JP2005265038A - Vacuum heat insulating material and method for manufacturing inorganic fiber sheet for vacuum heat insulating material - Google Patents

Vacuum heat insulating material and method for manufacturing inorganic fiber sheet for vacuum heat insulating material Download PDF

Info

Publication number
JP2005265038A
JP2005265038A JP2004077794A JP2004077794A JP2005265038A JP 2005265038 A JP2005265038 A JP 2005265038A JP 2004077794 A JP2004077794 A JP 2004077794A JP 2004077794 A JP2004077794 A JP 2004077794A JP 2005265038 A JP2005265038 A JP 2005265038A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
fiber
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004077794A
Other languages
Japanese (ja)
Other versions
JP4438466B2 (en
Inventor
Yoshinobu Kakizaki
芳信 柿崎
Yuji Katagiri
裕治 片桐
Fumihide Hibi
文秀 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2004077794A priority Critical patent/JP4438466B2/en
Publication of JP2005265038A publication Critical patent/JP2005265038A/en
Application granted granted Critical
Publication of JP4438466B2 publication Critical patent/JP4438466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Paper (AREA)
  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide vacuum heat insulating material having improved heat insulating effect by aligning fiber in a direction vertical to a heat transmission direction from a sheet front surface to a back surface, namely, in a horizontal direction to the sheet surface with aiming at fiber structure (fiber arrangement) improving heat insulating effect to remarkably reducing shot and using inorganic fiber of small fiber diameter, and a method for manufacturing inorganic fiber sheet for vacuum heat insulation. <P>SOLUTION: Laminated plural sheets of inorganic fiber sheet made by a wet papermaking method with using inorganic fiber as a main component is used as a core material in this vacuum heat insulating material. Content of shots of particle diameter 30 μm or greater in the inorganic fiber is 0.1 mass% or less, average fiber diameter of the inorganic fiber is 0.2-6 μm, and the inorganic fiber is aligned in the horizontal direction to the sheet surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、無機繊維を利用して製造する真空断熱材に関し、詳しくは、ショットの含有率を著しく低減するとともに、真空断熱材を構成する繊維の構造を改善することにより、熱の伝達距離を長くし断熱性を向上させる真空断熱材及び真空断熱材用無機繊維シートの製造方法に関する。   The present invention relates to a vacuum heat insulating material manufactured using inorganic fibers. Specifically, the heat transfer distance is reduced by significantly reducing the shot content and improving the structure of the fibers constituting the vacuum heat insulating material. It is related with the manufacturing method of the vacuum heat insulating material which lengthens and improves heat insulation, and the inorganic fiber sheet for vacuum heat insulating materials.

従来、真空断熱材としては、無機繊維からなるニードリングマット、フェルト、ウール等をバインダを用いて成形して断熱容器に収納し、その後真空にして密閉したものが一般的に使用されている。
前記無機繊維からなる真空断熱材の断熱性を高めるために、無機繊維中のショット(未繊維化粒状物)の含有率を低下させた断熱材や、無機繊維を伝熱方向に対して垂直方向に配列させた断熱材など、様々な真空断熱材が提案されている。
Conventionally, as a vacuum heat insulating material, a needling mat, felt, wool or the like made of an inorganic fiber is molded using a binder, stored in a heat insulating container, and then sealed in a vacuum.
In order to improve the heat insulation of the vacuum heat insulating material made of the inorganic fiber, the heat insulating material in which the content of shots (non-fibrous granular material) in the inorganic fiber is reduced, or the inorganic fiber is perpendicular to the heat transfer direction. Various vacuum heat insulating materials have been proposed, such as heat insulating materials arranged in a row.

例えば、断熱材を構成する無機繊維のショットのサイズが大きく、数が多いと、断熱材中の空隙のサイズと数が増加し、大きな空隙中の空気の対流による熱伝達により、熱伝導率が高くなり、断熱性が低下することが分かっている。このため、特許文献1には、ショットを含む無機繊維と無機粉末と結合材からなり、前記無機繊維の平均繊維長が1mm以下であり、前記無機繊維に含まれる粒子径45μm以上のショット含有率が30重量%以下であり、前記無機粉末の重量平均径が1〜30μmである断熱材が提案されている。また、特許文献2には、断熱材を構成する無機繊維中に含まれる粒子径50μm以上のショット含有率を1重量%以下とする断熱材が提案されている。   For example, if the size of the shot of inorganic fibers constituting the heat insulating material is large and the number is large, the size and number of voids in the heat insulating material increase, and heat conductivity is increased by heat transfer due to air convection in the large air gap. It has been found that it increases and the thermal insulation decreases. For this reason, Patent Document 1 includes a shot containing ratio of an inorganic fiber containing a shot, an inorganic powder, and a binder, the average fiber length of the inorganic fiber being 1 mm or less, and a particle diameter of 45 μm or more contained in the inorganic fiber. Is 30% by weight or less, and a heat insulating material in which the weight average diameter of the inorganic powder is 1 to 30 μm has been proposed. Further, Patent Document 2 proposes a heat insulating material in which the shot content with a particle diameter of 50 μm or more contained in the inorganic fibers constituting the heat insulating material is 1% by weight or less.

また、真空断熱材を構成する無機繊維が、一方の面から他面へと伝わる熱の方向と平行に配列されていると、無機繊維の間隙に沿って伝熱し易いため、熱伝導率が高くなり、断熱性が低下することが分かっている。このため、特許文献3には、繊維綿を破砕して一定濃度とした水分散媒体を脱水しつつ複数回に分けて連続的に脱水し、徐々に繊維層を形成することにより、伝熱方向に対して繊維を垂直方向に配列させた真空断熱材が提案されている。   In addition, when the inorganic fibers constituting the vacuum heat insulating material are arranged in parallel with the direction of the heat transferred from one surface to the other surface, heat transfer is easy along the gaps of the inorganic fibers, so the thermal conductivity is high. It is known that the heat insulating property is reduced. For this reason, Patent Document 3 discloses that a water dispersion medium having a constant concentration by crushing fiber cotton is continuously dehydrated in several times while dewatering, and gradually forming a fiber layer, thereby transferring the heat transfer direction. On the other hand, a vacuum heat insulating material in which fibers are arranged in a vertical direction has been proposed.

その他、伝熱方向に対してガラス繊維を垂直方向に配列させた真空断熱材として、特許文献4には、平均繊維径が約4〜6μmのガラスウールの原綿を所定の大きさに切断して所定量集綿積層し、この集綿積層体の表面にpH値が中性付近のイオン交換水を噴霧し、常温下で圧縮して集綿積層体内部に水を拡散浸透させた後、加熱プレスにて高温圧縮し、この圧縮を繰り返すことでガラス繊維を伝熱方向に対して垂直方向に配列させた真空断熱材も提案されている。   In addition, as a vacuum heat insulating material in which glass fibers are arranged in a direction perpendicular to the heat transfer direction, Patent Document 4 discloses that glass wool raw cotton having an average fiber diameter of about 4 to 6 μm is cut into a predetermined size. A predetermined amount of cotton collection is laminated, ion-exchanged water having a pH value near neutral is sprayed on the surface of this cotton collection laminate, compressed at room temperature, and diffused and penetrated into the cotton collection laminate, then heated. There has also been proposed a vacuum heat insulating material in which glass fibers are arranged in a direction perpendicular to the heat transfer direction by high-temperature compression with a press and repeating this compression.

その他、伝熱方向に対して繊維を垂直方向に配列させた真空断熱材として、特許文献5には、平均繊維径が2μm以下の無機質繊維からなる抄造ペーパーを複数枚積層し、無機質繊維同士をそれら繊維より溶出した成分により各交点で結着することで、無機質繊維を伝熱方向に対して垂直方向に配列した真空断熱材も提案されている。
特開2001−192278号公報 特開2001−48672号公報 特開平9−4785号公報 特開2004−11709号公報 特開平7−139691号公報
In addition, as a vacuum heat insulating material in which fibers are arranged in a direction perpendicular to the heat transfer direction, Patent Document 5 describes that a plurality of paper-making papers made of inorganic fibers having an average fiber diameter of 2 μm or less are laminated, and inorganic fibers are bonded together. There has also been proposed a vacuum heat insulating material in which inorganic fibers are arranged in a direction perpendicular to the heat transfer direction by binding at each intersection with components eluted from these fibers.
JP 2001-192278 A JP 2001-48672 A Japanese Patent Laid-Open No. 9-4785 JP 2004-11709 A JP 7-139691 A

しかしながら、前記特許文献1に記載されている断熱材は、ショットを完全に除去したものではないため、熱伝導率が約0.046W/m・Kと断熱材としては、比較的高いものになるという不都合があった。また、前記特許文献2に記載されている断熱材においても、ショットが完全に除去されていないため、比較的熱伝導率が高いものになるという不都合があった。
また、前記特許文献3に記載されている真空断熱材は、例えば、平均繊維長2mmのガラス繊維を圧縮脱水した真空断熱材については、真空熱伝導率が0.015W/m・Kと、繊維長1mmのガラス繊維を圧縮脱水した真空断熱材の真空熱伝導率0.007W/m・Kと比較して、熱伝導率が高くなることが記載されている。これは、比較的長い繊維を圧縮脱水した場合は、繊維構造が粗であるために真空加熱時に繊維の構造が変形し、断熱性が低下したものと推測され、前記特許文献3に記載の方法を用いても、確実にガラス繊維が伝熱方向に対して垂直方向に配列されているものではないと推測される。
また、前記特許文献4に記載の真空断熱材のように、湿潤状態のシート中のガラス繊維を破壊せずに加圧により繊維を移動させようとする場合、通常、ガラス繊維の構造体の空間量は90%以上あるため、シート水分量で80%以上、つまりガラス繊維の8倍以上の水分量を必要とするが、特許文献4の真空断熱材の場合は、高温圧縮の際に最大2倍量の水分しか付着させていないので、加圧によりガラス繊維が水平方向に移動するとは考えられず、加圧によってガラス繊維が折れて短くなり、細かく折れたガラス繊維が密な構造となって断熱性が高められており、繊維の構造(繊維の配列)による断熱効果は少ないと推測される。
また、前記特許文献5に記載の真空断熱材では、湿式抄造によって得た無機質繊維ペーパーを複数層重ね合わせることで真空断熱材全体として、無機質繊維が真空断熱材の厚さ方向に対して垂直方向に配列するようにしたものであるが、ペーパーの湿式抄造時において繊維をペーパー面に対して水平方向に配列するための特別な制御(ジェット/ワイヤ比の特殊制御など)は行っていないことから、ペーパー単位で見た場合には、繊維がペーパー面に対して水平方向に確実に配列されているわけではない。
そこで、本発明は、断熱効果を高める繊維の構造(繊維の配列)に着目し、ショットを著しく低減するとともに、繊維径の小さい無機繊維を用いて、シートの表面から裏面へと伝熱する方向に対して垂直方向、即ち、シート面に対して水平方向に繊維を配列させて、断熱効果を向上させた真空断熱材及び真空断熱材用無機繊維シートの製造方法を提供することを目的とする。
However, since the heat insulating material described in Patent Document 1 is not obtained by completely removing shots, the heat conductivity is about 0.046 W / m · K, which is a relatively high heat insulating material. There was an inconvenience. Further, the heat insulating material described in Patent Document 2 also has a disadvantage in that the shot has not been completely removed, so that the heat conductivity is relatively high.
In addition, the vacuum heat insulating material described in Patent Document 3 is, for example, a vacuum heat insulating material obtained by compressing and dewatering glass fibers having an average fiber length of 2 mm, with a vacuum thermal conductivity of 0.015 W / m · K, fiber It is described that the thermal conductivity is higher than the vacuum thermal conductivity of 0.007 W / m · K of a vacuum heat insulating material obtained by compressing and dewatering a glass fiber having a length of 1 mm. This is presumed that when relatively long fibers were subjected to compression dehydration, the fiber structure was rough, so that the structure of the fibers was deformed during vacuum heating and the heat insulation was reduced. However, it is presumed that the glass fibers are not surely arranged in the direction perpendicular to the heat transfer direction.
In addition, as in the vacuum heat insulating material described in Patent Document 4, when trying to move fibers by pressing without destroying the glass fibers in the wet sheet, the space of the glass fiber structure is usually used. Since the amount is 90% or more, the sheet moisture amount is 80% or more, that is, the moisture amount is 8 times or more that of glass fiber. However, in the case of the vacuum heat insulating material of Patent Document 4, the maximum is 2 at the time of high-temperature compression. Since only double the amount of moisture is attached, it is not considered that the glass fiber moves in the horizontal direction by pressing, the glass fiber breaks and shortens by pressing, and the finely broken glass fiber has a dense structure. The heat insulating property is enhanced, and it is estimated that the heat insulating effect due to the fiber structure (fiber arrangement) is small.
Moreover, in the vacuum heat insulating material of the said patent document 5, an inorganic fiber is perpendicular | vertical with respect to the thickness direction of a vacuum heat insulating material as a whole vacuum heat insulating material by laminating | stacking several layers of the inorganic fiber paper obtained by wet papermaking. However, there is no special control (special control of jet / wire ratio, etc.) to arrange the fibers in the horizontal direction with respect to the paper surface during wet paper making of paper. When viewed in paper units, the fibers are not surely arranged in the horizontal direction with respect to the paper surface.
Therefore, the present invention pays attention to the fiber structure (fiber arrangement) that enhances the heat insulation effect, significantly reduces shots, and uses the inorganic fiber having a small fiber diameter to transfer heat from the front surface to the back surface of the sheet. It aims at providing the manufacturing method of the vacuum heat insulating material which arranged the fiber in the orthogonal | vertical direction, ie, the horizontal direction with respect to the sheet | seat surface, and improved the heat insulation effect, and the inorganic fiber sheet for vacuum heat insulating materials. .

本発明の真空断熱材は、前記目的を達成するべく、請求項1に記載の通り、無機繊維を主体として湿式抄造した無機繊維シートを複数枚積層したものを芯材として用いてなる真空断熱材であって、前記無機繊維中の粒子径30μm以上のショット含有率が0.1質量%以下であり、前記無機繊維の平均繊維径が0.2〜6μmであり、前記無機繊維がシート面に対して水平方向に配列されていることを特徴とする。
また、請求項2記載の真空断熱材は、請求項1記載の真空断熱材において、前記無機繊維シートが無機繊維のみで構成されていることを特徴とする。
また、請求項3記載の真空断熱材は、請求項1または2記載の真空断熱材において、前記無機繊維の平均繊維径が2μm以下であることを特徴とする。
また、請求項4記載の真空断熱材は、請求項1乃至3の何れかに記載の真空断熱材において、前記無機繊維がガラス繊維であることを特徴とする。
本発明の真空断熱材用無機繊維シートの製造方法は、前記目的を達成するべく、請求項5に記載の通り、一定方向に走行するフォーミングワイヤ上に、分散媒体中に無機繊維を分散させた抄紙原料液を噴出し、該抄紙原料液を脱水しつつ前記フォーミングワイヤ上に無機繊維を堆積させて湿式抄造する真空断熱材用無機繊維シートの製造方法であって、前記無機繊維として、平均繊維径が0.2〜6μmで、粒子径30μm以上のショット含有率が0.1質量%以下である無機繊維を使用するとともに、前記抄紙原料液の流れる速度と前記フォーミングワイヤの走行速度の速度比率であるジェット/ワイヤ比率を0.5〜0.8としたことを特徴とする。
また、請求項6記載の真空断熱材用無機繊維シートの製造方法は、請求項5記載の真空断熱材用無機繊維シートの製造方法において、前記無機繊維の平均繊維径が2μm以下であることを特徴とする。
また、請求項7記載の真空断熱材用無機繊維シートの製造方法は、請求項5または6記載の真空断熱材用無機繊維シートの製造方法において、前記無機繊維がガラス繊維であることを特徴とする。
In order to achieve the above object, the vacuum heat insulating material of the present invention is a vacuum heat insulating material obtained by using a laminate of a plurality of inorganic fiber sheets made mainly of inorganic fibers and wet-made as described in claim 1 as a core material. And the shot fiber content of a particle diameter of 30 μm or more in the inorganic fiber is 0.1% by mass or less, the average fiber diameter of the inorganic fiber is 0.2 to 6 μm, and the inorganic fiber is on the sheet surface. On the other hand, it is arranged in a horizontal direction.
The vacuum heat insulating material according to claim 2 is characterized in that, in the vacuum heat insulating material according to claim 1, the inorganic fiber sheet is composed of only inorganic fibers.
The vacuum heat insulating material according to claim 3 is the vacuum heat insulating material according to claim 1 or 2, wherein the average fiber diameter of the inorganic fibers is 2 μm or less.
Moreover, the vacuum heat insulating material of Claim 4 is a vacuum heat insulating material in any one of Claims 1 thru | or 3, The said inorganic fiber is glass fiber, It is characterized by the above-mentioned.
In order to achieve the above object, the method for producing an inorganic fiber sheet for a vacuum heat insulating material according to the present invention has inorganic fibers dispersed in a dispersion medium on a forming wire that travels in a certain direction as described in claim 5. A method for producing an inorganic fiber sheet for vacuum heat insulating material, in which an inorganic fiber is deposited on the forming wire while dewatering the paper-making raw material liquid and wet-making, and the average fiber is used as the inorganic fiber. Use of inorganic fibers having a diameter of 0.2 to 6 μm and a particle content of 30 μm or more and a shot content of 0.1% by mass or less, and a speed ratio between the flow speed of the papermaking raw material liquid and the traveling speed of the forming wire The jet / wire ratio is 0.5 to 0.8.
Moreover, the manufacturing method of the inorganic fiber sheet for vacuum heat insulating materials of Claim 6 is a manufacturing method of the inorganic fiber sheet for vacuum heat insulating materials of Claim 5, The average fiber diameter of the said inorganic fiber is 2 micrometers or less. Features.
Moreover, the manufacturing method of the inorganic fiber sheet for vacuum heat insulating materials of Claim 7 is a manufacturing method of the inorganic fiber sheet for vacuum heat insulating materials of Claim 5 or 6, The said inorganic fiber is glass fiber, It is characterized by the above-mentioned. To do.

本発明の真空断熱材は、無機繊維を主体として湿式抄造した無機繊維シートを複数枚積層したものを芯材として用いてなる真空断熱材であって、前記無機繊維シートは、粒子径30μm以上のショット含有率が0.1質量%以下で、平均繊維径が0.2〜6μm(好適には0.2〜2μm)の無機繊維を主体として湿式抄造したシートからなり、前記無機繊維がシート面に対して水平方向に配列している。このように、本発明の真空断熱材は、ショットがほぼ存在せず、非常に微細径の無機繊維を主体として形成された無機繊維シートを芯材として用いているため、断熱材中に微細な空隙が数多く形成され、空隙中の空気の対流による熱伝達が少なく、熱伝導率が低下して、断熱性を向上することができる。また、繊維がシート面に対して水平方向に配列した無機繊維シートを芯材として用いているため、断熱材の表面から裏面への伝熱を阻害できるとともに、伝熱経路となる繊維の間隙が複雑化、迷路化され、熱伝導時間が長くなり、断熱効果を向上することができる。
また、前記無機繊維としてガラス繊維を用いた場合は、微細径のガラス繊維を工業的に容易に得られるため有用性が高い。ガラス繊維を湿式抄造したシートは、ガラスウールからなる集綿積層体を圧縮して形成したものよりも、厚さや密度の精度を高められ、安定した品質の真空断熱材用無機繊維シートとすることができる。
また、本発明の真空断熱材用無機繊維シートの製造方法は、一定方向に走行するフォーミングワイヤ上に、分散媒体中に無機繊維を分散させた抄紙原料液を噴出し、該抄紙原料液を脱水しつつ前記フォーミングワイヤ上に無機繊維を堆積させて湿式抄造する製造方法であって、前記無機繊維として、平均繊維径が0.2〜6μmで、粒子径30μm以上のショット含有率が0.1質量%以下である無機繊維を使用するとともに、前記抄紙原料液の流れる速度と前記フォーミングワイヤの走行速度の速度比率であるジェット/ワイヤ比率を0.5〜0.8としているため、抄紙原料液の流速よりも、フォーミングワイヤの走行速度の方が速く、抄紙原料液中の無機繊維がフォーミングワイヤの走行方向に引っ張られる形となり、無機繊維をシート面に対して水平方向に配列させることができる。
The vacuum heat insulating material of the present invention is a vacuum heat insulating material using as a core a material obtained by laminating a plurality of wet-made inorganic fiber sheets mainly composed of inorganic fibers, and the inorganic fiber sheet has a particle diameter of 30 μm or more. It consists of a sheet made by wet papermaking mainly composed of inorganic fibers having a shot content of 0.1% by mass or less and an average fiber diameter of 0.2 to 6 μm (preferably 0.2 to 2 μm). Are arranged in the horizontal direction. As described above, the vacuum heat insulating material of the present invention is almost free of shots and uses an inorganic fiber sheet formed mainly of very fine inorganic fibers as a core material. A large number of voids are formed, heat transfer due to convection of air in the voids is small, thermal conductivity is lowered, and heat insulation can be improved. Moreover, since the inorganic fiber sheet in which the fibers are arranged in the horizontal direction with respect to the sheet surface is used as the core material, heat transfer from the front surface to the back surface of the heat insulating material can be inhibited, and the gap between the fibers serving as the heat transfer path Complicated and maze, heat conduction time becomes longer and heat insulation effect can be improved.
Further, when glass fiber is used as the inorganic fiber, it is highly useful because a glass fiber having a fine diameter can be easily obtained industrially. Sheets made by wet papermaking of glass fibers should be made of inorganic fiber sheets for vacuum insulation with a stable quality, with improved accuracy in thickness and density, compared to those formed by compressing cotton wool laminates made of glass wool. Can do.
Further, the method for producing an inorganic fiber sheet for vacuum heat insulating material according to the present invention comprises ejecting a papermaking raw material liquid in which inorganic fibers are dispersed in a dispersion medium onto a forming wire running in a certain direction, and dehydrating the papermaking raw material liquid. However, it is a manufacturing method in which inorganic fibers are deposited on the forming wire to perform wet papermaking, and the inorganic fibers have an average fiber diameter of 0.2 to 6 μm and a shot content of 0.1 to 30 μm. Since the inorganic fiber which is less than mass% is used, and the jet / wire ratio, which is the speed ratio of the flow speed of the papermaking raw material liquid and the traveling speed of the forming wire, is set to 0.5 to 0.8, the papermaking raw material liquid The traveling speed of the forming wire is faster than the flow velocity of the paper, and the inorganic fibers in the papermaking raw material liquid are pulled in the traveling direction of the forming wire. It can be arranged in a horizontal direction with respect to the surface.

本発明の真空断熱材は、無機繊維を主体として湿式抄造した無機繊維シートを複数枚積層したものを芯材として用いて成るものである。
前記無機繊維は、無機繊維シートのシート面に対して水平方向に配列されていることが必要である。このようにすることで、断熱材の伝熱方向に対して、繊維を垂直方向に配列することができるので、熱伝導性を阻害して、結果として、真空断熱材の断熱性能を向上させることができる。
前記無機繊維は、平均繊維径が0.2〜6μmのものを用いる必要がある。なぜならば、平均繊維径が0.2μm未満であると、湿式抄造によるシート化自体は可能であるが、材料コストが高くなり、工業製品として実用に適さなくなるという不都合があり、6μmを超えると、繊維同士の交絡構造が少なくなり十分なシート強度が得られなくなるという不都合があるからである。尚、前記無機繊維の平均繊維径は、より小さい方が、無機繊維シートの空隙を微細化することができ、気体熱伝導が低減されるので、真空断熱材の断熱性能は向上する。この点から、前記無機繊維の平均繊維径は、2μm以下であることが好ましい。
The vacuum heat insulating material of the present invention is formed by using, as a core material, a laminate of a plurality of inorganic fiber sheets made by wet papermaking mainly composed of inorganic fibers.
The inorganic fibers need to be arranged in the horizontal direction with respect to the sheet surface of the inorganic fiber sheet. By doing so, the fibers can be arranged in the vertical direction with respect to the heat transfer direction of the heat insulating material, thereby inhibiting the thermal conductivity and, as a result, improving the heat insulating performance of the vacuum heat insulating material. Can do.
The inorganic fiber must have an average fiber diameter of 0.2 to 6 μm. Because, if the average fiber diameter is less than 0.2 μm, it is possible to make a sheet by wet papermaking, but there is a disadvantage that the material cost becomes high and it is not suitable for practical use as an industrial product, and if it exceeds 6 μm, This is because there is an inconvenience that the entangled structure between the fibers decreases and sufficient sheet strength cannot be obtained. In addition, since the one where the average fiber diameter of the said inorganic fiber is smaller can refine | miniaturize the space | gap of an inorganic fiber sheet and gas heat conduction is reduced, the heat insulation performance of a vacuum heat insulating material improves. From this point, the average fiber diameter of the inorganic fibers is preferably 2 μm or less.

前記無機繊維としては、ガラス繊維、セラミック繊維、スラグウール繊維、ロックウール繊維等が使用可能であるが、微細径の繊維が工業的に得られ易い点から、ガラス繊維の使用が好ましい。
前記微細径の無機繊維には、その製法上、通常ショットと呼ばれる非繊維状粒子が含まれているが、これらショットは、繊維としての機能を果たさないばかりか、熱伝導率も高くなるため無い方が望ましい。特に、粒子径が30μm以上の大きなショットは、断熱材に大きな気孔を生じ、気体の対流伝熱、気体分子の衝突による伝熱を促進するため、断熱材の断熱性能を大きく阻害する。このため、本発明の真空断熱材に用いる無機繊維としては、粒子径30μm以上のショット含有率が0.1質量%以下のものを用いるようにする。
本発明においては、特に、表面凹凸等を生じない高品質の無機繊維シートを得るために、従来主流であった乾式法(集綿積層法など)ではなく、湿式抄造法により製造するようにしている。例えば、無機繊維を分散媒体に分散させた抄紙原料液の遠心分離を行い、スクリーン・フィルタを通過させる等すれば、無機繊維中の粒子径30μm以上のショット含有率を実質上ゼロとなる0.1質量%以下にまで低減することができる。
前記ガラス繊維としては、例えば、耐酸性のCガラスを溶融、紡糸後、バーナの火炎でエネルギを与え、吹き飛ばして得られるガラス短繊維や、Cガラスを溶融した後、紡糸したガラス長繊維が好適に用いられる。このような火炎法や、その他遠心法等の製法によって得られるガラス繊維は、その繊維構造が表面積の小さい円柱状に形成されており、パルプ繊維等のように枝分かれ(フィブリル化)していないため、湿式抄造の際に、抄紙原料液中の繊維が一定方向に走行するフォーミングワイヤに引っ張られても、繊維が引っ掛かってシート表面の地合が崩れたり、孔が開いたりする等の不都合がない。
As the inorganic fiber, glass fiber, ceramic fiber, slag wool fiber, rock wool fiber and the like can be used. However, glass fiber is preferred because fine fibers can be easily obtained industrially.
The inorganic fiber of the fine diameter contains non-fibrous particles usually called shots because of its production method, but these shots do not function as fibers but also have high heat conductivity. Is preferable. In particular, a large shot having a particle size of 30 μm or more generates large pores in the heat insulating material and promotes heat transfer due to gas convection heat transfer and gas molecule collision, so that the heat insulating performance of the heat insulating material is greatly hindered. For this reason, as an inorganic fiber used for the vacuum heat insulating material of the present invention, a fiber having a shot content of 30 μm or more and 0.1% by mass or less is used.
In the present invention, in particular, in order to obtain a high-quality inorganic fiber sheet that does not cause surface irregularities or the like, it is produced by a wet papermaking method rather than a dry method (such as a cotton collection lamination method) that has been the mainstream in the past. Yes. For example, if the papermaking raw material liquid in which inorganic fibers are dispersed in a dispersion medium is centrifuged and passed through a screen filter, the shot content with a particle diameter of 30 μm or more in the inorganic fibers becomes substantially zero. It can be reduced to 1% by mass or less.
As the glass fiber, for example, a short glass fiber obtained by melting and spinning an acid-resistant C glass, applying energy with a flame of a burner and blowing it, or a long glass fiber spun after melting the C glass is suitable. Used for. Glass fiber obtained by such a flame method or other methods such as centrifugation is formed in a columnar shape with a small surface area and is not branched (fibrillated) like pulp fibers. During wet papermaking, even if the fibers in the papermaking raw material are pulled by a forming wire that runs in a certain direction, there are no inconveniences such as the fibers being caught and the sheet surface being crushed or having holes. .

前記無機繊維シートには、無機繊維の他に、必要に応じて、有機バインダ、無機バインダ、有機繊維等のバインダ機能を有する材料や、有機粉体、無機粉体、マイクロカプセル粒体など、無機繊維シートの強度、均一性、取り扱い性を向上させ得る材料等の補助材料を混入させることが可能である。尚、湿式抄造法により、上記のような補助材料を含まず無機繊維のみから構成される無機繊維シートを得ることも可能であり、この場合には、上記補助材料から発生するガスによる真空劣化に伴う断熱性能の低下を防ぐことができるとともに、バインダによる繊維間結着がないことで、真空断熱材の用途に応じた変形に対応できる可撓性を持たせることができるメリットがある。   In addition to the inorganic fibers, the inorganic fiber sheet includes inorganic materials such as organic binders, inorganic binders, organic fibers, and other binder-functional materials, organic powders, inorganic powders, microcapsule granules, and the like. An auxiliary material such as a material that can improve the strength, uniformity, and handleability of the fiber sheet can be mixed. In addition, it is also possible to obtain an inorganic fiber sheet composed only of inorganic fibers by the wet papermaking method and not including the auxiliary material as described above. In this case, the vacuum deterioration due to the gas generated from the auxiliary material is caused. In addition to being able to prevent the accompanying decrease in heat insulation performance, there is no merit between fibers due to the binder, so that there is a merit that it is possible to have flexibility that can cope with deformation according to the use of the vacuum heat insulating material.

本発明の真空断熱材用無機繊維シートの製造方法は、一定方向に走行するフォーミングワイヤ上に、分散媒体中に無機繊維を分散させた抄紙原料液を噴出し、該抄紙原料液を脱水しつつ前記フォーミングワイヤ上に無機繊維を堆積させて湿式抄造するものであり、特に、湿式抄造された無機繊維シートのシート面に対して水平方向に確実に繊維を配列させるために、前記抄紙原料液の流れる速度と前記フォーミングワイヤの走行速度の速度比率であるジェット/ワイヤ比率を0.5〜0.8の範囲に制御する。このような制御を行うため、本発明では、抄紙機として、ジェット/ワイヤ比率を比較的容易に調整可能な一部の傾斜抄紙機(例えば、ポンドレギュレータを備えた密閉式傾斜抄紙機)あるいは長網抄紙機を用いることが好ましい。尚、前記ジェット/ワイヤ比率が0.8以下であると、抄紙原料液の流れる速度よりもフォーミングワイヤの走行速度の方が明らかに速いため、無機繊維はすべてフォーミングワイヤの流れ方向に引っ張られる形で堆積し、シート面に対して水平方向に無機繊維が確実に配列した無機繊維シートを得ることができる。尚、ジェット/ワイヤ比率が0.5未満であると、抄紙原料液の流れる速度、即ち原料供給速度に対して、フォーミングワイヤの走行速度が余りにも速過ぎるため、原料の供給が追い付かなかくなり、均一な地合のシートを得ることができない。
以下、一例として、図1に示すポンドレギュレータを備えた密閉式傾斜抄紙機を用いて、本発明の真空断熱材用無機繊維シートを製造する具体的な方法を図面に基づき説明する。
(1)先ず、原料として、例えば、平均繊維径1μmの微細ガラス繊維を所定量計量し、ミキサ、パルパ等の分離機により前記繊維を水中に均一に分散・混合して、抄紙原料液を得る。尚、ガラス繊維はパルプと異なりフィブリル化はしないため、ビータのような刃物を備えた叩解機を使用すると折れて粉状となるため、パルパを使用する。この抄紙原料液を貯蔵タンクに輸送、貯蔵する。
(2)次に、前記抄紙原料液中のガラス繊維には、ショットが少量混入していることが推測されるため、前記抄紙原料液を遠心分離機にて遠心分離した後、スクリーン・フィルタを通過させて、抄紙原料液に含まれるガラス繊維中の粒子径30μm以上のショット含有量を0.1質量%以下にする。
(3)次に、図略の種口弁・白水バルブで抄紙原料液の供給量を制御し、ステップディフューザ等を介してヘッドボックス3から抄紙原料液を噴出し、抄紙原料液のプール(水溜まり)5を形成する。このプール5内のガラス繊維4が斜め上方に走行するフォーミングワイヤ6上に堆積し、下方から脱水されて、湿紙状態のガラス繊維シート2が形成される。密閉式傾斜抄紙機1は、ポンドレギュレータ8でプール5の液面を押さえてヘッドボックス3の原料投入開口部の面積を調整し、抄紙原料液の流れる速度を容易に調整することができる。この流速に対してフォーミングワイヤ6の走行速度を調整することにより、抄紙原料液の流れる速度とフォーミングワイヤ6の走行速度の速度比率であるジェット/ワイヤ比率を0.5〜0.8の範囲に調整することができる。
(4)次に、前記湿紙状態のガラス繊維シート2を水分を乾燥させるドライヤを通過させて、真空断熱材用無機繊維シートの原紙を得、これをロール状に巻き取る。この原紙を展開して所望の大きさに裁断すれば、真空断熱材用無機繊維シートが得られる。
The method for producing an inorganic fiber sheet for a vacuum heat insulating material according to the present invention is characterized in that a papermaking raw material liquid in which inorganic fibers are dispersed in a dispersion medium is jetted onto a forming wire running in a certain direction, and the papermaking raw material liquid is dehydrated. Inorganic paper is deposited on the forming wire and wet-made, and in particular, in order to reliably arrange the fibers in the horizontal direction with respect to the sheet surface of the wet-made inorganic fiber sheet, The jet / wire ratio, which is the speed ratio between the flowing speed and the traveling speed of the forming wire, is controlled in the range of 0.5 to 0.8. In order to perform such control, in the present invention, as the paper machine, a part of the inclined paper machine (for example, a sealed inclined paper machine equipped with a pound regulator) whose jet / wire ratio can be adjusted relatively easily or a long machine is used. It is preferable to use a net paper machine. When the jet / wire ratio is 0.8 or less, the traveling speed of the forming wire is clearly faster than the speed at which the papermaking raw material liquid flows. Therefore, the inorganic fibers are all pulled in the forming wire flow direction. Thus, an inorganic fiber sheet in which inorganic fibers are reliably arranged in the horizontal direction with respect to the sheet surface can be obtained. If the jet / wire ratio is less than 0.5, the forming wire travel speed is too high relative to the speed at which the papermaking raw material liquid flows, that is, the raw material supply speed. It is not possible to obtain a sheet with a uniform texture.
Hereinafter, as an example, a specific method for producing the inorganic fiber sheet for vacuum heat insulating material of the present invention using the hermetic inclined paper machine equipped with the pound regulator shown in FIG. 1 will be described with reference to the drawings.
(1) First, as a raw material, for example, a predetermined amount of fine glass fiber having an average fiber diameter of 1 μm is weighed, and the fiber is uniformly dispersed and mixed in water by a separator such as a mixer or a pulper to obtain a papermaking raw material liquid . Since glass fiber is not fibrillated unlike pulp, it is broken into powder when using a beating machine equipped with a blade such as a beater, so a pulper is used. This papermaking raw material liquid is transported and stored in a storage tank.
(2) Next, since it is presumed that a small amount of shot is mixed in the glass fiber in the papermaking raw material liquid, the papermaking raw material liquid is centrifuged with a centrifuge, and then a screen filter is used. By passing, the shot content with a particle diameter of 30 μm or more in the glass fiber contained in the papermaking raw material liquid is made 0.1 mass% or less.
(3) Next, the supply amount of the papermaking raw material liquid is controlled by a seed valve / white water valve (not shown), and the papermaking raw material liquid is ejected from the head box 3 via a step diffuser or the like, and the papermaking raw material liquid pool (water pool) ) 5 is formed. The glass fibers 4 in the pool 5 are deposited on the forming wire 6 that runs obliquely upward, and dehydrated from below to form the wet glass web sheet 2. The sealed inclined paper machine 1 can easily adjust the flow rate of the papermaking raw material liquid by adjusting the area of the raw material input opening of the head box 3 by pressing the liquid level of the pool 5 with the pound regulator 8. By adjusting the traveling speed of the forming wire 6 with respect to this flow velocity, the jet / wire ratio, which is the speed ratio between the flow rate of the papermaking raw material liquid and the traveling speed of the forming wire 6, is in the range of 0.5 to 0.8. Can be adjusted.
(4) Next, the glass fiber sheet 2 in the wet paper state is passed through a dryer that dries moisture to obtain a base paper of the inorganic fiber sheet for vacuum heat insulating material, which is wound into a roll. If this base paper is developed and cut into a desired size, an inorganic fiber sheet for vacuum heat insulating material is obtained.

次に、本発明の実施例を比較例及び従来例とともに説明するが、本発明はこの実施例に限定されるものではない。
(実施例)
平均繊維径1μmのCガラスからなるガラス短繊維100質量%をパルパ装置を用い、水中で分散・混合後、抄紙原料液として貯蔵タンクに貯蔵する。その後、前記抄紙原料液を遠心分離機により遠心分離し、スクリーン・フィルタを通過させて、前記抄紙原料液中のショットを除去する。次いで、前述のポンドレギュレータを備えた密閉式傾斜抄紙機を用いて、前述のジェット/ワイヤ比率が0.7となるように調整し、フォーミングワイヤ上にガラス繊維シートの湿紙を形成し、220℃の熱風乾燥機を通して乾燥させて、厚さ2.0mm、密度0.18g/cm3の真空断熱材用無機繊維シートを得た。尚、前記ジェット/ワイヤ比率を0.7とするには、種口弁・白水バルブを調整して、ヘッドボックスからフォーミングワイヤ上に噴出される抄紙原料液の噴出量を70m3/分とし、ポンドレギュレータでヘッドボックスの原料投入開口部の面積が10m2となるよう調整して抄紙原料液の流速を7m/分とする一方、前記フォーミングワイヤの走行速度を10m/分に調整して、ジェット/ワイヤ比率を0.7に調整した。
得られた真空断熱材用無機繊維シートの繊維の方向性を観察すると、ほとんど全ての繊維がシート面に対して水平方向に配列していた。
次に、前記真空断熱材用無機繊維シートを5枚重ねて厚さ10mmの積層体とし、この積層体を真空断熱材用芯材としてガスバリアフィルム袋に挿入し、10-3Torrまで真空排気して、真空断熱材を得た。このとき真空断熱材の外観に波打ちやシワは観察されなかった。この真空断熱材について、室温での熱伝導率を測定すると、0.0020W/m・Kであった。また、前記真空断熱材用芯材中のショット含有率を30μmフルイ残存量で測定すると、0.01質量%以下であった。
Next, although the Example of this invention is described with a comparative example and a prior art example, this invention is not limited to this Example.
(Example)
100 mass% of short glass fibers made of C glass having an average fiber diameter of 1 μm are dispersed and mixed in water using a pulper device, and then stored in a storage tank as a papermaking raw material liquid. Thereafter, the papermaking raw material liquid is centrifuged by a centrifuge and passed through a screen filter to remove shots in the papermaking raw material liquid. Next, using the hermetic inclined paper machine equipped with the above-described pound regulator, the above-described jet / wire ratio is adjusted to 0.7 to form a wet fiberglass sheet on the forming wire, 220 It dried through the hot-air dryer of 0 degreeC, and obtained the inorganic fiber sheet for vacuum heat insulating materials of thickness 2.0mm and density 0.18g / cm < 3 >. In order to set the jet / wire ratio to 0.7, the spout valve / white water valve is adjusted so that the ejection amount of the papermaking material liquid ejected from the head box onto the forming wire is 70 m 3 / min. By adjusting the area of the raw material input opening of the head box to 10 m 2 with a pound regulator to adjust the flow rate of the papermaking raw material liquid to 7 m / min, the traveling speed of the forming wire is adjusted to 10 m / min. / The wire ratio was adjusted to 0.7.
When the directionality of the fibers of the obtained inorganic fiber sheet for vacuum heat insulating material was observed, almost all the fibers were arranged in the horizontal direction with respect to the sheet surface.
Next, 5 sheets of the inorganic fiber sheet for vacuum heat insulating material are stacked to form a laminated body having a thickness of 10 mm, and this laminated body is inserted into a gas barrier film bag as a core material for vacuum insulating material, and evacuated to 10 −3 Torr. Thus, a vacuum heat insulating material was obtained. At this time, no ripples or wrinkles were observed on the appearance of the vacuum heat insulating material. With respect to this vacuum heat insulating material, the thermal conductivity at room temperature was measured to be 0.0020 W / m · K. Moreover, when the shot content rate in the said core material for vacuum heat insulating materials was measured by 30 micrometer sieve residual amount, it was 0.01 mass% or less.

(従来例)
平均繊維径2μmの遠心法で得られた樹脂を付着してないガラスウールの表面にイオン交換水を2倍量噴霧し、前記ガラスウールをSUS板に挟んで加圧し、これを380℃の加熱炉で60分間加熱後、冷却して、厚さ10mm、密度0.20g/cm3の真空断熱材用無機繊維シートを得た。
得られた真空断熱材用無機繊維シートの繊維の方向性を観察すると、明確な繊維の方向性は見られず、加圧により繊維間が加圧前より狭くなっていた。
次に、前記真空断熱材用無機繊維シートを真空断熱材用芯材としてガスバリアフィルム袋に挿入し、10-3Torrまで真空排気して、真空断熱材を得た。このとき真空断熱材の外観に波打ちやシワは観察されなかった。この真空断熱材について、室温での熱伝導率を測定すると、0.0030W/m・Kであった。また、前記真空断熱材用芯材中のショット含有率を30μmフルイ残存量で測定すると、0.5質量%であった。
(Conventional example)
Ion exchange water is sprayed twice on the surface of glass wool obtained by centrifugation with an average fiber diameter of 2 μm and no resin is adhered, and the glass wool is sandwiched between SUS plates and pressurized, and heated at 380 ° C. After heating in a furnace for 60 minutes and cooling, an inorganic fiber sheet for vacuum heat insulating material having a thickness of 10 mm and a density of 0.20 g / cm 3 was obtained.
When the directionality of the fiber of the obtained inorganic fiber sheet for vacuum heat insulating materials was observed, the directionality of clear fiber was not seen, but between fibers became narrower than before pressurization by pressurization.
Next, the inorganic fiber sheet for vacuum heat insulating material was inserted into a gas barrier film bag as a core material for vacuum heat insulating material, and evacuated to 10 −3 Torr to obtain a vacuum heat insulating material. At this time, no ripples or wrinkles were observed on the appearance of the vacuum heat insulating material. With respect to this vacuum heat insulating material, the thermal conductivity at room temperature was measured to be 0.0030 W / m · K. The shot content in the core for vacuum heat insulating material was 0.5% by mass when measured by the residual amount of 30 μm sieve.

(比較例)
ジェット/ワイヤ比率を1.0としたこと以外は、実施例1と同様にして、厚さ2.0mm、密度0.14g/cm3の真空断熱材用無機繊維シートを得た。尚、前記ジェット/ワイヤ比率を1.0とするには、ヘッドボックスからフォーミングワイヤ上に噴出される抄紙原料液の噴出量を100m3/分とし、ポンドレギュレータでヘッドボックスの原料投入開口部の面積が10m2となるよう調整して抄紙原料液の流速を10m/分とする一方、前記フォーミングワイヤの走行速度を10m/分に調整して、ジェット/ワイヤ比率を1.0に調整した。
得られた真空断熱材用無機繊維シートの繊維の方向性を観察すると、繊維は、シート面に対して垂直方向及び水平方向にランダムに配向していた。
次に、前記真空断熱材用無機繊維シートを5枚重ねて厚さ10mmの積層体とし、この積層体を真空断熱材用芯材としてガスバリアフィルム袋に挿入し、10-3Torrまで真空排気して、真空断熱材を得た。このとき真空断熱材の外観に波打ちやシワは観察されなかった。この真空断熱材について、室温での熱伝導率を測定すると、0.0030W/m・Kであった。また、前記真空断熱材用芯材中のショット含有率を30μmフルイ残存量で測定すると、0.01質量%以下であった。
(Comparative example)
An inorganic fiber sheet for vacuum heat insulating material having a thickness of 2.0 mm and a density of 0.14 g / cm 3 was obtained in the same manner as in Example 1 except that the jet / wire ratio was 1.0. In order to set the jet / wire ratio to 1.0, the ejection amount of the papermaking raw material liquid ejected from the head box onto the forming wire is set to 100 m 3 / min. The flow rate of the papermaking raw material liquid was adjusted to 10 m / min by adjusting the area to 10 m 2 , while the traveling speed of the forming wire was adjusted to 10 m / min to adjust the jet / wire ratio to 1.0.
When the directionality of the fibers of the obtained inorganic fiber sheet for vacuum heat insulating material was observed, the fibers were randomly oriented in the vertical and horizontal directions with respect to the sheet surface.
Next, 5 sheets of the inorganic fiber sheet for vacuum heat insulating material are stacked to form a laminated body having a thickness of 10 mm, and this laminated body is inserted into a gas barrier film bag as a core material for vacuum insulating material, and evacuated to 10 −3 Torr. Thus, a vacuum heat insulating material was obtained. At this time, no ripples or wrinkles were observed on the appearance of the vacuum heat insulating material. With respect to this vacuum heat insulating material, the thermal conductivity at room temperature was measured to be 0.0030 W / m · K. Moreover, when the shot content rate in the said core material for vacuum heat insulating materials was measured by 30 micrometer sieve residual amount, it was 0.01 mass% or less.

次に、上記にて得られた実施例、従来例及び比較例の各真空断熱材用無機繊維シート、真空断熱材用芯材及び真空断熱材について、厚さ、坪量、密度、繊維の方向性、ショット含有率、熱伝導率を測定した結果を表1に示す。   Next, for the inorganic fiber sheet for vacuum heat insulating material, the core material for vacuum heat insulating material, and the vacuum heat insulating material of Examples, Conventional Examples and Comparative Examples obtained above, thickness, basis weight, density, fiber direction Table 1 shows the results of measuring the properties, shot content, and thermal conductivity.

Figure 2005265038
Figure 2005265038

表1に示す結果から以下のようなことが分かった。
(1)実施例の真空断熱材に用いた無機繊維シートでは、大きな空隙を形成する要因となる粒子径30μm以上のショット含有率が0.01質量%以下と実質的にゼロであるため、空気の対流による熱伝達が少なく、また、ほとんど全てのガラス繊維がシート面に対して水平方向に配列しているため、真空断熱材の表面から裏面への伝熱を阻害することができるとともに、伝熱経路となる繊維の間隙が複雑化、迷路化されていることから、熱伝導率が低く、優れた断熱性を持つ真空断熱材が得られることが確認できた。
(2)従来例の真空断熱材に用いた無機繊維シートでは、ショット含有率が比較的高く、また繊維がシート面に対して水平方向に配列する明確な繊維配向性がないため、実施例と比較して真空断熱材の熱伝導率が高く、断熱性が劣っていた。また、シート製法上、ガラスウールに水を付着させた後、加熱炉でバッチ式に前記ガラスウールの付着水分を蒸発させる工程が必要となるため、製造コストが高くなることが推測された。
(3)比較例の真空断熱材に用いた無機繊維シートでは、ショット含有率は少ない(実質的にゼロ)が、繊維がシート面に対して方向性を持たずランダムな配向をしており、シート面に対して垂直あるいはそれに近い方向に配向した繊維が比較的多く存在するため、断熱材の表面から裏面へと形成された繊維間隙が伝熱経路となって熱が伝わり易くなり、実施例と比較して真空断熱材の熱伝導率が高く、断熱性が劣っていた。
From the results shown in Table 1, the following was found.
(1) In the inorganic fiber sheet used for the vacuum heat insulating material of the example, since the shot content with a particle diameter of 30 μm or more, which is a factor for forming a large void, is substantially zero with 0.01 mass% or less, air Heat transfer due to convection is small, and almost all the glass fibers are arranged in the horizontal direction with respect to the sheet surface. It was confirmed that a vacuum heat insulating material having low heat conductivity and excellent heat insulating properties can be obtained because the gaps between fibers serving as heat paths are complicated and mazes.
(2) In the inorganic fiber sheet used for the vacuum heat insulating material of the conventional example, the shot content is relatively high, and there is no clear fiber orientation in which the fibers are arranged in the horizontal direction with respect to the sheet surface. In comparison, the heat insulating property of the vacuum heat insulating material was high and the heat insulating property was poor. In addition, it was speculated that the manufacturing cost would be increased because a step of evaporating the water adhering to the glass wool in a heating furnace after batching water on the glass wool in the sheet manufacturing method is required.
(3) In the inorganic fiber sheet used for the vacuum heat insulating material of the comparative example, the shot content is low (substantially zero), but the fibers have no orientation with respect to the sheet surface and are randomly oriented. Since there are a relatively large number of fibers oriented in the direction perpendicular to or close to the sheet surface, the fiber gap formed from the front surface to the back surface of the heat insulating material becomes a heat transfer path, and heat is easily transferred. Compared with the above, the heat conductivity of the vacuum heat insulating material was high, and the heat insulating property was inferior.

本発明の真空断熱材用無機繊維シートを製造するポンドレギュレータを備えた密閉式傾斜抄紙機の概略構成を示す説明図Explanatory drawing which shows schematic structure of the sealed inclination paper machine provided with the pound regulator which manufactures the inorganic fiber sheet for vacuum heat insulating materials of this invention

符号の説明Explanation of symbols

1 密閉式傾斜抄紙機
2 湿紙状態のガラス繊維シート
3 ヘッドボックス
4 ガラス繊維
5 プール
6 フォーミングワイヤ
8 ポンドレギュレータ
DESCRIPTION OF SYMBOLS 1 Sealing type inclined paper machine 2 Glass fiber sheet in wet paper state 3 Head box 4 Glass fiber 5 Pool 6 Forming wire 8 pound regulator

Claims (7)

無機繊維を主体として湿式抄造した無機繊維シートを複数枚積層したものを芯材として用いてなる真空断熱材であって、前記無機繊維中の粒子径30μm以上のショット含有率が0.1質量%以下であり、前記無機繊維の平均繊維径が0.2〜6μmであり、前記無機繊維がシート面に対して水平方向に配列されていることを特徴とする真空断熱材。   A vacuum heat insulating material using as a core a material obtained by laminating a plurality of inorganic fiber sheets made mainly from inorganic fibers, and the shot content of the inorganic fibers having a particle diameter of 30 μm or more is 0.1% by mass A vacuum heat insulating material, wherein the inorganic fiber has an average fiber diameter of 0.2 to 6 μm, and the inorganic fibers are arranged in a horizontal direction with respect to a sheet surface. 前記無機繊維シートが無機繊維のみで構成されていることを特徴とする請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the inorganic fiber sheet is composed only of inorganic fibers. 前記無機繊維の平均繊維径が2μm以下であることを特徴とする請求項1または2記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein an average fiber diameter of the inorganic fibers is 2 µm or less. 前記無機繊維がガラス繊維であることを特徴とする請求項1乃至3の何れかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein the inorganic fiber is a glass fiber. 一定方向に走行するフォーミングワイヤ上に、分散媒体中に無機繊維を分散させた抄紙原料液を噴出し、該抄紙原料液を脱水しつつ前記フォーミングワイヤ上に無機繊維を堆積させて湿式抄造する真空断熱材用無機繊維シートの製造方法であって、前記無機繊維として、平均繊維径が0.2〜6μmで、粒子径30μm以上のショット含有率が0.1質量%以下である無機繊維を使用するとともに、前記抄紙原料液の流れる速度と前記フォーミングワイヤの走行速度の速度比率であるジェット/ワイヤ比率を0.5〜0.8としたことを特徴とする真空断熱材用無機繊維シートの製造方法。   A vacuum for performing wet papermaking by ejecting a papermaking raw material liquid in which inorganic fibers are dispersed in a dispersion medium onto a forming wire that travels in a certain direction, and depositing the inorganic fibers on the forming wire while dehydrating the papermaking raw material liquid. A method for producing an inorganic fiber sheet for a heat insulating material, wherein an inorganic fiber having an average fiber diameter of 0.2 to 6 μm and a shot content ratio of a particle diameter of 30 μm or more is 0.1% by mass or less is used as the inorganic fiber. In addition, a jet / wire ratio, which is a speed ratio between the flow rate of the papermaking raw material liquid and the forming wire, is set to 0.5 to 0.8. Method. 前記無機繊維の平均繊維径が2μm以下であることを特徴とする請求項5記載の真空断熱材用無機繊維シートの製造方法。   The average fiber diameter of the said inorganic fiber is 2 micrometers or less, The manufacturing method of the inorganic fiber sheet for vacuum heat insulating materials of Claim 5 characterized by the above-mentioned. 前記無機繊維がガラス繊維であることを特徴とする請求項5または6記載の真空断熱材用無機繊維シートの製造方法。   The said inorganic fiber is a glass fiber, The manufacturing method of the inorganic fiber sheet for vacuum heat insulating materials of Claim 5 or 6 characterized by the above-mentioned.
JP2004077794A 2004-03-18 2004-03-18 Vacuum heat insulating material and method for producing inorganic fiber sheet for vacuum heat insulating material Expired - Fee Related JP4438466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077794A JP4438466B2 (en) 2004-03-18 2004-03-18 Vacuum heat insulating material and method for producing inorganic fiber sheet for vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077794A JP4438466B2 (en) 2004-03-18 2004-03-18 Vacuum heat insulating material and method for producing inorganic fiber sheet for vacuum heat insulating material

Publications (2)

Publication Number Publication Date
JP2005265038A true JP2005265038A (en) 2005-09-29
JP4438466B2 JP4438466B2 (en) 2010-03-24

Family

ID=35089816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077794A Expired - Fee Related JP4438466B2 (en) 2004-03-18 2004-03-18 Vacuum heat insulating material and method for producing inorganic fiber sheet for vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP4438466B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239931A (en) * 2006-03-10 2007-09-20 Nippon Sheet Glass Co Ltd Vacuum heat insulation material
JP2008232257A (en) * 2007-03-20 2008-10-02 Nippon Sheet Glass Co Ltd Vacuum heat insulation material
JP2009074604A (en) * 2007-09-20 2009-04-09 Sharp Corp Vacuum heat insulating material
WO2009084367A1 (en) * 2007-12-28 2009-07-09 Sharp Kabushiki Kaisha Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
JP2009155172A (en) * 2007-12-27 2009-07-16 Asahi Fiber Glass Co Ltd Glass fiber laminate, and vacuum heat insulating material
WO2010109894A1 (en) * 2009-03-27 2010-09-30 シャープ株式会社 Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
WO2010116720A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and device provided with same
WO2010116719A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and appliance provided therewith
CN102162567A (en) * 2010-02-24 2011-08-24 东芝家电技术股份有限公司 Heat-insulating material
JP2011196392A (en) * 2010-03-17 2011-10-06 Mitsubishi Electric Corp Vacuum heat insulation material and method for producing the same
CN102330388A (en) * 2011-06-22 2012-01-25 苏州维艾普新材料有限公司 Forming method of glass wool core material
CN102330389A (en) * 2011-07-13 2012-01-25 苏州维艾普新材料有限公司 Method for making high-performance vacuum heat insulating plate core material
JP2012193862A (en) * 2012-07-12 2012-10-11 Panasonic Corp Glass fiber
JP2013015222A (en) * 2012-08-28 2013-01-24 Toshiba Home Technology Corp Method of manufacturing heat insulating material
WO2013121992A1 (en) * 2012-02-14 2013-08-22 井前工業株式会社 Vacuum insulation material and method for manufacturing same
JP2014222112A (en) * 2014-08-21 2014-11-27 パナソニック株式会社 Vacuum heat insulating material
JP2014228035A (en) * 2013-05-21 2014-12-08 イソライト工業株式会社 Fireproof heat insulation material and manufacturing method
KR101472177B1 (en) * 2012-04-10 2014-12-12 (주)엘지하우시스 insulation manufacturing method using long glass fiber
JP2015137296A (en) * 2014-01-21 2015-07-30 ケープラシート株式会社 Production method of fiber-reinforced thermoplastic resin sheet
WO2016013539A1 (en) * 2014-07-22 2016-01-28 旭ファイバーグラス株式会社 Inorganic fibrous insulating material
CN107313297A (en) * 2017-06-28 2017-11-03 浙江贝来新材料有限公司 Hydrophobicity thermal insulating paper and preparation method thereof
CN107313289A (en) * 2017-06-28 2017-11-03 浙江贝来新材料有限公司 Hydrophobicity thermal insulating paper and preparation method thereof
JP2018048647A (en) * 2009-12-17 2018-03-29 ユニフラックス ワン リミテッド ライアビリティ カンパニー Multilayer mounting mat for pollution control device
WO2022210020A1 (en) 2021-03-29 2022-10-06 株式会社巴川製紙所 Inorganic fiber sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441182B1 (en) * 2012-06-15 2014-09-17 (주)엘지하우시스 Core material using a long glass fiber, method for fabricating the same and vacuum insulation panel using the same

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239931A (en) * 2006-03-10 2007-09-20 Nippon Sheet Glass Co Ltd Vacuum heat insulation material
JP2008232257A (en) * 2007-03-20 2008-10-02 Nippon Sheet Glass Co Ltd Vacuum heat insulation material
JP2009074604A (en) * 2007-09-20 2009-04-09 Sharp Corp Vacuum heat insulating material
JP2009155172A (en) * 2007-12-27 2009-07-16 Asahi Fiber Glass Co Ltd Glass fiber laminate, and vacuum heat insulating material
DE112008003548T5 (en) 2007-12-28 2011-03-03 Sharp Kabushiki Kaisha, Osaka-shi Core material for vacuum heat insulation material, vacuum heat insulation material and method of making the same
WO2009084367A1 (en) * 2007-12-28 2009-07-09 Sharp Kabushiki Kaisha Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
JP2009162267A (en) * 2007-12-28 2009-07-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material, and manufacturing method for them
DE112008003548B4 (en) 2007-12-28 2018-09-20 Sharp Kabushiki Kaisha Core material for vacuum heat insulation material, vacuum heat insulation material and method of making the same
WO2010109894A1 (en) * 2009-03-27 2010-09-30 シャープ株式会社 Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
DE112010001376T5 (en) 2009-03-27 2012-06-14 Sharp Kabushiki Kaisha CORE MATERIAL FOR A VACUUM HEAT INSULATION MATERIAL, VACUUM HEAT INSULATION MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
JP2010230082A (en) * 2009-03-27 2010-10-14 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material, and method for manufacturing them
CN102362115A (en) * 2009-03-27 2012-02-22 夏普株式会社 Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
JP2010242868A (en) * 2009-04-07 2010-10-28 Sharp Corp Vacuum heat insulating material and apparatus having the same
DE112010001540B4 (en) 2009-04-07 2019-02-21 Sharp Kabushiki Kaisha VACUUM HEAT INSULATION MATERIAL AND DEVICE WITH THE SAME
JP4726970B2 (en) * 2009-04-07 2011-07-20 シャープ株式会社 Vacuum insulation and equipment equipped with it
JP4717126B2 (en) * 2009-04-07 2011-07-06 シャープ株式会社 Vacuum insulation and equipment equipped with it
WO2010116720A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and device provided with same
CN102388252B (en) * 2009-04-07 2015-07-22 夏普株式会社 Vacuum insulation material and device provided with same
WO2010116719A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and appliance provided therewith
DE112010001540T5 (en) 2009-04-07 2012-05-16 Sharp Kabushiki Kaisha VACUUM HEAT INSULATION MATERIAL AND DEVICE WITH THE SAME
JP2010242867A (en) * 2009-04-07 2010-10-28 Sharp Corp Vacuum heat insulating material and apparatus having the same
CN102388252A (en) * 2009-04-07 2012-03-21 夏普株式会社 Vacuum insulation material and device provided with same
CN102388253A (en) * 2009-04-07 2012-03-21 夏普株式会社 Vacuum insulation material and appliance provided therewith
JP2018048647A (en) * 2009-12-17 2018-03-29 ユニフラックス ワン リミテッド ライアビリティ カンパニー Multilayer mounting mat for pollution control device
JP2011174524A (en) * 2010-02-24 2011-09-08 Toshiba Home Technology Corp Heat insulating material
CN102162567A (en) * 2010-02-24 2011-08-24 东芝家电技术股份有限公司 Heat-insulating material
JP2011196392A (en) * 2010-03-17 2011-10-06 Mitsubishi Electric Corp Vacuum heat insulation material and method for producing the same
CN102330388A (en) * 2011-06-22 2012-01-25 苏州维艾普新材料有限公司 Forming method of glass wool core material
CN102330389A (en) * 2011-07-13 2012-01-25 苏州维艾普新材料有限公司 Method for making high-performance vacuum heat insulating plate core material
WO2013121992A1 (en) * 2012-02-14 2013-08-22 井前工業株式会社 Vacuum insulation material and method for manufacturing same
JPWO2013121992A1 (en) * 2012-02-14 2015-05-11 井前工業株式会社 Vacuum heat insulating material and manufacturing method thereof
KR101472177B1 (en) * 2012-04-10 2014-12-12 (주)엘지하우시스 insulation manufacturing method using long glass fiber
US9829146B2 (en) 2012-04-10 2017-11-28 Lg Hausys, Ltd. Method of manufacturing vacuum insulation using glass fibers
JP2012193862A (en) * 2012-07-12 2012-10-11 Panasonic Corp Glass fiber
JP2013015222A (en) * 2012-08-28 2013-01-24 Toshiba Home Technology Corp Method of manufacturing heat insulating material
JP2014228035A (en) * 2013-05-21 2014-12-08 イソライト工業株式会社 Fireproof heat insulation material and manufacturing method
JP2015137296A (en) * 2014-01-21 2015-07-30 ケープラシート株式会社 Production method of fiber-reinforced thermoplastic resin sheet
WO2016013539A1 (en) * 2014-07-22 2016-01-28 旭ファイバーグラス株式会社 Inorganic fibrous insulating material
JP2016022681A (en) * 2014-07-22 2016-02-08 旭ファイバーグラス株式会社 Inorganic fiber thermal insulation material
JP2014222112A (en) * 2014-08-21 2014-11-27 パナソニック株式会社 Vacuum heat insulating material
CN107313289A (en) * 2017-06-28 2017-11-03 浙江贝来新材料有限公司 Hydrophobicity thermal insulating paper and preparation method thereof
CN107313297A (en) * 2017-06-28 2017-11-03 浙江贝来新材料有限公司 Hydrophobicity thermal insulating paper and preparation method thereof
WO2022210020A1 (en) 2021-03-29 2022-10-06 株式会社巴川製紙所 Inorganic fiber sheet

Also Published As

Publication number Publication date
JP4438466B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4438466B2 (en) Vacuum heat insulating material and method for producing inorganic fiber sheet for vacuum heat insulating material
US7226656B2 (en) Thermoformable acoustic sheet
US20180223478A1 (en) Fibrous media
US6066235A (en) Wetlay process for manufacture of highly-oriented fibrous mats
RU2489541C2 (en) Non-woven material and method of producing such material
US20070123132A1 (en) Nonwoven mat, method for production thereof and fibre composite
TWI296661B (en) An apparatus for manufacturing glass fiber and/or other material fiber mats by way of vibrational compression
JP2014503694A5 (en)
JP5191078B2 (en) Conductive sheet material
EP0983140B1 (en) Wet-laid nonwoven nylon battery separator material
KR100604291B1 (en) Water transport plate and method of using same
KR0124541B1 (en) Non-woven article made of a heat-resisting material, method for manufacturing the article and apparatus for implementing the method
US8900413B2 (en) Nonwoven fabric comprising polyphenylene sulfide fiber
JP2023055723A (en) Composite medium for fuel flow
CN109110304A (en) A kind of cold insulated cabinet and its production method
CN203336147U (en) Vacuum heat insulation panel core material and vacuum heat insulation panel
CN108232086B (en) One-step formed lithium ion battery diaphragm and preparation method and application thereof
CN104141859B (en) A kind of core material of vacuum heat insulation plate and vacuum heat-insulating plate
JP2007239931A (en) Vacuum heat insulation material
JP2007024268A (en) Vacuum heat insulating material
SE531148C2 (en) Use of a material such as filter base material process for the production of filter base material, filter base material and filter
JP2008232257A (en) Vacuum heat insulation material
CN112004587A (en) High burst strength wet laid nonwoven filter media and method of producing same
JP2960284B2 (en) Battery separator and manufacturing method thereof
KR102087513B1 (en) Multi-Layer Wet-Laid Non Woven Fabric for Pressure Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4438466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees