio of 3000 or less are less likely to be entangled with each other. Thus, by producing a nonwoven fabric using inorganic fibers having an aspect ratio of 3000 or less, the nonwoven fabric has few entanglements between inorganic fibers, and heat transfer through the fibers can be suppressed.

不織布中においては、複数の無機繊維が上下に重なっている。一本の無機繊維は、二本の無機繊維上に支持されている場合、その無機繊維を支持する無機繊維との二つの接点間では下方向にたわむ。このときの最大たわみ量δが、平均繊維径Dの2倍よりも小さければ、他の無機繊維の上に支持されている繊維が、その無機繊維を支持する無機繊維よりもさらに下にある無機繊維と交絡しにくくなる。最大たわみ量δは、その無機繊維を支持する無機繊維との二つの接点で支持される2点支持均等荷重梁の最大たわみ量の式で表される。そこで、最大たわみ量δ=(5WL)/(6ED)<2Dという条件を満たす無機繊維を芯材の不織布に用いることによって、不織布内において上下に積層された無機繊維同士が接触しにくくなり、無機繊維どうしの交絡が生じにくくなるので、繊維による熱のショートカットが発生しにくくなる。 In the non-woven fabric, a plurality of inorganic fibers overlap each other. When one inorganic fiber is supported on two inorganic fibers, it bends downward between two contact points with the inorganic fiber supporting the inorganic fiber. If the maximum deflection amount δ at this time is smaller than twice the average fiber diameter D, the inorganic fiber supported on the other inorganic fiber is further below the inorganic fiber supporting the inorganic fiber. It becomes difficult to entangle with fibers. The maximum deflection amount δ is expressed by an equation of the maximum deflection amount of the two-point support uniform load beam supported at two contact points with the inorganic fiber supporting the inorganic fiber. Therefore, by using the inorganic fiber satisfying the condition of the maximum deflection amount δ = (5WL 4 ) / (6ED 4 ) <2D for the nonwoven fabric of the core material, the inorganic fibers stacked vertically in the nonwoven fabric are less likely to contact each other. Since the entanglement of the inorganic fibers is less likely to occur, a heat shortcut due to the fibers is less likely to occur.

このようにすることにより、細い繊維を用いずに、通常、入手される繊維材料を用いても、繊維どうしの接触と交絡が少なくなり、また、芯材の一方の面から他方の面までを貫通する繊維が発生しにくくなるので、容易に入手することができる繊維材料を用いて、断熱性能の高い真空断熱材を提供することできる。また、容易に入手可能な繊維材料を用いることができるので、真空断熱材の製造コストを抑えることができる。   By doing in this way, even if it uses the fiber material normally obtained without using a thin fiber, the contact and the entanglement between the fibers are reduced, and from one surface of the core material to the other surface. Since the fiber which penetrates becomes difficult to generate | occur | produce, the vacuum heat insulating material with high heat insulation performance can be provided using the fiber material which can be obtained easily. Moreover, since the easily available fiber material can be used, the manufacturing cost of a vacuum heat insulating material can be held down.

この発明に従った真空断熱材においては、無機繊維はガラス繊維であることが好ましい。   In the vacuum heat insulating material according to the present invention, the inorganic fibers are preferably glass fibers.

発明者の種々の検討によって、ガラス繊維を用いた真空断熱材は他の無機繊維、例えば、セラミック繊維を用いた真空断熱材よりも熱伝導率が小さいという知見が得られた。そこで、このようにすることにより、断熱性能を向上させることができる。   Through various studies by the inventors, it has been found that a vacuum heat insulating material using glass fibers has a lower thermal conductivity than a vacuum heat insulating material using other inorganic fibers, for example, ceramic fibers. Thus, by doing so, the heat insulation performance can be improved.

この発明に従った真空断熱材においては、バインダは有機バインダであることが好ましい。   In the vacuum heat insulating material according to the present invention, the binder is preferably an organic binder.

このようにすることにより、不織布の折り曲げの柔軟性を向上させることができる。また、真空断熱材の製作コストを抑えることができる。   By doing in this way, the softness | flexibility of the folding of a nonwoven fabric can be improved. Moreover, the manufacturing cost of a vacuum heat insulating material can be suppressed.

この発明に従った真空断熱材においては、芯材の密度は、100〜400kg/mの範囲内に含まれることが好ましい。 In the vacuum heat insulating material according to the present invention, the density of the core material is preferably included in the range of 100 to 400 kg / m 3 .

芯材の密度が100kg/m未満である場合には、芯材の内部の空隙径がおおきくなるので、芯材の内部の空隙に含まれる気体によって熱伝導が生じる。そのため、真空断熱材の断熱性が悪化する。また、真空断熱材の強度が低下し、真空断熱材の取り扱い性が悪くなる。 When the density of the core material is less than 100 kg / m 3 , the void diameter inside the core material becomes large, so that heat conduction occurs due to the gas contained in the void inside the core material. Therefore, the heat insulation property of a vacuum heat insulating material deteriorates. Moreover, the intensity | strength of a vacuum heat insulating material falls and the handleability of a vacuum heat insulating material worsens.

一方、芯材の密度が400kg/mよりも大きい場合には、芯材を構成する不織布どうしの接触や無機繊維どうしの接触が大きくなる。そのため、無機繊維や不織布という固体による熱伝導の影響が大きくなり、真空断熱材としての断熱特性が悪くなる。 On the other hand, when the density of the core material is larger than 400 kg / m 3 , the contact between the nonwoven fabrics constituting the core material and the contact between the inorganic fibers are increased. Therefore, the influence of heat conduction by solids such as inorganic fibers and non-woven fabrics is increased, and the heat insulating properties as a vacuum heat insulating material are deteriorated.

そこで、このように、芯材の密度が100〜400kg/mの範囲内に含まれるようにすることによって、芯材が構成する空隙径を最適な値とし、気体の熱伝導と繊維径接触による固体の熱伝導を抑えながら断熱性能を発揮することができる。 Therefore, by making the density of the core material within the range of 100 to 400 kg / m 3 in this way, the void diameter formed by the core material is set to an optimum value, and the heat conduction of the gas and the fiber diameter contact are made. Insulation performance can be exhibited while suppressing the heat conduction of the solid due to.

以上のように、この発明によれば、容易に入手することができる繊維材料を用いて、断熱性能の高い真空断熱材を提供することができる。   As described above, according to the present invention, it is possible to provide a vacuum heat insulating material with high heat insulating performance using a fiber material that can be easily obtained.

以下、この発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、この発明の一つの実施の形態として、真空断熱材の構成を模式的に示す断面図である。図1の(A)は、外包材の内部を減圧する前の状態、図1の(B)は、外包材の内部が減圧されている場合の状態を示す図である。   FIG. 1 is a cross-sectional view schematically showing a configuration of a vacuum heat insulating material as one embodiment of the present invention. FIG. 1A shows a state before the inside of the outer packaging material is decompressed, and FIG. 1B shows a state when the inside of the outer packaging material is decompressed.

図1に示すように、真空断熱材1においては、袋状に形成されたガスバリヤ性の外包材200の内部に芯材100が収容されている。   As shown in FIG. 1, in the vacuum heat insulating material 1, a core material 100 is accommodated inside a gas barrier outer packaging material 200 formed in a bag shape.

芯材100を減圧状態で格納する外包材200としては、高いガスバリヤ性、熱融着層、キズ等の保護層を有し長期にわたり外包材200内を減圧状態に保つことが可能なものを使用する。また、このような特性を持つフィルムを複数枚積層して、外包材200としてもよい。   As the outer packaging material 200 for storing the core material 100 in a reduced pressure state, a material having a high gas barrier property, a heat-sealing layer, a flawed protective layer, etc. and capable of keeping the inner packaging material 200 in a reduced pressure state for a long period of time is used. To do. Further, a plurality of films having such characteristics may be laminated to form the outer packaging material 200.

具体的な外包材200の構成の例としては、最外層をポリエチレンテレフタレート(PET)樹脂とし、中間層にはアルミニウム蒸着層を有するエチレン−ビニルアルコール共重合体樹脂を用い、最内層に高密度ポリエチレン樹脂を用いるガスバリヤフィルムや、最外層にナイロンを用い、中間層にアルミ蒸着PET樹脂とアルミ箔の2層を用い、最内層に高密度ポリエチレン樹脂を用いるガスバリヤフィルム等が挙げられる。   As a specific example of the structure of the outer packaging material 200, the outermost layer is made of polyethylene terephthalate (PET) resin, the intermediate layer is made of an ethylene-vinyl alcohol copolymer resin having an aluminum vapor deposition layer, and the innermost layer is made of high-density polyethylene. Examples include a gas barrier film using a resin, a gas barrier film using nylon as the outermost layer, two layers of an aluminum-deposited PET resin and an aluminum foil as the intermediate layer, and a high-density polyethylene resin as the innermost layer.

また、真空断熱材1の初期断熱性能及び経時断熱性能を保持するために、真空断熱材1内にガス吸着剤、水分吸着剤等のゲッター剤を使用することが好ましい。   In order to maintain the initial heat insulation performance and the temporal heat insulation performance of the vacuum heat insulating material 1, it is preferable to use a getter agent such as a gas adsorbent or a water adsorbent in the vacuum heat insulating material 1.

図1の(A)に示すように、芯材100は、複数の不織布110が積層されて構成されている。それぞれの不織布110は、無機繊維としてガラス繊維と、少量の有機バインダを用いて、抄紙法によって作製されている。バインダについては無機バインダを使用することも可能であるが、無機バインダを用いると、繊維集合体、すなわち、不織布110の折り曲げの柔軟性が劣ること、また製品として使用する場合のコストが有機バインダを用いる場合に比べ高価となるため、有機バインダを使用することが好ましい。また、バインダの量は、極力、大きくならないように抑える。   As shown to (A) of FIG. 1, the core material 100 is comprised by laminating | stacking the some nonwoven fabric 110. FIG. Each nonwoven fabric 110 is produced by a papermaking method using glass fibers as inorganic fibers and a small amount of an organic binder. Although it is possible to use an inorganic binder for the binder, if an inorganic binder is used, the flexibility of bending of the fiber assembly, that is, the nonwoven fabric 110 is inferior, and the cost when used as a product is less than the organic binder. Since it becomes expensive compared with the case where it uses, it is preferable to use an organic binder. Also, the amount of binder should be kept as small as possible.

図1の(B)に示すように、外包材200の内部が減圧されると、外包材200の外部の大気圧によって芯材100が圧縮されて、芯材100を構成する不織布110どうしが押し付けられるように接触する。外包材200の内部を減圧した状態での芯材100の密度は、100〜400kg/mの範囲内に含まれる。 As shown in FIG. 1B, when the inside of the outer packaging material 200 is depressurized, the core material 100 is compressed by the atmospheric pressure outside the outer packaging material 200, and the nonwoven fabrics 110 constituting the core material 100 are pressed against each other. Touch as you can. The density of the core material 100 in a state where the inside of the outer packaging material 200 is decompressed is included in the range of 100 to 400 kg / m 3 .

以上のように不織布を構成し、不織布を積層して芯材を構成し、芯材を外包材の内部に配置して減圧して真空断熱材を構成する。   A nonwoven fabric is comprised as mentioned above, a nonwoven fabric is laminated | stacked, a core material is comprised, a core material is arrange | positioned inside an outer packaging material, and it pressure-reduces, and comprises a vacuum heat insulating material.

図2は、この発明の一つの実施の形態として、芯材と外包材の配置(A)と、外包材の内部を減圧したときの真空断熱材の内部の様子(B)を模式的に示す斜視図である。各不織布、芯材、外包材は、それぞれ、一部のみが示されている。   FIG. 2 schematically shows an arrangement (A) of the core material and the outer packaging material and an internal state (B) of the vacuum heat insulating material when the pressure inside the outer packaging material is reduced as one embodiment of the present invention. It is a perspective view. Only a part of each nonwoven fabric, core material, and outer packaging material is shown.

図2の(A)に示すように、不織布110を複数枚積層して、芯材100を形成する。芯材100は、外包材200に覆われている。外包材200はガスバリヤ性で、袋状に形成されており、芯材100の全体を覆う。   As shown in FIG. 2A, the core material 100 is formed by laminating a plurality of nonwoven fabrics 110. The core material 100 is covered with an outer packaging material 200. The outer packaging material 200 is gas barrier, is formed in a bag shape, and covers the entire core material 100.

図2の(B)に示すように、袋状の外包材200の内部を減圧すると、芯材100が圧縮される。芯材100が圧縮されると、不織布110どうしが互いに押し付けられるようにして接触する。   As shown in FIG. 2B, when the inside of the bag-shaped outer packaging material 200 is decompressed, the core material 100 is compressed. When the core material 100 is compressed, the nonwoven fabrics 110 come into contact with each other so as to be pressed against each other.

図3は、一枚の不織布の中で互いに接触している繊維を模式的に示す斜視図である。   FIG. 3 is a perspective view schematically showing fibers in contact with each other in one nonwoven fabric.

図3に示すように、抄紙法によって作製された不織布内においては、上下方向に積層されている、最上層のガラス繊維111、上から第二番目の層のガラス繊維112、上から第三番目の層のガラス繊維113、上から第四番目の層、すなわち、最下層のガラス繊維114は、それぞれ、不織布の面に平行な方向に沿って配列する。最上層のガラス繊維111は、2本の第二番目の層のガラス繊維112によって、支点111aと支点111bにおいて支持されている。   As shown in FIG. 3, in the nonwoven fabric produced by the papermaking method, the uppermost glass fiber 111, the second glass fiber 112 from the top, and the third glass from the top are laminated in the vertical direction. The glass fiber 113 of the first layer and the fourth layer from the top, that is, the glass fiber 114 of the lowermost layer, are arranged along a direction parallel to the surface of the nonwoven fabric. The uppermost glass fiber 111 is supported by the two second-layer glass fibers 112 at the fulcrum 111a and the fulcrum 111b.

図4は、図3の第二番目の層のガラス繊維によって支持されている最上層のガラス繊維を模式的に示す斜視図である。   FIG. 4 is a perspective view schematically showing the uppermost glass fiber supported by the glass fiber of the second layer in FIG. 3.

図4に示すように、図3に示す最上層のガラス繊維111は、第二番目の層のガラス繊維112によって、支点111aと支点111bにおいて支持されている。それぞれのガラス繊維111,112の平均繊維径を平均繊維径Dとする。また、支点111aと支点111bとの間のガラス繊維111の平均の長さを平均繊維長Lとする。ガラス繊維111,112,113,114は、アスペクト比(L/D)<3000のガラス繊維である。   As shown in FIG. 4, the uppermost glass fiber 111 shown in FIG. 3 is supported at the fulcrum 111a and the fulcrum 111b by the glass fiber 112 of the second layer. Let the average fiber diameter of each glass fiber 111,112 be the average fiber diameter D. Further, an average length of the glass fibers 111 between the fulcrum 111a and the fulcrum 111b is defined as an average fiber length L. The glass fibers 111, 112, 113, and 114 are glass fibers having an aspect ratio (L / D) <3000.

支点111aと支点111bとにおいて支持されているガラス繊維111は、下方向にたわむ。ガラス繊維111のたわみ量には、一般的な材料力学の2点支持均等荷重梁のたわみを表す式が適用されるため、このときのガラス繊維111の最大たわみ量δは、芯材100(図1)のガラス繊維のヤング率Eと、ガラス繊維111の単位長さあたりの自重Wと、ガラス繊維111の平均繊維長Lと平均繊維径Dを用いて、δ=(5WL)/(6ED)と表される。ガラス繊維111は、最大たわみ量δ=(5WL)/(6ED)がδ<2Dの関係式を満たすガラス繊維である。ガラス繊維111の最大たわみ量δが2Dよりも小さいので、最上層のガラス繊維111のうち、最も下方向にたわんだ部分も、最下層のガラス繊維114とは接触しない。 The glass fiber 111 supported at the fulcrum 111a and the fulcrum 111b bends downward. Since the equation representing the deflection of the two-point supported uniform load beam in general material mechanics is applied to the deflection amount of the glass fiber 111, the maximum deflection amount δ of the glass fiber 111 at this time is the core material 100 (FIG. Using the Young's modulus E of the glass fiber 1), the own weight W per unit length of the glass fiber 111, the average fiber length L and the average fiber diameter D of the glass fiber 111, δ = (5WL 4 ) / (6ED 4 ). The glass fiber 111 is a glass fiber in which the maximum deflection amount δ = (5WL 4 ) / (6ED 4 ) satisfies the relational expression δ <2D. Since the maximum deflection amount δ of the glass fiber 111 is smaller than 2D, the portion of the uppermost glass fiber 111 that bends downward does not come into contact with the lowermost glass fiber 114.

以上のように、芯材に用いるガラス繊維としては、繊維同士の交絡構造が少なくなるような材料特性を有するガラス繊維を選定している。しかし、このように繊維同士の交絡が少ない繊維を用いて不織布を作製した場合には、繊維だけでは薄層不織布シートとしての強度を保つことが難しい。そこで、薄層不織布シートとして取り扱いが容易となり、かつ、熱伝導影響を極力抑えることができるように、少量の有機バインダを使用して薄層不織布を作製する。有機バインダを用いることによって、バインダの熱伝導による断熱性能悪化はあるものの、繊維同士の交絡を少なく抑えることができるので、繊維同士の接触面積を最小化することができる。このようにして、繊維同士の接触面積を最小にすることによる固体熱伝導低減効果と、繊維交絡による伝熱方向への熱ショートカットに寄与する繊維割合が少なくなることによる固体熱伝導低減効果の2つの効果が得られる。   As described above, as the glass fiber used for the core material, a glass fiber having material characteristics that reduces the entanglement structure between the fibers is selected. However, when a non-woven fabric is produced using fibers having few entanglements between fibers, it is difficult to maintain the strength as a thin-layer non-woven fabric sheet with only the fibers. Therefore, a thin-layer nonwoven fabric is produced using a small amount of an organic binder so that it can be handled easily as a thin-layer nonwoven fabric sheet and the influence of heat conduction can be suppressed as much as possible. By using the organic binder, although the heat insulation performance is deteriorated due to the heat conduction of the binder, the entanglement between the fibers can be suppressed to a minimum, so that the contact area between the fibers can be minimized. Thus, the solid heat conduction reduction effect by minimizing the contact area between the fibers and the solid heat conduction reduction effect by reducing the proportion of fibers contributing to the heat shortcut in the heat transfer direction by fiber entanglement 2 One effect is obtained.

このように、真空断熱材1は、外包材200と、外包材200の内部に収容される芯材100とを備え、外包材200は、内部を減圧状態に保つことが可能であるように構成され、芯材100は、複数の不織布110が積層されて構成され、不織布110においては、不織布110がガラス繊維(111,112,113,114)と少量のバインダとを用いて抄紙法によって作製されることによって、ガラス繊維(111,112,113,114)が不織布110の表面と平行な方向に配列して含まれ、ガラス繊維(111,112,113,114)においては、平均繊維長Lと平均繊維径Dとのアスペクト比(L/D)が3000以下であり、最大たわみ量δは、ガラス繊維(111,112,113,114)のヤング率Eとガラス繊維(111,112,113,114)の単位長さあたりの自重Wと、平均繊維長Lと平均繊維径Dとを用いて、二点支持梁の最大たわみ量δとしてδ=(5WL)/(6ED)と表され、最大たわみ量δは、δ<2Dの関係式を満たす。 As described above, the vacuum heat insulating material 1 includes the outer packaging material 200 and the core material 100 accommodated in the outer packaging material 200, and the outer packaging material 200 is configured to be able to keep the inside in a reduced pressure state. The core material 100 is configured by laminating a plurality of non-woven fabrics 110. In the non-woven fabric 110, the non-woven fabric 110 is produced by a paper making method using glass fibers (111, 112, 113, 114) and a small amount of binder. Thus, the glass fibers (111, 112, 113, 114) are arranged and included in a direction parallel to the surface of the nonwoven fabric 110. In the glass fibers (111, 112, 113, 114), the average fiber length L and The aspect ratio (L / D) with the average fiber diameter D is 3000 or less, and the maximum deflection amount δ is determined by the Young's modulus E and the glass of the glass fiber (111, 112, 113, 114). Fibers and its weight W per unit length of the (111, 112, 113, 114), using the average fiber length L and the average fiber diameter D, δ = (5WL 4) as [delta] maximum deflection amount of two-point support beam / (6ED 4 ), and the maximum deflection amount δ satisfies the relational expression δ <2D.

芯材100を構成する不織布110が抄紙法で作製されることによって、不織布110の内部においては、不織布110を構成するガラス繊維(111,112,113,114)が不織布110の表面に沿った方向に平行に配列される。このようにすることにより、不織布110の片方の面から他方の面までを貫通するガラス繊維(111,112,113,114)が発生しにくい。そのため、複数の不織布110を積層して芯材100を構成した場合にも、芯材100の片方の面から他方の面までを貫通するガラス繊維(111,112,113,114)が発生しにくいので、芯材100の片方の面から他方の面までの熱のショートカットが生じにくくなる。   The direction in which the glass fiber (111, 112, 113, 114) which comprises the nonwoven fabric 110 along the surface of the nonwoven fabric 110 is formed in the inside of the nonwoven fabric 110 by producing the nonwoven fabric 110 which comprises the core material 100 with a papermaking method. Are arranged in parallel with each other. By doing in this way, the glass fiber (111,112,113,114) which penetrates from the one surface of the nonwoven fabric 110 to the other surface is hard to generate | occur | produce. Therefore, even when the core material 100 is configured by laminating a plurality of nonwoven fabrics 110, glass fibers (111, 112, 113, 114) penetrating from one surface of the core material 100 to the other surface are unlikely to be generated. Therefore, a heat shortcut from one surface of the core member 100 to the other surface is less likely to occur.

一方、ガラス繊維(111,112,113,114)は、平均繊維長Lと平均繊維径Dとのアスペクト比(L/D)が3000以下の繊維である。平均繊維長Lは、一本の繊維の繊維長の方向に沿った、繊維と繊維との接点間の平均の長さとする。アスペクト比が大きい繊維は、繊維径に対して繊維長が大きく、繊維どうしが交絡しやすいと考えられる。発明者が種々の検討をした結果、アスペクト比が3000以下のガラス繊維(111,112,113,114)であれば、ガラス繊維(111,112,113,114)どうしが交絡しにくくなるという知見が得られた。このように、アスペクト比が3000以下のガラス繊維(111,112,113,114)を用いて不織布110を作製することによって、ガラス繊維(111,112,113,114)どうしの交絡が少ない不織布110となり、繊維を通しての伝熱を抑えることができる。   On the other hand, the glass fibers (111, 112, 113, 114) are fibers having an aspect ratio (L / D) of 3000 or less between the average fiber length L and the average fiber diameter D. The average fiber length L is an average length between the contact points of the fibers along the fiber length direction of one fiber. A fiber having a large aspect ratio has a large fiber length with respect to the fiber diameter, and the fibers are considered to be easily entangled. As a result of various studies by the inventors, if glass fibers (111, 112, 113, 114) having an aspect ratio of 3000 or less are found, the glass fibers (111, 112, 113, 114) are hardly entangled. was gotten. Thus, the nonwoven fabric 110 with few entanglement between glass fibers (111,112,113,114) is produced by producing the nonwoven fabric 110 using the glass fiber (111,112,113,114) whose aspect ratio is 3000 or less. Thus, heat transfer through the fiber can be suppressed.

不織布110中においては、複数のガラス繊維(111,112,113,114)が上下に重なっている。一本のガラス繊維(111,112,113,114)は、二本のガラス繊維(111,112,113,114)上に支持されている場合、そのガラス繊維(111,112,113,114)を支持するガラス繊維(111,112,113,114)との二つの接点間では下方向にたわむ。このときの最大たわみ量δが、平均繊維径Dの2倍よりも小さければ、他のガラス繊維(111,112,113,114)の上に支持されている繊維が、そのガラス繊維(111,112,113,114)を支持するガラス繊維(111,112,113,114)よりもさらに下にあるガラス繊維(111,112,113,114)と交絡しにくくなる。最大たわみ量δは、そのガラス繊維(111,112,113,114)を支持するガラス繊維(111,112,113,114)との二つの接点で支持される2点支持均等荷重梁の最大たわみ量の式で表される。そこで、最大たわみ量δ=(5WL)/(6ED)がδ<2Dという条件を満たすガラス繊維(111,112,113,114)を芯材100の不織布110に用いることによって、不織布110内において上下に積層されたガラス繊維(111,112,113,114)同士が接触しにくくなり、ガラス繊維(111,112,113,114)どうしの交絡が生じにくくなるので、繊維による熱のショートカットが発生しにくくなる。 In the nonwoven fabric 110, several glass fiber (111,112,113,114) has overlapped up and down. When one glass fiber (111, 112, 113, 114) is supported on two glass fibers (111, 112, 113, 114), the glass fiber (111, 112, 113, 114) Between the two contacts with the glass fibers (111, 112, 113, 114) supporting If the maximum deflection amount δ at this time is smaller than twice the average fiber diameter D, the fibers supported on the other glass fibers (111, 112, 113, 114) will become the glass fibers (111, 112, 113, 114) is less likely to be entangled with the glass fibers (111, 112, 113, 114) below the glass fibers (111, 112, 113, 114) that support the glass fibers (111, 112, 113, 114). The maximum deflection amount δ is the maximum deflection of the two-point supported uniform load beam supported at two contact points with the glass fibers (111, 112, 113, 114) that support the glass fibers (111, 112, 113, 114). Expressed by the quantity formula. Accordingly, the glass fiber (111, 112, 113, 114) satisfying the condition that the maximum deflection amount δ = (5WL 4 ) / (6ED 4 ) satisfies δ <2D is used for the nonwoven fabric 110 of the core material 100, so The glass fibers (111, 112, 113, 114) stacked in the upper and lower directions are less likely to come into contact with each other, and the glass fibers (111, 112, 113, 114) are less likely to be entangled with each other. Less likely to occur.

このようにすることにより、細い繊維を用いずに、通常、入手される繊維材料を用いても、繊維どうしの接触と交絡が少なくなり、また、芯材100の一方の面から他方の面までを貫通する繊維が発生しにくくなるので、容易に入手することができる繊維材料を用いて、断熱性能の高い真空断熱材1を提供することできる。また、容易に入手可能な繊維材料を用いることができるので、真空断熱材1の製造コストを抑えることができる。   By doing in this way, even if it uses the fiber material normally obtained without using a thin fiber, the contact and entanglement of fibers become less, and from one side of core material 100 to the other side Since the fiber which penetrates becomes difficult to generate | occur | produce, the vacuum heat insulating material 1 with high heat insulation performance can be provided using the fiber material which can be obtained easily. Moreover, since the easily available fiber material can be used, the manufacturing cost of the vacuum heat insulating material 1 can be suppressed.

またこのように、真空断熱材1においては、ガラス繊維(111,112,113,114)はガラス繊維である。   Moreover, in this way, in the vacuum heat insulating material 1, the glass fibers (111, 112, 113, 114) are glass fibers.

発明者の種々の検討によって、ガラス繊維を用いた真空断熱材1は他の無機繊維、例えば、セラミック繊維を用いた真空断熱材1よりも熱伝導率が小さいという知見が得られた。そこで、このようにすることにより、断熱性能を向上させることができる。   Through various studies by the inventors, it has been found that the vacuum heat insulating material 1 using glass fibers has a lower thermal conductivity than the vacuum heat insulating material 1 using other inorganic fibers, for example, ceramic fibers. Thus, by doing so, the heat insulation performance can be improved.

またこのように、真空断熱材1においては、バインダは有機バインダである。   As described above, in the vacuum heat insulating material 1, the binder is an organic binder.

このようにすることにより、不織布110の折り曲げの柔軟性を向上させることができる。また、真空断熱材1の製作コストを抑えることができる。   By doing in this way, the softness | flexibility of the bending of the nonwoven fabric 110 can be improved. Moreover, the manufacturing cost of the vacuum heat insulating material 1 can be suppressed.

またこのように、真空断熱材1においては、芯材100の密度は、100〜400kg/mの範囲内に含まれる。 Further, in this way, in the vacuum heat insulating material 1, the density of the core material 100 is included in the range of 100 to 400 kg / m 3 .

芯材100の密度が100kg/m未満である場合には、芯材100の内部の空隙径がおおきくなるので、芯材100の内部の空隙に含まれる気体によって熱伝導が生じる。そのため、真空断熱材1の断熱性が悪化する。また、真空断熱材1の強度が低下し、真空断熱材1の取り扱い性が悪くなる。 When the density of the core material 100 is less than 100 kg / m 3 , the gap diameter inside the core material 100 is increased, so that heat conduction is caused by the gas contained in the gap inside the core material 100. Therefore, the heat insulation property of the vacuum heat insulating material 1 is deteriorated. Moreover, the intensity | strength of the vacuum heat insulating material 1 falls and the handleability of the vacuum heat insulating material 1 worsens.

一方、芯材100の密度が400kg/mよりも大きい場合には、芯材100を構成する不織布110どうしの接触やガラス繊維(111,112,113,114)どうしの接触が大きくなる。そのため、ガラス繊維(111,112,113,114)や不織布110という固体による熱伝導の影響が大きくなり、真空断熱材1としての断熱特性が悪くなる。 On the other hand, when the density of the core material 100 is larger than 400 kg / m 3 , the contact between the nonwoven fabrics 110 constituting the core material 100 and the contact between the glass fibers (111, 112, 113, 114) are increased. Therefore, the influence of heat conduction due to the glass fiber (111, 112, 113, 114) or the nonwoven fabric 110 is increased, and the heat insulating properties as the vacuum heat insulating material 1 are deteriorated.

そこで、このように、芯材100の密度が100〜400kg/mの範囲内に含まれるようにすることによって、芯材100が構成する空隙径を最適な値とし、気体の熱伝導と繊維径接触による固体の熱伝導を抑えながら断熱性能を発揮することができる。 Therefore, by making the density of the core material 100 included in the range of 100 to 400 kg / m 3 in this way, the gap diameter formed by the core material 100 is set to an optimum value, and the heat conduction of the gas and the fiber Insulating performance can be exhibited while suppressing heat conduction of solids due to radial contact.

本発明の一つの実施の形態の真空断熱材を用いて得られた断熱効果について説明する。 本発明の真空断熱材と、比較例として従来の真空断熱材とについて、熱伝導率を測定した。   The heat insulation effect obtained using the vacuum heat insulating material of one embodiment of this invention is demonstrated. Thermal conductivity was measured about the vacuum heat insulating material of this invention, and the conventional vacuum heat insulating material as a comparative example.

本発明の一つの実施の形態の真空断熱材に用いる芯材の無機繊維として、平均繊維径Dが10μm、平均繊維長Lが1.2cm、アスペクト比L/Dが1200、最大たわみ量δが17μm、ヤング率Eが7.7×10kg/cm、密度が2.52g/cmのガラス繊維を用いた。このガラス繊維と少量の有機バインダを使用して、抄紙法によって薄層不織布を作製し、この不織布を多数、積層して芯材を作製した。この芯材を使用して作製した真空断熱材について熱伝導率を測定したところ、熱伝導率は1.5mW/mKと優れた断熱性能を示した。熱伝導率は、熱伝導率測定装置にて平均温度25℃での熱伝導率を測定した。 As an inorganic fiber of the core material used for the vacuum heat insulating material of one embodiment of the present invention, the average fiber diameter D is 10 μm, the average fiber length L is 1.2 cm, the aspect ratio L / D is 1200, and the maximum deflection amount δ is. A glass fiber having 17 μm, Young's modulus E of 7.7 × 10 5 kg / cm 2 and density of 2.52 g / cm 3 was used. Using this glass fiber and a small amount of organic binder, a thin layer nonwoven fabric was prepared by a papermaking method, and a large number of the nonwoven fabrics were laminated to prepare a core material. When the thermal conductivity of the vacuum heat insulating material produced using this core material was measured, the heat conductivity was as excellent as 1.5 mW / mK. Thermal conductivity measured the thermal conductivity in the average temperature of 25 degreeC with the thermal conductivity measuring apparatus.

また、従来の真空断熱材に用いる芯材として、次の三つの条件に着目して、それぞれの条件に適合するかどうかによって区別される7つの比較例についても、熱伝導率を測定した。条件Iは、芯材を構成する無機繊維の平均繊維長Lと平均繊維径Dのアスペクト比(L/D)が3000以下であることとした。条件IIは、芯材の中における無機繊維の最大たわみ量δが平均繊維径Dの2倍以下であることとした。条件IIIは、無機繊維を用いて抄紙法によって薄層不織布を作製し、この不織布を多数、積層して芯材が構成されていることとした。これらの比較例の真空断熱材についても、熱伝導率は、熱伝導率測定装置にて平均温度25℃での熱伝導率を測定した。   Moreover, focusing on the following three conditions as the core material used in the conventional vacuum heat insulating material, the thermal conductivity was also measured for seven comparative examples that were distinguished depending on whether or not they met each condition. Condition I was that the aspect ratio (L / D) of the average fiber length L and the average fiber diameter D of the inorganic fibers constituting the core material was 3000 or less. Condition II was that the maximum deflection amount δ of the inorganic fibers in the core material was not more than twice the average fiber diameter D. Condition III was that a thin layer nonwoven fabric was prepared by a paper making method using inorganic fibers, and a large number of the nonwoven fabrics were laminated to form a core material. Regarding the vacuum heat insulating materials of these comparative examples, the thermal conductivity was measured at an average temperature of 25 ° C. using a thermal conductivity measuring device.

(比較例1)
従来の真空断熱材として、条件Iと条件IIを満たさず、条件IIIに適合している芯材を用いた。芯材の無機繊維としては、平均繊維径Dが1μm、平均繊維長Lが0.7cm、アスペクト比L/Dが7000、最大たわみ量δが115μm、ヤング率Eが7.7×10kg/cm、密度が2.52g/cmのガラス繊維を用いた。このガラス繊維と少量の有機バインダを使用して、抄紙法によって薄層不織布を作製し、この不織布を多数、積層して芯材を作製した。この芯材を使用して作製した真空断熱材について熱伝導率を測定したところ、熱伝導率は2.2mW/mKであった。
(Comparative Example 1)
As a conventional vacuum heat insulating material, a core material that does not satisfy the conditions I and II but conforms to the condition III was used. As an inorganic fiber of the core material, the average fiber diameter D is 1 μm, the average fiber length L is 0.7 cm, the aspect ratio L / D is 7000, the maximum deflection δ is 115 μm, and the Young's modulus E is 7.7 × 10 5 kg. Glass fiber with a density of 2.52 g / cm 3 / cm 2 was used. Using this glass fiber and a small amount of organic binder, a thin layer nonwoven fabric was prepared by a papermaking method, and a large number of the nonwoven fabrics were laminated to prepare a core material. When the thermal conductivity of the vacuum heat insulating material produced using this core material was measured, the thermal conductivity was 2.2 mW / mK.

(比較例2)
従来の真空断熱材として、条件Iと条件IIと条件IIIのいずれの条件にも適合していない芯材を用いた。芯材は、ガラスウール繊維の繊維集合体をシート状に成形して、得られた芯材の内部に含まれる水分等を除去するために、110℃で1時間、乾燥させて作製した。シート状繊維集合体の嵩密度は、219kg/mであり、平均繊維径Dが4μmであった。平均繊維長Lは3cm、アスペクト比L/Dは7500、最大たわみ量δは11390μmであった。この芯材を使用して作製した真空断熱材について熱伝導率を測定したところ、熱伝導率は2.2mW/mKであった。
(Comparative Example 2)
As a conventional vacuum heat insulating material, a core material not conforming to any of the conditions I, II and III was used. The core material was produced by forming a fiber wool fiber aggregate into a sheet and drying it at 110 ° C. for 1 hour in order to remove moisture contained in the obtained core material. The bulk density of the sheet-like fiber assembly was 219 kg / m 3 and the average fiber diameter D was 4 μm. The average fiber length L was 3 cm, the aspect ratio L / D was 7500, and the maximum deflection δ was 11390 μm. When the thermal conductivity of the vacuum heat insulating material produced using this core material was measured, the thermal conductivity was 2.2 mW / mK.

(比較例3)
従来の真空断熱材として、条件Iと条件IIに適合し、条件IIIには適合していない芯材を用いた。芯材は、ガラスウール繊維の繊維集合体をシート状に成形して、得られた芯材の内部に含まれる水分等を除去するために、110℃で1時間、乾燥させて作製した。ガラスウール繊維の平均繊維径Dが0.8μm、平均繊維長Lは0.2cm、アスペクト比L/Dは2500、最大たわみ量δは0.34μmであった。この芯材を使用して作製した真空断熱材について熱伝導率を測定したところ、熱伝導率は1.8mW/mKであった。
(Comparative Example 3)
As a conventional vacuum heat insulating material, a core material that meets the conditions I and II but does not meet the condition III was used. The core material was produced by forming a fiber wool fiber aggregate into a sheet and drying it at 110 ° C. for 1 hour in order to remove moisture contained in the obtained core material. The average fiber diameter D of the glass wool fiber was 0.8 μm, the average fiber length L was 0.2 cm, the aspect ratio L / D was 2500, and the maximum deflection δ was 0.34 μm. When the thermal conductivity of the vacuum heat insulating material produced using this core material was measured, the thermal conductivity was 1.8 mW / mK.

(比較例4)
従来の真空断熱材として、条件Iと条件IIIに適合し、条件IIに適合していない芯材を用いた。芯材の無機繊維としては、平均繊維径Dが3.5μm、平均繊維長Lが1cm、アスペクト比L/Dが2857、最大たわみ量δが61μmのガラス繊維を用いた。このガラス繊維と少量の有機バインダを使用して、抄紙法によって薄層不織布を作製し、この不織布を多数、積層して芯材を作製した。この芯材を使用して作製した真空断熱材について熱伝導率を測定したところ、熱伝導率は2.2mW/mKであった。
(Comparative Example 4)
As a conventional vacuum heat insulating material, a core material that conforms to conditions I and III but does not conform to condition II was used. As the inorganic fibers of the core material, glass fibers having an average fiber diameter D of 3.5 μm, an average fiber length L of 1 cm, an aspect ratio L / D of 2857, and a maximum deflection amount δ of 61 μm were used. Using this glass fiber and a small amount of organic binder, a thin layer nonwoven fabric was prepared by a papermaking method, and a large number of the nonwoven fabrics were laminated to prepare a core material. When the thermal conductivity of the vacuum heat insulating material produced using this core material was measured, the thermal conductivity was 2.2 mW / mK.

(比較例5)
従来の真空断熱材として、条件Iに適合し、条件IIと条件IIIには適合していない芯材を用いた。芯材は、ガラスウール繊維の繊維集合体をシート状に成形して、得られた芯材の内部に含まれる水分等を除去するために、110℃で1時間、乾燥させて作製した。ガラスウール繊維の平均繊維径Dが7μm、平均繊維長Lは2cm、アスペクト比L/Dは2857、最大たわみ量δは445μmであった。この芯材を使用して作製した真空断熱材について熱伝導率を測定したところ、熱伝導率は5mW/mKであった。
(Comparative Example 5)
As a conventional vacuum heat insulating material, a core material that conforms to Condition I and does not conform to Conditions II and III was used. The core material was produced by forming a fiber wool fiber aggregate into a sheet and drying it at 110 ° C. for 1 hour in order to remove moisture contained in the obtained core material. The average fiber diameter D of the glass wool fiber was 7 μm, the average fiber length L was 2 cm, the aspect ratio L / D was 2857, and the maximum deflection δ was 445 μm. When the thermal conductivity of the vacuum heat insulating material produced using this core material was measured, the thermal conductivity was 5 mW / mK.

(比較例6、7)
条件Iに適合せず、条件IIと条件IIIに適合する比較例6として用いられる芯材と、条件Iと条件IIIに適合せず、条件IIに適合する比較例7として用いられる芯材は、存在しない。
(Comparative Examples 6 and 7)
The core material used as Comparative Example 6 that does not conform to Condition I and conforms to Condition II and Condition III, and the core material used as Comparative Example 7 that does not conform to Condition I and Condition III and conforms to Condition II, not exist.

表1には、この発明の一つの実施の形態の真空断熱材と、比較例1〜比較例5について、熱伝導率λ(mW/mK)と、アスペクト比L/Dと、平均繊維径D(μm)と、最大たわみ量δ(μm)と、平均繊維長L(cm)を示す。   Table 1 shows the thermal conductivity λ (mW / mK), the aspect ratio L / D, and the average fiber diameter D for the vacuum heat insulating material of one embodiment of the present invention and Comparative Examples 1 to 5. (Μm), maximum deflection amount δ (μm), and average fiber length L (cm) are shown.

Figure 2009074604
Figure 2009074604

表1に示すように、条件Iと条件IIと条件IIIの三つの条件全てに適合する、本発明の一つの実施形態の真空断熱材を用いることによって、優れた断熱性能を有する真空断熱材を得ることができた。   As shown in Table 1, by using the vacuum heat insulating material of one embodiment of the present invention that meets all three conditions of Condition I, Condition II and Condition III, a vacuum heat insulating material having excellent heat insulating performance is obtained. I was able to get it.

(比較例8)
従来の真空断熱材として、芯材の無機繊維としてセラミック繊維を使用した真空断熱材を作製し、平均温度24度での熱伝導率を測定した。芯材の嵩密度は、310kg/mであった。熱伝導率は3.9mW/mKであった。
(Comparative Example 8)
As a conventional vacuum heat insulating material, a vacuum heat insulating material using ceramic fibers as the inorganic fiber of the core material was produced, and the thermal conductivity at an average temperature of 24 degrees was measured. The bulk density of the core material was 310 kg / m 3 . The thermal conductivity was 3.9 mW / mK.

このように、芯材としてセラミック繊維を用いることによって、ガラス繊維を使用した本発明の真空断熱材に比べて熱伝導率値が大きくなった。セラミック自体の熱伝導率はガラスに比べ大きいため、断熱性能を考えた場合はガラス繊維を芯材と使用することが好ましい。   Thus, by using ceramic fibers as the core material, the thermal conductivity value was increased as compared with the vacuum heat insulating material of the present invention using glass fibers. Since the thermal conductivity of the ceramic itself is larger than that of glass, it is preferable to use glass fiber as the core material in view of heat insulation performance.

このように、本発明による真空断熱材を使用することによって、断熱性能及び省エネルギーに優れた冷蔵庫等の機器を提供することが可能になる。   As described above, by using the vacuum heat insulating material according to the present invention, it is possible to provide a device such as a refrigerator excellent in heat insulating performance and energy saving.

以上に開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態と実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものである。   It should be considered that the embodiments and examples disclosed above are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the scope of the claims, and includes all modifications and variations within the meaning and scope equivalent to the scope of the claims.

この発明の一つの実施の形態として、真空断熱材の構成を模式的に示す断面図である。図1の(A)は、外包材の内部を減圧する前の状態、図1の(B)は、外包材の内部が減圧されている場合の状態を示す図である。It is sectional drawing which shows typically the structure of a vacuum heat insulating material as one embodiment of this invention. FIG. 1A shows a state before the inside of the outer packaging material is decompressed, and FIG. 1B shows a state when the inside of the outer packaging material is decompressed. この発明の一つの実施の形態として、芯材と外包材の配置(A)と、外包材の内部を減圧したときの真空断熱材の内部の様子(B)を模式的に示す斜視図である。As one embodiment of this invention, it is a perspective view showing typically an arrangement (A) of a core material and an outer packaging material, and a state (B) inside a vacuum heat insulating material when the inside of the outer packaging material is decompressed. . 一枚の不織布の中で互いに接触している繊維を模式的に示す斜視図である。It is a perspective view which shows typically the fiber which mutually contacts in the nonwoven fabric of 1 sheet. 図3の第二番目の層の無機繊維によって支持されている最上層の無機繊維を模式的に示す斜視図である。It is a perspective view which shows typically the inorganic fiber of the uppermost layer currently supported by the inorganic fiber of the 2nd layer of FIG.

符号の説明Explanation of symbols

1:真空断熱材、100:芯材、200:外包材、110:不織布、111,112,113,114:ガラス繊維。   1: vacuum heat insulating material, 100: core material, 200: outer packaging material, 110: non-woven fabric, 111, 112, 113, 114: glass fiber.

Claims (4)

外包材と、
前記外包材の内部に収容される芯材とを備え、
前記外包材は、内部を減圧状態に保つことが可能であるように構成され、
前記芯材は、複数の不織布が積層されて構成され、
前記不織布においては、前記不織布が無機繊維と少量のバインダとを用いて抄紙法によって作製されることによって、前記無機繊維が前記不織布の表面と平行な方向に配列して含まれ、
前記無機繊維においては、平均繊維長Lと平均繊維径Dとのアスペクト比(L/D)が3000以下であり、最大たわみ量δは、前記無機繊維のヤング率Eと前記無機繊維の単位長さあたりの自重Wと、平均繊維長Lと平均繊維径Dとを用いて、二点支持梁の最大たわみ量δとしてδ=(5WL)/(6ED)と表され、前記最大たわみ量δは、δ<2Dの関係式を満たす、真空断熱材。
Outer packaging materials,
A core material housed inside the outer packaging material,
The outer packaging material is configured to be able to keep the inside in a reduced pressure state,
The core material is configured by laminating a plurality of nonwoven fabrics,
In the non-woven fabric, the non-woven fabric is produced by a paper making method using inorganic fibers and a small amount of a binder, so that the inorganic fibers are included in a direction parallel to the surface of the non-woven fabric,
In the inorganic fiber, the aspect ratio (L / D) between the average fiber length L and the average fiber diameter D is 3000 or less, and the maximum deflection δ is the Young's modulus E of the inorganic fiber and the unit length of the inorganic fiber. The maximum deflection amount is expressed as δ = (5WL 4 ) / (6ED 4 ) as the maximum deflection amount δ of the two-point support beam using the dead weight W per length, the average fiber length L, and the average fiber diameter D. δ is a vacuum heat insulating material that satisfies the relational expression of δ <2D.
前記無機繊維はガラス繊維である、請求項1に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the inorganic fibers are glass fibers. 前記バインダは有機バインダである、請求項1または請求項2に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the binder is an organic binder. 前記芯材の密度は、100〜400kg/mの範囲内に含まれる、請求項1から請求項3までのいずれか1項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 3 , wherein the density of the core material is included in a range of 100 to 400 kg / m 3 .
JP2007243598A 2007-09-20 2007-09-20 Vacuum insulation Expired - Fee Related JP4907480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243598A JP4907480B2 (en) 2007-09-20 2007-09-20 Vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243598A JP4907480B2 (en) 2007-09-20 2007-09-20 Vacuum insulation

Publications (2)

Publication Number Publication Date
JP2009074604A true JP2009074604A (en) 2009-04-09
JP4907480B2 JP4907480B2 (en) 2012-03-28

Family

ID=40609777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243598A Expired - Fee Related JP4907480B2 (en) 2007-09-20 2007-09-20 Vacuum insulation

Country Status (1)

Country Link
JP (1) JP4907480B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281444A (en) * 2009-05-07 2010-12-16 Toray Ind Inc Heat insulating material
JP2014119081A (en) * 2012-12-19 2014-06-30 Hitachi Appliances Inc Vacuum insulation material and refrigerator using vacuum insulation material
CN111336346A (en) * 2018-12-19 2020-06-26 广州力及热管理科技有限公司 Method for manufacturing thin vacuum heat insulation sheet with supporting structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081596A (en) * 2000-09-06 2002-03-22 Matsushita Refrig Co Ltd Vacuum heat insulating material, method of manufacturing the same, refrigerating, equipment notebook type computer, electric water boiler and oven range
JP2005265038A (en) * 2004-03-18 2005-09-29 Nippon Sheet Glass Co Ltd Vacuum heat insulating material and method for manufacturing inorganic fiber sheet for vacuum heat insulating material
JP2006161972A (en) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2006307921A (en) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Vacuum thermal insulating material
JP2007024268A (en) * 2005-07-20 2007-02-01 Nippon Sheet Glass Co Ltd Vacuum heat insulating material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081596A (en) * 2000-09-06 2002-03-22 Matsushita Refrig Co Ltd Vacuum heat insulating material, method of manufacturing the same, refrigerating, equipment notebook type computer, electric water boiler and oven range
JP2005265038A (en) * 2004-03-18 2005-09-29 Nippon Sheet Glass Co Ltd Vacuum heat insulating material and method for manufacturing inorganic fiber sheet for vacuum heat insulating material
JP2006161972A (en) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2006307921A (en) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Vacuum thermal insulating material
JP2007024268A (en) * 2005-07-20 2007-02-01 Nippon Sheet Glass Co Ltd Vacuum heat insulating material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281444A (en) * 2009-05-07 2010-12-16 Toray Ind Inc Heat insulating material
JP2014119081A (en) * 2012-12-19 2014-06-30 Hitachi Appliances Inc Vacuum insulation material and refrigerator using vacuum insulation material
CN111336346A (en) * 2018-12-19 2020-06-26 广州力及热管理科技有限公司 Method for manufacturing thin vacuum heat insulation sheet with supporting structure

Also Published As

Publication number Publication date
JP4907480B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP2008223922A (en) Vacuum heat insulating material
JP5618756B2 (en) Vacuum insulation material and manufacturing method thereof
JP2009041592A5 (en)
JP6025969B2 (en) Vacuum heat insulating material, heat insulation tank equipped with the same, heat insulation body, and heat pump water heater
WO2010116719A1 (en) Vacuum insulation material and appliance provided therewith
JP2011074934A (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
JP2011074934A5 (en)
JP4772887B2 (en) Core material for vacuum heat insulating material, vacuum heat insulating material, and manufacturing method thereof
KR101353647B1 (en) Core material for vacuum insulation panel and vacuum insulation panel using the same
JP6022037B2 (en) Vacuum insulation
JP4974861B2 (en) Vacuum insulation
JP4907480B2 (en) Vacuum insulation
JP4969436B2 (en) Vacuum insulation material and equipment using the same
WO2013073599A1 (en) Vacuum insulation material, apparatus including same, and method for manufacturing same
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
JP2015007450A (en) Vacuum heat insulation material vacuum-packaged doubly
JP2008093933A (en) Vacuum heat insulating material
JP2012092870A (en) Vacuum heat insulating material and heat insulating box using the same
JP2010127421A (en) Vacuum thermal-insulating material and thermal insulation box
JP6359087B2 (en) Vacuum heat insulating material and heat insulator provided with the same
JP2006161939A (en) Vacuum thermal insulating material
WO2021054395A1 (en) Vacuum heat-insulating material
JP2012063007A (en) Cylindrical heat insulating material and thermal device using the same
JP6793571B2 (en) Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material
JP6444375B2 (en) Vacuum insulation core material containing organic synthetic fiber and vacuum insulation material containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4907480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees