JP2007239931A - Vacuum heat insulation material - Google Patents

Vacuum heat insulation material Download PDF

Info

Publication number
JP2007239931A
JP2007239931A JP2006065249A JP2006065249A JP2007239931A JP 2007239931 A JP2007239931 A JP 2007239931A JP 2006065249 A JP2006065249 A JP 2006065249A JP 2006065249 A JP2006065249 A JP 2006065249A JP 2007239931 A JP2007239931 A JP 2007239931A
Authority
JP
Japan
Prior art keywords
vacuum heat
inorganic
fiber
heat insulating
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006065249A
Other languages
Japanese (ja)
Inventor
Yoshinobu Kakizaki
芳信 柿崎
Yuji Katagiri
裕治 片桐
Fumihide Hibi
文秀 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2006065249A priority Critical patent/JP2007239931A/en
Publication of JP2007239931A publication Critical patent/JP2007239931A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulation material with high uniformity in heat insulation characteristics, easily manufacturable by a normal paper making device and method, having a structure not having particular orientation in fiber orientation in a sheet horizontal direction, and providing efficient removal of a very small amount of adsorbed moisture on an inorganic fiber surface, in regard to a vacuum heat insulation material using multiple layers of wet type papermaking sheets mainly composed of inorganic fiber with very small diameters as a vacuum heat insulation material core material. <P>SOLUTION: The vacuum heat insulation material is composed by using plurally laminated inorganic sheets formed by carrying out wet type paper making on mainly inorganic fiber with an average fiber diameter of 4 μm or less. It is characterized by that a percentage content of particulate matter with a particle size of 30 μm or more and fibrous matter with a diameter of 10 μm or more in the inorganic fiber is 0.1 wt.% or less, thickness of the inorganic fiber sheet is 0.2 mm or less, and the inorganic fiber in the core material is arranged in a vertical direction with respect to a laminated direction of the inorganic fiber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無機繊維を主体とした不織布シートを多層に積層したものを芯材として用いる真空断熱材に関する。   The present invention relates to a vacuum heat insulating material in which a nonwoven fabric sheet mainly composed of inorganic fibers is laminated as a core material.

従来、真空断熱材としては、無機繊維からなるニードリングマット、フェルト、ウール等を無機バインダを用いて成形した芯材を断熱容器に収納し、その後真空にして密閉したものが一般的に使用されている。   Conventionally, a vacuum heat insulating material is generally used in which a core material formed of an inorganic fiber, such as a needling mat, felt, wool, etc., is stored in a heat insulating container and then vacuumed and sealed. ing.

このような無機繊維からなる真空断熱材用芯材の断熱性を高めるため、従来より、無機繊維中のショット(未繊維化粒状物)の含有率を低下させたり、無機繊維を伝熱方向に対して垂直方向に配列させて熱伝導率を低くする等の方法が提案されている。   In order to improve the heat insulation of the core material for vacuum heat insulating materials made of such inorganic fibers, conventionally, the content of shots (non-fibrous granules) in the inorganic fibers is reduced, or the inorganic fibers are moved in the heat transfer direction. On the other hand, a method has been proposed in which the thermal conductivity is lowered by arranging in the vertical direction.

前記無機繊維中のショットは、サイズが大きく、数が多いと、真空断熱材用芯材中の空隙のサイズと数が増加し、大きな空隙中の空気の対流による熱伝達により、熱伝導率が高くなり、断熱性が低下することが分かっている。
また、前記無機繊維は細ければ細いほど、繊維同士の接合点面積が減少するので、熱移動経路が複雑となり、断熱性が向上することが分かっている。
If the shots in the inorganic fiber are large in size and large in number, the size and number of voids in the core for vacuum heat insulating material increase, and heat conductivity is increased by heat transfer due to air convection in the large voids. It has been found that it increases and the thermal insulation decreases.
In addition, it is known that the thinner the inorganic fiber, the smaller the joint area between the fibers, which complicates the heat transfer path and improves the heat insulation.

このため、最近では、特許文献1に開示されるように、バインダ等を使用しない平均繊維径が2μm以下の微細径の無機繊維のみからなる湿式抄造シートを多層に積層したものを真空断熱材用芯材として使用することも提案されており、この場合、ショット含有率は実質上ゼロとなり、また上記の通り微細径無機繊維により熱移動経路も長くできるので、高い断熱性能を有した真空断熱材が得られる。   For this reason, recently, as disclosed in Patent Document 1, a multilayered wet paper sheet made of inorganic fibers having a fine diameter of 2 μm or less without using a binder or the like is used for a vacuum heat insulating material. It has also been proposed to use it as a core material. In this case, the shot content is substantially zero, and since the heat transfer path can be lengthened by the fine-diameter inorganic fibers as described above, a vacuum heat insulating material having high heat insulating performance. Is obtained.

また、バインダを使用せず、実質的に無機繊維のみで真空断熱材用芯材を構成すると、減圧時に水分以外の余計なガス発生がなくなるので、真空断熱材完成後に発生するガスを吸着し真空断熱材の真空度を維持するためのガス吸着剤の使用量を減らすことができ、特性上及びコスト上のメリットがもたらされる。   In addition, if the core for vacuum insulation is made up of only inorganic fibers without using a binder, there will be no extra gas generation other than moisture during decompression. The amount of the gas adsorbent used for maintaining the degree of vacuum of the heat insulating material can be reduced, resulting in characteristic and cost advantages.

また、真空断熱材用芯材を湿式抄造シートにて構成すると、シート厚さが均一であるため、真空断熱材用芯材の外表面に凹凸がなくなり、外装材と芯材との間に空間が形成されにくくなるので熱対流が減少して断熱性能の向上と断熱特性の均一性がもたらされる。   In addition, when the vacuum heat insulating material core is composed of a wet papermaking sheet, since the sheet thickness is uniform, there are no irregularities on the outer surface of the vacuum heat insulating material core, and there is no space between the exterior material and the core material. Therefore, thermal convection is reduced, resulting in improved thermal insulation performance and uniformity of thermal insulation characteristics.

また、湿式抄造シートを多層に積層して真空断熱材用芯材を構成すると、確かに、特許文献2のような無機繊維の原綿を集積させただけの多層構造でない真空断熱材用芯材に比べて、芯材全体としては、繊維が芯材の積層方向に対して比較的垂直方向に配列するようになるが、湿式抄造シート1枚当たりの厚さは通常2mm程度あり、湿式抄造時に特別な制御を行わない場合湿式抄造シート中の繊維は必ずしも水平方向に配列しないので2mm程度の厚さの湿式抄造シート単体で見た場合には繊維の水平方向への配列の度合いは決して高いとは言えない。   In addition, when a wet paper-making sheet is laminated in multiple layers to form a vacuum heat insulating material core material, it is certainly a vacuum heat insulating material core material that is not a multilayer structure in which inorganic fiber raw cotton is accumulated as in Patent Document 2. Compared with the core material as a whole, the fibers are arranged in a direction relatively perpendicular to the lamination direction of the core material, but the thickness per wet papermaking sheet is usually about 2 mm, which is special during wet papermaking. If the control is not performed, the fibers in the wet papermaking sheet are not necessarily arranged in the horizontal direction. Therefore, when the wet papermaking sheet having a thickness of about 2 mm is viewed as a single piece, the degree of fiber arrangement in the horizontal direction is never high. I can not say.

これに鑑みて、本出願人は、先に、湿式抄造時のジェット/ワイヤ比を容易に調整可能な特殊な抄紙機(ポンドレギュレータを備えた密閉式傾斜抄紙機など)を使用しジェット/ワイヤ比を0.5〜0.8という特定値に設定して湿式抄造シートを得るようにすることで、芯材の厚さ方向に配向する繊維をなくし繊維の水平方向への配列の度合いを著しく高めて、断熱効果を向上させるようにした真空断熱材を提案した(特許文献3)。
特開平7−139691号公報 特開平7−167376号公報 特開2005−265038号公報
In view of this, the applicant previously used a special paper machine (such as a sealed inclined paper machine with a pound regulator) that can easily adjust the jet / wire ratio during wet paper making. By setting the ratio to a specific value of 0.5 to 0.8 to obtain a wet papermaking sheet, fibers oriented in the thickness direction of the core material are eliminated, and the degree of alignment of the fibers in the horizontal direction is remarkably increased. The vacuum heat insulating material which improved and improved the heat insulation effect was proposed (patent document 3).
JP 7-139691 A JP 7-167376 A JP 2005-265038 A

しかし、特許文献3に開示の真空断熱材用芯材では、確かに、繊維の水平方向への配列の度合いを高めることはできるが、特殊な抄紙機や特殊な制御装置を用いないと製造できないという不都合があるとともに、得られる湿式抄造シートについても、フォーミングワイヤに繊維を引っ張らせて無理矢理繊維を水平方向に配列させるようにしておりMD方向(連続シートに形成される湿式抄造シートの長さ方向)に繊維が配向したシートとなっている。MD方向に繊維が配向した湿式抄造シートでは、CD方向(MD方向の直交方向、湿式抄造シートの幅方向)の機械的強度が極端に弱いため、真空断熱材の製作工程等での取り扱いに支障を来す可能性があるとともに、真空断熱材用芯材としたときに、芯材の水平方向(シート積層方向に対して垂直方向)での熱伝導が一方向に集中するため真空断熱材の設計に支障を来す可能性がある。   However, the vacuum insulating material core material disclosed in Patent Document 3 can certainly increase the degree of alignment of the fibers in the horizontal direction, but cannot be manufactured without using a special paper machine or a special control device. In addition, the resulting wet papermaking sheet is also arranged in the MD direction (the length direction of the wet papermaking sheet formed on the continuous sheet) by pulling the fibers on the forming wire and forcing the fibers in the horizontal direction. ) In which the fibers are oriented. In wet papermaking sheets with fibers oriented in the MD direction, the mechanical strength in the CD direction (the direction perpendicular to the MD direction, the width direction of the wet papermaking sheet) is extremely weak, which hinders handling in the vacuum insulation material manufacturing process, etc. In addition, the heat conduction in the horizontal direction of the core (perpendicular to the sheet stacking direction) is concentrated in one direction when used as a core for vacuum insulation. It may interfere with the design.

また、平均繊維径が2μm以下の微細径の無機繊維からなる湿式抄造シートを多層に積層したものを真空断熱材用芯材として使用した場合では、確かに、高い断熱性能や、断熱特性の均一化といったメリットが得られるが、次のような弊害もある。無機繊維の湿式抄造シートからなる真空断熱材用芯材は、乾燥シートとして供給され使用されるものであるが、無機繊維は水との親和性が高い(接触角は0度)ため、供給された無機繊維の湿式抄造シートからなる真空断熱材用芯材は、真空断熱材として組み立てられるまでの間に、空気中の水分を徐々に吸着(吸湿)してしまうという問題がある。無機繊維の繊維径が小さくなれば無機繊維の表面積が大きくなるため一定質量の湿式抄造シートに吸湿する水分量も多くなる。通常、平均繊維径2μm以下の無機繊維を主体に構成した湿式抄造シートからなる真空断熱材用芯材を使用する真空断熱材の場合、真空断熱材を組み立てるまでの間に0.5質量%程度の水分が繊維表面に吸着している。   In addition, when a wet paper-making sheet made of inorganic fibers with an average fiber diameter of 2 μm or less is laminated in multiple layers as a core material for a vacuum heat insulating material, it certainly has high heat insulating performance and uniform heat insulating properties. There are also the following disadvantages. The core material for a vacuum heat insulating material made of a wet papermaking sheet of inorganic fibers is supplied and used as a dry sheet, but since inorganic fibers have a high affinity with water (contact angle is 0 degree), they are supplied. The core material for a vacuum heat insulating material made of a wet papermaking sheet of inorganic fibers has a problem that moisture in the air is gradually adsorbed (absorbed) until it is assembled as a vacuum heat insulating material. If the fiber diameter of the inorganic fiber is reduced, the surface area of the inorganic fiber is increased, so that the amount of moisture absorbed by the wet papermaking sheet having a constant mass is also increased. Usually, in the case of a vacuum heat insulating material using a vacuum heat insulating material core composed of a wet papermaking sheet mainly composed of inorganic fibers having an average fiber diameter of 2 μm or less, about 0.5% by mass until the vacuum heat insulating material is assembled. Moisture is adsorbed on the fiber surface.

真空断熱材用芯材が水分を有していると、真空断熱材の真空度を高めることができないので、真空断熱材を組み立てる前に予め水分を除去しておく必要があり、通常、近赤外線・遠赤外線加熱、接触乾燥、熱風乾燥といった外部加熱法による乾燥処理が行われているが、この乾燥方法では、まず表面の無機繊維が熱を一部反射する問題があり、更に無機繊維が微細になればなるほど、芯材が厚いほど熱伝導が悪くなるので、通常、120℃で10時間程度もの乾燥時間をかけており、コスト高となるという問題を有している。   If the vacuum insulation core material has moisture, the vacuum degree of the vacuum insulation material cannot be increased, so it is necessary to remove moisture in advance before assembling the vacuum insulation material.・ Dry processing by external heating methods such as far-infrared heating, contact drying, and hot air drying is performed. However, this drying method has a problem that the inorganic fibers on the surface partially reflect heat, and the inorganic fibers are fine. Therefore, the thicker the core material, the worse the heat conduction. Therefore, it usually takes about 10 hours for drying at 120 ° C., which increases the cost.

そこで、本発明は、前記従来の問題点に鑑み、微細径の無機繊維を主体とした湿式抄造シートを多層に積層したものを真空断熱材用芯材として使用する真空断熱材において、前記湿式抄造シートが、特殊な装置や特殊な制御を用いない通常の抄造装置及び抄造方法により容易に製造することができるとともに、シートの水平方向への無機繊維の配列度合いが極めて高く、シートの水平方向での繊維配向に特定の配向性を持たない構造であり、また無機繊維表面の吸着微量水分の除去を効率的に行うことのできる、断熱性能が高く断熱特性の均一性が高い真空断熱材を提供することを目的とする。   Therefore, in view of the above-mentioned conventional problems, the present invention provides a vacuum heat insulating material in which a wet paper-making sheet mainly composed of fine-diameter inorganic fibers is laminated as a core material for a vacuum heat insulating material. The sheet can be easily manufactured by a normal paper making apparatus and a paper making method that does not use a special device or special control, and the degree of arrangement of the inorganic fibers in the horizontal direction of the sheet is extremely high. Provides a vacuum insulation with high heat insulation performance and high uniformity of heat insulation properties, which has a structure that does not have a specific orientation in the fiber orientation, and that can efficiently remove trace moisture adsorbed on the surface of inorganic fibers The purpose is to do.

本発明者等は、前記目的を達成するべく鋭意検討した結果、湿式抄造法により得られる無機繊維シートでは、厚さが薄くなればなるほど、シートを構成する繊維は厚さ方向と同じ方向に配向することは困難になり、ほぼ水平方向に配列するようになることを知見した。本発明の真空断熱材は、かかる知見に基づきなされた発明であって、請求項1に記載の通り、平均繊維径が4μm以下の無機繊維を主体として湿式抄造した無機繊維シートを複数枚積層したものを芯材として用いてなる真空断熱材であって、前記無機繊維中の粒径30μm以上の粒状物及び直径10μm以上の繊維状物の含有率が0.1質量%以下であり、前記無機繊維シートが厚さ0.2mm以下であり、前記芯材中の前記無機繊維は前記無機繊維シートの積層方向に対して垂直方向に配列されていることを特徴とする。
また、請求項2記載の真空断熱材は、請求項1記載の真空断熱材において、前記無機繊維シート中の前記無機繊維は該シートの水平方向に特定の配向性を有しないことを特徴とする。
また、請求項3記載の真空断熱材は、請求項1または2記載の真空断熱材において、前記無機繊維シートが無機繊維のみで構成されていることを特徴とする。
また、請求項4記載の真空断熱材は、請求項1乃至3の何れかに記載の真空断熱材において、前記無機繊維がガラス繊維であることを特徴とする。
また、請求項5記載の真空断熱材は、請求項1乃至4の何れかに記載の真空断熱材において、前記無機繊維の平均繊維径が0.2〜2μmであることを特徴とする。
また、請求項6記載の真空断熱材は、請求項5記載の真空断熱材において、前記無機繊維の平均繊維径が0.2〜1μmであることを特徴とする。
尚、請求項1の「前記無機繊維中の粒径30μm以上の粒状物及び直径10μm以上の繊維状物の含有率が0.1質量%以下」とは、前記無機繊維中に含まれる粒径30μm以上の粒状物と直径10μm以上の繊維状物の合計量が0.1質量%以下であることを意味する。
As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention, in the inorganic fiber sheet obtained by the wet papermaking method, the smaller the thickness, the more the fibers constituting the sheet are oriented in the same direction as the thickness direction. It has become difficult to do, and it has been found that it will be arranged in a substantially horizontal direction. The vacuum heat insulating material of the present invention is an invention made on the basis of such knowledge, and as described in claim 1, a plurality of inorganic fiber sheets obtained by wet papermaking mainly composed of inorganic fibers having an average fiber diameter of 4 μm or less are laminated. It is a vacuum heat insulating material using a thing as a core material, Comprising: The content rate of the granular material with a particle size of 30 micrometers or more in the said inorganic fiber and the fibrous material with a diameter of 10 micrometers or more is 0.1 mass% or less, The said inorganic The fiber sheet has a thickness of 0.2 mm or less, and the inorganic fibers in the core material are arranged in a direction perpendicular to the stacking direction of the inorganic fiber sheets.
The vacuum heat insulating material according to claim 2 is characterized in that, in the vacuum heat insulating material according to claim 1, the inorganic fibers in the inorganic fiber sheet do not have a specific orientation in the horizontal direction of the sheet. .
The vacuum heat insulating material according to claim 3 is the vacuum heat insulating material according to claim 1 or 2, wherein the inorganic fiber sheet is composed of only inorganic fibers.
Moreover, the vacuum heat insulating material of Claim 4 is a vacuum heat insulating material in any one of Claims 1 thru | or 3, The said inorganic fiber is glass fiber, It is characterized by the above-mentioned.
Moreover, the vacuum heat insulating material according to claim 5 is the vacuum heat insulating material according to any one of claims 1 to 4, wherein an average fiber diameter of the inorganic fibers is 0.2 to 2 μm.
The vacuum heat insulating material according to claim 6 is characterized in that, in the vacuum heat insulating material according to claim 5, an average fiber diameter of the inorganic fibers is 0.2 to 1 μm.
In addition, “the content of the granular material having a particle size of 30 μm or more and the fibrous material having a diameter of 10 μm or more in the inorganic fiber is 0.1% by mass or less” in claim 1 is the particle size contained in the inorganic fiber. It means that the total amount of the granular material having a diameter of 30 μm or more and the fibrous material having a diameter of 10 μm or more is 0.1% by mass or less.

本発明の真空断熱材は、芯材を構成する最小単位の繊維層として、無機繊維を主体として湿式抄造した無機繊維シート、特に厚さを0.2mm以下と非常に薄く設定した無機繊維シートを用い、これを多層に積層して芯材としたことを特徴とする。つまり、本発明によれば、湿式抄造法により得られる無機繊維シートでは、厚さが薄くなればなるほど、シートを構成する繊維は厚さ方向と同じ方向に配向することが困難となり、ほぼ水平方向に配列するようになるという知見に基づきなされたもので、特殊な装置や特殊な制御を必要としない通常の抄造装置及び抄造方法によって、シートの水平方向への無機繊維の配列度合いが極めて高い無機繊維シートで、しかも、シートの水平方向での繊維配向が一方向に揃って芯材の機械的強度や熱伝導特性に悪影響を与えるといった弊害をもたらすこともない該繊維配向が特定の配向性を持たない無機繊維シートを容易に得ることができ、該無機繊維シートを多層に積層して芯材とすれば、断熱性能が高く断熱特性の均一性が高い真空断熱材を容易に提供することができるようになる。   The vacuum heat insulating material of the present invention is an inorganic fiber sheet formed by wet papermaking mainly using inorganic fibers as the minimum unit fiber layer constituting the core material, in particular, an inorganic fiber sheet having a thickness set to be very thin as 0.2 mm or less. It is characterized by being used as a core material by laminating it in multiple layers. That is, according to the present invention, in the inorganic fiber sheet obtained by the wet papermaking method, the thinner the thickness, the more difficult it is for the fibers constituting the sheet to be oriented in the same direction as the thickness direction. The inorganic fiber has an extremely high degree of alignment of the inorganic fibers in the horizontal direction of the sheet by a normal papermaking apparatus and a papermaking method that do not require special equipment or special control. In the fiber sheet, the fiber orientation in the horizontal direction of the sheet is aligned in one direction and does not adversely affect the mechanical strength and heat conduction characteristics of the core material. It is possible to easily obtain an inorganic fiber sheet that does not have, and if the inorganic fiber sheet is laminated in multiple layers to form a core material, a vacuum heat insulating material with high heat insulating performance and high uniformity of heat insulating properties can be accommodated. It is possible to provide.

また、外装材に梱包して真空引きする前に芯材を構成する無機繊維の吸着微量水分を加熱乾燥処理によって除去するに際し、芯材を構成する最小単位の繊維層が厚いほど熱伝導が悪くなり乾燥時間がかかることになるが、本発明の真空断熱材では、厚さを0.2mm以下と薄く設定した無機繊維シートを芯材を構成する最小単位の繊維層とし、これを多層に積層する構造としているため、厚さの薄い無機繊維シートの両面からの水分の蒸発が容易となるため、効率的な水分除去により乾燥時間を短縮でき、真空断熱材の生産性向上に寄与する。   In addition, when the trace moisture of inorganic fibers constituting the core material is removed by heat drying before packing and vacuuming the exterior material, the heat conduction is worse as the minimum unit fiber layer constituting the core material is thicker. However, in the vacuum heat insulating material of the present invention, the inorganic fiber sheet whose thickness is set as thin as 0.2 mm or less is used as the minimum unit fiber layer constituting the core material, and this is laminated in multiple layers. Therefore, the evaporation of moisture from both sides of the thin inorganic fiber sheet is facilitated, and the drying time can be shortened by efficient moisture removal, which contributes to the improvement of the productivity of the vacuum heat insulating material.

前記芯材を構成する無機繊維シートは、無機繊維を主体として湿式抄造したシートであり、厚さと密度の精度に優れ、このような無機繊維シートを多層に積層して芯材とする場合は、無機繊維のウールからなる集綿積層体を圧縮して形成した芯材よりも、厚さと密度の精度に優れ、安定した品質を得ることができる。   The inorganic fiber sheet constituting the core material is a sheet made by wet papermaking mainly composed of inorganic fibers, excellent in accuracy of thickness and density, and when such an inorganic fiber sheet is laminated in multiple layers as a core material, Compared to a core material formed by compressing a cotton collection laminate made of inorganic fiber wool, it is superior in accuracy of thickness and density, and stable quality can be obtained.

前記芯材は、厚さを0.2mm以下と非常に薄く設定した無機繊維シートを多層に積層した構成であり、芯材の水平方向(シートの積層方向に対して垂直方向)への無機繊維の配列度合いが極めて高いため、熱伝導に対して水平方向に整列された無機繊維が熱の伝導を阻止して、熱の伝達経路を複雑化、迷路化することで熱伝導時間を長くし断熱性を向上させることが可能となる。   The core material has a structure in which inorganic fiber sheets having a very thin thickness of 0.2 mm or less are laminated in multiple layers, and inorganic fibers in the horizontal direction of the core material (perpendicular to the sheet lamination direction) Because of the extremely high degree of arrangement, the inorganic fibers aligned in the horizontal direction with respect to the heat conduction block the heat conduction, making the heat transfer path complicated and maze, thereby extending the heat conduction time and insulating. It becomes possible to improve the property.

前記無機繊維の平均繊維径としては、前述の通り、4μm以下であることが必要である。なぜならば、前記無機繊維の平均繊維径が4μm超えであると、湿式抄造によって、厚さ0.2mm以下の非常に薄い無機繊維シートを、特に無機繊維以外のバインダ等の副材料を使用せずに単独でシート化することが困難となるためである。   As described above, the average fiber diameter of the inorganic fibers needs to be 4 μm or less. This is because if the average fiber diameter of the inorganic fibers is more than 4 μm, a very thin inorganic fiber sheet having a thickness of 0.2 mm or less is not used by wet papermaking, and in particular, a secondary material such as a binder other than inorganic fibers is not used. This is because it becomes difficult to form a sheet alone.

また、前記無機繊維の平均繊維径が0.2μm未満であると、湿式抄造によるシート化自体は可能であるが、製造コストが高くなり、工業製品として実用に適さないという不都合があるので、前記無機繊維の平均繊維径は0.2μm以上であることが好ましい。   Further, if the average fiber diameter of the inorganic fiber is less than 0.2 μm, it is possible to form a sheet by wet papermaking, but the manufacturing cost is high, and there is a disadvantage that it is not suitable for practical use as an industrial product. The average fiber diameter of the inorganic fibers is preferably 0.2 μm or more.

また、前述したように、無機繊維により構成した芯材の場合、前記無機繊維が細ければ細いほど、繊維同士の接合点面積が減少し、熱移動経路が複雑となり、断熱性は向上するので、この観点からは、前記芯材を構成する無機繊維の平均繊維径は2μm以下であることが好ましく、更には1μm以下が好ましい。   In addition, as described above, in the case of a core material composed of inorganic fibers, the thinner the inorganic fibers, the smaller the joint area between the fibers, the more complicated the heat transfer path, and the better the heat insulation. From this viewpoint, the average fiber diameter of the inorganic fibers constituting the core material is preferably 2 μm or less, more preferably 1 μm or less.

前記無機繊維としては、ガラス繊維、セラミック繊維、スラグウール繊維、ロックウール繊維等を用いることができるが、平均繊維径4μm以下の微細径繊維が工業的に得られ易い点で、ガラス繊維が好ましい。   As the inorganic fiber, glass fiber, ceramic fiber, slag wool fiber, rock wool fiber or the like can be used, but glass fiber is preferable in that a fine fiber having an average fiber diameter of 4 μm or less is easily obtained industrially. .

前記ガラス繊維としては、例えば、耐酸性のCガラスを溶融、紡糸後、バーナの火炎でエネルギを与え、吹き飛ばして得られるガラス短繊維や、Cガラスを溶融した後、紡糸したガラス長繊維が好適に用いられる。このような火炎法や、その他遠心法等の製法によって得られるガラス繊維は、その繊維構造が表面積の小さい円柱状に形成されており、パルプ繊維等のように枝分かれ(フィブリル化)していないため、湿式抄造時に抄紙原料液中の繊維が一定方向に走行するフォーミングワイヤに引っ張られても、繊維が引っ掛かってシート表面の地合が崩れたり、孔が開いたりする等の不都合がない。   As the glass fiber, for example, a short glass fiber obtained by melting and spinning an acid-resistant C glass and then applying energy by a flame of a burner and blowing it, or a long glass fiber spun after melting the C glass is suitable. Used for. Glass fiber obtained by such a flame method or other methods such as centrifugation is formed in a columnar shape with a small surface area and is not branched (fibrillated) like pulp fibers. Even when the fiber in the papermaking raw material liquid is pulled by a forming wire that travels in a certain direction during wet papermaking, there is no inconvenience that the fiber is caught and the surface of the sheet collapses or a hole is opened.

前記ガラス短繊維の場合、バーナの火炎のエネルギが不均一若しくは不足していると、本来のガラス短繊維に混じって、繊維の端部に涙滴状の塊状物が付いたもの、繊維が部分的に太くなったもの、バーナで吹き飛ばす前の太い繊維がそのまま残ったもの等の本来のガラス短繊維に対して比較的大きなサイズを有した粒状物や繊維状物が少量混入する場合がある。本発明においては、表面凹凸等をなくして湿式抄造するために、例えば、ガラス繊維を分散媒体に分散させた抄紙原料液(抄紙スラリ)の遠心分離を行い、スクリーン・フィルタを通過させる等して、抄紙原料液中の粒径30μm以上の粒状物及び直径10μm以上の繊維状物の含有率を実質上0%近くまで除去するようにして、抄造されたシート中の粒径30μm以上の粒状物及び直径10μm以上の繊維状物の含有率を0.1質量%以下まで低減することができる。   In the case of the short glass fiber, if the burner flame energy is uneven or insufficient, it is mixed with the original short glass fiber, and the fiber ends are attached with a teardrop-like lump. In some cases, a small amount of a granular material or a fibrous material having a relatively large size with respect to the original short glass fiber, such as a thickened fiber or a thick fiber before being blown off by a burner, may remain. In the present invention, in order to eliminate the surface irregularities and the like and perform wet papermaking, for example, a papermaking raw material liquid (papermaking slurry) in which glass fibers are dispersed in a dispersion medium is centrifuged and passed through a screen filter. The granular material having a particle size of 30 μm or more in the sheet made by removing the content of the granular material having a particle size of 30 μm or more and the fibrous material having a diameter of 10 μm or more in the papermaking raw material liquid to substantially 0%. And the content rate of the fibrous material with a diameter of 10 micrometers or more can be reduced to 0.1 mass% or less.

前記無機繊維シートには、無機繊維の他に、有機バインダ、無機バインダ、有機繊維等のバインダ効果のある副材料や、有機粉体、無機粉体、その他、マイクロカプセル粒体等、前記シートの強度、均一性、取り扱い性を向上させる効果のある副材料を混入させることが可能であるが、減圧時や真空時に水分以外の余計なガス発生をなくすという観点からは、前記無機繊維シートは前記無機繊維のみで構成するようにするのが好ましい。   In addition to inorganic fibers, the inorganic fiber sheet includes binder materials such as organic binders, inorganic binders, and organic fibers, organic powders, inorganic powders, and other microcapsule granules. Although it is possible to mix a secondary material having an effect of improving strength, uniformity, and handleability, from the viewpoint of eliminating extra gas generation other than moisture during decompression or vacuum, the inorganic fiber sheet is It is preferable that the material is composed only of inorganic fibers.

次に、前記無機繊維シートの製造方法について説明する。前記無機繊維シートは、特許文献3のような特殊な抄造装置や抄造方法を必要とせず、通常の抄造装置及び抄造方法により容易に製造することができ、円網抄紙機、傾斜抄紙機あるいは長網抄紙機を用いて製造することができる。以下一例を説明する。尚、以下の例では、無機繊維としてガラス繊維を用いた例を示しているが、他の無機繊維を使用した場合も同様である。
(1)原料として、例えば、平均繊維径1μmの微細ガラス繊維を所定量計量し、ミキサ、パルパ等の分離機により前記繊維を水中に均一に分散・混合する。尚、ガラス繊維はパルプと異なりフィブリル化はしないため、ビータのような刃物を備えた叩解機を使用すると折れて粉状となるため、パルパを使用する。この抄紙原料液を貯蔵タンクに輸送、貯蔵する。
(2)次に、前記抄紙原料液中のガラス繊維には、本来のガラス繊維に対して比較的大きなサイズを有した粒状物や繊維状物が少量混入していると推測されるため、前記抄紙原料液を遠心分離機にて遠心した後、スクリーン・フィルタを通過させて抄紙原料液中の粒径30μm以上の粒状物及び直径10μm以上の繊維状物の含有率を実質上0%近くまで低減させる。
(3)次に、種口弁・白水バルブで抄紙原料液の供給量を制御し、ステップディフューザ等を介してヘッドボックスから抄紙原料液を噴出し、走行するフォーミングワイヤ上に堆積させ、下方から脱水して、厚さ0.2mm以下の湿紙状態のガラス繊維シートに形成させた後、ドライヤを通過させて水分を十分に乾燥させて乾紙状態のガラス繊維シートを得る。
(4)次に、幅広の連続シートである前記ガラス繊維シートを長さ方向の所定寸法にカットし、更に、真空断熱材用芯材として必要な断熱性能及び厚さに合わせて所定枚数積層して、真空断熱材用芯材とする。
(5)次に、前記芯材を所定サイズに裁断し、吸着微量水分を蒸発除去するため加熱処理後、水分の再吸着を防ぎながら、直ちに外装材に挿入し、真空引き(0.04torr,10分)を行い、加熱封印して真空断熱材を得る。
Next, the manufacturing method of the said inorganic fiber sheet is demonstrated. The inorganic fiber sheet does not require a special papermaking apparatus or papermaking method as in Patent Document 3, and can be easily manufactured by a normal papermaking apparatus and papermaking method. It can be manufactured using a net paper machine. An example will be described below. In the following examples, glass fibers are used as the inorganic fibers, but the same applies when other inorganic fibers are used.
(1) As a raw material, for example, a predetermined amount of fine glass fibers having an average fiber diameter of 1 μm are weighed, and the fibers are uniformly dispersed and mixed in water by a separator such as a mixer or a pulper. Since glass fiber is not fibrillated unlike pulp, it is broken into powder when using a beating machine equipped with a blade such as a beater, so a pulper is used. This papermaking raw material liquid is transported and stored in a storage tank.
(2) Next, the glass fiber in the papermaking raw material liquid is presumed to contain a small amount of granular materials and fibrous materials having a relatively large size with respect to the original glass fiber. After centrifuging the papermaking raw material liquid with a centrifuge, it passes through a screen filter, and the content of the granular material having a particle size of 30 μm or more and the fibrous material having a diameter of 10 μm or more in the papermaking raw material liquid is substantially close to 0%. Reduce.
(3) Next, the supply amount of the papermaking raw material liquid is controlled by the seed valve and the white water valve, and the papermaking raw material liquid is ejected from the head box via a step diffuser and deposited on the traveling forming wire. After dehydrating and forming into a wet paper glass fiber sheet having a thickness of 0.2 mm or less, a dryer is passed through to sufficiently dry the water to obtain a dry paper glass fiber sheet.
(4) Next, the glass fiber sheet, which is a wide continuous sheet, is cut into a predetermined dimension in the length direction, and a predetermined number of sheets are laminated in accordance with the heat insulating performance and thickness required as a vacuum insulating material core material. The core material for vacuum heat insulating material.
(5) Next, the core material is cut into a predetermined size, and after heat treatment to evaporate and remove the adsorbed trace moisture, the core material is immediately inserted into the exterior material while preventing re-adsorption of moisture, and evacuation (0.04 torr, 10 minutes) and heat sealed to obtain a vacuum heat insulating material.

次に、本発明の実施例について比較例及び従来例とともに詳細に説明する。
(実施例1)
平均繊維径0.7μmのCガラス短繊維100質量%の原料から、上記の方法で湿式抄造して、熱風乾燥後、厚さ0.20mm、密度0.16g/cmのガラス繊維シートを得た。次に、該シートを規定サイズに裁断し乾燥機で180℃で10時間加熱処理した後、直ちに50枚積層して厚さ10mmの芯材とし、アルミ箔とPETフィルムからなるガスバリアラミネートの袋状の外装材に挿入し、0.04torrで10分間真空引きした後加熱封印して真空断熱材を得た。得られた真空断熱材の外観を観察し、厚さを測定して芯材の密度変化を求めた。室温で熱伝導率を測定すると、0.0015W/m・Kであった。
Next, examples of the present invention will be described in detail together with comparative examples and conventional examples.
Example 1
From the raw material of 100% by mass of C glass short fibers having an average fiber diameter of 0.7 μm, wet papermaking is performed by the above method, and after drying with hot air, a glass fiber sheet having a thickness of 0.20 mm and a density of 0.16 g / cm 3 is obtained. It was. Next, the sheet is cut into a specified size, heat-treated at 180 ° C. for 10 hours with a dryer, and then immediately laminated 50 sheets to form a core material having a thickness of 10 mm, which is a bag of gas barrier laminate made of aluminum foil and PET film. And vacuum-sealed at 0.04 torr for 10 minutes and then heat-sealed to obtain a vacuum heat insulating material. The appearance of the obtained vacuum heat insulating material was observed, the thickness was measured, and the density change of the core material was determined. The thermal conductivity measured at room temperature was 0.0015 W / m · K.

(実施例2)
平均繊維径0.7μmのCガラス短繊維100質量%の原料から、上記の方法で湿式抄造して、熱風乾燥後、厚さ0.10mm、密度0.16g/cmのガラス繊維シートを得た。次に、該シートを規定サイズに裁断し乾燥機で180℃で1時間加熱処理した後、直ちに100枚積層して厚さ10mmの芯材とし、アルミ箔とPETフィルムからなるガスバリアラミネートの袋状の外装材に挿入し、0.04torrで10分間真空引きした後加熱封印して真空断熱材を得た。得られた真空断熱材の外観を観察し、厚さを測定して芯材の密度変化を求めた。室温で熱伝導率を測定すると、0.0014W/m・Kであった。
(Example 2)
From the raw material of 100% by mass of short C glass fibers having an average fiber diameter of 0.7 μm, wet papermaking is performed by the above method, and after drying with hot air, a glass fiber sheet having a thickness of 0.10 mm and a density of 0.16 g / cm 3 is obtained. It was. Next, the sheet is cut to a specified size and heat-treated at 180 ° C. for 1 hour with a dryer, and then immediately laminated 100 sheets to form a core material having a thickness of 10 mm, and a gas barrier laminate bag shape made of aluminum foil and PET film. And vacuum-sealed at 0.04 torr for 10 minutes and then heat-sealed to obtain a vacuum heat insulating material. The appearance of the obtained vacuum heat insulating material was observed, the thickness was measured, and the density change of the core material was determined. The thermal conductivity measured at room temperature was 0.0014 W / m · K.

(実施例3)
平均繊維径0.7μmのCガラス短繊維100質量%の原料から、上記の方法で湿式抄造して、熱風乾燥後、厚さ0.10mm、密度0.16g/cmのガラス繊維シートを得た。次に、該シートを規定サイズに裁断し乾燥機で180℃で6分間加熱処理した後、直ちに100枚積層して厚さ10mmの芯材とし、アルミ箔とPETフィルムからなるガスバリアラミネートの袋状の外装材に挿入し、0.04torrで10分間真空引きした後加熱封印して真空断熱材を得た。得られた真空断熱材の外観を観察し、厚さを測定して芯材の密度変化を求めた。室温で熱伝導率を測定すると、0.0020W/m・Kであった。
(Example 3)
From the raw material of 100% by mass of short C glass fibers having an average fiber diameter of 0.7 μm, wet papermaking is performed by the above method, and after drying with hot air, a glass fiber sheet having a thickness of 0.10 mm and a density of 0.16 g / cm 3 is obtained. It was. Next, the sheet is cut into a specified size, heat-treated at 180 ° C. for 6 minutes with a dryer, and then immediately laminated with 100 sheets to form a core material having a thickness of 10 mm, which is a bag of gas barrier laminate made of aluminum foil and PET film. And vacuum-sealed at 0.04 torr for 10 minutes and then heat-sealed to obtain a vacuum heat insulating material. The appearance of the obtained vacuum heat insulating material was observed, the thickness was measured, and the density change of the core material was determined. The thermal conductivity measured at room temperature was 0.0020 W / m · K.

(比較例)
平均繊維径0.7μmのCガラス短繊維100質量%の原料から、上記の方法で湿式抄造して、熱風乾燥後、厚さ0.50mm、密度0.16g/cmのガラス繊維シートを得た。次に、該シートを規定サイズに裁断し乾燥機で180℃で10時間加熱処理した後、直ちに20枚積層して厚さ10mmの芯材とし、アルミ箔とPETフィルムからなるガスバリアラミネートの袋状の外装材に挿入し、0.04torrで10分間真空引きした後加熱封印して真空断熱材を得た。得られた真空断熱材の外観を観察し、厚さを測定して芯材の密度変化を求めた。室温で熱伝導率を測定すると、0.0025W/m・Kであった。
(Comparative example)
From the raw material of 100% by mass of short C glass fibers having an average fiber diameter of 0.7 μm, wet papermaking is performed by the above method, and after drying with hot air, a glass fiber sheet having a thickness of 0.50 mm and a density of 0.16 g / cm 3 is obtained. It was. Next, the sheet is cut into a specified size, heat-treated at 180 ° C. for 10 hours with a dryer, and then immediately laminated with 20 sheets to form a core material having a thickness of 10 mm, which is made of a gas barrier laminate made of aluminum foil and PET film. And vacuum-sealed at 0.04 torr for 10 minutes and then heat-sealed to obtain a vacuum heat insulating material. The appearance of the obtained vacuum heat insulating material was observed, the thickness was measured, and the density change of the core material was determined. The thermal conductivity measured at room temperature was 0.0025 W / m · K.

(従来例)
平均繊維径0.7μmのCガラス短繊維100質量%の原料から、上記の方法で湿式抄造して、熱風乾燥後、厚さ2.0mm、密度0.16g/cmのガラス繊維シートを得た。次に、該シートを規定サイズに裁断し乾燥機で180℃で10時間加熱処理した後、直ちに5枚積層して厚さ10mmの芯材とし、アルミ箔とPETフィルムからなるガスバリアラミネートの袋状の外装材に挿入し、0.04torrで10分間真空引きした後加熱封印して真空断熱材を得た。得られた真空断熱材の外観を観察し、厚さを測定して芯材の密度変化を求めた。室温で熱伝導率を測定すると、0.0032W/m・Kであった。
(Conventional example)
From the raw material of 100% by mass of C glass short fibers having an average fiber diameter of 0.7 μm, wet papermaking is performed by the above method, and after hot air drying, a glass fiber sheet having a thickness of 2.0 mm and a density of 0.16 g / cm 3 is obtained. It was. Next, the sheet is cut to a specified size and heat-treated at 180 ° C. for 10 hours with a dryer, and then immediately laminated to form a core material having a thickness of 10 mm, which is made of a gas barrier laminate made of aluminum foil and PET film. And vacuum-sealed at 0.04 torr for 10 minutes and then heat-sealed to obtain a vacuum heat insulating material. The appearance of the obtained vacuum heat insulating material was observed, the thickness was measured, and the density change of the core material was determined. The thermal conductivity measured at room temperature was 0.0032 W / m · K.

前記実施例1〜3、比較例及び従来例の加熱条件、厚さ、密度、熱伝導率を測定した結果を表1に示す。   Table 1 shows the results of measuring the heating conditions, thickness, density, and thermal conductivity of Examples 1 to 3, Comparative Example, and Conventional Example.

Figure 2007239931
Figure 2007239931

表1の結果から以下のことが分かった。
(1)実施例1の厚さ0.2mmのガラス繊維シートを50枚積層して芯材とした真空断熱材は、芯材の水平方向(シートの積層方向に対して垂直方向)へのガラス繊維の配列度合いが極めて高く、真空断熱材の表面から裏面への伝熱を阻害する効果が高く、また、芯材を構成する最小単位の繊維層であるガラス繊維シートが薄いため加熱処理によりガラス繊維の微量吸着水分の除去を行う際の水分除去効率が良好であったことから、熱伝導率が0.0015W/m・Kと、従来例より約53%も断熱性能が良化した。
(2)実施例2の厚さ0.1mmのガラス繊維シートを100枚積層して芯材とした真空断熱材は、ガラス繊維シート厚さが実施例1よりも更に薄い1/2厚さとなっており、芯材の水平方向(シートの積層方向に対して垂直方向)へのガラス繊維の配列度合いが更に高められて前記伝熱阻害効果が更に良化し、また、前記水分除去効率が更に良化して加熱処理時間を1時間と実施例1の1/10に短縮したにも拘わらず、熱伝導率が0.0014W/m・Kと、実施例1より約7%良化した。
(3)実施例3の真空断熱材は、前記実施例2の真空断熱材に対して、前記加熱処理時間を0.1時間(6分)と実施例2の更に1/10に短縮したものであるが、熱伝導率は0.0020W/m・Kと、実施例2よりは約43%悪化したものの、従来例より約38%良化した。従って、実施例3のように、厚さ0.1mmのガラス繊維シートを100枚積層して芯材とした真空断熱材は、従来例のように、厚さ2.0mmのガラス繊維シートを5枚積層して芯材とした真空断熱材に比較して、前記加熱処理時間をわずか0.1時間(6分)と1/100に短縮しても、熱伝導率を約38%も良化でき、生産性の大幅な向上と断熱性能の大幅な良化を両立させることが可能となる。
(4)比較例の真空断熱材は、ガラス繊維シート厚さを前記従来例よりも1/4に薄くした厚さ0.5mmのガラス繊維シートを20枚積層して芯材とした真空断熱材であるが、ガラス繊維シート厚さを2.0mmから0.5mmに1/4に大幅に薄くしたにも拘わらず、熱伝導率は0.0032W/m・Kから0.0025W/m・Kへと、約22%の良化に留まっている。
(5)つまり、真空断熱材用芯材(無機繊維シートの積層体)の厚さを変えないで、該芯材を構成する無機繊維シートの単体厚さを低減していった場合、無機繊維シート厚さを2.0mmから0.5mmまで75%低減しても熱伝導率(断熱性能)は約22%の良化に留まるのに対し、無機繊維シート厚さを0.5mmから0.2mmまで60%低減した場合には熱伝導率(断熱性能)は40%も良化することが分かった。
From the results in Table 1, the following was found.
(1) The vacuum heat insulating material used as a core material by laminating 50 glass fiber sheets having a thickness of 0.2 mm in Example 1 is a glass in a horizontal direction of the core material (a direction perpendicular to the stacking direction of the sheets). The degree of fiber alignment is extremely high, and the effect of inhibiting heat transfer from the front surface to the back surface of the vacuum heat insulating material is high. Also, the glass fiber sheet, which is the minimum unit fiber layer that forms the core material, is thin, so that the glass is heated by heat treatment. Since the moisture removal efficiency at the time of removing a small amount of moisture adsorbed on the fiber was good, the thermal conductivity was 0.0015 W / m · K, which was about 53% better than the conventional example.
(2) The vacuum heat insulating material obtained by laminating 100 glass fiber sheets having a thickness of 0.1 mm in Example 2 as a core material has a glass fiber sheet thickness that is 1/2 thickness thinner than that in Example 1. The degree of glass fiber alignment in the horizontal direction of the core material (perpendicular to the sheet stacking direction) is further enhanced to further improve the heat transfer inhibiting effect, and further improve the moisture removal efficiency. Although the heat treatment time was shortened to 1 hour and 1/10 of Example 1, the thermal conductivity was 0.0014 W / m · K, which was 7% better than Example 1.
(3) The vacuum heat insulating material of Example 3 was obtained by shortening the heat treatment time to 0.1 hour (6 minutes) and 1/10 of that of Example 2 with respect to the vacuum heat insulating material of Example 2. However, the thermal conductivity was 0.0020 W / m · K, which was about 43% worse than Example 2 but about 38% better than the conventional example. Therefore, as in Example 3, the vacuum heat insulating material used as a core material by laminating 100 glass fiber sheets having a thickness of 0.1 mm is 5 glass fiber sheets having a thickness of 2.0 mm as in the conventional example. Compared to the vacuum heat insulating material that is made by laminating the sheets, the heat treatment time is improved by about 38% even if the heat treatment time is reduced to 1/100, which is only 0.1 hour (6 minutes). It is possible to achieve both a significant improvement in productivity and a significant improvement in heat insulation performance.
(4) The vacuum heat insulating material of the comparative example is a vacuum heat insulating material in which 20 glass fiber sheets having a thickness of 0.5 mm in which the thickness of the glass fiber sheet is ¼ thinner than that of the conventional example are laminated to form a core material. However, the thermal conductivity is 0.0032 W / m · K to 0.0025 W / m · K despite the fact that the thickness of the glass fiber sheet is significantly reduced from 2.0 mm to 0.5 mm to ¼. However, it is only about 22% improvement.
(5) That is, when the thickness of the inorganic fiber sheet constituting the core material is reduced without changing the thickness of the vacuum heat insulating core material (laminated body of inorganic fiber sheets), the inorganic fiber Even if the sheet thickness is reduced by 75% from 2.0 mm to 0.5 mm, the thermal conductivity (heat insulation performance) remains only about 22%, whereas the inorganic fiber sheet thickness is reduced from 0.5 mm to 0.00 mm. It was found that the thermal conductivity (heat insulation performance) was improved by 40% when reduced to 2 mm by 60%.

Claims (6)

平均繊維径が4μm以下の無機繊維を主体として湿式抄造した無機繊維シートを複数枚積層したものを芯材として用いてなる真空断熱材であって、前記無機繊維中の粒径30μm以上の粒状物及び直径10μm以上の繊維状物の含有率が0.1質量%以下であり、前記無機繊維シートが厚さ0.2mm以下であり、前記芯材中の前記無機繊維は前記無機繊維シートの積層方向に対して垂直方向に配列されていることを特徴とする真空断熱材。   A vacuum heat insulating material using, as a core material, a laminate of a plurality of inorganic fiber sheets that are wet-made mainly with inorganic fibers having an average fiber diameter of 4 μm or less, and a granular material having a particle size of 30 μm or more in the inorganic fibers And the content rate of the fibrous material with a diameter of 10 micrometers or more is 0.1 mass% or less, the said inorganic fiber sheet is 0.2 mm or less in thickness, and the said inorganic fiber in the said core material is lamination | stacking of the said inorganic fiber sheet. A vacuum heat insulating material arranged in a direction perpendicular to the direction. 前記無機繊維シート中の前記無機繊維は該シートの水平方向に特定の配向性を有しないことを特徴とする請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the inorganic fibers in the inorganic fiber sheet do not have a specific orientation in a horizontal direction of the sheet. 前記無機繊維シートが無機繊維のみで構成されていることを特徴とする請求項1または2記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein the inorganic fiber sheet is composed of only inorganic fibers. 前記無機繊維がガラス繊維であることを特徴とする請求項1乃至3の何れかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein the inorganic fiber is a glass fiber. 前記無機繊維の平均繊維径が0.2〜2μmであることを特徴とする請求項1乃至4の何れかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 4, wherein the inorganic fiber has an average fiber diameter of 0.2 to 2 µm. 前記無機繊維の平均繊維径が0.2〜1μmであることを特徴とする請求項5記載の真空断熱材。   The vacuum heat insulating material according to claim 5, wherein an average fiber diameter of the inorganic fibers is 0.2 to 1 μm.
JP2006065249A 2006-03-10 2006-03-10 Vacuum heat insulation material Pending JP2007239931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065249A JP2007239931A (en) 2006-03-10 2006-03-10 Vacuum heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065249A JP2007239931A (en) 2006-03-10 2006-03-10 Vacuum heat insulation material

Publications (1)

Publication Number Publication Date
JP2007239931A true JP2007239931A (en) 2007-09-20

Family

ID=38585667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065249A Pending JP2007239931A (en) 2006-03-10 2006-03-10 Vacuum heat insulation material

Country Status (1)

Country Link
JP (1) JP2007239931A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007683A (en) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp Vacuum thermal insulating material
JP2010169147A (en) * 2009-01-21 2010-08-05 Mitsubishi Electric Corp Vacuum heat insulating material, and device and method for manufacturing the same
JP2011122727A (en) * 2011-01-26 2011-06-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material and manufacturing method for them
JP2015137689A (en) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 Vacuum insulation material and its process of manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046486A (en) * 1996-07-30 1998-02-17 Oji Paper Co Ltd Thin, heat resistant and porous paper
JP2005265038A (en) * 2004-03-18 2005-09-29 Nippon Sheet Glass Co Ltd Vacuum heat insulating material and method for manufacturing inorganic fiber sheet for vacuum heat insulating material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046486A (en) * 1996-07-30 1998-02-17 Oji Paper Co Ltd Thin, heat resistant and porous paper
JP2005265038A (en) * 2004-03-18 2005-09-29 Nippon Sheet Glass Co Ltd Vacuum heat insulating material and method for manufacturing inorganic fiber sheet for vacuum heat insulating material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007683A (en) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp Vacuum thermal insulating material
JP2010169147A (en) * 2009-01-21 2010-08-05 Mitsubishi Electric Corp Vacuum heat insulating material, and device and method for manufacturing the same
JP2011122727A (en) * 2011-01-26 2011-06-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material and manufacturing method for them
JP2015137689A (en) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 Vacuum insulation material and its process of manufacture

Similar Documents

Publication Publication Date Title
JP4438466B2 (en) Vacuum heat insulating material and method for producing inorganic fiber sheet for vacuum heat insulating material
TW432738B (en) Glass fiber separators and batteries including such separators
JP7115395B2 (en) Heat-resistant insulation sheet, manufacturing method thereof, and assembled battery
JP4713566B2 (en) Core material for vacuum heat insulating material, vacuum heat insulating material, and manufacturing method thereof
TWI296661B (en) An apparatus for manufacturing glass fiber and/or other material fiber mats by way of vibrational compression
JP6398900B2 (en) Inorganic fiber sheet manufacturing method, fired body, and honeycomb filter
US6820681B2 (en) Heating regeneration type organic rotor member and method for producing the same
JP2007239931A (en) Vacuum heat insulation material
CN102362115A (en) Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
JP2009210072A (en) Vacuum heat insulating material
JP2007024268A (en) Vacuum heat insulating material
JP2008049333A (en) Composite filter medium and its manufacturing method
JP2011036763A (en) Air filter medium and method for manufacturing the same
JP2008232257A (en) Vacuum heat insulation material
CN104141859B (en) A kind of core material of vacuum heat insulation plate and vacuum heat-insulating plate
JP6575653B2 (en) Inorganic fiber sheet manufacturing method, fired body, and honeycomb filter
JP6723758B2 (en) Method for producing non-woven fabric containing polyphenylene sulfide fiber
JP6575654B2 (en) Inorganic fiber sheet manufacturing method, fired body, and honeycomb filter
JP2008045229A (en) Nonwoven fabric and method for producing nonwoven fabric
JP2021112717A (en) Adsorption sheet and method for producing the same
JP7432539B2 (en) Glass wool board and method for manufacturing glass wool board
CN105247128B (en) Vacuum heat insulation materials core comprising organic synthetic fibers and the vacuum heat insulation materials comprising it
JP2006132058A (en) Adsorbing filter base paper and method for producing the same
JP2017226928A (en) Heat-resistant wet type nonwoven fabric
KR20190063586A (en) Media for absorbing radioactivity material and manucacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426