JP2008286282A - Vacuum heat insulation material - Google Patents

Vacuum heat insulation material Download PDF

Info

Publication number
JP2008286282A
JP2008286282A JP2007130582A JP2007130582A JP2008286282A JP 2008286282 A JP2008286282 A JP 2008286282A JP 2007130582 A JP2007130582 A JP 2007130582A JP 2007130582 A JP2007130582 A JP 2007130582A JP 2008286282 A JP2008286282 A JP 2008286282A
Authority
JP
Japan
Prior art keywords
fibers
polyester
vacuum heat
fiber
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007130582A
Other languages
Japanese (ja)
Inventor
Hisao Yamamoto
尚生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Fibers Ltd
Original Assignee
Unitika Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Fibers Ltd filed Critical Unitika Fibers Ltd
Priority to JP2007130582A priority Critical patent/JP2008286282A/en
Publication of JP2008286282A publication Critical patent/JP2008286282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulation material excellent in handleability, work efficiency and production efficiency in manufacture and recycle, capable of reducing the environmental load, and capable of maintaining sufficient heat insulation performance over a long period. <P>SOLUTION: In the vacuum heat insulation material, a core material is directly accommodated in a state of depressurization by an external wrapping material, and the core material is a nonwoven fabric constituted by polyester short fibers and polyester binder short fibers as main fibers, and the polyester short fibers are heat-bonded by melting or softening of binder components of the polyester binder short fibers. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

冷蔵庫、自動販売機、保冷箱、保冷車等の断熱材に用いる真空断熱材に関する。   The present invention relates to a vacuum heat insulating material used as a heat insulating material for a refrigerator, a vending machine, a cold box, a cold car, and the like.

従来、冷蔵庫、自動販売機、保冷箱、保冷車等には、種々な構造や性能を有する断熱材が使用されている。一般的に真空断熱材とは、ガスバリア性の金属蒸着フィルム等からなる外包材に芯材を挿入し、その内部を減圧して密封した構造を有するものである。真空断熱材の断熱性は上記芯材によって大きく左右されるが、現在汎用される芯材として、平均繊維径が0.5〜0.8μm程度の断熱性能に優れるガラス繊維不織布が挙げられる(例えば、特許文献1)。しかしながら、ガラス繊維不織布は、ガラス繊維自身に起因する取扱い性、作業性、環境負荷の大きな問題がある。具体的には、外包材に挿入する際の取扱い難さや、挿入時の外包材のキズ付きを防ぐ目的で、外包材に挿入する前に予め挿入しておくことが好ましい内包材を必要とすることや、リサイクル粉砕時のガラス繊維の飛散や廃棄の問題が挙げられる。   Conventionally, heat insulating materials having various structures and performances are used for refrigerators, vending machines, cold storage boxes, cold cars, and the like. Generally, a vacuum heat insulating material has a structure in which a core material is inserted into an outer packaging material made of a gas barrier metal deposition film or the like, and the inside thereof is decompressed and sealed. Although the heat insulation of a vacuum heat insulating material is greatly influenced by the said core material, the glass fiber nonwoven fabric excellent in heat insulation performance whose average fiber diameter is about 0.5-0.8 micrometer is mentioned as a core material currently used widely (for example, Patent Document 1). However, the glass fiber non-woven fabric has significant problems in handling property, workability, and environmental load due to the glass fiber itself. Specifically, it is necessary to have an inner packaging material that is preferably inserted in advance before being inserted into the outer packaging material for the purpose of preventing difficulty in handling when inserted into the outer packaging material and scratching of the outer packaging material at the time of insertion. In addition, there are problems of scattering and disposal of glass fibers during recycling and grinding.

このようなガラス繊維不織布による芯材の問題を改善する方法として、芯材として、取扱い性、作業性、環境負荷に優れるポリエステル繊維を使用する技術が提案されている(特許文献2)。この技術では、断熱性能を経時的に低下させる原因となるアウトガスの発生を避けるために、レジンボンドによる不織布ではなくニードルパンチ不織布を採用している。しかし、外包材の損傷を防ぐ目的で内包材を採用しており、作業性、生産性の点での問題が残っている。
特開平8−28776号公報 特開2006−283817号公報
As a method for improving the problem of the core material due to such a glass fiber nonwoven fabric, a technique has been proposed in which polyester fiber having excellent handling properties, workability, and environmental load is used as the core material (Patent Document 2). In this technique, a needle punched nonwoven fabric is used instead of a resin bonded nonwoven fabric in order to avoid generation of outgas, which causes the thermal insulation performance to deteriorate over time. However, since the inner packaging material is used for the purpose of preventing the outer packaging material from being damaged, problems in terms of workability and productivity remain.
JP-A-8-28776 JP 2006-283817 A

本発明は、製造時およびリサイクル時において、取扱い性、作業性および生産性に優れ、環境負荷が小さく、かつ、長期にわたって良好な断熱性を維持する真空断熱材を提供することを課題とする。   It is an object of the present invention to provide a vacuum heat insulating material that is excellent in handleability, workability, and productivity during production and recycling, has a small environmental load, and maintains good heat insulation over a long period of time.

本発明は、芯材が減圧状態で直に外包材に収容されてなる真空断熱材であり、芯材は主体繊維であるポリエステル短繊維とポリエステルバインダー短繊維とから構成される不織布であり、ポリエステル短繊維同士は、ポリエステルバインダー短繊維のバインダー成分が溶融または軟化することにより熱接着していることを特徴とする真空断熱材を要旨とするものである。   The present invention is a vacuum heat insulating material in which a core material is directly accommodated in an outer packaging material in a reduced pressure state, and the core material is a nonwoven fabric composed of polyester staple fibers and polyester binder staple fibers, which are main fibers. The short fibers have a gist of a vacuum heat insulating material characterized in that the binder component of the polyester binder short fibers is thermally bonded by melting or softening.

本発明の真空断熱材を構成する芯材は、主体繊維であるポリエステル短繊維とポリエステルバインダー短繊維とから構成される不織布である。芯材の不織布を構成する繊維にポリエステル繊維を用いているのは、熱伝導しにくい素材であり、また、アウトガス発生による断熱性能の経時的な低下が生じにくいためである。すなわち、ポリエステル繊維以外の他の有機繊維(ポリエチレン繊維等)であると、アウトガス発生によって断熱性能の経時的な低下が生じやすい。また、ポリエステル繊維は、取扱い性、作業性、環境負荷の点からも好ましい。   The core material constituting the vacuum heat insulating material of the present invention is a nonwoven fabric composed of polyester staple fibers and polyester binder staple fibers which are main fibers. The reason why the polyester fiber is used as the fiber constituting the nonwoven fabric of the core material is that it is a material that is difficult to conduct heat, and that the heat insulation performance is less likely to deteriorate over time due to outgas generation. That is, when the organic fiber other than the polyester fiber (polyethylene fiber or the like) is used, the heat insulation performance is likely to deteriorate over time due to outgas generation. Polyester fibers are also preferable from the viewpoints of handleability, workability, and environmental load.

ポリエステルとは、化学構造単位が主としてエステル結合で結合されてなる高分子をいう。例えば、ジカルボン酸成分とジオール成分との反応により得られるポリエステルであってもよいし、または、一分子中にヒドロキシ基とカルボキシル基とを有するヒドロキシカルボン酸成分同士の反応により得られるポリエステルであってもよい。具体的には、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリプロピレンテレフタレート、ポリアリレート、ポリ乳酸などが挙げられる。また、これらのポリエステルに他の成分が共重合してなる共重合ポリエステルでもよい。量産性およびコストを考慮すればポリエチレンテレフタレートを用いることが好ましい。なお、いわゆるリサイクルポリエステルを使用してもよい。   Polyester refers to a polymer in which chemical structural units are bonded mainly by ester bonds. For example, it may be a polyester obtained by a reaction between a dicarboxylic acid component and a diol component, or a polyester obtained by a reaction between hydroxycarboxylic acid components having a hydroxy group and a carboxyl group in one molecule. Also good. Specific examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polypropylene terephthalate, polyarylate, and polylactic acid. Further, a copolymer polyester obtained by copolymerizing these polyesters with other components may be used. In consideration of mass productivity and cost, it is preferable to use polyethylene terephthalate. In addition, you may use what is called recycled polyester.

本発明における不織布は、ポリエステル短繊維同士が、ポリエステルバインダー短繊維(以下、バインダー短繊維ともいう。)のバインダー成分が溶融または軟化することにより熱接着しているものである。バインダー短繊維のバインダー成分は、主体繊維であるポリエステル短繊維を構成するポリエステルよりも低い融点(融点がないものについては軟化点を融点とみなす。)を有し、50℃以上低い融点を有していることが好ましい。バインダー成分が低い融点を有することにより、熱処理において、バインダー成分を溶融または軟化させる際に主体繊維は軟化または分解変性せずに良好に繊維形態を維持することができる。バインダー繊維の形態は、バインダー成分のみからなる単相形態のものであってもよいが、バインダー成分とバインダー成分よりも高融点の成分とからなる複合形態のものがよい。なかでも、バインダー成分を鞘部に配し、高融点の成分を芯部に配した芯鞘型複合繊維であることが好ましい。複合形態の場合は、バインダー成分と高融点の成分との融点差は、50℃以上であることが好ましい。融点差を50℃以上設けることにより、バインダー成分を溶融または軟化させる熱処理において、高融点の成分までもが軟化または分解変性せず繊維形態を良好に維持できることとなり、得られる不織布の保形性が良好となる。また、製造工程における熱処理条件のコントロールが容易となるという利点もある。バインダー短繊維としては、芯部にポリエチレンテレフタレートを配し、鞘部(バインダー成分)に低融点の共重合ポリエステルを配したものを用いることが好ましい。バインダー成分に用いる共重合ポリエステルとしては、安価で接着力の高いことから、エチレンテレフタレートを繰り返し単位としこれにイソフタル酸が共重合してなる共重合ポリエステルを使用することが好ましい。なお、主体繊維であるポリエステル短繊維とバインダー短繊維との混合比率は95〜80/5〜20(質量比)がよい。バインダー短繊維の混率を20質量%以下とすることにより、不織布を外包材に挿入後の減圧排気を良好に行うことができる。また、バインダー短繊維の混率を5質量%以上とすることにより、芯材の保形性を良好に保ち、取り扱い性の良好な芯材を得ることができる。   The nonwoven fabric in the present invention is one in which polyester short fibers are thermally bonded together by melting or softening a binder component of polyester binder short fibers (hereinafter also referred to as binder short fibers). The binder component of the binder short fiber has a melting point lower than that of the polyester constituting the polyester staple fiber, which is the main fiber (the softening point is regarded as the melting point for those having no melting point), and has a melting point lower by 50 ° C. or more. It is preferable. When the binder component has a low melting point, when the binder component is melted or softened in the heat treatment, the main fiber can maintain a good fiber form without being softened or decomposed. The form of the binder fiber may be a single-phase form composed only of the binder component, but is preferably a composite form composed of a binder component and a component having a melting point higher than that of the binder component. Especially, it is preferable that it is a core-sheath-type composite fiber which distribute | arranged the binder component to the sheath part and distribute | arranged the high melting-point component to the core part. In the case of a composite form, the difference in melting point between the binder component and the high melting point component is preferably 50 ° C. or higher. By providing a melting point difference of 50 ° C. or higher, in the heat treatment for melting or softening the binder component, even the high melting point component can be well maintained in the fiber form without being softened or decomposed and modified, and the resulting nonwoven fabric has shape retention. It becomes good. In addition, there is an advantage that the heat treatment conditions in the manufacturing process can be easily controlled. As the binder short fiber, it is preferable to use one in which polyethylene terephthalate is arranged in the core portion and a low-melting copolymer polyester is arranged in the sheath portion (binder component). As the copolyester used for the binder component, it is preferable to use a copolyester obtained by copolymerizing ethylene terephthalate as a repeating unit and isophthalic acid, since it is inexpensive and has high adhesive strength. In addition, the mixing ratio of the polyester staple fiber which is the main fiber and the binder staple fiber is preferably 95 to 80/5 to 20 (mass ratio). By setting the mixing ratio of the binder short fibers to 20% by mass or less, vacuum exhaust after inserting the nonwoven fabric into the outer packaging material can be performed well. Further, by setting the mixing ratio of the short binder fibers to 5% by mass or more, it is possible to obtain a core material that maintains the shape retention of the core material and has good handleability.

主体繊維であるポリエステル短繊維の単糸繊度は、断熱性能を考慮すると、小さい方が好ましい。単糸繊度が小さいと、例えば同一目付であった場合、不織布を構成する繊維本数が多くなり、繊維本数が多くなると繊維同士の接触点もまた多くなる。熱は繊維の軸方向に沿って伝わると考えられており、一方、繊維同士の接触点では、熱伝導の抵抗となると考えられている。したがって、単糸繊度の小さい繊維からなる不織布は、不織布全体における繊維の接触点および接触面積が大きいため、熱が伝わりにくく断熱性能が良好となる。本発明では、4.4デシテックス以下であることが好ましく、より好ましくは1.1デシテックス以下である。また、下限としては、0.1デシテックス程度がよい。1.1デシテックス以下の繊維を得る方法としては、直接紡糸によるものでもよいが、割繊型複合繊維を分割することにより得られる割繊極細繊維や、割繊型複合繊維や海島型複合繊維を溶剤減量することにより一成分を溶かして得られる極細繊維であってもよい。   The single yarn fineness of the polyester staple fiber, which is the main fiber, is preferably smaller in consideration of the heat insulation performance. When the single yarn fineness is small, for example, when the fabric weight is the same, the number of fibers constituting the nonwoven fabric increases, and when the number of fibers increases, the number of contact points between the fibers also increases. It is thought that heat is transmitted along the axial direction of the fiber, while it is considered that it becomes a resistance to heat conduction at the contact point between the fibers. Therefore, a nonwoven fabric composed of fibers having a small single yarn fineness has a large contact point and contact area of fibers in the entire nonwoven fabric, so that heat is not easily transmitted and heat insulation performance is good. In the present invention, it is preferably 4.4 dtex or less, more preferably 1.1 dtex or less. The lower limit is preferably about 0.1 dtex. 1.1 As a method of obtaining fibers having a decitex or lower, direct spinning may be used, but split fiber ultrafine fibers obtained by dividing split fiber type composite fibers, split fiber type composite fibers, and sea-island type composite fibers may be used. It may be an ultrafine fiber obtained by dissolving one component by reducing the amount of solvent.

主体繊維の横断面形状は、汎用性の点からは円形のものを用いるのがよいが、偏平断面のものがより好ましい。上述したように、熱は繊維の軸方向に沿って伝わるところ、繊維同士の接触点は熱伝導の抵抗となると考えられることから、繊維同士の接触面積が大きいと熱が伝わりにくく断熱性能が良好となるため、偏平断面の繊維同士は、繊維同士の接触面積が大きくなるため、熱が伝導しにくくなって断熱性能が良好となる。   The cross-sectional shape of the main fiber is preferably a circular shape from the viewpoint of versatility, but a flat cross-sectional shape is more preferable. As described above, heat is transmitted along the axial direction of the fiber, and the contact point between the fibers is considered to be a resistance to heat conduction. Therefore, if the contact area between the fibers is large, the heat is not easily transmitted and the heat insulation performance is good. Therefore, the fibers having a flat cross section have a large contact area between the fibers, so that heat is difficult to conduct and the heat insulating performance is improved.

主体繊維の捲縮の形態は、機械捲縮を有するものであっても立体捲縮を有するものであってもよい。   The crimped form of the main fiber may be a mechanical crimp or a three-dimensional crimp.

不織布を構成する主体繊維およびバインダー短繊維の繊維長は特に限定されないが、25〜76mm程度が好ましい。   The fiber length of the main fiber and the binder short fiber constituting the nonwoven fabric is not particularly limited, but is preferably about 25 to 76 mm.

不織布は、主体繊維であるポリエステル短繊維とポリエステルバインダー短繊維とを混綿してカードウェブを作成し、交絡処理を施さずに、熱処理を施すことにより、ポリエステルバインダー短繊維のバインダー成分を溶融または軟化させてポリエステル短繊維同士を熱接着することにより得られたものであることが好ましい。カードウェブにおける繊維の長手方向(軸方向)は厚み方向ではなく、ウェブの面方向にある。例えば、ウェブの機械方向に繊維の長手方向が引き揃えられて堆積してなるウェブ(パラレルウェブ)や、前記パラレルウェブを繊維の長手方向が幅方向となるように積層させたウェブ(クロスウェブ)や、繊維の長手方向が厚み方向でなく面方向のあらゆる方向に堆積されたウェブ(ランダムウェブ)が挙げられる。本発明においては、これらのいずれのカードウェブを用いてもよい。カードウェブに交絡処理を施さずに熱処理を施すことによって不織布化したものを用いる理由は、得られる不織布中に多数堆積した繊維において、繊維の長手方向(軸方向)が厚み方向に配置させにくくすることにある。すわなち、熱は繊維の軸方向に沿って伝わると考えられており、熱は不織布の厚み方向より伝わるため、厚み方向(熱が伝わる方向)に沿って繊維の軸方向を配置させず、面方向に沿って繊維の軸方向を配置させることにより、不織布の厚み方向により熱が伝わりにくくし、断熱性を向上させることができる。また、このように不織布の厚み方向に繊維の長手方向を配置しにくくすることにより、換言すると、不織布の面方向に繊維の長手方向が位置するように堆積させることにより、外包材に挿入する際に容易に挿入することができ、外包材に繊維によるキズが付きにくいので、外包材に挿入前に内包材にて包むといった作業を必要とせず、作業性、生産性にも優れるといった効果も奏する。ニードルパンチ等の交絡処理を施せば、繊維軸方向が厚み方向と同じ方向に配置させる傾向となり、熱が不織布の厚み方向に伝導しやすくなって、断熱性能が低下する傾向となる。本発明において、熱処理としては、熱風処理が好ましい。   Nonwoven fabric is made by blending polyester staple fibers and polyester binder staple fibers, which are the main fibers, to create a card web, and then heat-treating the polyester binder short fibers without melting or softening them. It is preferable that the polyester short fibers are obtained by thermal bonding. The longitudinal direction (axial direction) of the fiber in the card web is not in the thickness direction but in the surface direction of the web. For example, a web (parallel web) in which the longitudinal direction of fibers is aligned and accumulated in the machine direction of the web, or a web (cross web) in which the parallel webs are laminated so that the longitudinal direction of the fibers is in the width direction In addition, a web (random web) in which the longitudinal direction of the fibers is deposited not in the thickness direction but in any direction in the plane direction can be mentioned. In the present invention, any of these card webs may be used. The reason for using a non-woven fabric by applying a heat treatment to the card web without making it entangled is to make it difficult to arrange the longitudinal direction (axial direction) of the fibers in the thickness direction in the fibers accumulated in the obtained nonwoven fabric. There is. That is, heat is considered to be transmitted along the axial direction of the fiber, and since heat is transmitted from the thickness direction of the nonwoven fabric, the axial direction of the fiber is not arranged along the thickness direction (direction in which heat is transmitted), By disposing the axial direction of the fibers along the surface direction, heat is hardly transmitted in the thickness direction of the nonwoven fabric, and the heat insulation can be improved. In addition, by making it difficult to arrange the longitudinal direction of the fibers in the thickness direction of the nonwoven fabric in this way, in other words, by depositing so that the longitudinal direction of the fibers is positioned in the surface direction of the nonwoven fabric, when inserting into the outer packaging material Since the outer packaging material is not easily damaged by fibers, it is not necessary to wrap the outer packaging material with the inner packaging material before insertion, and the workability and productivity are also excellent. . If entanglement processing such as needle punching is performed, the fiber axis direction tends to be arranged in the same direction as the thickness direction, and heat tends to be conducted in the thickness direction of the nonwoven fabric, so that the heat insulation performance tends to be lowered. In the present invention, hot air treatment is preferable as the heat treatment.

芯材である不織布の目付け、厚みは、外包材に挿入して減圧排気し最終商品である真空断熱材の芯材の密度、厚みに照らし合わせて適宜決定すればよいが、目付は1000〜2000g/m程度、厚みは減圧排気前で5〜20mm程度が一般である。目付を2000g/m以下とし、厚みを20mm以下とすることにより、取り扱いが良好で、外包材に挿入しやく、また、減圧排気しやすい。また、目付を1000g/m以上、厚みを5mm以上とすることにより、所望の断熱性能を得ることができる。 The basis weight and thickness of the nonwoven fabric as the core material may be appropriately determined in light of the density and thickness of the core material of the vacuum heat insulating material that is the final product after being inserted into the outer packaging material and evacuated under reduced pressure. The basis weight is 1000 to 2000 g. / M 2 , and the thickness is generally about 5 to 20 mm before exhausting under reduced pressure. By setting the basis weight to 2000 g / m 2 or less and the thickness to 20 mm or less, the handling is good, it is easy to insert into the outer packaging material, and it is easy to evacuate under reduced pressure. Moreover, desired heat insulation performance can be obtained by making the basis weight 1000 g / m 2 or more and the thickness 5 mm or more.

本発明の真空断熱材は、上記した芯材である不織布は、減圧状態で直に外包材に収容されている。   In the vacuum heat insulating material of the present invention, the above-described nonwoven fabric, which is the core material, is directly accommodated in the outer packaging material in a reduced pressure state.

外包材は、ガスバリア性を有し、内部を減圧に維持できるものであれば、何れのものでも用いることができる。また、ヒートシール可能なものがより好ましい。好ましい外包材としては、例えば、最外層から、ナイロン樹脂層、アルミニウムを蒸着したポリエチレンテレフタレート樹脂層、アルミ箔、そして最内層として高密度ポリエチレン樹脂層の4層構造からなるガスバリアフィルムが挙げられる。また、最外層から、ポリエチレンテレフタレート樹脂層、中間層にアルミ箔、最内層に高密度ポリエチレン樹脂層からなるガスバリアフィルムが挙げられる。さらには、最外層にポリエチレンテレフタレート樹脂層、中間層にアルミニウムを蒸着したエチレン−ビニルアルコール共重合体樹脂層、最内層に高密度ポリエチレン樹脂層からなるガスバリアフィルムが挙げられる。   Any outer packaging material can be used as long as it has gas barrier properties and can maintain the inside at a reduced pressure. Moreover, what can be heat-sealed is more preferable. Preferable outer packaging materials include, for example, a gas barrier film having a four-layer structure including an outermost layer, a nylon resin layer, a polyethylene terephthalate resin layer on which aluminum is deposited, an aluminum foil, and a high-density polyethylene resin layer as the innermost layer. Moreover, the gas barrier film which consists of a polyethylene terephthalate resin layer from an outermost layer, an aluminum foil in an intermediate | middle layer, and a high-density polyethylene resin layer in an innermost layer is mentioned. Furthermore, a gas barrier film comprising a polyethylene terephthalate resin layer as the outermost layer, an ethylene-vinyl alcohol copolymer resin layer in which aluminum is vapor-deposited as an intermediate layer, and a high-density polyethylene resin layer as the innermost layer can be mentioned.

本発明の真空断熱材においては、経時的な断熱性をより向上させる観点から、外包材の中に水蒸気もしくは空気の構成ガスのうち少なくとも1種類を吸着するガス吸着剤(ゲッター材)を封入することが好ましい。外包材内部の芯材にガス吸着剤に応じた窪みを形成しておき、その窪みに直接ガス吸着剤を配置して外包材内部のガスを吸着させてもよいし、外包材の上から窪みの位置にガス吸着剤を配置して外包材内部とガス吸着剤とを連結させて外包材内部のガスを吸着させてもよい。ガス吸着剤は、通気孔を有する硬質容器に収容されたものであってもよいし、または通気性を有する軟質容器に収容されたものであってもよい。   In the vacuum heat insulating material of the present invention, a gas adsorbent (getter material) that adsorbs at least one of the constituent gases of water vapor or air is enclosed in the outer packaging material from the viewpoint of further improving the heat insulation over time. It is preferable. A hollow corresponding to the gas adsorbent may be formed in the core material inside the outer packaging material, and the gas adsorbent may be arranged directly in the hollow to adsorb the gas inside the outer packaging material, or the depression from the top of the outer packaging material. Alternatively, the gas adsorbent may be disposed at the position, and the inside of the outer packaging material and the gas adsorbent may be connected to adsorb the gas inside the outer packaging material. The gas adsorbent may be contained in a hard container having a vent hole, or may be contained in a soft container having air permeability.

本発明の真空断熱材は、以下の方法によって良好に得ることができる。   The vacuum heat insulating material of this invention can be favorably obtained by the following method.

上記した芯材を三方が熱融着(ヒートシール)された袋状の外包材に挿入する。このときガス吸着剤を一緒に挿入することが好ましい。芯材を挿入した外包材は開口した状態で真空引き装置を用い、内圧が0.1〜0.01Torr程度の真空度となるよう減圧排気する。その後、外包材の開口部を熱融着により封止して真空断熱材を得る。   The above-described core material is inserted into a bag-shaped outer packaging material in which three sides are heat-sealed (heat-sealed). At this time, it is preferable to insert the gas adsorbent together. The outer packaging material into which the core material has been inserted is evacuated under reduced pressure using an evacuation device so that the internal pressure becomes a degree of vacuum of about 0.1 to 0.01 Torr. Then, the opening part of an outer packaging material is sealed by heat sealing, and a vacuum heat insulating material is obtained.

なお、断熱性能をさらに向上させる目的で、外包材開口部を封止する前に、芯材を乾燥させることが好ましい。芯材の乾燥処理は、芯材を外包材に挿入する直前に行ってもよいし、または外包材に挿入した後であって減圧排気する前に外包材に挿入した状態で行ってもよい。乾燥処理は、芯材に含まれる水分等を除去するという目的を達すれば特にその方法は特定しないが、120℃で1時間程度行うことが好ましい。水分等をより有効に除去するために真空状態で乾燥処理を施すことがさらに好ましい。また、遠赤外線による乾燥を併用してもよい。真空度は、0.5〜0.01Torr程度が好ましい。   For the purpose of further improving the heat insulation performance, it is preferable to dry the core material before sealing the outer packaging material opening. The drying process of the core material may be performed immediately before the core material is inserted into the outer packaging material, or may be performed after being inserted into the outer packaging material after being inserted into the outer packaging material and before being evacuated under reduced pressure. The method of drying is not particularly specified as long as the purpose of removing moisture and the like contained in the core material is reached, but it is preferably performed at 120 ° C. for about 1 hour. In order to more effectively remove moisture and the like, it is more preferable to perform a drying process in a vacuum state. Moreover, you may use together drying by far infrared rays. The degree of vacuum is preferably about 0.5 to 0.01 Torr.

本発明の真空断熱材は、芯材がポリエステル繊維から構成されているため、製造時およびリサイクル時において、取扱い性、作業性、生産性に優れ、環境負荷が小さい。また、芯材は、レジンボンドを用いたものではなく、ポリエステルバインダー短繊維のバインダー成分が軟化または溶融することにより不織布化した不織布であるので、取り扱い性が良好で、アウトガスの発生がなく長期にわたって良好な断熱性を維持する。   In the vacuum heat insulating material of the present invention, since the core material is composed of polyester fiber, it is excellent in handleability, workability, and productivity during production and recycling, and has a low environmental load. In addition, the core material is not a resin bond, and is a non-woven fabric that is made non-woven by softening or melting the binder component of the polyester binder short fiber, so that the handleability is good and there is no outgassing for a long time. Maintain good thermal insulation.

以下、実施例によって本発明を詳しく説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by these.

実施例1
主体繊維であるポリエステル短繊維として、繊維の横断面が円形であるポリエチレンテレフタレート繊維(0.6dtex×44mm)、バインダー短繊維として芯鞘型複合繊維(2.2dtex×32mm、芯部がポリエチレンテレフタレート、鞘部であるバインダー成分がエチレンテレフタレートにイソフタル酸を共重合した共重合ポリエステルで軟化点110℃)を用意し、主体繊維/バインダー短繊維を95/5(質量比)の割合で混綿してカードに通した後、クロスラッパーで積層しクロスウエブとし、熱風循環装置で熱処理し(140℃、60秒)、密度100kg/m、厚み15mmの不織布(芯材)を得た。得られた芯材を120℃で60分間乾燥した後、ナイロン樹脂/アルミニウムを蒸着したポリエチレンテレフタレート樹脂/アルミ箔/高密度ポリエチレン樹脂の4層構造からなるガスバリアフィルムからなり三方がヒートシールされた外包材(外寸250mm×270mm:シール部も含む)に挿入し、芯材の上にゲッター材(サエス ゲッターズ社製:COMBO−3)を1個挿入した。その状態で直ちに真空引き装置を用い、内圧が0.01Torrとなるよう減圧排気を行い、外包材の開口部をヒートシールして密封した。得られた真空断熱材は、200mm×200mmの大きさで、厚み6mm、また、密度は250kg/mであった。
Example 1
Polyester short fiber as the main fiber, polyethylene terephthalate fiber (0.6 dtex × 44 mm) whose cross section is circular, and core-sheath type composite fiber (2.2 dtex × 32 mm, core as polyethylene terephthalate) as binder short fiber, The binder component, which is the sheath, is a copolyester obtained by copolymerizing ethylene terephthalate and isophthalic acid, and a softening point of 110 ° C. is prepared. After passing through, it was laminated with a cross wrapper to form a cross web, and heat treated with a hot air circulation device (140 ° C., 60 seconds) to obtain a nonwoven fabric (core material) having a density of 100 kg / m 3 and a thickness of 15 mm. The obtained core material was dried at 120 ° C. for 60 minutes, and then a three-sided heat-sealed envelope comprising a gas barrier film having a four-layer structure of nylon resin / aluminum-deposited polyethylene terephthalate resin / aluminum foil / high-density polyethylene resin The material was inserted into a material (outside dimensions 250 mm × 270 mm: including a seal portion), and one getter material (manufactured by SAES Getters: COMBO-3) was inserted on the core material. In this state, a vacuum evacuation device was immediately used to perform vacuum exhaust so that the internal pressure was 0.01 Torr, and the opening of the outer packaging material was heat sealed and sealed. The obtained vacuum heat insulating material had a size of 200 mm × 200 mm, a thickness of 6 mm, and a density of 250 kg / m 3 .

実施例2
実施例1において、主体繊維として、繊維の横断面が偏平断面であるポリエチレンテレフタレート繊維(2.2dtex×51mm)を用いたこと以外は、実施例1と同様にして実施例2の真空断熱材を得た。得られた真空断熱材の厚みは5mm、密度は250kg/mであった。
Example 2
In Example 1, the vacuum heat insulating material of Example 2 was used in the same manner as in Example 1 except that polyethylene terephthalate fiber (2.2 dtex × 51 mm) having a flat cross section was used as the main fiber. Obtained. The thickness of the obtained vacuum heat insulating material was 5 mm, and the density was 250 kg / m 3 .

比較例1
実施例1において、不織布を得るにあたって、主体繊維として繊維の横断面が円形であるポリエチレンテレフタレート繊維(2.2dtex×51mm)を用いたこと、バインダー短繊維を用いなかったこと、ウェブにニードルパンチ処理を施したこと(パンチ密度200パンチ/cm)、熱風循環装置による熱処理を施さなかったこと以外は、実施例1と同様にして、比較例1の真空断熱材を得た。得られた真空断熱材の厚みは6mm、密度は250kg/mであった。
Comparative Example 1
In Example 1, in obtaining a nonwoven fabric, polyethylene terephthalate fibers (2.2 dtex × 51 mm) having a circular cross section of the fibers were used as main fibers, binder short fibers were not used, and needle punching was applied to the web. A vacuum heat insulating material of Comparative Example 1 was obtained in the same manner as in Example 1 except that the heat treatment was performed (punch density 200 punch / cm 2 ) and the heat treatment by the hot air circulation device was not performed. The obtained vacuum heat insulating material had a thickness of 6 mm and a density of 250 kg / m 3 .

次いで、得られた真空断熱材の初期断熱性、長期断熱性、作業性を以下の方法で評価し、その結果を表1に示す。
<初期断熱性>
初期断熱性の評価は、熱伝導率測定装置(英弘精機社製 商品名「Autoλ HC−072」)を用いて、平均温度20℃の熱伝導率を測定することにより行った。なお、測定は真空断熱材を得た後より1日経過後に測定した。
<長期断熱性>
長期断熱性の評価は、初期断熱性を評価した真空断熱材を70℃の恒温槽に入れ、30日経過後に取り出し、熱伝導率測定装置(英弘精機社製 商品名「Autoλ HC−072」)を用いて、平均温度20℃の熱伝導率を測定することにより行った。
<作業性>
芯材を外包材に挿入するときの作業性を以下の基準に従って評価した。
○:外包材への挿入が容易である。
×:外包材への挿入が容易ではない。
Subsequently, the initial heat insulation property, long-term heat insulation property, and workability of the obtained vacuum heat insulating material were evaluated by the following methods, and the results are shown in Table 1.
<Initial insulation>
The initial heat insulation was evaluated by measuring the thermal conductivity at an average temperature of 20 ° C. using a thermal conductivity measuring device (trade name “Autoλ HC-072” manufactured by Eiko Seiki Co., Ltd.). In addition, the measurement was performed after 1 day from after obtaining the vacuum heat insulating material.
<Long-term insulation>
Evaluation of long-term heat insulation is performed by placing the vacuum heat insulating material evaluated for initial heat insulation in a thermostatic bath at 70 ° C. and taking it out after 30 days, and measuring the thermal conductivity (trade name “Autoλ HC-072” manufactured by Eiko Seiki Co., Ltd.) Was used to measure the thermal conductivity at an average temperature of 20 ° C.
<Workability>
The workability when inserting the core material into the outer packaging material was evaluated according to the following criteria.
◯: Easy to insert into the outer packaging material.
X: It is not easy to insert into the outer packaging material.


表1からわかるように、実施例1、2の本発明の真空断熱材は、作業性も良好で、また、初期熱伝導率および長期熱伝導率はいずれも同じ値であり、良好な断熱性を示すといわれる熱伝導率の値である0.003W/m・k以下であった。一方、比較例の真空断熱材は、外包材の挿入が容易でなく、また、実施例の真空断熱材と比較して熱伝導率の値が大きく、熱が伝わりやすいものであった。

As can be seen from Table 1, the vacuum heat insulating materials of the present invention of Examples 1 and 2 have good workability, and the initial thermal conductivity and the long-term thermal conductivity are both the same value, and good heat insulating properties. It was 0.003 W / m · k or less which is a value of thermal conductivity. On the other hand, in the vacuum heat insulating material of the comparative example, it was not easy to insert the outer packaging material, and the heat conductivity value was large compared to the vacuum heat insulating material of the example, and heat was easily transmitted.

Claims (4)

芯材が減圧状態で直に外包材に収容されてなる真空断熱材であり、芯材は主体繊維であるポリエステル短繊維とポリエステルバインダー短繊維とから構成される不織布であり、ポリエステル短繊維同士は、ポリエステルバインダー短繊維のバインダー成分が溶融または軟化することにより熱接着していることを特徴とする真空断熱材。 It is a vacuum heat insulating material in which the core material is directly accommodated in the outer packaging material in a reduced pressure state, the core material is a non-woven fabric composed of polyester staple fibers and polyester binder staple fibers, which are main fibers, A vacuum heat insulating material, wherein the binder component of the polyester binder short fiber is thermally bonded by melting or softening. 主体繊維の繊度が0.1デシテックス〜4.4デシテックスであることを特徴とする請求項1記載の真空断熱材。 2. The vacuum heat insulating material according to claim 1, wherein the fineness of the main fiber is 0.1 dtex to 4.4 dtex. 主体繊維の横断面形状が偏平であることを特徴とする請求項1〜2に記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the cross-sectional shape of the main fiber is flat. 不織布は、主体繊維であるポリエステル短繊維とポリエステルバインダー短繊維とを混綿してカードウェブを作成し、交絡処理を施さずに、熱処理を施すことにより、ポリエステルバインダー短繊維のバインダー成分を溶融または軟化させてポリエステル短繊維同士を熱接着することにより得られたものであることを特徴とする請求項1〜3のいずれか1項記載の真空断熱材。
Nonwoven fabric is made by blending polyester staple fibers and polyester binder staple fibers, which are the main fibers, to create a card web, and then heat-treating the polyester binder short fibers without melting or softening them. The vacuum heat insulating material according to claim 1, wherein the vacuum heat insulating material is obtained by thermally bonding polyester short fibers together.
JP2007130582A 2007-05-16 2007-05-16 Vacuum heat insulation material Pending JP2008286282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130582A JP2008286282A (en) 2007-05-16 2007-05-16 Vacuum heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130582A JP2008286282A (en) 2007-05-16 2007-05-16 Vacuum heat insulation material

Publications (1)

Publication Number Publication Date
JP2008286282A true JP2008286282A (en) 2008-11-27

Family

ID=40146192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130582A Pending JP2008286282A (en) 2007-05-16 2007-05-16 Vacuum heat insulation material

Country Status (1)

Country Link
JP (1) JP2008286282A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223408A (en) * 2009-03-25 2010-10-07 Hitachi Appliances Inc Vacuum heat insulating material, and heat insulating box and equipment using the same
JP2010242833A (en) * 2009-04-03 2010-10-28 Mitsubishi Electric Corp Vacuum heat insulating material, insulating box, and method of manufacturing vacuum heat insulating material
JP2010281444A (en) * 2009-05-07 2010-12-16 Toray Ind Inc Heat insulating material
JP2011127651A (en) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp Vacuum heat insulating material, heat insulating box and method for manufacturing the material
JP2011144842A (en) * 2010-01-13 2011-07-28 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011153630A (en) * 2010-01-26 2011-08-11 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011174550A (en) * 2010-02-25 2011-09-08 Hitachi Appliances Inc Vacuum heat insulation material and equipment using the same
EP2985376A4 (en) * 2013-04-08 2016-06-22 Lg Hausys Ltd Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926084A (en) * 1995-04-05 1997-01-28 Hoechst Trevira Gmbh & Co Kg Windable heat-insulating material using synthetic fiber as base body
JP2002333092A (en) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd Fiber and fine particle composite heat-insulating material
JP2006029505A (en) * 2004-07-20 2006-02-02 Kurabo Ind Ltd Vacuum heat insulating material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926084A (en) * 1995-04-05 1997-01-28 Hoechst Trevira Gmbh & Co Kg Windable heat-insulating material using synthetic fiber as base body
JP2002333092A (en) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd Fiber and fine particle composite heat-insulating material
JP2006029505A (en) * 2004-07-20 2006-02-02 Kurabo Ind Ltd Vacuum heat insulating material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223408A (en) * 2009-03-25 2010-10-07 Hitachi Appliances Inc Vacuum heat insulating material, and heat insulating box and equipment using the same
JP2010242833A (en) * 2009-04-03 2010-10-28 Mitsubishi Electric Corp Vacuum heat insulating material, insulating box, and method of manufacturing vacuum heat insulating material
JP2010281444A (en) * 2009-05-07 2010-12-16 Toray Ind Inc Heat insulating material
JP2011127651A (en) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp Vacuum heat insulating material, heat insulating box and method for manufacturing the material
JP2011144842A (en) * 2010-01-13 2011-07-28 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011153630A (en) * 2010-01-26 2011-08-11 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011174550A (en) * 2010-02-25 2011-09-08 Hitachi Appliances Inc Vacuum heat insulation material and equipment using the same
EP2985376A4 (en) * 2013-04-08 2016-06-22 Lg Hausys Ltd Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same
US9734933B2 (en) 2013-04-08 2017-08-15 Lg Hausys, Ltd. Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same

Similar Documents

Publication Publication Date Title
JP2008286282A (en) Vacuum heat insulation material
KR20090017645A (en) Vacuum heat insulation material
JP2006283817A (en) Vacuum heat insulation material
JP2006029505A (en) Vacuum heat insulating material
KR101164306B1 (en) Vacuum heat insulating material, heat-insulating box body using the same and refrigerator
JP2010060045A (en) Vacuum heat insulating material, refrigerator using the same, and manufacturing method of vacuum heat insulating material
JP4012903B2 (en) Vacuum insulation
JP2006183810A (en) Method of manufacturing vacuum heat insulating material
JP2006162076A (en) Vacuum thermal insulating material
JP2006161939A (en) Vacuum thermal insulating material
JP2010065711A (en) Vacuum heat insulating material and refrigerator using the same
JP2004011709A (en) Vacuum heat insulating material, its manufacturing method
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
KR100965971B1 (en) Vacuum heat insulation material
JP5033595B2 (en) Vacuum insulation
JP2012092870A (en) Vacuum heat insulating material and heat insulating box using the same
JP5591612B2 (en) Vacuum insulation core material and vacuum insulation material using the core material
JP4997198B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
JP2006057213A (en) Core material for vacuum heat insulator and vacuum heat insulator using the core material
JP2013036595A (en) Vacuum heat insulating material
JP2005315310A (en) Vacuum thermal insulating panel and its manufacturing method
JP2007050521A (en) Manufacturing method of vacuum heat insulating member
JP2006153150A (en) Vacuum insulation material
JP5216510B2 (en) Vacuum insulation material and equipment using the same
JP2012057745A (en) Vacuum heat insulation material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612