JP2002333092A - Fiber and fine particle composite heat-insulating material - Google Patents

Fiber and fine particle composite heat-insulating material

Info

Publication number
JP2002333092A
JP2002333092A JP2001139085A JP2001139085A JP2002333092A JP 2002333092 A JP2002333092 A JP 2002333092A JP 2001139085 A JP2001139085 A JP 2001139085A JP 2001139085 A JP2001139085 A JP 2001139085A JP 2002333092 A JP2002333092 A JP 2002333092A
Authority
JP
Japan
Prior art keywords
fiber
heat insulating
insulating material
fine particles
particle composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001139085A
Other languages
Japanese (ja)
Inventor
Fuminobu Hirose
文信 廣瀬
Yoichi Ohara
洋一 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2001139085A priority Critical patent/JP2002333092A/en
Publication of JP2002333092A publication Critical patent/JP2002333092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems that conventional fibrous heat insulating materials are inferior in heat insulating performance, and excessively thickened in application, so that low heat conductivity is desired, on the other hand, a porous heat insulating material having high heat-insulating performance is inferior in productivity, handling and workability. SOLUTION: Fine particles are added and held in a space of a fibrous structural body formed by interlacing and/or adhering fiber, for example, bulky non-woven fabric having softness and rigidity, whereby the fiber and fine particle composite heat insulating material superior in heat-insulating property and workability can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、断熱性に優れ、施
工性に優れ、例えば建材用等に最適な繊維・微粒子複合
断熱材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber / fine particle composite heat insulating material which is excellent in heat insulation and workability and is most suitable for, for example, building materials.

【0002】[0002]

【従来の技術】従来、住宅用に使用されている繊維系断
熱材としてグラスウールがある。グラスウールは安価
で、クッション性に優れることから施工しやすいこと等
を理由に好んで使用されてきた。一方、近年問題となっ
ている地球温暖化を防止するため、省エネルギー化が世
界的な政策として進められているが、それに伴い住宅用
断熱材にも高度な断熱性能が要求されるようになってい
る。例えば、1999年3月に改正告示された「住宅に
係わるエネルギーの使用の合理化に関する建築主の判断
の基準」及び「同設計及び施工の指針」(通称「次世代
省エネルギー基準」)に適応させて、屋根または天井や
壁部位にグラスウールを使用する場合、断熱性能が劣る
(熱伝導率値で表すと0.034W/mKを超える)た
め、過大な厚みとなり収まりが悪く、施工が難しいとい
った問題がある。特に、次世代省エネルギー基準I地域
で壁部位に適用する場合には、断熱必要厚みが100mm
を超えた分厚いものとなってしまう。
2. Description of the Related Art Conventionally, glass wool is used as a fiber-based heat insulating material used for houses. Glass wool has been favorably used because it is inexpensive, has excellent cushioning properties, and is easy to construct. On the other hand, energy conservation has been promoted as a global policy in order to prevent global warming, which has been a problem in recent years. I have. For example, by adapting to the "Standards of Construction Owner's Judgment Regarding Rationalization of Energy Use Related to Houses" and "Guidelines for Design and Construction" (commonly called "Next-generation Energy Conservation Standards") issued in March 1999. However, when glass wool is used for the roof, ceiling, or wall, the insulation performance is poor (exceeding 0.034 W / mK in terms of thermal conductivity), resulting in excessive thickness, poor fit, and difficulty in construction. is there. In particular, when applying to wall parts in the next-generation energy conservation standard I area, the required heat insulation thickness is 100 mm.
It will be thicker than that.

【0003】また最近、繊維系の断熱材として特開20
00−96497に開示されるようなポリエステル樹脂
繊維と熱融着繊維とからなる吸音性繊維成形体が上市さ
れており、触り心地が良く、剛性、断熱性を備えるもの
がある。しかし、この繊維成形体も、断熱材としての性
能はグラスウール程度であるため、過大な厚みとなり施
工が困難である。
Recently, Japanese Patent Application Laid-Open No.
A sound-absorbing fiber molded article composed of a polyester resin fiber and a heat-sealing fiber as disclosed in JP-A-00-96497 has been put on the market, and there is one having good touch feeling, rigidity and heat insulation. However, since the performance of this fiber molded body as a heat insulating material is about glass wool, the thickness becomes excessively large, and it is difficult to perform the construction.

【0004】一方、高度な断熱性能を有する多孔質系断
熱材として、気体による伝導伝熱を抑制した真空断熱材
やエアロゲル断熱材、マイクロポーラス断熱材等があ
る。このうち、真空断熱材を建材用断熱材として使用す
る場合、僅かなピンホールが生じるだけで真空によって
発現されていた断熱効果が無くなるため、建築現場での
取扱や加工が困難であるといったことや、製造に真空工
程があり生産効率が悪い等の問題がある。また、エアロ
ゲル断熱材やマイクロポーラス断熱材は、微細な空隙か
らなるため真空でなくとも非常に優れた断熱性を示す
が、脆く取扱が困難である。その脆さや成形性、剛性、
断熱性を改善するため、例えば、エアロゲルに関する断
熱材として、特開平1−199095や特開平1−15
7473、特開平8−34678に記載されるようにハ
ニカム構造体と一体化する方法や、繊維を微量添加する
方法、不織布とゾルを一体化したりする方法が開示され
ている。
On the other hand, as porous heat insulating materials having a high heat insulating performance, there are a vacuum heat insulating material, an airgel heat insulating material, a microporous heat insulating material, etc., in which conduction heat transfer by gas is suppressed. Of these, when vacuum insulation is used as insulation for building materials, only a few pinholes are generated and the insulation effect exhibited by vacuum is lost, making it difficult to handle and process at construction sites. In addition, there is a problem in that the production involves a vacuum process and the production efficiency is poor. In addition, airgel heat insulating materials and microporous heat insulating materials exhibit very good heat insulating properties even without vacuum because they are made up of fine voids, but are brittle and difficult to handle. Its brittleness, formability, rigidity,
In order to improve the heat insulating property, for example, as a heat insulating material for aerogel, JP-A-1-199095 and JP-A-1-15
7473, a method of integrating with a honeycomb structure, a method of adding a small amount of fiber, and a method of integrating a non-woven fabric and a sol as described in JP-A-8-34678.

【0005】しかしながら、これらの方法であっても超
臨界乾燥工程が必要で生産性が悪く、しかも依然として
脆く取り扱いにくい問題が残る。一方、マイクロポーラ
ス断熱材としては、特開平9−217890に開示され
ている断熱パネルがある。この公報に開示される発明内
容は、通気性のある封体(例えば通気性の不織布)に微
粒子を詰めたものを圧縮成形し、微粒子を押し固めたも
のを主たる構造体として、断熱性や成形性や脆さを改善
させたという発明である。しかし、微粒子を押し固めた
ものを主たる構造体とするため、やはり脆く割れやすい
問題がある。
[0005] However, even these methods require a supercritical drying step, resulting in poor productivity, and still remain brittle and difficult to handle. On the other hand, as a microporous heat insulating material, there is a heat insulating panel disclosed in JP-A-9-217890. The content of the invention disclosed in this publication is based on the fact that a material in which fine particles are packed in a gas permeable sealing body (for example, a gas permeable non-woven fabric) is compression-molded, and the material obtained by compacting the fine particles is used as a main structure to provide heat insulation and molding. This is an invention that has improved properties and brittleness. However, since the main structure is formed by compacting fine particles, there is still a problem that the particles are brittle and easily broken.

【0006】[0006]

【発明が解決しようとする課題】このように、従来使用
されている繊維系の断熱材は断熱性能に劣り、施工時に
過大な厚みとなるため、低熱伝導率化が望まれ、一方、
高断熱性能を有する真空断熱材、エアロゲル断熱材、マ
イクロポーラス断熱材はその取扱や施工性が悪いという
前記した問題がある。
As described above, conventionally used fiber-based heat insulating materials are inferior in heat insulating performance and become excessively thick at the time of construction. Therefore, it is desired to reduce the thermal conductivity.
The vacuum heat insulating material, the airgel heat insulating material, and the microporous heat insulating material having high heat insulating performance have the above-mentioned problem that their handling and workability are poor.

【0007】本発明はかかる課題に関して行われたもの
であり、詳しくは、繊維構造体、例えば嵩高で、柔軟
性、強度に優れる不織布を主たる構造体とし、微粒子を
添加、包含させることにより、断熱性、施工性に優れ、
脆くて割れやすい欠点を解決し、更に容易に製造可能な
繊維・微粒子複合断熱材を提供することである。
The present invention has been made in view of the above-mentioned problems. More specifically, a fibrous structure, for example, a nonwoven fabric which is bulky, excellent in flexibility and strength, is mainly used as a main structure, and fine particles are added and included to provide heat insulation. Excellent workability and workability,
An object of the present invention is to provide a fiber / fine particle composite heat insulating material which can solve the disadvantages of being brittle and easily broken and can be easily manufactured.

【0008】[0008]

【発明が解決するための手段】本発明者らは、前記課題
の解決のため、鋭意研究の結果、本発明に至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention.

【0009】すなわち本発明は、(1)繊維を絡合およ
び/または接着させてなる嵩密度が0.01g/cm3
以上である繊維構造体100重量部の空間に対し、平均
粒子径1μm以下の微粒子1〜250重量部を、該繊維
構造体により保持させてなる繊維・微粒子複合断熱材に
関する。
That is, according to the present invention, (1) a fiber having a bulk density of 0.01 g / cm 3 formed by entanglement and / or adhesion of fibers;
The present invention relates to a fiber / particle composite heat insulating material in which 1 to 250 parts by weight of fine particles having an average particle diameter of 1 μm or less are held by the fiber structure in a space of 100 parts by weight of the fiber structure.

【0010】また、本発明は、(2)前記繊維構造体が
不織布である(1)記載の繊維・微粒子複合断熱材に関
する。
[0010] The present invention also relates to (2) the fiber / particle composite heat insulating material according to (1), wherein the fibrous structure is a nonwoven fabric.

【0011】また、本発明は、(3)前記微粒子が酸化
ケイ素、酸化チタン、カーボンブラック等の無機微粒子
および/またはポリ塩化ビニル樹脂微粒子、アクリル樹
脂微粒子等のポリマー微粒子から選ばれる1以上の微粒
子である(1)又は(2)記載の繊維・微粒子複合断熱
材に関する。
Further, the present invention provides (3) one or more fine particles selected from inorganic fine particles such as silicon oxide, titanium oxide and carbon black and / or polymer fine particles such as polyvinyl chloride resin fine particles and acrylic resin fine particles. (1) or (2).

【0012】[0012]

【発明の実施形態】以下、本発明の繊維・微粒子複合断
熱材について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The fiber / fine particle composite heat insulating material of the present invention will be described below.

【0013】本発明で用いられる繊維構造体は限定され
る物でなく、不織布や織布を使用できる。嵩高で立体的
な構造を得やすく、圧縮や曲げに対する立体的強度を得
やすいため、好ましくは不織布が使用される。使用され
る不織布は、カード法やエアレイ法等の公知技術によっ
て短繊維をウエブ化し、ニードルパンチ法により絡合し
たり、接着成分を混合し加熱成形したりする事により得
られる短繊維不織布や、スパンボンド法、メルトブロー
法、フラッシュ紡糸法等の方法により長繊維を直接不織
布化したものを使用することができる。
The fibrous structure used in the present invention is not limited, and a non-woven fabric or a woven fabric can be used. Since a bulky and three-dimensional structure is easily obtained and a three-dimensional strength against compression and bending is easily obtained, a nonwoven fabric is preferably used. The nonwoven fabric used is a short fiber nonwoven fabric obtained by forming short fibers into a web by a known technique such as a card method or an air lay method, entangled by a needle punch method, or by mixing and heating and forming an adhesive component. It is possible to use those obtained by directly converting long fibers into a nonwoven fabric by a method such as a spun bond method, a melt blow method, or a flash spinning method.

【0014】短繊維より不織布を作成する場合は、嵩密
度を調整しやすいように捲縮していることが好ましい。
捲縮していることによって、繊維同志が絡み合いやすく
なり、更に接着することでその絡み合いが強固になり、
嵩高さや適度な剛性を付与することが出来るようにな
る。圧縮に対する弾性が向上する点でも捲縮短繊維の使
用が好ましい。
When a non-woven fabric is prepared from short fibers, it is preferable that the non-woven fabric is crimped so that the bulk density can be easily adjusted.
By being crimped, the fibers become easily entangled with each other, and by further bonding, the entanglement becomes strong,
Bulkness and appropriate rigidity can be provided. The use of crimped short fibers is also preferred in that the elasticity against compression is improved.

【0015】本発明で使用される繊維の断面構造は、円
形断面、扁平断面、中空断面、多角断面、芯鞘断面の繊
維が使用でき、中でも、ミクロボイドを有する繊維や中
空、扁平、多角断面を有する異形断面繊維が嵩高で立体
的な構造を得やすく、また、伝熱における輻射伝熱を反
射する機会が多くなり、断熱性も若干向上されるので好
適に使用される。
The cross-sectional structure of the fiber used in the present invention may be a fiber having a circular cross section, a flat cross section, a hollow cross section, a polygonal cross section, or a core-sheath cross section. The fibers having a modified cross section are bulky and easy to obtain a three-dimensional structure, and the chance of reflecting radiant heat transfer in heat transfer is increased, and the heat insulating property is slightly improved.

【0016】本発明で使用される繊維の繊度は繊維構造
体を形成出来る範囲で有れば特に限定されないが、0.
2デニール〜50デニールが好ましく使用される。繊度
を繊維の平均径に換算する場合は、以下の式で行う。
The fineness of the fibers used in the present invention is not particularly limited as long as the fiber structure can be formed.
2 denier to 50 denier is preferably used. When converting the fineness into the average diameter of the fiber, the following formula is used.

【0017】 平均径(μm)=11.91×(d/ρ)1/2 (dは繊度、ρは比重) 本発明で用いられる繊維構造体の素材としては、ポリプ
ロピレンやポリエチレン等のポリオレフィン系樹脂、ポ
リエチレンテレフタレートやポリブチレンテレフタレー
トのようなポリエステル系樹脂、ポリアミド系樹脂、ポ
リ塩化ビニル樹脂、アクリル系樹脂、ポリウレタン樹脂
等、また、レーヨン等の半合成繊維や獣毛等の天然繊維
等を使用でき、およびこれらの共重合体等も使用するこ
とができる。これら有機繊維は必要に応じて難燃化処理
していても良い。また、使用する繊維は有機繊維に限定
されず、グラスファイバー、グラスウール、ロックファ
イバー、ロックウール、アルミナ繊維、炭素繊維等も使
用できる。無論、例示した以外の繊維も、不織布化可能
であるならば任意に使用できる。不織布をなす繊維は単
一素材からなる物でも、強度や密度、繊維同士の接着
性、触感、難燃性等の性能をバランス良く満たす等の目
的から、複数の素材を混合した物を使用しても良い。
Average diameter (μm) = 11.91 × (d / ρ) 1/2 (d is fineness, ρ is specific gravity) As a material of the fiber structure used in the present invention, a polyolefin-based material such as polypropylene or polyethylene is used. Uses resins, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins, polyvinyl chloride resins, acrylic resins, polyurethane resins, etc., as well as semi-synthetic fibers such as rayon and natural fibers such as animal hair. And their copolymers and the like can also be used. These organic fibers may be subjected to a flame retarding treatment as necessary. The fibers used are not limited to organic fibers, and glass fibers, glass wool, rock fibers, rock wool, alumina fibers, carbon fibers, and the like can also be used. Needless to say, fibers other than those exemplified above can be arbitrarily used as long as they can be formed into a nonwoven fabric. Even if the fibers that make up the nonwoven fabric are made of a single material, use a mixture of multiple materials for the purpose of achieving a good balance of performance such as strength, density, adhesion between fibers, touch, and flame retardancy. May be.

【0018】繊維構造体の厚みは、熱伝導率値が従来の
繊維系断熱材よりも優れ、好適に使用できる範囲であれ
ば限定しないが、積層体全体の厚みが100mm以下とな
るようにすると、切断等の加工性が容易で且つ、断熱施
工部位への収まりも良いので好ましい。
The thickness of the fibrous structure is not limited as long as it has a thermal conductivity value superior to that of the conventional fibrous heat insulating material and can be suitably used. It is preferable because workability such as cutting and the like is easy and it fits well in a heat insulating construction site.

【0019】繊維構造体の嵩密度は、繊維構造体全体と
して0.01g/cm3以上で、繊維に使用している素
材自体の密度未満であることが好ましい。ここで繊維構
造体の嵩密度とは、繊維構造体嵩密度(g/cm3)=繊維構
造体重量(g)/繊維構造体見かけ体積(cm3)により求め
た。繊維構造体重量には繊維構造体を構成する接着成分
重量も含む。見かけ体積は繊維構造体が占有する空間を
示し、繊維構造体が見かけ状直方体形状であれば、繊維
構造体見かけ体積(cm3)=高さ(cm)×長さ(cm)×幅(cm)
となる。
The bulk density of the fiber structure is preferably 0.01 g / cm 3 or more as a whole and less than the density of the raw material used for the fibers. Here, the bulk density of the fiber structure was determined by the fiber structure bulk density (g / cm 3 ) = fiber structure weight (g) / fiber structure apparent volume (cm 3 ). The weight of the fiber structure includes the weight of the adhesive component constituting the fiber structure. The apparent volume indicates the space occupied by the fibrous structure, and if the fibrous structure has an apparent rectangular parallelepiped shape, the fibrous structure apparent volume (cm 3 ) = height (cm) × length (cm) × width (cm )
Becomes

【0020】また「繊維構造体全体として」という意味
は、繊維構造体の内部に局所的に密度差がある様な場
合、例えば繊維構造体表層部は高密度で内部が低密度の
ものや表層部は低密度で内部が高密度のもの、漸次的に
厚み方向に密度が変化するもの、高密度層と低密度層を
積層したものを一つの構造体として捉えることを意味す
る。繊維構造体の嵩密度が0.01g/cm3よりも低
密度の場合、繊維構造体の剛性が低くなるため取り扱い
にくく、また、繊維構造体としての断熱性能が劣るため
過剰に微粒子を添加する必要性が生じ、微粒子を保持す
ることが困難となる。繊維構造体の嵩密度が、繊維に使
用している素材自体の密度以上であることは実質的に微
粒子を保持するような空隙が存在しないことを意味す
る。
The term "as a whole fibrous structure" means that there is a local density difference inside the fibrous structure. For example, the fibrous structure has a high density and a low density inside, The part means that a structure having a low density and a high density inside, a density gradually changing in a thickness direction, and a structure in which a high density layer and a low density layer are stacked are regarded as one structure. When the bulk density of the fibrous structure is lower than 0.01 g / cm 3 , the rigidity of the fibrous structure is low, so that it is difficult to handle. In addition, since the heat insulating performance of the fibrous structure is inferior, fine particles are excessively added. The necessity arises and it becomes difficult to retain the fine particles. The fact that the bulk density of the fibrous structure is equal to or higher than the density of the material used for the fibers means that there is substantially no void that holds the fine particles.

【0021】本発明では繊維構造体内部に平均粒子径1
μ以下の微粒子を存在させ該繊維構造体外に漏出せぬよ
う保持させてなることに特徴を有する。ここで「平均粒
子径」とは電子顕微鏡画像から中の個々の粒子を円近似
して直径を測定した算術平均粒子径である。「保持」状
態とは、繊維構造体が占有する見かけ体積を有する空間
に微粒子が存在する状態、つまりが網目状に入り組んだ
繊維間に含まれる状態であって、繊維表面に付着あるい
は浮遊するような状態を意味している。従って、従来技
術のように袋体で、微粒子を覆うのではなく微粒子を繊
維構造体で包囲あるいは包含(以下、保持の代わりに包
含と称することがある。)する際に、その密度を、サン
ドイッチ状のごとく上下方向に、あるいは周囲を、部分
的にあるいは全体的に緻密化させたり、更に、こうした
繊維構造体の上下表面にシートなどの繊維体で被覆する
等の状態にするのが好ましい。このようにすることによ
り、公知技術のように微粒子を袋体内に収容し、さらに
微粒子を固化させてブロック化させる必要が必ずしも生
じなくなる。
In the present invention, the average particle size of 1
It is characterized in that fine particles having a particle size of μ or less are present and held so as not to leak out of the fiber structure. Here, the “average particle diameter” is an arithmetic average particle diameter obtained by measuring the diameter of each particle in the electron microscope image by circular approximation. The "holding" state is a state in which fine particles are present in a space having an apparent volume occupied by the fibrous structure, that is, a state in which the fine particles are included between fibers in a mesh shape and adhere or float on the fiber surface. Means a state. Therefore, when the fine particles are surrounded or included in the bag structure instead of being covered by the bag body as in the prior art (hereinafter, sometimes referred to as inclusion instead of holding), the density of the fine particles is determined by a sandwich. It is preferable to densify in the vertical direction or the periphery partially or entirely as described above, or to cover the upper and lower surfaces of such a fibrous structure with a fibrous body such as a sheet. This eliminates the necessity of accommodating the fine particles in the bag body and solidifying and blocking the fine particles as in the known technique.

【0022】本発明に好適に使用される微粒子として、
カーボンブラック、酸化チタン、酸化ケイ素、炭酸カル
シウム、タルク、カオリン等の無機微粒子や、ポリマー
微粒子、例えばソープフリー乳化重合や非水系分散重
合、ミニエマルジョン重合とシード重合との組合せによ
り得られるサブミクロン粒径のポリ塩化ビニル樹脂微粒
子、アクリル樹脂微粒子がある。また、ゾル−ゲル法か
ら超臨界乾燥法によって得られるエアロゲルや、微細多
孔質体等がある。しかし微粒子はこれらに限定されな
い。好適に使用される微粒子は、その平均粒子径が1μ
以下、好ましくは500nm以下、より好ましくは100
nm以下の粒子であり、そのような微粒子は、粒子同士
の接点が点接触であるため固体の伝熱抵抗が大きく、ま
た、粒子間の空隙が小さいので空気の対流伝熱を抑制す
る。さらに、空気を構成する気体分子の平均自由行程よ
りも小さな空隙が多く生じるため、気体分子運動による
伝熱をも抑制し非常に断熱性を高める効果を有する。
As the fine particles suitably used in the present invention,
Inorganic fine particles such as carbon black, titanium oxide, silicon oxide, calcium carbonate, talc, and kaolin, and polymer fine particles, for example, submicron particles obtained by combining soap-free emulsion polymerization, nonaqueous dispersion polymerization, miniemulsion polymerization and seed polymerization. There are polyvinyl chloride resin fine particles and acrylic resin fine particles of different diameters. In addition, there are airgel obtained by a supercritical drying method from a sol-gel method, and a fine porous body. However, the fine particles are not limited to these. Fine particles preferably used have an average particle diameter of 1 μm.
Or less, preferably 500 nm or less, more preferably 100 nm or less.
Such fine particles have a large solid-state heat transfer resistance due to point contact between the particles and a small gap between the particles, thereby suppressing convective heat transfer of air. Further, since many voids are generated which are smaller than the mean free path of the gas molecules constituting the air, the heat transfer due to the motion of the gas molecules is suppressed and the heat insulating property is greatly enhanced.

【0023】これらの微粒子は空気中の水分によって凝
集し易いため、疎水化処理を施しておくことが好まし
い。疎水化処理剤としては、特に限定はされないが、例
えばアルキルシランやフッ素化アルキルシラン、等のシ
ラン系化合物やシリコーン化合物、脂肪酸類などの両親
媒性物質などが挙げられ、対象物に適した物質を適宜使
用することが出来る。
Since these fine particles are easily aggregated by moisture in the air, it is preferable to perform a hydrophobic treatment. The hydrophobizing agent is not particularly limited, but includes, for example, silane compounds such as alkyl silanes and fluorinated alkyl silanes, silicone compounds, amphiphilic substances such as fatty acids, and the like. Can be used as appropriate.

【0024】本発明に使用される微粒子の包含形態は、
繊維構造体の熱伝導率を所望値まで低下させるように、
繊維構造体に均一に保持させやすい形であれば限定され
ず、そのまま粉体状で使用しても良く、また取扱上、圧
縮するなどして二次凝集させ嵩密度を変化させた粉体
や、ペレット状、フレーク状、シート状、ブロック状に
して使用することが出来る。
The inclusion form of the fine particles used in the present invention is as follows:
To reduce the thermal conductivity of the fiber structure to a desired value,
It is not limited as long as it is a form that can be easily held uniformly in the fibrous structure, and may be used as it is in a powder form. It can be used in the form of pellets, flakes, sheets, or blocks.

【0025】繊維構造体への微粒子の添加量としては、
繊維構造体100重量部に対して1重量部〜250重量
部、好ましくは5〜200重量部、より好ましくは10
〜150重量部である。添加量が1重量部未満の場合、
微細空隙による低熱伝導率化の効果が少なく、断熱性に
劣る。添加量が250重量部を越えると繊維構造体に微
粒子を保持することが困難となる。
The amount of the fine particles added to the fiber structure is as follows.
1 part by weight to 250 parts by weight, preferably 5 to 200 parts by weight, more preferably 10 parts by weight based on 100 parts by weight of the fibrous structure.
150150 parts by weight. When the addition amount is less than 1 part by weight,
The effect of lowering the thermal conductivity due to the fine voids is small, and the heat insulating property is poor. If the amount exceeds 250 parts by weight, it becomes difficult to retain the fine particles in the fibrous structure.

【0026】本発明の繊維構造体は微粒子を構造体外部
に容易に漏れ出さない程度に局所的にもしくは全体的に
緻密化していることが好ましい。本発明で使用される微
粒子は繊維構造体に包含されているため、繊維との分子
間により容易には外部に漏れ出さないが、乱暴な取扱な
どをすると微粒子が空気中に洩れ出す可能性があるた
め、微粒子を包含した部分の繊維構造体を緻密化し、微
粒子が洩れないようにすることが好ましい。繊維構造体
表面だけを急加熱し溶融させ通気性を減少させる方法
や、最外層に通気性の少ない繊維構造体や防水フィルム
を積層するといった方法があるが、これに限らず微粒子
が洩れないような方法であればよい。
It is preferable that the fiber structure of the present invention is locally or entirely densified so that the fine particles do not easily leak out of the structure. Since the fine particles used in the present invention are included in the fiber structure, they do not easily leak to the outside between molecules with the fiber, but there is a possibility that the fine particles may leak into the air when handled roughly. For this reason, it is preferable that the portion of the fibrous structure containing the fine particles is densified to prevent the fine particles from leaking. There is a method of rapidly heating and melting only the surface of the fiber structure to reduce air permeability, or a method of laminating a fiber structure or waterproof film with low air permeability on the outermost layer. Any method may be used.

【0027】本発明の繊維・微粒子複合断熱材の製造方
法は、例として、短繊維をウエブ化したものを平面上に
均一な厚みに積層した後、微粒子を均一に散布し、更に
その上にウエブを積層したのちニードルパンチにより絡
合させることにより繊維・微粒子複合断熱材を得る方法
や、前記方法に必要に応じて接着繊維を混合し加熱成形
する方法、ブレンダー等で短繊維と微粒子を予め混合し
繊維表面に付着させた後、繊維を構造体へと加工する方
法、長繊維よりなる薄物の不織布を多層重ねた中に包含
させる方法等により繊維構造体中に微粒子を包含させる
が、これらの方法を組み合わせた方法でも良いし、請求
項記載の構成となれば特に製造方法に関して限定されな
い。
In the method for producing the fiber / fine particle composite heat insulating material of the present invention, for example, a web obtained by short fibers is laminated on a plane to a uniform thickness, and then the fine particles are evenly dispersed, and then further spread thereon. A method of obtaining a fiber / fine particle composite heat insulating material by entanglement with a needle punch after laminating a web, a method of mixing and bonding an adhesive fiber as necessary to the above method, and a method of mixing short fibers and fine particles with a blender or the like in advance. After mixing and adhering to the fiber surface, the fine particles are included in the fiber structure by a method of processing the fibers into a structure, a method of including a thin non-woven fabric composed of long fibers in a multi-layer stack, or the like. The method may be a combination of the above methods, and the method is not particularly limited as long as the structure described in the claims is obtained.

【0028】[0028]

【実施例】次に本発明の繊維・微粒子複合断熱材を、実
施例に基づいてさらに詳細に説明するが、本発明はかか
る実施例のみに制限されるものではない。
Next, the fiber / fine particle composite heat insulating material of the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to only these Examples.

【0029】以下に示す実施例1〜6、比較例1〜5の
方法で得られた繊維・微粒子複合断熱材の特性として、
繊維構造体嵩密度、熱伝導率、断熱必要厚みを下記の方
法にしたがって調べた。
The properties of the fiber / fine particle composite heat insulating material obtained by the methods of Examples 1 to 6 and Comparative Examples 1 to 5 shown below are as follows.
The fiber structure bulk density, thermal conductivity, and required heat insulation thickness were examined according to the following methods.

【0030】1)繊維構造体嵩密度(g/cm3):密
度は次の式、 繊維構造体嵩密度(g/cm3)=繊維構造体重量(g)/繊
維構造体見かけ体積(cm3) により求めた。繊維構造体重量には接着成分の重量も含
まれる。繊維構造体は見かけ状直方体形状であるため、
繊維構造体見かけ体積(cm3)=高さ(cm)×長さ(cm)×幅
(cm) となる。
1) Fiber structure bulk density (g / cm 3 ): The density is represented by the following formula: fiber structure bulk density (g / cm 3 ) = fiber structure weight (g) / fiber structure apparent volume (cm) 3 ) The weight of the fiber structure includes the weight of the adhesive component. Since the fibrous structure has an apparent rectangular parallelepiped shape,
Fiber structure apparent volume (cm 3 ) = height (cm) x length (cm) x width
(cm).

【0031】2)熱伝導率(W/mK):JIS A
9511に準じ、熱伝導率測定装置HC−072(英弘
精機社製)を使用し、熱伝導率を測定した。
2) Thermal conductivity (W / mK): JIS A
The thermal conductivity was measured using a thermal conductivity measuring device HC-072 (manufactured by Eiko Seiki Co., Ltd.) in accordance with 9511.

【0032】3)次世代省エネルギー基準のII〜V地域
(日本における極寒地域、及び沖縄を除く地域)におい
て、木造住宅の壁部位への充填断熱工法で断熱材を適用
する時に、必要とされる熱抵抗値を得るための断熱材の
厚みを、2)で測定した熱伝導率より算出した。断熱材
必要厚みをTとし、以下の基準で評価した。 T≦65mm:○ 65mm<T≦75mm:△ 75mm<T:× また、I地域についても同様に算出し、断熱材必要厚み
をtとし以下の基準で評価した。 t≦100mm:◎ 100mm<t:× 以下の実施例により得られた断熱材の評価結果を表1に
示した。
3) In the areas II to V of the next-generation energy saving standards (extremely cold areas in Japan and areas excluding Okinawa), it is required when applying heat insulating material to the wall portion of a wooden house by the heat insulating method. The thickness of the heat insulating material for obtaining the thermal resistance was calculated from the thermal conductivity measured in 2). The required thickness of the heat insulating material was T, and the evaluation was made according to the following criteria. T ≦ 65 mm: ○ 65 mm <T ≦ 75 mm: Δ75 mm <T: × Further, the same calculation was performed for the region I, and the required thickness of the heat insulating material was set to t, and evaluated according to the following criteria. t ≦ 100 mm: 100 mm <t: × The evaluation results of the heat insulating materials obtained in the following Examples are shown in Table 1.

【0033】実施例1 モダクリル短繊維(鐘淵化学工業(株)製、商品名:カ
ネカロン、繊維径13μ、繊維長30mm)90重量部に
対してホットメルト不織布(呉羽テック(株)製、商品
名:ダイナックシートLNS3000、溶融温度90
℃)を細片化したものを10重量部添加し、ブレンダー
により混合したのち、混合した繊維を平面上に均一に積
層、ニードルパンチを行い、繊維同士を絡み合わせた。
その後、熱風オーブン中で120℃の温度で30秒間加
熱処理した後、空冷することで繊維構造体を得た。
Example 1 Modacrylic short fiber (manufactured by Kaneka Chemical Industry Co., Ltd., trade name: Kanecaron, fiber diameter 13 μ, fiber length 30 mm) 90 parts by weight of hot melt nonwoven fabric (manufactured by Kureha Tech Co., Ltd.) Name: Dynac sheet LNS3000, melting temperature 90
C.) was added and mixed by a blender. Then, the mixed fibers were uniformly laminated on a flat surface, needle-punched, and the fibers were entangled with each other.
Then, after performing a heat treatment at a temperature of 120 ° C. for 30 seconds in a hot air oven, the fiber structure was obtained by air cooling.

【0034】得られた繊維構造体を模式的に例示すれ
ば、例えば図1(a)のごとくである。得られた繊維構
造体は厚み15mmで見かけ密度は0.05g/cm3
あった。同様の方法で2個の繊維構造体を作成した。こ
のうち1つの繊維構造体上面に粒子径が15nmである
疎水性酸化ケイ素微粒子(日本アエロジル(株)製、商
品名:AEROSIL−R202)を繊維構造体1個1
00重量部に対して40部、均一に散布し、他の1つの
繊維構造体を積層した後、120℃の熱風オーブン中で
30秒加熱処理し加圧することで2つの繊維構造体間に
微粒子を挟んだ形で一体化した。
FIG. 1A schematically shows an example of the obtained fiber structure. The obtained fiber structure had a thickness of 15 mm and an apparent density of 0.05 g / cm 3 . Two fiber structures were prepared in the same manner. Hydrophobic silicon oxide fine particles having a particle size of 15 nm (manufactured by Nippon Aerosil Co., Ltd., trade name: AEROSIL-R202) are placed on the upper surface of one of the fiber structures.
40 parts by weight to 100 parts by weight, and after one other fibrous structure was laminated, heat treatment was performed for 30 seconds in a hot air oven at 120 ° C. for 30 seconds to apply pressure, whereby fine particles were formed between the two fibrous structures. Were integrated.

【0035】この様にして厚み25mmで、繊維構造体の
みの密度0.06g/cm3で、繊維構造体に対して2
0重量部の酸化ケイ素微粒子を包含する繊維・微粒子複
合断熱材を得た。このようにして得られた繊維・微粒子
複合断熱材を模式的に例示すれば、例えば図2のごとく
である。1は本発明の繊維・微粒子複合断熱材であり、
(a)は繊維構造体、(b)は微粒子層、(c)は微粒
子、(d)は繊維である。
In this way, the thickness of the fiber structure is 25 mm, the density of the fiber structure alone is 0.06 g / cm 3 ,
A fiber / fine particle composite heat insulating material containing 0 parts by weight of silicon oxide fine particles was obtained. FIG. 2 schematically shows the fiber / fine particle composite heat insulating material obtained in this manner. 1 is a fiber / particle composite heat insulating material of the present invention,
(A) is a fiber structure, (b) is a fine particle layer, (c) is fine particles, and (d) is a fiber.

【0036】この繊維・微粒子複合断熱材の熱伝導率を
測定したところ、0.0276W/mKと非常に優れた熱伝
導率であった。この断熱材をII〜V地域の壁部位に適用
する場合、必要厚みは61mm、I地域に適用する場合、
92mmと薄く柔軟性があり施工が容易であった。
When the thermal conductivity of this fiber / fine particle composite heat insulating material was measured, it was 0.0276 W / mK, which was a very excellent thermal conductivity. When this heat insulating material is applied to the wall part in the II-V area, the required thickness is 61 mm, and when it is applied to the I area,
It was 92 mm thin and flexible, and construction was easy.

【0037】実施例2 モダクリル短繊維(鐘淵化学工業(株)製、商品名:カ
ネカロン、繊維径18μ、繊維長38mm)80重量部に
対して、実施例1と同様のホットメルト不織布を細片化
したものを20重量部添加し、ブレンダーにより混合し
たのち、混合した繊維を実施例の2倍の厚みになる様に
平面上に均一に積層、ニードルパンチを行い、繊維同士
を絡み合わせた。その後、熱風オーブン中で120℃の
温度で30秒間加熱処理した後、空冷することで繊維構
造体を得た。得られた繊維構造体は厚み30mmで見かけ
密度は0.03g/cm3であった。繊維構造体と繊維
構造体100重量部に対して実施例1と同様の疎水性酸
化ケイ素微粒子を150重量部、ドラム式回転体に同時
に投入し繊維構造体中に酸化ケイ素を包含させた。
Example 2 The same hot melt nonwoven fabric as in Example 1 was used for 80 parts by weight of modacrylic staple (Kanekalon Chemical Industry Co., Ltd., trade name: Kanecaron, fiber diameter 18 μm, fiber length 38 mm). After adding 20 parts by weight of the flaked product and mixing with a blender, the mixed fibers were uniformly laminated on a plane so as to have a thickness twice as large as that of the example, needle-punched, and the fibers were entangled with each other. . Then, after performing a heat treatment at a temperature of 120 ° C. for 30 seconds in a hot air oven, the fiber structure was obtained by air cooling. The obtained fiber structure had a thickness of 30 mm and an apparent density of 0.03 g / cm 3 . 150 parts by weight of the same hydrophobic silicon oxide fine particles as in Example 1 were simultaneously charged into the drum type rotating body with respect to 100 parts by weight of the fiber structure and 100 parts by weight of the fiber structure, so that the silicon oxide was included in the fiber structure.

【0038】こうして得られた繊維構造体と微粒子の混
合物を模式的に例示すれば、図3のごとくであり、繊維
構造体中に微粒子が均一に分散された状態となってい
る。繊維構造体と微粒子の混合物を取り出し、重量を測
定したところ、実質的に繊維構造体に包含された酸化ケ
イ素の量は85重量部であった。この状態でも繊維・微
粒子複合断熱材として使用できる。
FIG. 3 schematically shows a mixture of the fiber structure and the fine particles thus obtained, as shown in FIG. 3, in which the fine particles are uniformly dispersed in the fiber structure. The mixture of the fiber structure and the fine particles was taken out, and the weight was measured. As a result, the amount of silicon oxide substantially contained in the fiber structure was 85 parts by weight. Even in this state, it can be used as a fiber / particle composite heat insulating material.

【0039】更に、微粒子漏洩を防ぐため、酸化ケイ素
を包含させた繊維構造体の上下面にホットメルト不織布
を介して透湿防水シート(旭・デュポンフラッシュスパ
ンプロダクツ(株)製、製品名:タイベック)を加熱加
圧接着し、繊維・微粒子複合断熱材を得た。得られた繊
維・微粒子複合断熱材を模式的に例示すれば、図4のご
とくである。図4(e)は防水シートであり微粒子の漏
洩を防止する構造となっている。この繊維・微粒子複合
断熱材は厚み25mmで、繊維構造体のみの見かけ密度
0.036g/cm3で、繊維構造体に対して85重量
部の酸化ケイ素微粒子を包含する、表面に緻密な層があ
り、繊維と粒子が全体的に均等に配合されている繊維・
微粒子複合断熱材となった。
Furthermore, in order to prevent leakage of fine particles, a moisture-permeable waterproof sheet (manufactured by Asahi DuPont Flash Spun Products Co., Ltd., product name: Tyvek) is provided on the upper and lower surfaces of the fiber structure containing silicon oxide via hot melt nonwoven fabric. ) Were heated and pressed to obtain a fiber / fine particle composite heat insulating material. FIG. 4 shows a schematic example of the obtained fiber / particle composite heat insulating material. FIG. 4E shows a waterproof sheet having a structure for preventing leakage of fine particles. In the fiber-particle composite insulation thickness 25 mm, an apparent density of 0.036 g / cm 3 of only fibrous structure comprises silicon oxide particles of 85 parts by weight relative to the fiber structure, dense layer on its surface Yes, fibers and particles in which fibers and particles are evenly mixed
It became a fine particle composite insulation material.

【0040】この繊維・微粒子複合断熱材の熱伝導率を
測定したところ、0.0270W/mKと非常に優れた熱伝
導率であった。この断熱材をII〜V地域の壁部位に適用
する場合、必要厚みは60mm、I地域に適用する場合、
90mmと薄く、柔軟性があり施工が容易であった。
When the thermal conductivity of this fiber / fine particle composite heat insulating material was measured, it was 0.0270 W / mK, which was a very excellent thermal conductivity. When this insulation material is applied to the wall area in the II-V area, the required thickness is 60 mm, and when it is applied to the I area,
It was as thin as 90 mm, flexible and easy to construct.

【0041】実施例3 酸化ケイ素の代わりに粒子径が15nmの疎水化酸化チ
タン(テイカ(株)製、商品名:SMT−150IB)
を使用した以外は、実施例1と同様の条件で繊維・微粒
子複合断熱材を得た。得られた断熱材の特性を表1に示
す。下記、比較例1〜7と比較し、断熱性が著しく向上
した断熱材が得られた。
Example 3 Instead of silicon oxide, hydrophobic titanium oxide having a particle diameter of 15 nm (manufactured by Teica Co., Ltd., trade name: SMT-150IB)
A fiber / fine particle composite heat insulating material was obtained under the same conditions as in Example 1 except for using. Table 1 shows the properties of the obtained heat insulating material. As compared with Comparative Examples 1 to 7 described below, a heat insulating material having significantly improved heat insulating properties was obtained.

【0042】実施例4 酸化ケイ素の代わりに粒子径が24nmのカーボンブラ
ック(三菱化学(株)製、商品名:#40)を50部使
用した以外は、実施例1と同様の条件で繊維・微粒子複
合断熱材を得た。得られた断熱材の特性を表1に示す。
下記、比較例1〜7と比較し、断熱性が著しく向上した
断熱材が得られた。
Example 4 Fibers and fibers were prepared under the same conditions as in Example 1 except that 50 parts of carbon black having a particle diameter of 24 nm (trade name: # 40, manufactured by Mitsubishi Chemical Corporation) was used instead of silicon oxide. A fine particle composite heat insulating material was obtained. Table 1 shows the properties of the obtained heat insulating material.
As compared with Comparative Examples 1 to 7 described below, a heat insulating material having significantly improved heat insulating properties was obtained.

【0043】実施例5 酸化ケイ素の代わりに粒子径が400nmのアクリル樹
脂微粒子(綜研化学(株)、商品名:MP−1000)
を30部使用した以外は、実施例1と同様の条件で繊維
・微粒子複合断熱材を得た。得られた断熱材の特性を表
1に示す。下記、比較例1〜7と比較し、断熱性が著し
く向上した断熱材が得られた。
Example 5 Instead of silicon oxide, fine acrylic resin particles having a particle diameter of 400 nm (Soken Chemical Co., Ltd., trade name: MP-1000)
Was obtained under the same conditions as in Example 1 except that 30 parts of was used. Table 1 shows the properties of the obtained heat insulating material. As compared with Comparative Examples 1 to 7 described below, a heat insulating material having significantly improved heat insulating properties was obtained.

【0044】実施例6 最終的な繊維構造体の見かけ密度が0.1g/cm
3で、繊維構造体100重量部に対して酸化ケイ素が9
7重量部含まれる以外は実施例2と同様の条件で繊維・
微粒子複合断熱材を得た。得られた断熱材の特性を表1
に示す。下記、比較例1〜7と比較し、断熱性が著しく
向上した断熱材が得られた。
Example 6 The apparent density of the final fiber structure is 0.1 g / cm.
In 3 , the silicon oxide was 9 parts per 100 parts by weight of the fiber structure.
Except for containing 7 parts by weight, the fibers and
A fine particle composite heat insulating material was obtained. Table 1 shows the properties of the obtained heat insulating material.
Shown in As compared with Comparative Examples 1 to 7 described below, a heat insulating material having significantly improved heat insulating properties was obtained.

【0045】比較例1 酸化ケイ素を添加しない以外は実施例1と同様の方法に
て見かけ密度0.06g/cm3の繊維系断熱材を得
た。得られた断熱材の特性を表1に示す。実施例と比較
して断熱性に劣っており、断熱に必要な厚みも分厚い物
となった。
[0045] Except for not adding the Comparative Example 1 silicon oxide to obtain a fiber-based insulation density 0.06 g / cm 3 apparent in the same manner as in Example 1. Table 1 shows the properties of the obtained heat insulating material. The heat insulation was inferior to those of the examples, and the thickness required for heat insulation was thick.

【0046】比較例2 酸化ケイ素を0.5重量部添加した以外は実施例1と同
様の方法にて、繊維構造体の嵩密度0.06g/cm3
の繊維・微粒子複合断熱材を得た。得られた断熱材の特
性を表1に示す。実施例と比較して断熱性に劣ってお
り、断熱に必要な厚みも分厚い物となった。
Comparative Example 2 The bulk density of the fiber structure was 0.06 g / cm 3 in the same manner as in Example 1 except that 0.5 parts by weight of silicon oxide was added.
A fiber / fine particle composite heat insulating material was obtained. Table 1 shows the properties of the obtained heat insulating material. The heat insulation was inferior to those of the examples, and the thickness required for heat insulation was thick.

【0047】比較例3 実施例2と同様の方法にて、嵩密度0.03g/cm3
の繊維構造体に対して酸化ケイ素を300重量部を添加
しようとしたが繊維構造体による形態の保持が出来ず、
繊維・微粒子複合断熱材を得ることが出来なかった。
Comparative Example 3 A bulk density of 0.03 g / cm 3 was obtained in the same manner as in Example 2.
Tried to add 300 parts by weight of silicon oxide to the fibrous structure, but the shape could not be maintained by the fibrous structure,
Fiber / fine particle composite insulation could not be obtained.

【0048】比較例4 実施例2と同様の方法にて、嵩密度0.005g/cm
3の繊維構造体に対して酸化ケイ素を20重量部を添加
したが、断熱性に劣る物となった。
Comparative Example 4 A bulk density of 0.005 g / cm was obtained in the same manner as in Example 2.
When 20 parts by weight of silicon oxide was added to the fibrous structure of No. 3 , the heat insulating property was poor.

【0049】比較例5 実施例2と同様の方法にて、嵩密度0.005g/cm
3の繊維構造体に対して酸化ケイ素を80重量部を添加
しようとしたが、繊維構造体に酸化ケイ素を包含させる
ことができなかった。
Comparative Example 5 A bulk density of 0.005 g / cm was obtained in the same manner as in Example 2.
An attempt was made to add 80 parts by weight of silicon oxide to the fibrous structure of No. 3 , but the fibrous structure could not contain silicon oxide.

【0050】比較例6 粒子径が2.2μmの炭酸カルシウム(備北粉化工業
(株)製、ソフトン1000)を20重量部添加した以
外は実施例1と同様の方法にて、繊維構造体の嵩密度
0.06g/cm3の繊維・微粒子複合断熱材を得た。
得られた断熱材の特性を表1に示す。実施例と比較して
断熱性に劣っており、断熱に必要な厚みも分厚い物とな
った。
Comparative Example 6 A fibrous structure was prepared in the same manner as in Example 1 except that 20 parts by weight of calcium carbonate having a particle diameter of 2.2 μm (Softon 1000, manufactured by Bihoku Powder Chemical Industry Co., Ltd.) was added. A fiber / fine particle composite heat insulating material having a bulk density of 0.06 g / cm 3 was obtained.
Table 1 shows the properties of the obtained heat insulating material. The heat insulation was inferior to those of the examples, and the thickness required for heat insulation was thick.

【0051】比較例7 0.080g/cm3のグラスウール断熱材の熱伝導率
を測定したところ、0.0344W/mkであった。
Comparative Example 7 The thermal conductivity of the glass wool heat insulating material of 0.080 g / cm 3 was 0.0344 W / mk.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【発明の効果】本発明の繊維・微粒子複合断熱材によ
り、断熱性能に優れ、施工性に優れ、取り扱いやすい住
宅用断熱材が得られる。
According to the fiber / fine particle composite heat insulating material of the present invention, a heat insulating material for a house which is excellent in heat insulating performance, excellent in workability and easy to handle can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる繊維構造体の一例の斜視図を示
す。
FIG. 1 shows a perspective view of an example of a fiber structure according to the present invention.

【図2】繊維構造体層間に微粒子が包含された繊維・微
粒子複合断熱材の斜視図を示す。
FIG. 2 is a perspective view of a fiber / fine particle composite heat insulating material in which fine particles are contained between fiber structure layers.

【図3】繊維構造体全体に均一に微粒子が包含された繊
維・微粒子複合断熱材の一例の斜視図を示す。
FIG. 3 is a perspective view of an example of a fiber / particle composite heat insulating material in which fine particles are uniformly contained in the entire fiber structure.

【図4】断熱材表面を緻密化した繊維・微粒子複合断熱
材の斜視図を示す。
FIG. 4 is a perspective view of a fiber / particle composite heat insulating material having a dense heat insulating material surface.

【符号の説明】[Explanation of symbols]

1 繊維・微粒子複合断熱材 (a)繊維構造体 (b)微粒子層 (c)微粒子 (d)繊維 (e)防水シート 1 Fiber / fine particle composite insulation material (a) Fiber structure (b) Fine particle layer (c) Fine particles (d) Fiber (e) Waterproof sheet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 繊維を絡合および/または接着させてな
る嵩密度が0.01g/cm3以上である繊維構造体1
00重量部の空間に対し、平均粒子径1μm以下の微粒
子1〜250重量部を、該繊維構造体により保持させて
なる繊維・微粒子複合断熱材。
1. A fibrous structure 1 having a bulk density of 0.01 g / cm 3 or more formed by entanglement and / or adhesion of fibers.
A fiber / fine particle composite heat insulating material in which 1 to 250 parts by weight of fine particles having an average particle diameter of 1 μm or less are held by the fiber structure in a space of 00 parts by weight.
【請求項2】 前記繊維構造体が不織布である請求項1
記載の繊維・微粒子複合断熱材。
2. The nonwoven fabric according to claim 1, wherein the fibrous structure is a nonwoven fabric.
The fiber / particle composite heat insulating material described in the above.
【請求項3】 前記微粒子が酸化ケイ素、酸化チタン、
カーボンブラック等の無機微粒子および/またはポリ塩
化ビニル樹脂微粒子、アクリル樹脂微粒子等のポリマー
微粒子から選ばれる1以上の微粒子である請求項1又は
2記載の繊維・微粒子複合断熱材。
3. The method according to claim 1, wherein the fine particles are silicon oxide, titanium oxide,
The fiber / particle composite heat insulating material according to claim 1 or 2, which is at least one fine particle selected from inorganic fine particles such as carbon black and / or polymer fine particles such as polyvinyl chloride resin fine particles and acrylic resin fine particles.
JP2001139085A 2001-05-09 2001-05-09 Fiber and fine particle composite heat-insulating material Pending JP2002333092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001139085A JP2002333092A (en) 2001-05-09 2001-05-09 Fiber and fine particle composite heat-insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001139085A JP2002333092A (en) 2001-05-09 2001-05-09 Fiber and fine particle composite heat-insulating material

Publications (1)

Publication Number Publication Date
JP2002333092A true JP2002333092A (en) 2002-11-22

Family

ID=18985923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001139085A Pending JP2002333092A (en) 2001-05-09 2001-05-09 Fiber and fine particle composite heat-insulating material

Country Status (1)

Country Link
JP (1) JP2002333092A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009146A1 (en) * 2004-07-20 2006-01-26 Kurashiki Boseki Kabushiki Kaisha Vacuum heat insulation material
JP2006153150A (en) * 2004-11-30 2006-06-15 Kurabo Ind Ltd Vacuum insulation material
JP2006161939A (en) * 2004-12-07 2006-06-22 Kurabo Ind Ltd Vacuum thermal insulating material
JP2006183810A (en) * 2004-12-28 2006-07-13 Kurabo Ind Ltd Method of manufacturing vacuum heat insulating material
JP2006283817A (en) * 2005-03-31 2006-10-19 Kurabo Ind Ltd Vacuum heat insulation material
JP2008057793A (en) * 2007-11-21 2008-03-13 Kurabo Ind Ltd Vacuum heat insulation material
JP2008232372A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Vacuum heat insulating material and heat insulating structure using the same
JP2008286282A (en) * 2007-05-16 2008-11-27 Unitica Fibers Ltd Vacuum heat insulation material
FR2922989A1 (en) * 2007-10-26 2009-05-01 Electricite De France THERMOINSULATING MATERIAL BASED ON ORGANIC FIBERS AND AN INFRARED RADIATION BREAKING POWDER, AND ITS USE IN THERMAL INSULATION.
CN100538147C (en) * 2004-07-20 2009-09-09 仓敷纺绩株式会社 Vacuum thermal insulating material
WO2009119296A1 (en) * 2008-03-28 2009-10-01 古河電気工業株式会社 Flexible tube for transporting cryogenic fluid and structure for detecting leakage of fluid in tube
WO2009130992A1 (en) * 2008-04-22 2009-10-29 新日本石油株式会社 Vacuum insulating material and method for producing the same
JP2009299760A (en) * 2008-06-12 2009-12-24 Imae Kogyo Kk Thermal insulation device of heat apparatus
KR100965971B1 (en) * 2004-07-20 2010-06-24 구라시키 보세키 가부시키가이샤 Vacuum heat insulation material
WO2010087039A1 (en) * 2009-01-29 2010-08-05 三菱電機株式会社 Vacuum insulation material and insulation box using the same
JP2010276167A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Vacuum heat insulating material, heat insulated box using the same, and equipment
JP2011012953A (en) * 2010-08-24 2011-01-20 Imae Kogyo Kk Heat insulation apparatus for hot water storage tank for heat pump water heater
WO2011010577A1 (en) * 2009-07-24 2011-01-27 ニチアス株式会社 Mending method for heat insulation structure and heat insulation structure
JP2011058538A (en) * 2009-09-08 2011-03-24 Hitachi Appliances Inc Vacuum heat insulating material, and cooling equipment or insulated container using the same
JP2011174550A (en) * 2010-02-25 2011-09-08 Hitachi Appliances Inc Vacuum heat insulation material and equipment using the same
JP2015163815A (en) * 2014-01-30 2015-09-10 オゾンセーブ株式会社 Heat insulating material and method of manufacturing heat insulating material
JP2016194358A (en) * 2015-04-02 2016-11-17 積水化学工業株式会社 Heat/earthquake resistant pipeline system
JP2016194359A (en) * 2015-04-02 2016-11-17 積水化学工業株式会社 Heat insulation piping system
JP2017015205A (en) * 2015-07-03 2017-01-19 パナソニックIpマネジメント株式会社 Heat insulation material, manufacturing method therefor, and electronic equipment using heat insulation material
JP2017036745A (en) * 2015-08-07 2017-02-16 パナソニックIpマネジメント株式会社 Heat insulation material, apparatus made by using the same and manufacturing method of heat insulation material
WO2019090659A1 (en) * 2017-11-10 2019-05-16 3M Innovative Properties Company Thermal insulators and methods thereof
CN111534921A (en) * 2020-05-15 2020-08-14 成都硕屋科技有限公司 Production process of nano microporous composite material
US11235552B2 (en) 2018-07-23 2022-02-01 3M Innovative Properties Company Thermal insulation materials and methods thereof

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100538147C (en) * 2004-07-20 2009-09-09 仓敷纺绩株式会社 Vacuum thermal insulating material
KR100965971B1 (en) * 2004-07-20 2010-06-24 구라시키 보세키 가부시키가이샤 Vacuum heat insulation material
WO2006009146A1 (en) * 2004-07-20 2006-01-26 Kurashiki Boseki Kabushiki Kaisha Vacuum heat insulation material
US7947347B2 (en) 2004-07-20 2011-05-24 Kurashiki Bosek Kabushiki Kaisha Vacuum heat insulator
JP2006153150A (en) * 2004-11-30 2006-06-15 Kurabo Ind Ltd Vacuum insulation material
JP2006161939A (en) * 2004-12-07 2006-06-22 Kurabo Ind Ltd Vacuum thermal insulating material
JP2006183810A (en) * 2004-12-28 2006-07-13 Kurabo Ind Ltd Method of manufacturing vacuum heat insulating material
JP2006283817A (en) * 2005-03-31 2006-10-19 Kurabo Ind Ltd Vacuum heat insulation material
JP2008232372A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Vacuum heat insulating material and heat insulating structure using the same
JP2008286282A (en) * 2007-05-16 2008-11-27 Unitica Fibers Ltd Vacuum heat insulation material
FR2922989A1 (en) * 2007-10-26 2009-05-01 Electricite De France THERMOINSULATING MATERIAL BASED ON ORGANIC FIBERS AND AN INFRARED RADIATION BREAKING POWDER, AND ITS USE IN THERMAL INSULATION.
WO2009056746A3 (en) * 2007-10-26 2009-07-02 Electricite De France A thermally insulating material based on organic fibres and on a powder that breaks down infrared radiation, and use thereof in thermal insulation
WO2009056746A2 (en) * 2007-10-26 2009-05-07 Electricite De France A thermally insulating material based on organic fibres and on a powder that breaks down infrared radiation, and use thereof in thermal insulation
JP2008057793A (en) * 2007-11-21 2008-03-13 Kurabo Ind Ltd Vacuum heat insulation material
WO2009119296A1 (en) * 2008-03-28 2009-10-01 古河電気工業株式会社 Flexible tube for transporting cryogenic fluid and structure for detecting leakage of fluid in tube
JP2009243518A (en) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The Flexible tube for cryogenic temperature liquid transportation and disclosure detection construction in tube body
US8789562B2 (en) 2008-03-28 2014-07-29 Furukawa Electric Co., Ltd Flexible tube for transporting cryogenic fluid and structure for detecting leakage of fluid in tube
WO2009130992A1 (en) * 2008-04-22 2009-10-29 新日本石油株式会社 Vacuum insulating material and method for producing the same
JP2009299760A (en) * 2008-06-12 2009-12-24 Imae Kogyo Kk Thermal insulation device of heat apparatus
JP2010174975A (en) * 2009-01-29 2010-08-12 Mitsubishi Electric Corp Vacuum heat insulating material and heat-insulated box provided with the same
WO2010087039A1 (en) * 2009-01-29 2010-08-05 三菱電機株式会社 Vacuum insulation material and insulation box using the same
US8617684B2 (en) 2009-01-29 2013-12-31 Mitsubishi Electric Corporation Vacuum thermal insulating material and thermal insulating box including the same
JP2010276167A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Vacuum heat insulating material, heat insulated box using the same, and equipment
WO2011010577A1 (en) * 2009-07-24 2011-01-27 ニチアス株式会社 Mending method for heat insulation structure and heat insulation structure
JP2011027168A (en) * 2009-07-24 2011-02-10 Nichias Corp Mending method for heat insulation structure and heat insulation structure
TWI422769B (en) * 2009-07-24 2014-01-11 Nichias Corp Method for mending thermal insulating structures and thermal insulating structure
JP2011058538A (en) * 2009-09-08 2011-03-24 Hitachi Appliances Inc Vacuum heat insulating material, and cooling equipment or insulated container using the same
JP2011174550A (en) * 2010-02-25 2011-09-08 Hitachi Appliances Inc Vacuum heat insulation material and equipment using the same
JP2011012953A (en) * 2010-08-24 2011-01-20 Imae Kogyo Kk Heat insulation apparatus for hot water storage tank for heat pump water heater
JP2015163815A (en) * 2014-01-30 2015-09-10 オゾンセーブ株式会社 Heat insulating material and method of manufacturing heat insulating material
WO2016121372A1 (en) * 2014-01-30 2016-08-04 オゾンセーブ株式会社 Heat insulator and method for manufacturing heat insulator
JP2016194358A (en) * 2015-04-02 2016-11-17 積水化学工業株式会社 Heat/earthquake resistant pipeline system
JP2016194359A (en) * 2015-04-02 2016-11-17 積水化学工業株式会社 Heat insulation piping system
JP2017015205A (en) * 2015-07-03 2017-01-19 パナソニックIpマネジメント株式会社 Heat insulation material, manufacturing method therefor, and electronic equipment using heat insulation material
JP2017036745A (en) * 2015-08-07 2017-02-16 パナソニックIpマネジメント株式会社 Heat insulation material, apparatus made by using the same and manufacturing method of heat insulation material
WO2019090659A1 (en) * 2017-11-10 2019-05-16 3M Innovative Properties Company Thermal insulators and methods thereof
US11661687B2 (en) 2017-11-10 2023-05-30 3M Innovative Properties Company Thermal insulators and methods thereof
US11235552B2 (en) 2018-07-23 2022-02-01 3M Innovative Properties Company Thermal insulation materials and methods thereof
CN111534921A (en) * 2020-05-15 2020-08-14 成都硕屋科技有限公司 Production process of nano microporous composite material
WO2021227395A1 (en) * 2020-05-15 2021-11-18 成都硕屋科技有限公司 Production process for nanoporous composite material

Similar Documents

Publication Publication Date Title
JP2002333092A (en) Fiber and fine particle composite heat-insulating material
US8021583B2 (en) Aerogel containing blanket
EP3326811B1 (en) Method and apparatus for manufacturing composite sheet comprising aerogel sheets
US7560062B2 (en) High strength, nanoporous bodies reinforced with fibrous materials
EP3326810B1 (en) Method and apparatus for manufacturing composite sheet comprising aerogel sheet
CN108778707A (en) Isolated material
CA2429771C (en) Aerogel composite with fibrous batting
KR100379671B1 (en) Insulating Multilayer Nonwoven Bat
JPH10510888A (en) Fiber web / airgel composites containing bicomponent fibers, methods for their preparation and their use
EP2176062A1 (en) Aerogel composites
NO310885B1 (en) Fiber structure aerogel composite material containing at least one thermoplastic fiber material, method of manufacture and use of the material
KR20090017645A (en) Vacuum heat insulation material
JP5456986B2 (en) Insulation
JP4361202B2 (en) Sound-absorbing material including meltblown nonwoven fabric
JP2009210072A (en) Vacuum heat insulating material
JP2018179010A (en) Fireproof heat insulation sheet
CN114174034A (en) Method for increasing leavening agent retention using bicomponent fibers
JP2010281444A (en) Heat insulating material
JP7419385B2 (en) insulation fabric
KR101619225B1 (en) Heat insulation sheet, method for manufacturing the same and heat insulating panel
KR100965971B1 (en) Vacuum heat insulation material
JP2018519196A (en) Functional fabric and method for producing the same
EP3990274B1 (en) Nonwoven fibrous web
JP3191968B2 (en) Floor heating members
EP3990278B1 (en) Nonwoven fibrous web