JP2009210072A - Vacuum heat insulating material - Google Patents
Vacuum heat insulating material Download PDFInfo
- Publication number
- JP2009210072A JP2009210072A JP2008055469A JP2008055469A JP2009210072A JP 2009210072 A JP2009210072 A JP 2009210072A JP 2008055469 A JP2008055469 A JP 2008055469A JP 2008055469 A JP2008055469 A JP 2008055469A JP 2009210072 A JP2009210072 A JP 2009210072A
- Authority
- JP
- Japan
- Prior art keywords
- inorganic
- heat insulating
- fiber layer
- inorganic fiber
- insulating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Thermal Insulation (AREA)
- Refrigerator Housings (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
本発明は、不織性の無機繊維層を芯材としてなる真空断熱材に関する。 The present invention relates to a vacuum heat insulating material having a non-woven inorganic fiber layer as a core material.
従来、真空断熱材としては、無機繊維を構成主体として、ニードリングマット、フェルト等の乾式製法、または、抄紙シート等の湿式製法で成形した無機繊維層からなる芯材を、ポリエステル、ポリエチレン等の熱可塑性プラスチックフィルムと金属箔または金属蒸着等の金属類を積層、ラミネートしたガスバリア性の外被材で包み、内部の空気を除去した後、融着密閉化して成形したものが一般的に使用されている。 Conventionally, as a vacuum heat insulating material, a core material composed of an inorganic fiber layer formed by a dry manufacturing method such as a needling mat or felt, or a wet manufacturing method such as a papermaking sheet, with inorganic fibers as a main constituent, polyester, polyethylene, etc. A plastic film and metal foil or metal vapor deposition or other metal laminated and laminated, wrapped in a gas barrier outer covering material, the air inside is removed, and then sealed and molded. ing.
熱可塑性プラスチックフィルムは、柔軟性と融着加工性を付与する機能を持ち、金属類は、外部の空気の進入を阻止するガスバリア機能を持つ。芯材は、断熱性を高めるため、熱対流空間を小さくさせ、熱の移動を遅くさせる機能を持たせる方法として、無機繊維径を1μm以下に細くしたり、無機繊維中のショット(未繊維化粒状物)の含有率を低下させたり、無機繊維を伝熱方向に対して垂直方向に配列させたりして、熱伝導率を低くすることが行われている(例えば、特許文献1〜2)。 The thermoplastic film has a function of imparting flexibility and fusing workability, and the metals have a gas barrier function of preventing external air from entering. In order to enhance the heat insulation, the core material has a function of reducing the heat convection space and slowing the movement of heat, so that the diameter of the inorganic fiber can be reduced to 1 μm or less, or the shot in the inorganic fiber (unfiberized) The thermal conductivity is lowered by decreasing the content ratio of the granular material) or by arranging inorganic fibers in a direction perpendicular to the heat transfer direction (for example, Patent Documents 1 and 2). .
無機繊維径を細くすると、繊維同士の接合点面積が減少し、熱移動経路が複雑となり、断熱性能は向上する。また、平均繊維径が4μm以下の無機繊維は、通常火炎法や遠心法といった溶融材料から紡糸し高速火炎や高速気流で吹き飛ばす方法によって製造されたウール状繊維であり、本来の無機繊維に混じって、繊維の端部に涙滴状の塊状物が付いたもの、繊維が部分的に太くなったもの、吹き飛ばす前の太い繊維がそのまま残ったもの等の本来の無機繊維に対して比較的大きなサイズを有した粒状物や繊維状物が少量混入しており(これをショットと呼んでいる)、特に粒径の大きなショットは、断熱材に大きな気孔を生じさせ、気体の対流伝熱、気体分子の衝突による伝熱を促進するため、ショットの含有率を減らすことで、断熱性能を改善できる。また、無機繊維層において、断熱材の伝熱方向に対して垂直方向に繊維を配列することで、断熱材の表裏間の伝熱経路を複雑化、迷路化し熱伝導時間を長くすることができるため、断熱性能は向上する。 When the inorganic fiber diameter is reduced, the joint area between the fibers decreases, the heat transfer path becomes complicated, and the heat insulation performance is improved. Inorganic fibers with an average fiber diameter of 4 μm or less are wool fibers produced by spinning from a molten material such as a normal flame method or a centrifugal method, and blowing away with a high-speed flame or high-speed air current. , Relatively large size compared to the original inorganic fiber, such as those with teardrop-shaped clumps at the end of the fiber, partially thickened fibers, or thick fibers left before being blown away A small amount of particulate matter or fibrous material having a particle size (this is called a shot), and especially a shot with a large particle size causes large pores in the heat insulating material, causing convective heat transfer of gas, gas molecules The heat insulation performance can be improved by reducing the shot content in order to promote the heat transfer due to the collision. Moreover, in the inorganic fiber layer, by arranging the fibers in a direction perpendicular to the heat transfer direction of the heat insulating material, the heat transfer path between the front and back surfaces of the heat insulating material can be complicated, maze, and heat conduction time can be extended. Therefore, the heat insulation performance is improved.
以上のような真空断熱材は、冷蔵庫、炊飯器、給湯機、自動販売機等の家庭用・業務用電化製品の省エネルギー推進の断熱材として、また、医療用や各種鮮度保持用の保冷容器の断熱材として、また最近では、防寒衣料の断熱材や無暖房住宅用の断熱材として適用が進み、厚みを薄くして高性能な断熱性を求める需要に対応しつつある。 The vacuum insulation materials described above are used as heat insulation materials for promoting energy conservation in household and commercial appliances such as refrigerators, rice cookers, water heaters and vending machines, and for medical and cold storage containers for maintaining freshness. As a heat insulating material, and recently, it has been applied as a heat insulating material for a cold clothing and a heat insulating material for an unheated house, and is responding to the demand for high-performance heat insulation by reducing the thickness.
しかしながら、特許文献1〜2のような真空断熱材芯材は、熱伝導を低く抑えるために無機繊維のみから構成されているため、真空減圧して密閉加工すると、大気圧により芯材の厚み方向で30〜40%に縮減する厚さヘタリを起こす。これにより、繊維間距離が短くなり、繊維同士の接触面積が増大して、熱伝導が増し、断熱性能が低下する問題がある。 However, since the vacuum heat insulating material core material like patent document 1-2 is comprised only from the inorganic fiber in order to suppress heat conduction low, when it vacuum-reduces and seals, the thickness direction of a core material will be by atmospheric pressure. The thickness is reduced to 30-40%. Thereby, the distance between fibers becomes short, the contact area between fibers increases, heat conduction increases, and there exists a problem that heat insulation performance falls.
そこで、無機繊維層からなる真空断熱材芯材において、減圧による厚さヘタリを改善するため、有機バインダー(例えば、特許文献3〜4)や、反発性の合成繊維や、無機バインダー(例えば、特許文献5〜6)を導入することが考えられる。 Therefore, in a vacuum heat insulating material core made of an inorganic fiber layer, an organic binder (for example, Patent Documents 3 to 4), a repellent synthetic fiber, or an inorganic binder (for example, a patent) is used to improve the thickness loss due to reduced pressure. It is conceivable to introduce documents 5 to 6).
しかし、有機バインダーや合成繊維のような有機物を導入すると、減圧排気時に未反応成分や表面処理剤からのガス発生を伴い真空度を上げられない問題があるほか、初期特性は良好でも長期使用すると徐々にガス発生のため断熱性能が低下する問題がある。この対策として、いわゆるゲッター剤(吸着剤)を導入することがあるが、補助的な解決手段であり根本的な解決手段とはならない。また、ゲッター剤を導入した部分の断熱性の低下、加工工数が増える等の問題も生じる。従って、有機バインダーや合成繊維等の有機物の導入は好ましくない。 However, when organic substances such as organic binders and synthetic fibers are introduced, there is a problem in that the degree of vacuum cannot be increased due to gas generation from unreacted components and surface treatment agent at the time of vacuum exhaust. There is a problem that the heat insulation performance is gradually lowered due to gas generation. As a countermeasure, a so-called getter agent (adsorbent) may be introduced, but it is an auxiliary solution and not a fundamental solution. In addition, there are problems such as a decrease in heat insulation at the portion where the getter agent is introduced and an increase in the number of processing steps. Therefore, it is not preferable to introduce organic substances such as organic binders and synthetic fibers.
また、特許文献5〜6のような、無機バインダーとして一般的に使用されるシリカエマルジョン(無機酸化物ゾル)等を導入すると、無機繊維の交点はよく接着されて固められるので、厚さヘタリは改善されるが、無機繊維同士が完全接着するため、接着部が熱架橋として作用し(熱移動経路をショートカットさせ)、真空断熱材の表裏間の熱移動距離を短くして熱伝導が良くなり、断熱性能が低下する問題がある。また、無機酸化物ゾルで接着された無機繊維層は、柔軟性、可撓性が低下し、硬く脆い層となるため、曲面設置用途に使用できない、原反をロール巻きできない等の問題も生じる。また、無機繊維層が硬く脆い層となるため、割れ、欠けが生じ易くなるとともに、硬い破損物がガスバリア性の外被材にキズを与え真空断熱材としての機能を失わせる場合がある。また、無機バインダーが皮膜を形成し易いため、皮膜により減圧排気時間が長時間化するという問題もある。 Moreover, when silica emulsion (inorganic oxide sol) etc. generally used as an inorganic binder like patent documents 5-6 are introduced, since the intersection of inorganic fibers is well adhered and solidified, Although improved, since the inorganic fibers are completely bonded to each other, the bonded portion acts as a thermal bridge (shortening the heat transfer path), shortening the heat transfer distance between the front and back of the vacuum heat insulating material, and improving the heat conduction There is a problem that the heat insulation performance is lowered. In addition, since the inorganic fiber layer bonded with the inorganic oxide sol has reduced flexibility and flexibility and becomes a hard and brittle layer, there are also problems such as being unable to be used for curved surface installation and being unable to roll the raw fabric. . In addition, since the inorganic fiber layer is a hard and brittle layer, cracks and chips are likely to occur, and a hard damaged material may damage the gas barrier outer covering material and lose its function as a vacuum heat insulating material. In addition, since the inorganic binder easily forms a film, there is also a problem that the depressurization exhaust time is prolonged due to the film.
また、有機バインダーや無機バインダーを使用しない方法として、無機繊維自身の溶融または溶解成分により無機繊維同士を結着する方法(例えば、特許文献7〜9)もあるが、無機繊維自身の表面成分の溶融または溶解は、無機繊維の強度低下を招き、繊維が折れ易くなる等の問題がある。また、溶融による場合、繊維の交点のみを加熱溶融させることは困難であり、通常の加熱処理を行うと、繊維同士が溶け合って結合し易く、無機繊維が太くなって熱伝導を高める問題や、無機繊維層が硬くなって、割れ、欠けが生じ易くなり、硬い破損物を生じる問題がある。 In addition, as a method not using an organic binder or an inorganic binder, there is a method (for example, Patent Documents 7 to 9) in which inorganic fibers are bound together by a melting or dissolving component of the inorganic fiber itself. Melting or dissolution causes a decrease in strength of the inorganic fiber, and there is a problem that the fiber is easily broken. In addition, in the case of melting, it is difficult to heat and melt only the intersections of the fibers, and when performing a normal heat treatment, the fibers are easily melted together and bonded, the inorganic fibers become thicker and heat conduction is increased, There is a problem that the inorganic fiber layer becomes hard and is liable to be cracked or chipped, resulting in a hard breakage.
尚、無機バインダーで無機繊維の交点を結着して厚さヘタリを防止する方法において、無機繊維の接着部が熱架橋として作用し熱伝導が良くなる問題や、無機繊維層が硬くなり割れや欠けを生じ易くなる問題に対して、無機バインダーを無機繊維層の一部分のみに付着させるかあるいは無機バインダーの付着量の少ない部分を設けるようにする方法も提案されている(例えば、特許文献10〜11)。 In addition, in the method of binding the intersections of inorganic fibers with an inorganic binder and preventing the settling of the thickness, there is a problem that the bonded portion of the inorganic fibers acts as thermal cross-linking and heat conduction is improved, and the inorganic fiber layer becomes hard and cracks. In order to solve the problem that chipping is likely to occur, a method has been proposed in which an inorganic binder is attached to only a part of the inorganic fiber layer or a part with a small amount of inorganic binder is provided (for example, Patent Documents 10 to 10). 11).
前述した通り、無機繊維層を芯材とする真空断熱材においては、組立性、厚さ均一性、減圧密閉後の形状保持性等の観点から、前記無機繊維層は、ボード状、マット状、シート状等の成形体にて構成する必要があり、したがって、成形体をなす無機繊維層としては、ニードリング法のように繊維配列を壊すような特殊な成形方法を除外すれば(繊維が断熱材の伝熱方向に配向するようになるため本発明の思想ともまったく合致しない)、繊維同士が接合した構造をなすことが重要となるが、有機物をバインダーとして導入する方法はガス発生を伴うため不適であり、無機繊維層は実質的に無機物のみで構成することが必要となるが、一般的な無機酸化物ゾルのような無機バインダーを導入する方法は無機繊維同士が完全接着し熱架橋作用により熱伝導が増して断熱性能が低下するとともに無機繊維層が硬くなり割れや欠けを生じ易くなるため好ましくなく、無機繊維自身の溶融または溶解成分により無機繊維同士を結着する方法は無機繊維の強度低下を伴うため好ましくない。 As described above, in the vacuum heat insulating material having the inorganic fiber layer as a core material, from the viewpoint of assembling property, thickness uniformity, shape retention after vacuum sealing, etc., the inorganic fiber layer has a board shape, a mat shape, Therefore, the inorganic fiber layer that forms the molded body must be formed by excluding a special molding method that breaks the fiber array, such as the needling method (the fiber is insulated). It is important to have a structure in which the fibers are joined to each other because it is oriented in the heat transfer direction of the material), but the method of introducing an organic substance as a binder involves gas generation. It is not suitable, and the inorganic fiber layer needs to be composed essentially of inorganic substances. However, the method of introducing an inorganic binder such as a general inorganic oxide sol is a method of completely cross-linking inorganic fibers and heat-crosslinking action. By It is not preferable because heat conduction increases and heat insulation performance deteriorates, and the inorganic fiber layer becomes hard and easily cracks and chipped. This is not preferable, and the method of bonding inorganic fibers with the melted or dissolved components of the inorganic fiber itself is the strength of the inorganic fiber. This is not preferable because it involves a decrease.
一方、無機繊維層からなる真空断熱材芯材の減圧密閉加工後の略大気圧下(約1kg/cm2加圧下)での厚さヘタリの改善程度で見てみると、無機繊維自身の溶融または溶解成分により無機繊維同士を結着する方法である例えば特許文献7の方法では、30〜40%の厚さヘタリを示す。これは、中性条件で抄造した場合の厚さヘタリ50〜70%よりは改善されているが、近年の厚みを薄くして高性能な断熱性を求める需要に対応するには更なる改善が必要となっている。 On the other hand, if we look at the improvement in thickness sag under approximately atmospheric pressure (approx. 1 kg / cm 2 pressurization) after vacuum sealing of the vacuum heat insulating material core composed of an inorganic fiber layer, melting of the inorganic fiber itself Or the method of patent document 7, which is a method of binding inorganic fibers with a dissolved component, shows a thickness of 30 to 40%. This is an improvement over the 50% to 70% thickness when paper is made under neutral conditions. However, there is a further improvement to meet the demand for high performance insulation by reducing the thickness in recent years. It is necessary.
そこで、本発明は、前記従来の問題点に鑑み、平均繊維径4μm以下の無機繊維を構成主体とする不織性の無機繊維層を芯材として用いてなる真空断熱材において、前記無機繊維層からなる芯材が、無機バインダーで無機繊維同士を結着する実質的に無機物のみの構成でありながら、良好な柔軟性、可撓性を維持し、表裏間の熱伝導の良化による断熱性能の低下を抑えつつ、耐圧性に優れ、長期にわたって優れた断熱性能を維持し得る真空断熱材を提供することを目的とする。 Therefore, in view of the above-described conventional problems, the present invention provides a vacuum heat insulating material using a non-woven inorganic fiber layer mainly composed of inorganic fibers having an average fiber diameter of 4 μm or less as a core material. The core material consisting of is composed of only inorganic material that binds inorganic fibers with an inorganic binder, while maintaining good flexibility and flexibility, and heat insulation performance by improving heat conduction between the front and back It aims at providing the vacuum heat insulating material which is excellent in pressure resistance, and can maintain the heat insulation performance excellent over the long term, suppressing the fall of this.
本発明の真空断熱材は、前記目的を達成するべく、請求項1に記載の通り、平均繊維径4μm以下の無機繊維を主体構成とした無機繊維層からなる芯材をガスバリア性の外被材で梱包し内部を減圧し密閉してなる真空断熱材において、前記芯材が、前記無機繊維層の表裏面の少なくとも一方の面の表面部の前記無機繊維同士が膨潤性層状粘土鉱物からなる無機バインダーで結着され実質的に無機物のみから構成されたものであることを特徴とする。 In order to achieve the above object, the vacuum heat insulating material according to the present invention is a gas barrier jacket material comprising a core material composed of an inorganic fiber layer mainly composed of inorganic fibers having an average fiber diameter of 4 μm or less. In the vacuum heat insulating material formed by packing and depressurizing the inside and sealing, the core material is an inorganic material in which the inorganic fibers in the surface portion of at least one surface of the inorganic fiber layer are made of a swellable layered clay mineral. It is characterized by being composed of only an inorganic substance bound by a binder.
また、本発明の真空断熱材は、前記目的を達成するべく、請求項2に記載の通り、平均繊維径4μm以下の無機繊維を主体構成とした不織性の無機繊維層からなる芯材をガスバリア性の外被材で梱包し内部を減圧し密閉してなる真空断熱材において、前記芯材が、前記無機繊維層の表裏面の少なくとも一方の面に自己造膜性を有する膨潤性層状粘土鉱物からなる通気性被膜が形成され実質的に無機物のみから構成されたものであることを特徴とする。
また、請求項3記載の真空断熱材は、請求項1または2記載の真空断熱材において、前記無機繊維層が前記無機繊維を主体とした不織布シートからなることを特徴とする。
また、請求項4記載の真空断熱材は、請求項3記載の真空断熱材において、前記無機繊維層が前記無機繊維を主体とした湿式抄造シートからなることを特徴とする。
また、請求項5記載の真空断熱材は、請求項1〜4の何れか1項に記載の真空断熱材において、前記無機繊維層が平均繊維径1.5μm以下の無機繊維を主体構成とすることを特徴とする。
また、請求項6記載の真空断熱材は、請求項1〜5の何れか1項に記載の真空断熱材において、前記無機繊維層が実質的に前記無機繊維と前記膨潤性層状粘土鉱物のみから構成されることを特徴とする。
また、請求項7記載の真空断熱材は、請求項1〜6の何れか1項に記載の真空断熱材において、前記膨潤性層状粘土鉱物がスメクタイト族であることを特徴とする。
In order to achieve the above object, the vacuum heat insulating material of the present invention is a core material comprising a non-woven inorganic fiber layer mainly composed of inorganic fibers having an average fiber diameter of 4 μm or less as described in claim 2. In a vacuum heat insulating material which is packed with a gas barrier outer covering material and is depressurized and hermetically sealed, the core material is a swellable layered clay having self-forming properties on at least one of the front and back surfaces of the inorganic fiber layer An air-permeable coating made of mineral is formed, and is substantially composed only of an inorganic material.
The vacuum heat insulating material according to claim 3 is the vacuum heat insulating material according to claim 1 or 2, characterized in that the inorganic fiber layer is composed of a nonwoven fabric sheet mainly composed of the inorganic fibers.
According to a fourth aspect of the present invention, there is provided the vacuum heat insulating material according to the third aspect, wherein the inorganic fiber layer is a wet papermaking sheet mainly composed of the inorganic fibers.
The vacuum heat insulating material according to claim 5 is the vacuum heat insulating material according to any one of claims 1 to 4, wherein the inorganic fiber layer is mainly composed of inorganic fibers having an average fiber diameter of 1.5 μm or less. It is characterized by that.
The vacuum heat insulating material according to claim 6 is the vacuum heat insulating material according to any one of claims 1 to 5, wherein the inorganic fiber layer is substantially composed only of the inorganic fiber and the swellable layered clay mineral. It is characterized by being configured.
The vacuum heat insulating material according to claim 7 is the vacuum heat insulating material according to any one of claims 1 to 6, wherein the swellable lamellar clay mineral is a smectite group.
本発明によれば、平均繊維径4μm以下の無機繊維を構成主体とする不織性の無機繊維層を芯材として用いてなる真空断熱材において、前記無機繊維層からなる芯材は、実質的に無機物のみで構成されており、耐熱性が高いとともに、真空度低下や断熱性能低下をもたらすガス発生がなく、また、無機繊維層の表裏面の少なくとも一方の面の表面部の前記無機繊維同士が膨潤性層状粘土鉱物からなる無機バインダーで結着されており、無機繊維同士が無機バインダーによる結着構造を有しているにも拘わらず、無機繊維層は硬く脆くならず柔軟性を維持しているので、割れ・欠けの発生やバリによる外被材への損傷を防止し得るとともに、曲面設置用途にも対応でき適用範囲を広くでき、無機繊維層を抄造シート等にて構成する場合にシート原反をロール巻きすることができ、また、無機バインダーによって形成される被膜は通気性を有するため、減圧排気時間の長時間化を防止することができ、更に、耐圧性が大幅に改善されるので、減圧密閉後の厚さヘタリを極力防止し長期にわたって優れた断熱性能を維持し得る真空断熱材を提供することができる。 According to the present invention, in the vacuum heat insulating material using a non-woven inorganic fiber layer mainly composed of inorganic fibers having an average fiber diameter of 4 μm or less as a core material, the core material made of the inorganic fiber layer is substantially Is composed of only inorganic substances, has high heat resistance, does not generate gas that causes lowering of vacuum degree or heat insulation performance, and the inorganic fibers on the surface portion of at least one of the front and back surfaces of the inorganic fiber layer Are bonded with an inorganic binder made of a swellable layered clay mineral, and the inorganic fiber layer maintains its flexibility without being hard and brittle, even though the inorganic fibers have a bonded structure with the inorganic binder. Therefore, it is possible to prevent cracks and chipping and damage to the jacket material due to burrs, and it can also be used for curved surface installation and widen the application range, and when the inorganic fiber layer is made of paper sheet etc. Sheet Since the film formed by the inorganic binder has air permeability, it is possible to prevent prolonged decompression exhaust time, and furthermore, the pressure resistance is greatly improved. Further, it is possible to provide a vacuum heat insulating material that can prevent the thickness settling after vacuum sealing as much as possible and maintain excellent heat insulating performance over a long period of time.
また、前記無機繊維層からなる芯材は、無機繊維層の表裏面の少なくとも一方の面に自己造膜性を有する膨潤性層状粘土鉱物からなるミクロン単位の厚さの通気性被膜が形成されており、大気圧(約1kg/cm2)程度の加圧では潰れにくい優れた耐圧性を発揮するので、減圧密閉後の厚さヘタリが大幅に改善され、長期にわたって厚さを維持して断熱性能を維持し、製品寿命の長い住宅、建築の用途分野にも適用可能となる。 Further, the core material made of the inorganic fiber layer has a micron thickness breathable film made of a swellable layered clay mineral having self-forming properties on at least one of the front and back surfaces of the inorganic fiber layer. In addition, since it exhibits excellent pressure resistance that is not easily crushed by pressurization at atmospheric pressure (about 1 kg / cm 2 ), the thickness set after sealing under reduced pressure is greatly improved, and the insulation performance is maintained by maintaining the thickness over a long period of time. It can be applied to fields of residential and architectural applications that have a long product life.
本発明の真空断熱材芯材は、平均繊維径4μm以下の無機繊維を主体構成とした不織性の無機繊維層からなり、無機繊維層の表裏面の少なくとも一方の面の表面部の無機繊維同士が膨潤性層状粘土鉱物からなる無機バインダーで結着され実質的に無機物のみから構成されるようにしたものである。また、前記真空断熱材芯材は、前記無機繊維層の表裏面の少なくとも一方の面に自己造膜性を有する膨潤性層状粘土鉱物からなる通気性被膜が形成され実質的に無機物のみから構成されたものであってもよい。無機繊維層の表面部の無機繊維同士が自己造膜性を有する膨潤性層状粘土鉱物からなる無機バインダーで結着されるとともに、無機繊維層の表面に膨潤性層状粘土鉱物からなるミクロンレベルの厚さの被膜が形成された構成であるので、厚さ方向にかかる加圧力をシート全面で受けるため、優れた耐圧性を示す。この意味からは、真空断熱材芯材の耐圧性を追求するには、上記構成において、無機繊維層の表裏面の両面の表面部の無機繊維同士が膨潤性層状粘土鉱物からなる無機バインダーで結着されること、あるいは、無機繊維層の表裏面の両面に自己造膜性を有する膨潤性層状粘土鉱物からなる通気性被膜が形成されることが好ましい。 The vacuum heat insulating material core of the present invention comprises a non-woven inorganic fiber layer mainly composed of inorganic fibers having an average fiber diameter of 4 μm or less, and the inorganic fibers on the surface portion of at least one of the front and back surfaces of the inorganic fiber layer They are bound together by an inorganic binder made of a swellable layered clay mineral and are substantially composed of only an inorganic substance. Further, the vacuum heat insulating material core material is substantially composed only of an inorganic material in which a breathable film made of a swellable layered clay mineral having self-forming properties is formed on at least one of the front and back surfaces of the inorganic fiber layer. It may be. The inorganic fibers on the surface of the inorganic fiber layer are bound together with an inorganic binder made of a swellable layered clay mineral having self-forming properties, and the surface of the inorganic fiber layer has a micron level thickness made of a swellable layered clay mineral. Therefore, the pressure applied in the thickness direction is applied to the entire surface of the sheet, so that excellent pressure resistance is exhibited. In this sense, in order to pursue the pressure resistance of the vacuum heat insulating material core material, in the above configuration, the inorganic fibers on the front and back surfaces of the inorganic fiber layer are bonded with an inorganic binder made of a swellable layered clay mineral. It is preferable that a breathable film made of a swellable layered clay mineral having self-forming properties is formed on both the front and back surfaces of the inorganic fiber layer.
前記無機繊維を主体構成とした無機物のみからなる無機繊維層は、前記無機繊維、前記膨潤性層状粘土鉱物の他に、用途や目的に応じて、無機粉体等の副材料を混入させることが可能であるが、本発明の目的を追求する意味からは、前記無機繊維と前記膨潤性層状粘土鉱物のみで構成するようにするのが好ましい。 The inorganic fiber layer consisting only of the inorganic substance mainly composed of the inorganic fiber may be mixed with an auxiliary material such as inorganic powder in addition to the inorganic fiber and the swellable layered clay mineral depending on the purpose and purpose. Although it is possible, from the viewpoint of pursuing the object of the present invention, it is preferable that the inorganic fiber and the swellable layered clay mineral are used alone.
前記無機繊維層は、平均繊維径4μm以下の無機繊維を主体構成としてなるものである。ここで、「平均繊維径4μm以下の無機繊維を主体構成とする」とは、前記無機繊維層を構成する無機繊維材料として、平均繊維径4μm以下の無機繊維材料のみからなる場合のほか、平均繊維径4μm以下の無機繊維材料と平均繊維径4μm超えの無機繊維材料が混成される場合(但し、無機繊維層全体で平均繊維径は4μm以下となる場合)も含むものである。 The inorganic fiber layer is mainly composed of inorganic fibers having an average fiber diameter of 4 μm or less. Here, “mainly composed of inorganic fibers having an average fiber diameter of 4 μm or less” means that the inorganic fiber material constituting the inorganic fiber layer is composed only of inorganic fiber materials having an average fiber diameter of 4 μm or less, This includes the case where an inorganic fiber material having a fiber diameter of 4 μm or less and an inorganic fiber material having an average fiber diameter exceeding 4 μm are mixed (provided that the average fiber diameter of the entire inorganic fiber layer is 4 μm or less).
前記無機繊維層は、平均繊維径1.5μm以下の無機繊維を主体構成としてなることがより好ましい。不織性の無機繊維層からなる芯材の場合、無機繊維が細ければ細いほど、繊維同士の接合点面積が減少し、熱移動経路が複雑となり、断熱性能は向上するので、この観点からは、前記無機繊維層の無機繊維の平均繊維径は1.5μm以下であることが好ましく、更には1μm以下がより好ましい。また、前記無機繊維層の無機繊維の平均繊維径を1.5μm以下、更には1μm以下とした場合は、特に前記無機繊維層を不織布シートや湿式抄造シートから構成する場合に、無機繊維同士の絡み合いが増えシート強度が増すとともに、シートの厚さ均一性が増し断熱性能の均一性を向上させることができる。また、前記無機繊維の平均繊維径は、0.2μm以上であることが好ましい。平均繊維径が0.2μm未満であると、前記無機繊維層を湿式抄造シートから構成する場合、湿式抄造によるシート化自体は可能であるが、濾水性が悪いため製造コストが高くなり、工業製品として実用に適さないという不都合がある。 More preferably, the inorganic fiber layer is mainly composed of inorganic fibers having an average fiber diameter of 1.5 μm or less. In the case of a core material composed of a non-woven inorganic fiber layer, the thinner the inorganic fibers, the smaller the joint area between the fibers, the more complicated the heat transfer path, and the better the heat insulation performance. The average fiber diameter of the inorganic fibers in the inorganic fiber layer is preferably 1.5 μm or less, and more preferably 1 μm or less. Moreover, when the average fiber diameter of the inorganic fibers of the inorganic fiber layer is 1.5 μm or less, and further 1 μm or less, particularly when the inorganic fiber layer is composed of a nonwoven fabric sheet or a wet papermaking sheet, As the entanglement increases and the sheet strength increases, the thickness uniformity of the sheet increases and the uniformity of the heat insulating performance can be improved. Moreover, it is preferable that the average fiber diameter of the said inorganic fiber is 0.2 micrometer or more. When the average fiber diameter is less than 0.2 μm, when the inorganic fiber layer is composed of a wet papermaking sheet, it is possible to form a sheet by wet papermaking, but the manufacturing cost increases due to poor drainage, resulting in an industrial product. As a disadvantage, it is not suitable for practical use.
前記不織性の無機繊維層は、前記無機繊維を主体とした湿式抄造シートからなることが好ましい。不織性の無機繊維層の形態としては、前記無機繊維を不織シート化したもの、更に該シートを複数枚積層したもの、シート化せずウール状無機繊維を単に集綿積層したもの等が挙げられるが、前記無機繊維を主体とした湿式抄造シートとした場合には、芯材の厚さ均一性を高められるので、真空断熱材の表面平滑性が高められるとともに、断熱特性の均一性を高められる。湿式抄造シートからなる無機繊維層は、ウール状無機繊維を集綿積層し圧縮して得た無機繊維層よりも、厚さと密度の精度に優れ、安定した品質とすることができる。また、湿式抄造シートの1枚当たりの厚さを薄くし複数枚積層するように構成した場合は、芯材の水平方向(シートの積層方向に対して垂直方向)への無機繊維の配列度合いが高くなり、芯材の表裏方向での熱伝導に対して水平方向に整列されたガラス繊維が熱伝導を阻害して、真空断熱材の断熱性能が向上する。 The non-woven inorganic fiber layer is preferably composed of a wet papermaking sheet mainly composed of the inorganic fibers. Non-woven inorganic fiber layer forms include non-woven sheets of the inorganic fibers, a laminate of a plurality of the sheets, a simple collection of wool-like inorganic fibers without forming a sheet, and the like. In the case of the wet papermaking sheet mainly composed of the inorganic fibers, the thickness uniformity of the core material can be increased, so that the surface smoothness of the vacuum heat insulating material can be improved and the uniformity of the heat insulating properties can be improved. Enhanced. An inorganic fiber layer made of a wet papermaking sheet is superior to an inorganic fiber layer obtained by collecting and compressing wool-like inorganic fibers and compressing them, and can be made to have a stable quality. Moreover, when the thickness per sheet of wet papermaking sheets is made thin and laminated, the degree of arrangement of inorganic fibers in the horizontal direction of the core material (perpendicular to the stacking direction of the sheets) is It becomes high, and the glass fibers aligned in the horizontal direction with respect to the heat conduction in the front and back direction of the core material inhibit the heat conduction, and the heat insulation performance of the vacuum heat insulating material is improved.
前記無機繊維としては、ガラス繊維、アルミナ繊維、シリカ繊維、セラミック繊維、スラグウール繊維、ロックウール繊維等を使用できるが、繊維径の細い無機繊維を容易に入手できる点で、ガラス繊維が好ましい。ガラス繊維は他の無機繊維に比べ、溶融温度が低く微細繊維化が容易である。前記微細ガラス繊維は、例えば、耐酸性のCガラスを、約1100℃で溶融、紡糸後、バーナの火炎でエネルギーを与え、吹き飛ばして得られた平均繊維径が0.2〜4μmのウール状ガラス繊維が好ましい。 As the inorganic fiber, glass fiber, alumina fiber, silica fiber, ceramic fiber, slag wool fiber, rock wool fiber, and the like can be used, and glass fiber is preferable because inorganic fibers having a small fiber diameter can be easily obtained. Glass fibers have a lower melting temperature and can be easily made into fine fibers than other inorganic fibers. The fine glass fiber is, for example, a wooly glass having an average fiber diameter of 0.2 to 4 μm obtained by melting and spinning acid-resistant C glass at about 1100 ° C., applying energy with a flame of a burner, and blowing it off. Fiber is preferred.
本発明の膨潤性層状粘土鉱物は、無機物であり、溶媒に溶かす等して湿潤状態で使用し乾燥させることで、自己造膜性を有し、無機バインダーとして機能するものである。特に、スメクタイト族(鉱物名ではサポナイト、ヘクトライト、ソーマナイト、モンモリロナイト、バイデライト、ノントロナイト等)の膨潤性層状粘土鉱物は、ナノサイズの鱗片状構造であり、これが層状に重なることで乾燥すると硬く強度のある膜形状を呈する。ただし、膨潤性層状粘土鉱物はそれ単体では、クラックを生じるため完全な膜を得ることは難しい。しかし、本発明の平均繊維径4μm以下の無機繊維を主体構成とする不織性の無機繊維層となる例えば無機繊維不織布シートに塗工あるいは含浸処理を行うと、無機繊維間の距離が4μm以下と小さいため、無機繊維間に容易に膜形成させることができる。 The swellable layered clay mineral of the present invention is an inorganic substance, and has a self-forming property and functions as an inorganic binder by being dissolved in a solvent and used in a wet state and dried. In particular, the swellable layered clay mineral of the smectite group (mineral names such as saponite, hectorite, saumanite, montmorillonite, beidellite, nontronite) is a nano-sized scaly structure, and when this layer is layered and dried It exhibits a hard and strong film shape. However, since the swellable layered clay mineral alone causes cracks, it is difficult to obtain a complete film. However, when, for example, an inorganic fiber nonwoven fabric sheet, which is a non-woven inorganic fiber layer mainly composed of inorganic fibers having an average fiber diameter of 4 μm or less according to the present invention, is coated or impregnated, the distance between the inorganic fibers is 4 μm or less. Therefore, a film can be easily formed between inorganic fibers.
自己造膜性を有する膨潤性層状粘土鉱物は、チクソトロピー性が高く、わずか1重量%水溶液でも4000〜8000mPa・sの粘度(B型粘度計で測定)を保つため、本発明の平均繊維径4μm以下の無機繊維を主体構成とする不織性の無機繊維層となる例えば無機繊維不織布シートの表面にコートすれば、不織布シートの内部に膨潤性層状粘土鉱物が浸入しないので、乾燥させると、不織布シート表面にミクロン単位の厚さの被膜を容易に形成できる。 The swellable layered clay mineral having self-forming properties has high thixotropy and maintains a viscosity of 4000 to 8000 mPa · s (measured with a B-type viscometer) even in an aqueous solution of only 1% by weight. Therefore, the average fiber diameter of the present invention is 4 μm. For example, if the surface of an inorganic fiber nonwoven fabric sheet that becomes a non-woven inorganic fiber layer mainly composed of the following inorganic fibers is coated, the swellable lamellar clay mineral does not enter the interior of the nonwoven fabric sheet. A coating having a thickness of micron can be easily formed on the sheet surface.
前記膨潤性層状粘土鉱物は、水に分散させると数nmの鱗片状に膨潤分散し、この水溶液を乾燥させると鱗片状に粘土が重なった、柔軟性を備えた膜を容易に得ることができ、目的とする無機繊維層の表面のみに、柔軟性を備えたミクロン厚さの無機物からなる耐圧膜を得ることができる。またこの膜は、黒鉛グラファイトと同じく鱗片状であるため、滑りが良好で、外被材に芯材を挿入するのが容易となる利点もある。更に、製造上では、本発明の無機繊維層となる例えば無機繊維不織布シートに対して、膨潤性層状粘土鉱物の水溶液を塗工あるいは含浸処理して、その後乾燥させるだけでよいので、設備費用も少なくて済む利点がある。尚、スメクタイト系膨潤性層状粘土鉱物の耐熱温度は700℃である。 When the swellable layered clay mineral is dispersed in water, it swells and disperses in a scale of several nanometers, and when this aqueous solution is dried, a flexible film in which the clay is overlapped in a scale form can be easily obtained. A pressure-resistant film made of an inorganic substance having a thickness of micron and having flexibility can be obtained only on the surface of the target inorganic fiber layer. Further, since this film is scaly like graphite graphite, there is an advantage that slipping is good and it is easy to insert the core material into the jacket material. Furthermore, in manufacturing, for example, the inorganic fiber nonwoven fabric sheet that becomes the inorganic fiber layer of the present invention may be applied or impregnated with an aqueous solution of a swellable layered clay mineral, and then dried, so that the equipment cost is also reduced. There is an advantage that it can be reduced. The heat resistant temperature of the smectite-based swellable layered clay mineral is 700 ° C.
前記膨潤性層状粘土鉱物は、天然物、合成物のどちらでも使用できる。天然物の場合、非常に安価であるが、鉄分等の不純物を含み、色相では灰色等を呈するため、金属不純物を嫌う用途には不向きである。合成物の場合は、色相は通常無色透明であり、不純物を含まない利点があるが、天然物に比べ20倍以上高価である。 The swellable layered clay mineral can be used as a natural product or a synthetic product. In the case of a natural product, although it is very inexpensive, it contains impurities such as iron and has a hue such as gray, so it is not suitable for applications that dislike metal impurities. In the case of a synthetic product, the hue is usually colorless and transparent, and has the advantage of not containing impurities, but is 20 times more expensive than a natural product.
尚、従来の一般的な無機バインダーとして酸化物ゾルが知られているが、積層して自己造膜する性質はなく、無機繊維の交点を強固に結着固定するため、酸化物ゾルを処理した無機繊維不織布シートは柔軟性がなくなり硬く脆いシートとなり、外被材を傷つける異物発生の原因となることが考えられる。また、無機繊維の交点を強固に結着固定するので、この部分を通しての熱伝導が良くなり、断熱性能を阻害する。また、従来の鱗片状の無機バインダーとして天然雲母や合成雲母が知られているが、平均粒径3μm以下のものが得られずサイズが大きいため、バインダーとしての接着力は得にくい。 Oxide sol is known as a conventional general inorganic binder, but it has no property of being laminated and self-forming, and the oxide sol was treated in order to firmly bind and fix the intersection of inorganic fibers. It is considered that the inorganic fiber nonwoven fabric sheet loses flexibility and becomes a hard and brittle sheet, which may cause generation of foreign substances that damage the outer cover material. In addition, since the intersection of the inorganic fibers is firmly bound and fixed, the heat conduction through this portion is improved and the heat insulation performance is hindered. Further, natural mica and synthetic mica are known as conventional scaly inorganic binders, but those having an average particle diameter of 3 μm or less cannot be obtained, and the size is large, so that it is difficult to obtain adhesive strength as a binder.
本発明の真空断熱材芯材は、前記無機繊維層の表裏面の少なくとも一方の面を前記膨潤性層状粘土鉱物の付着面とした無機繊維層からなるものであり、該無機繊維層としては無機繊維を主体とした無機繊維不織布シートを単層または積層して構成することが好ましい。無機繊維層の具体例としては、無機繊維層を1枚の無機繊維不織布シートからなる単層構造の無機繊維層から構成する場合は、1枚の無機繊維不織布シートの表裏面の少なくとも一方の面を膨潤性層状粘土鉱物の付着面とすればよく、無機繊維層を複数枚の無機繊維不織布シートからなる複数層構造の無機繊維層から構成する場合は、複数枚の無機繊維不織布シートのうち少なくとも1枚の無機繊維不織布シートの表裏面の少なくとも一方の面を膨潤性層状粘土鉱物の付着面とし、無機繊維層の表裏面の少なくとも一方の面が膨潤性層状粘土鉱物の付着面となるようにそれらを積層すればよく、単層、複数層、何れの場合も、結果として、無機繊維層の表裏面の少なくとも一方の面が膨潤性層状粘土鉱物の付着面となるように構成されればよい。 The vacuum heat insulating material core of the present invention comprises an inorganic fiber layer in which at least one surface of the front and back surfaces of the inorganic fiber layer is an adhesion surface of the swellable layered clay mineral, and the inorganic fiber layer is inorganic. It is preferable that the inorganic fiber nonwoven fabric sheet mainly composed of fibers is formed as a single layer or laminated. As a specific example of the inorganic fiber layer, when the inorganic fiber layer is composed of an inorganic fiber layer having a single layer structure composed of one inorganic fiber nonwoven fabric sheet, at least one surface of the front and back surfaces of one inorganic fiber nonwoven fabric sheet May be an adhesion surface of the swellable layered clay mineral, and when the inorganic fiber layer is composed of an inorganic fiber layer having a multilayer structure composed of a plurality of inorganic fiber nonwoven fabric sheets, at least of the plurality of inorganic fiber nonwoven fabric sheets At least one surface of the front and back surfaces of one inorganic fiber nonwoven fabric sheet is used as a surface for attaching the swellable layered clay mineral, and at least one surface of the front and back surfaces of the inorganic fiber layer is used as a surface for attaching the swellable layered clay mineral. They may be laminated, and in any case, single layer or multiple layers, as a result, at least one surface of the front and back surfaces of the inorganic fiber layer may be configured to be an adhesion surface of the swellable layered clay mineral. .
次に、本発明の真空断熱材の具体的な製造方法について、その一例を用いて説明する。
(1)無機繊維、例えば所定量の微細ガラス繊維を、ミキサー、パルパー等の分離機により水中で均一に分散・混合して、抄紙種を得、タンクに貯蔵する。
(2)タンクから連続的に抄紙種を円網、長網または傾斜式抄紙機に供給して湿式抄造し、乾燥して、所定厚みの無機繊維抄紙シートの原反シートを得る。
(3)原反シートを、所定サイズに裁断して、無機繊維不織布シートを得る。
(4)スメクタイト族膨潤性層状粘土鉱物を規定濃度になるよう計量する。
(5)水(水道水でよい)およびスメクタイト族膨潤性層状粘土鉱物を撹拌機(ホモジナイザー)に投入し、5分間撹拌して均一に分散させ、チクソトロピー性の膨潤性層状粘土鉱物溶液を得る。
(6)膨潤性層状粘土鉱物溶液をスプレー、ロールコータ、ドクターコータ等の塗工法、もしくは、浸漬槽等を用いる含浸法により、(3)で得られた無機繊維不織布シートの表面に規定量付着させる。ただし、本発明において膨潤性層状粘土鉱物の付着部を設ける意味は耐圧性を高める薄い補強膜を形成することが主目的であることから、少なくとも表面部分に付着させられる方法であれば構わない。
(7)一般的な乾燥機(循環熱風乾燥炉等)で乾燥し、膨潤性層状粘土鉱物の付着面を設けた無機繊維不織布シートを得る。
(8)(1)〜(7)で得られた無機繊維不織布シートAと、必要に応じて(1)〜(3)で得られた他の無機繊維不織布シート(シート表裏面への膨潤性層状粘土鉱物の付着面の設定は任意)B,C・・・を積層するようにして、単層あるいは複数層で構成され表裏面の少なくとも一方の面を膨潤性層状粘土鉱物の付着面とした無機繊維層を作製し、真空断熱材芯材とする。
(9)前記真空断熱材芯材の吸着微量水分を蒸発除去するため熱風乾燥機で加熱処理(180℃,5時間)後、水分の再吸着を防ぎながら、直ちに袋状のガスバリア性外被材に挿入し、真空引き(5.32Pa,10分)を行い、融着密封して真空断熱材を得る。
Next, a specific method for producing the vacuum heat insulating material of the present invention will be described using an example thereof.
(1) An inorganic fiber, for example, a predetermined amount of fine glass fiber is uniformly dispersed and mixed in water by a separator such as a mixer or a pulper to obtain a papermaking type and stored in a tank.
(2) A paper sheet is continuously supplied from a tank to a circular net, a long net or an inclined paper machine, wet-made, and dried to obtain an inorganic fiber paper-making sheet having a predetermined thickness.
(3) The raw fabric sheet is cut into a predetermined size to obtain an inorganic fiber nonwoven fabric sheet.
(4) Weigh smectite group swellable layered clay mineral to a specified concentration.
(5) Water (which may be tap water) and smectite group swellable layered clay mineral are put into a stirrer (homogenizer) and stirred for 5 minutes to uniformly disperse to obtain a thixotropic swellable layered clay mineral solution.
(6) A prescribed amount of the swellable layered clay mineral solution is adhered to the surface of the inorganic fiber nonwoven fabric sheet obtained in (3) by a coating method such as spray, roll coater, doctor coater or the like, or an impregnation method using a dipping tank or the like. Let However, in the present invention, the meaning of providing the adhering portion of the swellable lamellar clay mineral is to form a thin reinforcing film that enhances pressure resistance, and any method can be used as long as it is attached to at least the surface portion.
(7) Dry with a general dryer (circulating hot air drying furnace or the like) to obtain an inorganic fiber nonwoven fabric sheet provided with an adherent surface of the swellable layered clay mineral.
(8) Inorganic fiber nonwoven fabric sheet A obtained in (1) to (7) and, if necessary, other inorganic fiber nonwoven fabric sheets obtained in (1) to (3) (swellability to the front and back surfaces of the sheet) The setting of the adhesion surface of the layered clay mineral is optional) B, C... Are laminated so that at least one of the front and back surfaces is the adhesion surface of the swellable layered clay mineral. An inorganic fiber layer is produced and used as a vacuum heat insulating material core.
(9) After the heat treatment (180 ° C., 5 hours) with a hot air drier to evaporate and remove the adsorbed trace moisture of the vacuum heat insulating material core material, the bag-like gas barrier covering material is immediately prevented while preventing re-adsorption of moisture. And vacuum evacuation (5.32 Pa, 10 minutes), and fusion-sealed to obtain a vacuum heat insulating material.
尚、上記した本発明の真空断熱材の具体的製法例において、加熱乾燥方法およびその温度や時間については、特に制限をするものではなく、また、真空引きの程度についても、特に制限はないが、10.64Pa以下程度とすることができる。また、ガスバリア性外被材としては、その内部を真空状態に保つことができるものであれば特に制限はなく、一例としては、アルミニウム箔とポリエステル、ポリエチレン等のフィルムからなる多層ラミネートフィルムを挙げることができる。 In the above-described specific production example of the vacuum heat insulating material of the present invention, the heat drying method and its temperature and time are not particularly limited, and the degree of vacuuming is not particularly limited. It can be about 10.64 Pa or less. In addition, the gas barrier covering material is not particularly limited as long as the inside can be kept in a vacuum state, and examples thereof include a multilayer laminate film made of a film of aluminum foil and polyester, polyethylene or the like. Can do.
以上のように、本発明の真空断熱材芯材をなす無機繊維層においては、本発明の無機繊維層の表裏面の片面あるいは両面を、本発明の膨潤性層状粘土鉱物の付着面とすることで、該付着面(表面部)において、膨潤性層状粘土鉱物のバインダー機能により無機繊維同士の結着を行い、また膨潤性層状粘土鉱物の自己造膜機能により付着面全体に被膜を形成する。該被膜は、ナノサイズの鱗片状物が無数に層状に重なり合ってできる被膜のため構造が非常に緻密であり、数μm程度(通常5μm以下)の薄膜であって高強度の膜であるが柔軟性があり、また通気性も有している。よって、無機繊維層の表裏面の片面あるいは両面で無機繊維が結着されるとともに高強度の被膜が形成されることで、無機繊維層の耐圧性を著しく向上させ、また、無機繊維層の膨潤性層状粘土鉱物の付着面が柔軟性を維持しているので、割れや欠けを生じにくく原反のロール巻きも可能とし、また、無機繊維層の膨潤性層状粘土鉱物の付着面が通気性を維持しているので、減圧排気時間の長時間化を防止できる。また、本発明において、無機繊維層に膨潤性層状粘土鉱物の付着部を設ける主目的は、無機繊維層の耐圧性改善であり、上記した膨潤性層状粘土鉱物の特長により、無機繊維層の表裏面の少なくとも一面を付着部とすればその目的は達成できるため、無機繊維層全体の中で膨潤性層状粘土鉱物の付着部とすべきは表裏の表面部のみ(しかも厚さ数μmのみ)となっている。つまり、本発明の無機繊維層の考え方においては、耐圧性向上という主目的があるために、本来無機繊維のみからなる無機繊維層に、敢えて、付着材料(膨潤性層状粘土鉱物)を導入するようにしているが、付着材料を導入することの弊害(真空断熱材芯材としての基本的機能・性能の阻害要因となるものも含まれる)も当然ある。その意味において、本発明の無機繊維層においては、主目的達成のために、無機繊維層全体の中で膨潤性層状粘土鉱物の付着部とすべきは表裏の表面部のみ(しかも厚さ数μmのみ。後述する実施例2の例では、厚さ3000μm×2枚のガラス繊維不織布シートに対してスメクタイト粘土被膜が厚さ4μm×2層であり、膨潤性層状粘土鉱物の付着部は無機繊維層全体の約0.13%)であることから、主目的達成の影響で受ける弊害を、ほんの最小限に抑えることができるという点で、発明の効果は非常に大きい。つまり、本発明の無機繊維層全体の中で膨潤性層状粘土鉱物の付着部とすべきは表裏の表面部の厚さ数μmのみ(無機繊維層の0.13%程度)であり、内層部や付着面とならない他面の表面部(無機繊維層の99.87%程度)は膨潤性層状粘土鉱物の付着がない本来の柔軟性を維持できていることから、無機繊維層全体でも高い柔軟性を維持しており、割れや欠けを生じにくく、曲面設置用途にも対応可能にでき、また、内層部や付着面とならない他面の表面部(無機繊維層の99.87%程度)は膨潤性層状粘土鉱物の付着がなく無機繊維同士が結着していないことから、無機繊維層の表裏間の熱移動距離を短くし断熱性能を低下させる熱架橋作用を抑えることができる。 As described above, in the inorganic fiber layer forming the vacuum heat insulating material core of the present invention, one or both surfaces of the front and back surfaces of the inorganic fiber layer of the present invention are used as the adhesion surface of the swellable layered clay mineral of the present invention. Then, on the adhesion surface (surface portion), the inorganic fibers are bound to each other by the binder function of the swellable layered clay mineral, and a film is formed on the entire adhesion surface by the self-forming function of the swellable layered clay mineral. The film is a film formed by innumerable layers of nano-sized scaly layers, and has a very dense structure. It is a thin film of about several μm (usually 5 μm or less) and a high-strength film, but flexible. In addition, it has air permeability. Therefore, the inorganic fibers are bound on one or both sides of the front and back surfaces of the inorganic fiber layer and a high-strength film is formed, thereby significantly improving the pressure resistance of the inorganic fiber layer and the swelling of the inorganic fiber layer. Since the adhesion surface of the porous layered clay mineral maintains flexibility, it is possible to roll the original fabric with less cracking and chipping, and the adhesion surface of the swellable layered clay mineral in the inorganic fiber layer has air permeability. Since it is maintained, it is possible to prevent the decompression exhaust time from being prolonged. In the present invention, the main purpose of providing the adhesion portion of the swellable layered clay mineral on the inorganic fiber layer is to improve the pressure resistance of the inorganic fiber layer. Since the purpose can be achieved if at least one side of the back surface is an adhesion part, only the front and back surface parts (and only a thickness of several μm) should be the adhesion part of the swellable layered clay mineral in the entire inorganic fiber layer. It has become. That is, in the idea of the inorganic fiber layer of the present invention, since there is a main purpose of improving pressure resistance, an adhesive material (swelling layered clay mineral) is intentionally introduced into the inorganic fiber layer that is originally composed of only inorganic fibers. However, there are naturally harmful effects of introducing the adhering material (including those that hinder the basic function and performance of the vacuum heat insulating material core). In that sense, in the inorganic fiber layer of the present invention, in order to achieve the main object, only the front and back surface portions (thickness of several μm) should be the adhesion portion of the swellable layered clay mineral in the entire inorganic fiber layer. In the example of Example 2 described later, a smectite clay coating is 4 μm × 2 layers on a 3000 μm thick glass fiber nonwoven fabric sheet, and the adhering part of the swellable layered clay mineral is an inorganic fiber layer. Therefore, the effect of the invention is very great in that the adverse effects of achieving the main objective can be minimized. That is, in the entire inorganic fiber layer of the present invention, the adhesion portion of the swellable layered clay mineral is only a few μm in thickness on the front and back surface portions (about 0.13% of the inorganic fiber layer), and the inner layer portion The surface part of the other surface that does not become the adhesion surface (about 99.87% of the inorganic fiber layer) maintains the original flexibility without adhesion of the swellable layered clay mineral, so the entire inorganic fiber layer is also highly flexible The surface part of the other side which does not become the inner layer part or the adhesion surface (about 99.87% of the inorganic fiber layer) Since there is no adhesion of the swellable layered clay mineral and the inorganic fibers are not bound to each other, it is possible to shorten the heat transfer distance between the front and back surfaces of the inorganic fiber layer and suppress the thermal cross-linking action that reduces the heat insulation performance.
次に、本発明の実施例について、比較例および従来例とともに詳細に説明する。
(実施例1)
平均繊維径1.0μmのCガラス組成のウール状ガラス繊維100重量%を水中で分散・混合後、通常の抄紙機にて湿式抄造し、105℃で乾燥して、厚さ3.0mm、坪量420g/m2のガラス繊維抄紙シートを得た。
次に、自己造膜性およびバインダー機能を有する膨潤性層状粘土鉱物として合成スメクタイト粘土(コープケミカル社製 ルーセンタイトSWN)を10g採取し、ステンレス槽に投入し、水990gを加えて、ホモジナイザー(シルバーソン社製 L4R)を用いて5分間撹拌して均一分散させ、チクソトロピー性を備えた濃度1重量%の粘土水溶液を得た。
次に、前記ガラス繊維抄紙シートを400mm×400mmのサイズに裁断したシート(重量67.2g)の表裏面の一方の面に、前記粘土水溶液134g(固形分1.3g)をナイフコータで均一に塗布し、105℃の熱風乾燥機で乾燥させ、表裏面の一方の表面のみに合成スメクタイト粘土の付着面が形成され該表面部のガラス繊維同士が合成スメクタイト粘土で結着固定され該表面に合成スメクタイト粘土の通気性被膜が形成されたガラス繊維不織布シート(合成スメクタイト粘土の付着量2重量%)を得た。
次に、前記片面のみに合成スメクタイト粘土の付着面が形成されたガラス繊維不織布シート2枚を、該付着面が表裏面となるように積層し、実施例1の真空断熱材芯材とした。
次に、乾燥した前記芯材を袋状のガスバリア性外被材に挿入し、真空引きを行い融着密封して真空断熱材を得、加圧時の厚さおよび断熱特性を測定した。結果を表1に示す。
Next, examples of the present invention will be described in detail together with comparative examples and conventional examples.
Example 1
100% by weight of C-glass composition wool fiber glass having an average fiber diameter of 1.0 μm is dispersed and mixed in water, then wet-made with a normal paper machine, dried at 105 ° C., and has a thickness of 3.0 mm. A glass fiber papermaking sheet having an amount of 420 g / m 2 was obtained.
Next, 10 g of synthetic smectite clay (Lucentite SWN manufactured by Co-op Chemical Co., Ltd.) is collected as a swellable layered clay mineral having self-forming properties and a binder function. L4R manufactured by Son Co., Ltd.) was stirred and dispersed uniformly for 5 minutes to obtain a clay aqueous solution having a concentration of 1% by weight with thixotropic properties.
Next, 134 g (solid content 1.3 g) of the clay aqueous solution is uniformly applied with a knife coater to one surface of the front and back surfaces of a sheet (weight 67.2 g) obtained by cutting the glass fiber paper sheet into a size of 400 mm × 400 mm. Then, it is dried with a hot air dryer at 105 ° C., and an adhesion surface of the synthetic smectite clay is formed only on one surface of the front and back surfaces, and the glass fibers on the surface portion are bound and fixed with the synthetic smectite clay, and the synthetic smectite is fixed on the surface. A glass fiber nonwoven fabric sheet (amount of 2% by weight of synthetic smectite clay) on which a breathable coating film of clay was formed was obtained.
Next, two glass fiber nonwoven fabric sheets on which the synthetic smectite clay adhering surface was formed only on one side were laminated so that the adhering surface would be the front and back surfaces, and the vacuum heat insulating material core material of Example 1 was obtained.
Next, the dried core material was inserted into a bag-shaped gas barrier jacket material, vacuumed and fused and sealed to obtain a vacuum heat insulating material, and the thickness and heat insulating characteristics during pressurization were measured. The results are shown in Table 1.
(実施例2)
実施例1と同様にして、厚さ3.0mm、坪量420g/m2のガラス繊維抄紙シートを得るとともに、実施例1と同様の手順で、濃度2重量%の粘土水溶液を得た。
次に、前記ガラス繊維抄紙シートを400mm×400mmのサイズに裁断したシート(重量67.2g)の表裏面の一方の面に、前記粘土水溶液134g(固形分2.6g)をナイフコータで均一に塗布し、105℃の熱風乾燥機で乾燥させ、実施例1と同様な片面にのみ合成スメクタイト粘土の付着面が形成され繊維結着と被膜形成(約4μm厚さ)がなされたガラス繊維不織布シート(合成スメクタイト粘土の付着量4重量%)を得た。
次に、このガラス繊維不織布シート2枚を、粘土付着面が表裏面となるように積層し、実施例2の真空断熱材芯材とした。
次に、乾燥した前記芯材を袋状のガスバリア性外被材に挿入し、真空引きを行い融着密封して真空断熱材を得、加圧時の厚さおよび断熱特性を測定した。結果を表1に示す。また、上記ガラス繊維不織布シートの微細構造を走査型電子顕微鏡(SEM)により観察した。結果を図1〜2に示す。
(Example 2)
A glass fiber papermaking sheet having a thickness of 3.0 mm and a basis weight of 420 g / m 2 was obtained in the same manner as in Example 1, and a clay aqueous solution having a concentration of 2% by weight was obtained in the same procedure as in Example 1.
Next, 134 g (solid content 2.6 g) of the clay aqueous solution is uniformly applied with a knife coater to one side of the front and back surfaces of a sheet (weight 67.2 g) obtained by cutting the glass fiber paper sheet into a size of 400 mm × 400 mm. And dried with a hot air dryer at 105 ° C., and a glass fiber nonwoven fabric sheet having a synthetic smectite clay adhering surface formed on only one surface as in Example 1 to form fiber binding and film formation (about 4 μm thickness) A synthetic smectite clay adhesion amount of 4% by weight) was obtained.
Next, these two glass fiber nonwoven fabric sheets were laminated so that the clay adhering surfaces were the front and back surfaces, and the vacuum heat insulating material core material of Example 2 was obtained.
Next, the dried core material was inserted into a bag-shaped gas barrier jacket material, vacuumed and fused and sealed to obtain a vacuum heat insulating material, and the thickness and heat insulating characteristics during pressurization were measured. The results are shown in Table 1. Moreover, the fine structure of the said glass fiber nonwoven fabric sheet was observed with the scanning electron microscope (SEM). The results are shown in FIGS.
(実施例3)
実施例1と同様にして、厚さ3.0mm、坪量420g/m2のガラス繊維抄紙シートを得るとともに、実施例1と同様の手順で、濃度4重量%の粘土水溶液を得た。
次に、前記ガラス繊維抄紙シートを400mm×400mmのサイズに裁断したシート(重量67.2g)の表裏面の一方の面に、前記粘土水溶液134g(固形分5.2g)をナイフコータで均一に塗布し、105℃の熱風乾燥機で乾燥させ、実施例1と同様な片面にのみ合成スメクタイト粘土の付着面が形成され繊維結着と被膜形成がなされたガラス繊維不織布シート(合成スメクタイト粘土の付着量8重量%)を得た。
次に、このガラス繊維不織布シート2枚を、粘土付着面が表裏面となるように積層し、実施例3の真空断熱材芯材とした。
次に、乾燥した前記芯材を袋状のガスバリア性外被材に挿入し、真空引きを行い融着密封して真空断熱材を得、加圧時の厚さおよび断熱特性を測定した。結果を表1に示す。
(Example 3)
A glass fiber papermaking sheet having a thickness of 3.0 mm and a basis weight of 420 g / m 2 was obtained in the same manner as in Example 1, and a clay aqueous solution having a concentration of 4% by weight was obtained in the same procedure as in Example 1.
Next, 134 g (solid content: 5.2 g) of the clay aqueous solution is uniformly applied with a knife coater to one surface of the front and back surfaces of a sheet (weight: 67.2 g) obtained by cutting the glass fiber paper sheet into a size of 400 mm × 400 mm. And dried with a hot air dryer at 105 ° C., and a synthetic smectite clay adhering surface is formed only on one side as in Example 1 to form a fiber binding and film formation (adhesion amount of synthetic smectite clay) 8% by weight) was obtained.
Next, these two glass fiber nonwoven fabric sheets were laminated so that the clay adhering surfaces were the front and back surfaces, and the vacuum heat insulating material core material of Example 3 was obtained.
Next, the dried core material was inserted into a bag-shaped gas barrier jacket material, vacuumed and fused and sealed to obtain a vacuum heat insulating material, and the thickness and heat insulating characteristics during pressurization were measured. The results are shown in Table 1.
(比較例1)
平均繊維径3.5μmのウール状ガラス繊維の原綿を600g採取して、できるだけガラス繊維が均一になるように1m2の積層シートとし、密度が0.20g/cm3となるように金属熱板間に挟んで200℃、2時間で加熱成形して、約3mm厚さの不織性ガラス繊維シートを得た。
次に、前記シートを400mm×400mmのサイズに裁断した2枚を、より平滑な面が外側になるように積層し、比較例1の真空断熱材芯材とした。
次に、乾燥した前記芯材を袋状のガスバリア性外被材に挿入し、真空引きを行い融着密封して真空断熱材を得、加圧時の厚さおよび断熱特性を測定した。結果を表1に示す。
尚、上記積層シートは、ウール状ガラス繊維の原綿を採取してできるだけガラス繊維が均一になるようにして作製しているが、不定形のウール状ガラス繊維から直接、均一なシート状に加工するのには限界があり、シート厚さの均一性は、上記実施例1〜3や後述の従来例のような抄紙法によるシートよりも劣る。
(Comparative Example 1)
600 g of wool glass fiber raw cotton having an average fiber diameter of 3.5 μm is sampled to form a 1 m 2 laminated sheet so that the glass fibers are as uniform as possible, and a metal hot plate so that the density is 0.20 g / cm 3. It was sandwiched between and heated at 200 ° C. for 2 hours to obtain a nonwoven glass fiber sheet having a thickness of about 3 mm.
Next, two sheets obtained by cutting the sheet into a size of 400 mm × 400 mm were laminated so that the smoother surface was on the outside, and the vacuum heat insulating material core material of Comparative Example 1 was obtained.
Next, the dried core material was inserted into a bag-shaped gas barrier jacket material, vacuumed and fused and sealed to obtain a vacuum heat insulating material, and the thickness and heat insulating characteristics during pressurization were measured. The results are shown in Table 1.
In addition, although the said laminated sheet is produced so that the raw fiber of wool-like glass fiber may be extract | collected and glass fiber may become as uniform as possible, it processes directly into a uniform sheet form from an irregular-shaped wool-like glass fiber. The sheet thickness uniformity is inferior to that of the sheet made by the paper making method as in Examples 1 to 3 and the conventional examples described later.
(比較例2)
実施例1と同様にして、厚さ3.0mm、坪量420g/m2のガラス繊維抄紙シートを得た。
次に、無機バインダーとしてコロイダルシリカ(日産化学工業社製 スノーテックスO)を用意し、実施例1と同様の手順で、濃度2重量%のシリカゲル水溶液を得た。
次に、前記ガラス繊維抄紙シートを400mm×400mmのサイズに裁断したシート(重量67.2g)の表裏面の一方の面に、前記シリカゲル水溶液134g(固形分2.6g)をナイフコータで均一に塗布し、105℃の熱風乾燥機で乾燥させ、片面にのみシリカゲルの付着面が形成されたガラス繊維不織布シート(シリカゲルの付着量4重量%)を得た。
次に、このガラス繊維不織布シート2枚を、シリカゲル付着面が表裏面となるように積層し、比較例2の真空断熱材芯材とした。
次に、乾燥した前記芯材を袋状のガスバリア性外被材に挿入し、真空引きを行い融着密封して真空断熱材を得、加圧時の厚さおよび断熱特性を測定した。結果を表1に示す。また、上記ガラス繊維不織布シートの微細構造を走査型電子顕微鏡(SEM)により観察した。結果を図4に示す。
(Comparative Example 2)
In the same manner as in Example 1, a glass fiber papermaking sheet having a thickness of 3.0 mm and a basis weight of 420 g / m 2 was obtained.
Next, colloidal silica (Snowtex O, manufactured by Nissan Chemical Industries, Ltd.) was prepared as an inorganic binder, and an aqueous silica gel solution having a concentration of 2% by weight was obtained in the same procedure as in Example 1.
Next, 134 g (solid content 2.6 g) of the silica gel aqueous solution is uniformly applied with a knife coater to one side of the front and back surfaces of a sheet (weight 67.2 g) obtained by cutting the glass fiber paper sheet into a size of 400 mm × 400 mm. And dried with a hot air dryer at 105 ° C. to obtain a glass fiber nonwoven fabric sheet (silica gel adhesion amount of 4% by weight) having a silica gel adhesion surface formed on only one surface.
Next, the two glass fiber nonwoven fabric sheets were laminated so that the silica gel adhering surfaces were the front and back surfaces, and the vacuum heat insulating material core material of Comparative Example 2 was obtained.
Next, the dried core material was inserted into a bag-shaped gas barrier jacket material, vacuumed and fused and sealed to obtain a vacuum heat insulating material, and the thickness and heat insulating characteristics during pressurization were measured. The results are shown in Table 1. Moreover, the fine structure of the said glass fiber nonwoven fabric sheet was observed with the scanning electron microscope (SEM). The results are shown in FIG.
(従来例)
実施例1と同様にして得た厚さ3.0mm、坪量420g/m2のガラス繊維抄紙シートを400mm×400mmのサイズに裁断したシート(重量67.2g)2枚を積層し、従来例の真空断熱材芯材とした。
次に、乾燥した前記芯材を袋状のガスバリア性外被材に挿入し、真空引きを行い融着密封して真空断熱材を得、加圧時の厚さおよび断熱特性を測定した。結果を表1に示す。また、上記ガラス繊維抄紙シートの微細構造を走査型電子顕微鏡(SEM)により観察した。結果を図3に示す。
(Conventional example)
Two sheets (weight: 67.2 g) obtained by cutting a glass fiber paper sheet having a thickness of 3.0 mm and a basis weight of 420 g / m 2 obtained in the same manner as in Example 1 into a size of 400 mm × 400 mm were laminated, and a conventional example. It was set as the vacuum heat insulating material core material.
Next, the dried core material was inserted into a bag-shaped gas barrier jacket material, vacuumed and fused and sealed to obtain a vacuum heat insulating material, and the thickness and heat insulating characteristics during pressurization were measured. The results are shown in Table 1. The microstructure of the glass fiber papermaking sheet was observed with a scanning electron microscope (SEM). The results are shown in FIG.
表1および図1〜4の結果から以下のことが分かった。尚、図5は、各例の芯材を0.2〜3.0kg/cm2で加圧して測定した加圧時厚さの結果を示すグラフ(但し、縦軸の厚さは、0.2kg/cm2加圧時の厚さを100%とした相対厚さ)である。
(1)本発明の実施例1〜3の真空断熱材では、無機繊維層からなる芯材として、無機繊維層の表裏両面をスメクタイト粘土2〜8重量%付着面としたものであるが、表面部のガラス繊維がスメクタイト粘土により固定されるとともに付着面全体に高強度の被膜(補強膜)が形成されたことにより、0.2〜3.0kg/cm2加圧下での厚さ減少(厚さヘタリ)が、従来例や比較例1〜2に比べ大幅に改善されている。例えば、大気圧相当の1.0kg/cm2加圧の場合、0.2kg/cm2加圧厚さ(本発明における無機繊維不織布シートの「厚さ」の基準)からの厚さ減少率は、3.8〜9.6%と僅かであり、付着材料を使用しなかった従来例の30.1%、太いガラス原綿を積層し加熱成形した比較例1の15.2%、付着材料をシリカゲルとした比較例2の27.9%と比べても、大幅に改善されている。従って、長期にわたる加圧等の構造的な変形に対して本発明の真空断熱材を適用すると性能を維持できる可能性が高い。
(2)実施例1〜3の真空断熱材では、無機繊維層からなる芯材として、耐圧性向上を主目的に無機繊維層に繊維結着と被膜形成を与える付着材料を2〜8重量%導入したが、初期の熱伝導率(表1の大気圧下の熱伝導率)は、付着材料を導入しなかった従来例からまたく悪化しておらず、熱伝導率が低く抑えられ、断熱性能が高い。
(3)より過剰な変形を想定して、2.0kg/cm2、3.0kg/cm2の加圧下での熱伝導率を測定すると、実施例1〜3では、大気圧下(1.0kg/cm2)の熱伝導率に比べて、2.0kg/cm2加圧下で約0〜4%、3.0kg/cm2加圧下で約4〜16%と僅かな悪化に留まっており、付着材料を使用しなかった従来例の約20%、約40%、太いガラス原綿を積層し加熱成形した比較例1の約7%、約27%、付着材料をシリカゲルとした比較例2の約17%、約33%と比べても、大幅に改善されている。尚、比較例1では、ガラス繊維径が3.5μmと太いため、初期の熱伝導率(表1の大気圧下の熱伝導率)は、ガラス繊維径が0.7μmである従来例よりも約20%劣っていたが、厚さ減少率は、加熱成形時に加圧をかけて密度を0.20g/cm3と予め高くしているため約15%と少なかったことが影響し、2.0kg/cm2加圧下での熱伝導率は約7%と比較的僅かな悪化に留まったものと推定される。
(4)付着材料をシリカゲルとした比較例2では、無機バインダーがガラス繊維全体を覆っていると見られ全体的に硬くなったが、厚さ減少に関しては改善効果は見られない。また、ガラス繊維同士が強固に接着しているためか、初期の熱伝導率(表1の大気圧下の熱伝導率)は、付着材料を使用しなかった従来例よりも約20%悪化しており、前述したように、付着材料を使用したにも拘わらず付着材料を使用しなかった従来例からまったく悪化の見られなかった実施例1〜3の結果と対照的である。
(5)実施例2のガラス繊維不織布シートを観察した図1を見ると、ガラス繊維不織布シートの表面にスメクタイト粘土層が数μmの厚さで表面全体を覆っているのが確認される。シート内部にはスメクタイト粘土は見られず、スメクタイト粘土はシート表面のガラス繊維のみ固めており、シート内部は抄紙シート本来の柔軟な構造を維持しており、ある程度の外圧に対しては、形は壊れずに抵抗できるものと推定される。自然界や工業材料では、軽量で高強度の骨やハニカム構造体に類似している。何故このような構造となるかについては、ガラス繊維不織布シート(多孔質シート)の場合、一般的なバインダー溶液を付着させると多孔質シート表面の開口から容易に浸透するが、スメクタイト粘土溶液はチクソトロピー性を持つ高粘度溶液であるため、本発明の繊維径が細くて開口の小さい不織布シートにスメクタイト粘土溶液を付着させた場合は内部に浸透できず、シート表面のみに膜状に付着するだけとなるためである。図1のスメクタイト粘土付着部を拡大して観察した図2を見ると、スメクタイト粘土被膜は、僅か4μmの厚さであるが、ナノサイズの何百層もの緻密な粘土層からなっており、ガラス繊維不織布シート表面にしっかりとした被膜が形成されているとともにシート表面のガラス繊維をしっかりと固定していることが確認できる。
(6)従来例のガラス繊維抄紙シートを観察した図3を見ると、付着材料はまったく使用しておらず、ガラス繊維同士の摩擦によってのみ構造を保っているに過ぎないため、真空断熱材芯材として減圧密閉加工すると約30%の厚さ減少を生じ、近年の厚みを薄くして高性能な断熱性を求める需要に対応できるだけの性能を発揮することは難しい。
(7)比較例2のガラス繊維不織布シートを観察した図4を見ると、シート表面に付着させた無機バインダーがシート内部に浸透している状態が確認でき、実施例のようなシート表面の被膜は確認できない。
From the results shown in Table 1 and FIGS. In addition, FIG. 5 is a graph showing the result of the thickness under pressure measured by pressing the core material of each example at 0.2 to 3.0 kg / cm 2 (however, the thickness of the vertical axis is 0.00. 2 kg / cm 2 relative thickness with 100% thickness at the time of pressurization).
(1) In the vacuum heat insulating materials of Examples 1 to 3 of the present invention, the front and back surfaces of the inorganic fiber layer are smectite clay 2 to 8 wt% adhering surfaces as the core material composed of the inorganic fiber layer. Part of the glass fiber is fixed with smectite clay and a high-strength film (reinforcing film) is formed on the entire adhering surface, thereby reducing the thickness under a pressure of 0.2 to 3.0 kg / cm 2 (thickness). Is significantly improved as compared with the conventional example and Comparative Examples 1 and 2. For example, when the atmospheric pressure equivalent 1.0 kg / cm 2 pressure, 0.2 kg / cm 2 pressure圧厚Thickness reduction rate from the (reference the "thickness" of the inorganic fiber nonwoven fabric sheet of the present invention) 3.8 to 9.6%, 30.1% of the conventional example that did not use the adhering material, 15.2% of Comparative Example 1 in which thick glass raw cotton was laminated and thermoformed, and the adhering material was Compared to 27.9% of Comparative Example 2 in which silica gel was used, it was greatly improved. Therefore, when the vacuum heat insulating material of the present invention is applied to structural deformation such as pressurization over a long period of time, it is highly possible that the performance can be maintained.
(2) In the vacuum heat insulating materials of Examples 1 to 3, 2 to 8% by weight of an adhesion material that gives fiber binding and film formation to the inorganic fiber layer as a core material composed of the inorganic fiber layer mainly for the purpose of improving pressure resistance. Although introduced, the initial thermal conductivity (thermal conductivity under atmospheric pressure in Table 1) has not deteriorated over the conventional example in which no adhering material was introduced, and the thermal conductivity is kept low, and the heat insulation High performance.
(3) Assuming more excessive deformation, the thermal conductivity under pressure of 2.0 kg / cm 2 and 3.0 kg / cm 2 is measured. 0 kg / cm 2 ) about 0-4% under pressure of 2.0 kg / cm 2 and about 4-16% under pressure of 3.0 kg / cm 2. About 20% and about 40% of the conventional example in which no adhering material was used, about 7% and about 27% of Comparative Example 1 in which thick glass raw cotton was laminated and heat-molded, and Comparative Example 2 in which the adhering material was silica gel Compared to about 17% and about 33%, it is greatly improved. In Comparative Example 1, since the glass fiber diameter is as thick as 3.5 μm, the initial thermal conductivity (thermal conductivity under atmospheric pressure in Table 1) is higher than that of the conventional example in which the glass fiber diameter is 0.7 μm. Although it was inferior by about 20%, the thickness reduction rate was affected by the fact that the density was reduced to about 15% because the density was previously increased to 0.20 g / cm 3 by applying pressure during heat molding. It is estimated that the thermal conductivity under a pressure of 0 kg / cm 2 is only about 7%, which is a relatively slight deterioration.
(4) In Comparative Example 2 in which the adhering material was silica gel, the inorganic binder was seen to cover the entire glass fiber and became generally hard, but no improvement effect was seen with respect to thickness reduction. Moreover, because the glass fibers are firmly bonded to each other, the initial thermal conductivity (thermal conductivity under atmospheric pressure in Table 1) is about 20% worse than that of the conventional example in which no adhesive material is used. As described above, this is in contrast to the results of Examples 1 to 3 in which no deterioration was observed from the conventional example in which the adhesion material was not used even though the adhesion material was used.
(5) When FIG. 1 which observed the glass fiber nonwoven fabric sheet of Example 2 is seen, it is confirmed that the smectite clay layer covers the whole surface by the thickness of several micrometers on the surface of a glass fiber nonwoven fabric sheet. No smectite clay is seen inside the sheet, and the smectite clay is solidified only on the glass fiber on the surface of the sheet, and the inside of the sheet maintains the original flexible structure of the papermaking sheet. It is estimated that it can resist without breaking. In nature and industrial materials, it is similar to lightweight and high strength bone and honeycomb structures. As for the reason why such a structure is formed, in the case of a glass fiber nonwoven sheet (porous sheet), when a general binder solution is attached, it easily penetrates from the opening on the surface of the porous sheet, but the smectite clay solution is thixotropic. Therefore, when the smectite clay solution is attached to a nonwoven fabric sheet having a small fiber diameter and a small opening according to the present invention, it cannot penetrate inside, and only adheres in a film form only to the sheet surface. It is to become. FIG. 2 is an enlarged view of the smectite clay adhering portion in FIG. 1. The smectite clay coating is only 4 μm thick, but it consists of hundreds of nano-sized dense clay layers, It can be confirmed that a firm coating is formed on the fiber nonwoven fabric sheet surface and the glass fibers on the sheet surface are firmly fixed.
(6) When FIG. 3 which observed the glass fiber papermaking sheet | seat of the prior art example is seen, since the adhering material is not used at all and the structure is only maintained by the friction between glass fibers, a vacuum heat insulating material core When the material is sealed under reduced pressure as a material, the thickness is reduced by about 30%, and it is difficult to reduce the thickness in recent years and exhibit the performance sufficient to meet the demand for high performance heat insulation.
(7) When FIG. 4 which observed the glass fiber nonwoven fabric sheet of the comparative example 2 is seen, the state which the inorganic binder adhering to the sheet | seat surface has osmose | permeated the inside of a sheet | seat can be confirmed, and the film | membrane of the sheet | seat surface like an Example Cannot be confirmed.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008055469A JP2009210072A (en) | 2008-03-05 | 2008-03-05 | Vacuum heat insulating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008055469A JP2009210072A (en) | 2008-03-05 | 2008-03-05 | Vacuum heat insulating material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009210072A true JP2009210072A (en) | 2009-09-17 |
Family
ID=41183422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008055469A Withdrawn JP2009210072A (en) | 2008-03-05 | 2008-03-05 | Vacuum heat insulating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009210072A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102162567A (en) * | 2010-02-24 | 2011-08-24 | 东芝家电技术股份有限公司 | Heat-insulating material |
JP2012063007A (en) * | 2010-08-18 | 2012-03-29 | Imae Kogyo Kk | Cylindrical heat insulating material and thermal device using the same |
JP2012159144A (en) * | 2011-02-01 | 2012-08-23 | Toshiba Home Technology Corp | Vacuum thermal insulating material and holder using the same |
JP2012214956A (en) * | 2012-03-06 | 2012-11-08 | Nichias Corp | Method for producing bio-dissolvable inorganic fiber |
JP2013508652A (en) * | 2010-01-05 | 2013-03-07 | エルジー・ハウシス・リミテッド | Vacuum insulation panel and method of manufacturing the same |
JP2013067940A (en) * | 2012-12-11 | 2013-04-18 | Nichias Corp | Method for producing biosoluble inorganic fiber |
JP2014202303A (en) * | 2013-04-05 | 2014-10-27 | 富士電機株式会社 | Vacuum insulating material and insulating container |
JP2015045098A (en) * | 2013-08-27 | 2015-03-12 | 日本バイリーン株式会社 | Structure and method for producing structure |
JPWO2014030651A1 (en) * | 2012-08-23 | 2016-07-28 | 旭硝子株式会社 | Vacuum insulation material manufacturing method and vacuum insulation material |
-
2008
- 2008-03-05 JP JP2008055469A patent/JP2009210072A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013508652A (en) * | 2010-01-05 | 2013-03-07 | エルジー・ハウシス・リミテッド | Vacuum insulation panel and method of manufacturing the same |
US8663773B2 (en) | 2010-01-05 | 2014-03-04 | Lg Hausys, Ltd. | Vacuum insulation panel and method for manufacturing the same |
CN102162567A (en) * | 2010-02-24 | 2011-08-24 | 东芝家电技术股份有限公司 | Heat-insulating material |
JP2012063007A (en) * | 2010-08-18 | 2012-03-29 | Imae Kogyo Kk | Cylindrical heat insulating material and thermal device using the same |
JP2012159144A (en) * | 2011-02-01 | 2012-08-23 | Toshiba Home Technology Corp | Vacuum thermal insulating material and holder using the same |
JP2012214956A (en) * | 2012-03-06 | 2012-11-08 | Nichias Corp | Method for producing bio-dissolvable inorganic fiber |
JPWO2014030651A1 (en) * | 2012-08-23 | 2016-07-28 | 旭硝子株式会社 | Vacuum insulation material manufacturing method and vacuum insulation material |
JP2013067940A (en) * | 2012-12-11 | 2013-04-18 | Nichias Corp | Method for producing biosoluble inorganic fiber |
JP2014202303A (en) * | 2013-04-05 | 2014-10-27 | 富士電機株式会社 | Vacuum insulating material and insulating container |
JP2015045098A (en) * | 2013-08-27 | 2015-03-12 | 日本バイリーン株式会社 | Structure and method for producing structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009210072A (en) | Vacuum heat insulating material | |
JP5549954B2 (en) | Low density nonwoven material useful for acoustic effect ceiling tile products | |
EP2350517B1 (en) | Flexible composite insulating product | |
KR101919121B1 (en) | Aerogel Composite and Preparation Method Thereof | |
CN101134678A (en) | High-temperature resistant composite material | |
JP2002333092A (en) | Fiber and fine particle composite heat-insulating material | |
TWI778006B (en) | Self-heating sheet-like material for absorbing and desorbing moisture, moisture absorbing and desorbing body, and moisture absorbing and desorbing device using the same | |
WO2012050035A1 (en) | Heat insulating material and method for producing heat insulating material | |
JP2010167685A (en) | Heat insulation sheet | |
TW201247592A (en) | Thermal insulating material and method for manufacturing the same | |
JP2018179010A (en) | Fireproof heat insulation sheet | |
JP2023164450A (en) | High temperature heat insulation material | |
DK2867012T3 (en) | INSULATION FOR ELECTRIC INSULATION IN THE HIGH VOLTAGE AREA | |
JP2005180594A (en) | Vacuum heat insulating material, refrigerator-freezer, and refrigeration machine | |
WO2015179221A1 (en) | Mineral composite vacuum insulation panel sheets | |
JP2008045239A (en) | Nonwoven fabric and method for producing nonwoven fabric | |
JP2006017169A (en) | Vacuum heat insulating material, core material for vacuum heat insulating material and its producing method | |
KR100965971B1 (en) | Vacuum heat insulation material | |
JP2023504272A (en) | Flame resistant materials for electric vehicle battery applications | |
JP6649117B2 (en) | Cellulosic member and laminate | |
WO2024106321A1 (en) | Flame-shielding heat-insulating laminate and flame-shielding heat-insulating structure using same | |
JP7533182B2 (en) | Method for producing sheet-shaped heat-resistant material and laminate | |
JPH10273625A (en) | Inorganic adhesive composition | |
KR101774078B1 (en) | Core material for vacuum insulation having organic synthetic fibers and vacuum insulation including the same | |
JP2003292347A (en) | Inorganic fiber layered body, method for manufacturing the same, and binder for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110510 |