JP2006029505A - Vacuum heat insulating material - Google Patents

Vacuum heat insulating material Download PDF

Info

Publication number
JP2006029505A
JP2006029505A JP2004211678A JP2004211678A JP2006029505A JP 2006029505 A JP2006029505 A JP 2006029505A JP 2004211678 A JP2004211678 A JP 2004211678A JP 2004211678 A JP2004211678 A JP 2004211678A JP 2006029505 A JP2006029505 A JP 2006029505A
Authority
JP
Japan
Prior art keywords
heat insulating
fiber
core material
vacuum heat
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004211678A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takashima
博之 高島
Koji Yamashita
幸司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2004211678A priority Critical patent/JP2006029505A/en
Priority to KR1020077003781A priority patent/KR100965971B1/en
Priority to PCT/JP2005/013255 priority patent/WO2006009146A1/en
Priority to CNB2005800314991A priority patent/CN100538147C/en
Priority to KR1020087031650A priority patent/KR20090017645A/en
Priority to US11/632,911 priority patent/US7947347B2/en
Publication of JP2006029505A publication Critical patent/JP2006029505A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material having extremely low environmental load, when manufactured and recycled, and improved handling property and workability while maintaining good heat insulating performance for a long period. <P>SOLUTION: The vacuum heat insulating material comprises at least a core material and an enclosing material storing the core material and keeping itself in a depressurized condition. The core material is a sheet fiber assembly which contains 50 wt% or more polyester fibers having fiber sizes of 1-6 deniers. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷蔵庫、自動販売機、保冷箱、保冷車等の断熱材として用いる真空断熱材に関する。 The present invention relates to a vacuum heat insulating material used as a heat insulating material for a refrigerator, a vending machine, a cold box, a cold car, and the like.

従来、冷蔵庫、自動販売機、保冷箱、保冷車等には、種々の構造・性能を有する断熱材が使用されている。近年においては、非常に優れた断熱性を有する真空断熱材が上記用途に多く使用されている。真空断熱材とは、一般的には、ガスバリア性の金属蒸着フィルム等からなる外包材に芯材を充填し、その内部を減圧して密封した構造を有するものである。このような真空断熱材の断熱性・生産性・取扱い性能は、上記芯材によって大きく左右されるが、現在汎用される芯材としては、連続気泡ポリウレタンフォーム(特許文献1)、平均繊維径が0.5〜8μm程度のガラス繊維集合体(特許文献2)およびガラス繊維集合体と他の熱可塑性樹脂繊維の複合体(特許文献3)が挙げられる。   Conventionally, heat insulating materials having various structures and performances are used in refrigerators, vending machines, cold storage boxes, cold cars, and the like. In recent years, a vacuum heat insulating material having a very excellent heat insulating property has been used in many applications. The vacuum heat insulating material generally has a structure in which a core material is filled in an outer packaging material made of a gas barrier metal deposition film or the like, and the inside thereof is decompressed and sealed. The heat insulating properties, productivity, and handling performance of such a vacuum heat insulating material greatly depend on the core material, but as a core material that is currently widely used, open cell polyurethane foam (Patent Document 1), the average fiber diameter is Examples thereof include a glass fiber aggregate (Patent Document 2) of about 0.5 to 8 μm and a composite of a glass fiber aggregate and other thermoplastic resin fibers (Patent Document 3).

しかしながら、上記汎用の真空断熱材用芯材は次のような課題を有している。
連続気泡ポリウレタンフォームを用いた芯材は、作業性、取扱い性、軽量性等非常に優れているが、ガラス繊維等の繊維状材料に比較して、断熱性が劣る面がある。
However, the general-purpose core for vacuum heat insulating material has the following problems.
Although the core material using the open-cell polyurethane foam is very excellent in workability, handleability, lightness and the like, it has a poor heat insulating property as compared with a fibrous material such as glass fiber.

平均繊維径が0.5〜8μm程度のガラス繊維集合体を用いた芯材は、アウトガス(芯材から揮発するガス分)の発生もなく、断熱性に極めて優れた性質を有するが、ガラス繊維という材質自身の取扱い性・作業性に大きな難がある。取扱い性を改善すべく、ガラス繊維を重ね合わせたものにニードルパンチを施し、外包材に芯材を挿入する作業について改善したものも見られるが、材質そのものに由来する取扱い性、作業性の難点を解決し得るものではない。特に、当該芯材をリサイクルする時点における、作業環境性、取扱い性の問題点は以前残ったままである。例えば、リサイクルする時に外包材を開封すると、ガラス繊維集合体芯材が飛散し、取扱い性・作業性が問題となるだけでなく、環境負荷の面においても問題となる。   Although the core material using the glass fiber aggregate having an average fiber diameter of about 0.5 to 8 μm has no outgas (gas component volatilized from the core material) and has excellent heat insulation properties, the glass fiber The material itself has great difficulty in handling and workability. In order to improve handling, some improvements have been made to the work of inserting the core material into the outer packaging material by applying needle punch to the laminated glass fiber, but the handling and workability difficulties derived from the material itself are difficult. Is not something that can be solved. In particular, the problems of working environment and handling at the time of recycling the core material remain. For example, if the outer packaging material is opened at the time of recycling, the glass fiber aggregate core material scatters, which causes problems not only in handling and workability but also in terms of environmental burden.

ガラス繊維集合体と他の熱可塑性樹脂繊維との複合体を用いた芯材については、若干の取扱い性の向上は見られるものの満足すべきものではない。熱可塑性樹脂繊維と同様に、ロックウール、パルプ等の繊維質を複合したものも見られるが、ガラス繊維が使用されるため、ガラス繊維自体に由来する取扱い性・作業性および環境負荷の難点は依然、残ったままである。   A core material using a composite of glass fiber aggregates and other thermoplastic resin fibers is not satisfactory, although a slight improvement in handleability is observed. Similar to thermoplastic resin fibers, some composites of rock wool, pulp, and other fibers are also seen, but because glass fibers are used, the difficulties in handling and workability derived from the glass fibers themselves and the environmental burden are Still remains.

熱可塑性樹脂繊維等の有機繊維のみを芯材として用いた真空断熱材も考えられるが、有機繊維から生じるアウトガスの問題により具体化された例は見られない。特に、0.75dのポリエステル繊維集綿体を芯材として使用した例も見られるが(特許文献4)、わた状で使用すると、取扱い性が極めて悪く、現実的な商品としては考えられない。そこで、取り扱い性の向上を目的として集綿体をシート状にすることも考えられるが、上記のように極細の繊維を使用する場合、ニードルパンチ法は使用困難なので、ケミカルボンド法によりバインダーを用いると、アウトガスが発生し、経時変化が大きく、時間と共に断熱性が大きく低下する問題がある。
特開平6−213561号公報 特開平8−28776号公報 特開2003−155651号公報 特開2002−188791号公報
A vacuum heat insulating material using only organic fibers such as thermoplastic resin fibers as a core material is also conceivable, but no example is realized due to the problem of outgas generated from organic fibers. In particular, an example in which a 0.75d polyester fiber collection is used as a core material can be seen (Patent Document 4), but if used in a wrinkled form, handling properties are extremely poor and cannot be considered as a practical product. Therefore, it is conceivable to make the cotton collection into a sheet for the purpose of improving the handleability, but when using ultrafine fibers as described above, the needle punch method is difficult to use, so a binder is used by the chemical bond method. And there is a problem that outgas is generated, the change with time is large, and the heat insulation is greatly deteriorated with time.
JP-A-6-213561 JP-A-8-28776 JP 2003-155651 A JP 2002-188791 A

本発明は、上記のような課題を解決するためになされたもので、製造時およびリサイクル時において環境負荷の極めて低い真空断熱材であって、取扱い性および作業性に優れ、また長期にわたって良好な断熱性を維持する真空断熱材を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is a vacuum heat insulating material having an extremely low environmental load at the time of production and recycling, and is excellent in handleability and workability and good for a long period of time. It aims at providing the vacuum heat insulating material which maintains heat insulation.

本発明は、少なくとも芯材と該芯材を収納し内部を減圧状態に維持できる外包材とを備えてなり、前記芯材が、繊維太さ1〜6デニールのポリエステル繊維を50重量%以上含有するシート状繊維集合体であることを特徴とする真空断熱材に関する。   The present invention comprises at least a core material and an outer packaging material that can store the core material and maintain the inside in a reduced pressure state, and the core material contains 50% by weight or more of polyester fiber having a fiber thickness of 1 to 6 denier. It is related with the vacuum heat insulating material characterized by being a sheet-like fiber assembly to do.

有機繊維製芯材は、アウトガス発生による断熱性の低下等の問題により、真空断熱材用芯材として現実的に考えられていなかったものであるが、本発明の発明者等は特定太さのポリエステル繊維に着目し、当該繊維をシート状にしたものは、従来の連続気泡ウレタンフォームを上回る断熱性を長期にわたって発揮することを見い出し、本発明を成すに至った。   The organic fiber core material was not actually considered as a core material for vacuum heat insulating material due to problems such as a decrease in heat insulation due to outgassing, but the inventors of the present invention have a specific thickness. Focusing on the polyester fiber, it has been found that the fiber in the form of a sheet exhibits a heat insulating property that exceeds that of the conventional open-cell urethane foam over a long period of time, and has led to the present invention.

本発明の真空断熱材は、芯材がポリエステル繊維から構成されているため、環境負荷が小さく、使用後のリサイクル性についても非常に優れる。しかも、本発明の真空断熱材は、冷蔵庫等に採用されている連続気泡ウレタンフォームを用いた真空断熱材を上回る断熱性を長期にわたって発揮し、またガラス繊維と比較して取扱い性および作業性に優れる。   In the vacuum heat insulating material of the present invention, since the core material is made of polyester fiber, the environmental load is small, and the recyclability after use is very excellent. Moreover, the vacuum heat insulating material of the present invention exhibits a heat insulating property that exceeds the vacuum heat insulating material using the open-cell urethane foam employed in refrigerators and the like over a long period of time, and is easier to handle and work than glass fiber. Excellent.

本発明の真空断熱材は少なくとも芯材と該芯材を収容し内部を減圧状態に維持できる外包材とからなる。   The vacuum heat insulating material of the present invention comprises at least a core material and an outer packaging material that can accommodate the core material and maintain the inside in a reduced pressure state.

本発明において芯材は、繊維太さ1〜6デニール、好ましくは1〜3デニールのポリエステル繊維を含有するシート状繊維集合体である。詳しくは、芯材は上記ポリエステル繊維を含有する繊維集合体をシート状に加工してなるものであり、そのような芯材を使用することによって、取扱い性および作業性を向上させることができ、また製造時およびリサイクル時における環境負荷を低減できる。さらに、長期にわたって良好な断熱性を発揮できる。上記繊維太さを有するポリエステル繊維の平均繊維径は通常、9〜25μm、好ましくは9〜17μmである。平均繊維径は、10本の繊維に対し、繊維1本当たり2箇所の径をCCDカメラ画像により処理して測定し、計20箇所の径の平均値を求めて平均繊維径値として用いた。   In the present invention, the core material is a sheet-like fiber assembly containing polyester fibers having a fiber thickness of 1 to 6 denier, preferably 1 to 3 denier. Specifically, the core material is formed by processing the fiber assembly containing the polyester fiber into a sheet shape, and by using such a core material, the handling property and workability can be improved. In addition, the environmental load during manufacturing and recycling can be reduced. Furthermore, good heat insulation can be exhibited over a long period of time. The average fiber diameter of the polyester fiber having the above fiber thickness is usually 9 to 25 μm, preferably 9 to 17 μm. The average fiber diameter was measured by processing two diameters per 10 fibers with a CCD camera image for 10 fibers, and calculating the average value of the diameters at a total of 20 positions as the average fiber diameter value.

「シート状」とは平板形状を有しているという意味である。繊維集合体をそのままのわた状態で使用する場合など、芯材がシート状でないと、芯材の取り扱い性が低下するので芯材を外包材へ収納する工程が煩雑になりすぎ、作業性が悪化する。さらには初期の断熱性が発現しない。   “Sheet” means having a flat plate shape. When the fiber assembly is used as it is, if the core material is not in the form of a sheet, the handling of the core material will be reduced, so the process of storing the core material in the outer packaging will become too complicated and workability will deteriorate. To do. Furthermore, the initial heat insulation is not expressed.

本発明においてそのようなシート状繊維集合体(芯材)の厚みは本発明の目的が達成される限り特に制限されるものではなく、通常は真空断熱材としたときに1mm〜50mm程度、特に5mm〜20mm程度であればよい。また、シート状繊維集合体は、1層のシートでも良いが、ポリエステル繊維の1層シートで真空断熱材としての5mm程度以上の厚いものは、シート製造が難しいため、2層以上のシートを積層し、シート状繊維集合体(芯材)とするのが好ましい。繊維集合体はバインダー等の他の材料を使用されないで加工されることが好ましく、例えば、いわゆるニードルパンチ法等でシート状に加工するようにする。バインダーを用いるケミカルボンド法等は、アウトガス発生による断熱性の経時的な低下が起こり問題となる。なお、ニードルパンチ法とは、繊維の方向がある程度揃ったポリエステル繊維塊、すなわちポリエステル繊維ウェブに対し、フックの付いた多数の針を垂直に突き刺したり引き上げたりすることを繰返し、ウェブ中の繊維同士を互いに絡ませることによりシート状にする方法である。   In the present invention, the thickness of such a sheet-like fiber assembly (core material) is not particularly limited as long as the object of the present invention is achieved, and is usually about 1 mm to 50 mm when used as a vacuum heat insulating material. What is necessary is just about 5 mm-20 mm. In addition, the sheet-like fiber assembly may be a single-layer sheet, but a single-layer polyester fiber sheet having a thickness of about 5 mm or more as a vacuum heat insulating material is difficult to manufacture. And it is preferable to set it as a sheet-like fiber assembly (core material). The fiber assembly is preferably processed without using any other material such as a binder. For example, the fiber assembly is processed into a sheet by a so-called needle punch method or the like. The chemical bond method using a binder causes a problem in that the heat insulating property is lowered over time due to outgas generation. The needle punching method is a method of repeatedly piercing or pulling up many needles with hooks against a polyester fiber lump in which the directions of fibers are aligned to some extent, that is, a polyester fiber web. It is the method of making it into a sheet form by mutually entanglement.

ポリエステル繊維の平均繊維径が小さすぎると、ニードルパンチ機械を使用できないため、わた状のままで使用するか、またはケミカルボンド法によりシート状に賦形することになり、前記した問題が生じる。一方、平均繊維径が大きすぎると、断熱性が低下する傾向にあり、良好な断熱性を確保するためには300kg/mを越える高密度とする必要があり、重さが問題となる。
ポリエステル繊維の代わりにポリエチレン繊維等の他の有機繊維を用いると、アウトガス発生による断熱性の経時的な低下が起こる。
If the average fiber diameter of the polyester fiber is too small, the needle punch machine cannot be used, so that it is used in a wrinkled form or is formed into a sheet form by a chemical bond method, and the above-mentioned problems arise. On the other hand, if the average fiber diameter is too large, the heat insulating property tends to decrease, and in order to ensure good heat insulating property, it is necessary to have a high density exceeding 300 kg / m 3 , and the weight becomes a problem.
When other organic fibers such as polyethylene fibers are used in place of the polyester fibers, the heat insulating property is deteriorated with time due to outgas generation.

本発明においてポリエステル繊維とは、化学構造単位が主としてエステル結合で結合されてなる高分子からなる繊維を意味し、製造法は特に限定されるものではい。例えば、ジカルボン酸成分とジオール成分との反応により得られるポリエステル繊維であってもよいし、または一分子中にヒドロキシル基とカルボキシル基とを有するヒドロキシカルボン酸成分同士の反応により得られるポリエステル繊維であってもよい。   In the present invention, the term “polyester fiber” means a fiber made of a polymer in which chemical structural units are bonded mainly by ester bonds, and the production method is not particularly limited. For example, it may be a polyester fiber obtained by a reaction between a dicarboxylic acid component and a diol component, or a polyester fiber obtained by a reaction between hydroxycarboxylic acid components having a hydroxyl group and a carboxyl group in one molecule. May be.

ポリエステル繊維の具体例として、ポリエチレンテレフタレート(PET)繊維、ポリブチレンテレフタレート(PBT)繊維、ポリプロピレンテレフタレート繊維、ポリアリレート繊維などが挙げられる。例えば、PET繊維は、テレフタル酸ジメチル(DMT)とエチレングリコール(EG)またはテレフタル酸(TPA)とEGとの反応等により得られ、PBT繊維はDMTとテトラメチレングリコール(TMG)またはTPAとTMGとの反応等により得られる。シート状賦形性、量産性及びコストを加味すれば、好ましくはポリエチレンテレフタレート繊維である。当然ながら、リサイクルPET繊維を使用しても何ら問題はない。   Specific examples of the polyester fiber include polyethylene terephthalate (PET) fiber, polybutylene terephthalate (PBT) fiber, polypropylene terephthalate fiber, and polyarylate fiber. For example, PET fiber is obtained by a reaction of dimethyl terephthalate (DMT) and ethylene glycol (EG) or terephthalic acid (TPA) and EG, and PBT fiber is DMT and tetramethylene glycol (TMG) or TPA and TMG. It can be obtained by the reaction of In view of sheet formability, mass productivity and cost, polyethylene terephthalate fiber is preferable. Of course, there is no problem even if recycled PET fibers are used.

ポリエステル繊維は、特に限定されるものではないが、軟化点200〜260℃程度、強度0.3〜1.2GPa程度のものが、繊維製造の容易さの観点から好ましい。   The polyester fibers are not particularly limited, but those having a softening point of about 200 to 260 ° C. and a strength of about 0.3 to 1.2 GPa are preferable from the viewpoint of ease of fiber production.

ポリエステルを繊維化する方法としては、溶融紡糸法、湿式紡糸法、乾式紡糸法等があるが、本発明において好ましくは溶融紡糸法である。溶融紡糸法とは、高分子の融液を細孔ノズルより空気中に吐出し、吐出された溶融糸条を細化させながら空気で冷却、固化し、その後一定の速度で引き取る方式である。本方法では、1〜6デニール程度の繊維太さを有するポリエステル繊維が容易に製造可能である。   Examples of the method for fiberizing polyester include a melt spinning method, a wet spinning method, and a dry spinning method. In the present invention, the melt spinning method is preferable. The melt spinning method is a system in which a polymer melt is discharged into the air from a pore nozzle, cooled and solidified with air while thinning the discharged molten yarn, and then taken up at a constant speed. In this method, a polyester fiber having a fiber thickness of about 1 to 6 denier can be easily produced.

繊維集合体におけるポリエステル繊維の含有量は本発明の目的が達成される限り特に制限されず、通常はアウトガス発生による断熱性の経時的低下防止の観点から芯材全量に対して50重量%以上、好ましくは90〜100重量%である。断熱性のさらなる向上の観点からは、芯材はポリエステル繊維のみからなっていることが最も好ましい。   The content of the polyester fiber in the fiber assembly is not particularly limited as long as the object of the present invention is achieved, and is usually 50% by weight or more based on the total amount of the core material from the viewpoint of preventing temporal deterioration of heat insulation due to outgas generation, Preferably it is 90-100 weight%. From the viewpoint of further improving the heat insulating properties, the core material is most preferably made of only polyester fibers.

ポリエステル繊維とともに繊維集合体に含有されてもよい他の繊維として、例えば、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、アラミド繊維、ナイロン繊維、ポリビニルアルコール繊維、フッ素繊維、ポリウレタン繊維、ポリノジック繊維、レーヨン繊維等の合成繊維、アルミナ、チタン酸カリウム等の無機繊維、麻、絹、綿、羊毛等の天然繊維等が挙げられる。   Other fibers that may be contained in the fiber assembly together with the polyester fiber include, for example, polyethylene fiber, polypropylene fiber, acrylic fiber, aramid fiber, nylon fiber, polyvinyl alcohol fiber, fluorine fiber, polyurethane fiber, polynosic fiber, rayon fiber, etc. Synthetic fibers, inorganic fibers such as alumina and potassium titanate, natural fibers such as hemp, silk, cotton and wool.

本発明において芯材の密度は100〜300kg/mが好ましく、より好ましくは150〜300kg/mである。密度が小すぎると、芯材としての強度が低下してしまうと共に断熱性が低下する傾向がある。一方、大きすぎると、重くなると共に断熱性が低下する傾向がある。すなわち、密度は軽すぎても、重すぎても断熱性が低下する傾向がある。前記平均繊維径において、最も好ましい密度は、170〜270kg/mである。 In the present invention, the density of the core material is preferably 100 to 300 kg / m 3 , more preferably 150 to 300 kg / m 3 . When the density is too small, the strength as the core material is lowered and the heat insulating property tends to be lowered. On the other hand, when too large, there exists a tendency for it to become heavy and for heat insulation to fall. That is, if the density is too light or too heavy, the heat insulating property tends to decrease. In the average fiber diameter, the most preferable density is 170 to 270 kg / m 3 .

本明細書中、芯材の密度は、芯材を外包材に収容し、真空引きした後の密度を測定したものである。すなわち、真空断熱材を作成した後、真空断熱材の重量から、あらかじめ測定した外包材及びゲッター材等の重量を引き、芯材の重量を得る。また真空断熱材の体積から、あらかじめ測定したゲッター材等の体積を引き、芯材の体積を得る。なお、外包材は厚みが非常に小さいので、体積算出には考慮しない。得られた芯材の重量および体積から密度を算出する。   In this specification, the density of the core material is obtained by measuring the density after the core material is accommodated in the outer packaging material and vacuumed. That is, after creating the vacuum heat insulating material, the weight of the outer packaging material and the getter material measured in advance is subtracted from the weight of the vacuum heat insulating material to obtain the weight of the core material. Further, the volume of the getter material or the like measured in advance is subtracted from the volume of the vacuum heat insulating material to obtain the volume of the core material. In addition, since the thickness of the outer packaging material is very small, it is not considered in the volume calculation. The density is calculated from the weight and volume of the obtained core material.

上記芯材を収納する外包材は、ガスバリア性を有し、内部を減圧に維持できるものであれば、どのようなものでも用いることができ、好ましくはヒートシール可能なものである。好適な具体例として、例えば、最外層から、ナイロン、アルミ蒸着PET(ポリエチレンテレフタレート)、アルミ箔、及び最内層として高密度ポリエチレンの4層構造からなるガスバリアフィルム、最外層から、ポリエチレンテレフタレート樹脂、中間層にアルミ箔、最内層に高密度ポリエチレン樹脂からなるガスバリアフィルム、最外層にPET樹脂、中間層にアルミニウム蒸着層を有するエチレン−ビニルアルコール共重合体樹脂、最内層に高密度ポリエチレン樹脂からなるガスバリアフィルム等が挙げられる。   As the outer packaging material for storing the core material, any material can be used as long as it has gas barrier properties and can maintain the inside at a reduced pressure, and is preferably heat-sealable. Preferable specific examples include, for example, a gas barrier film having a four-layer structure of nylon, aluminum vapor-deposited PET (polyethylene terephthalate), aluminum foil, and high-density polyethylene as the innermost layer, from the outermost layer, polyethylene terephthalate resin, intermediate Gas barrier film consisting of aluminum foil as the layer, high density polyethylene resin as the innermost layer, PET resin as the outermost layer, ethylene-vinyl alcohol copolymer resin having an aluminum vapor deposition layer as the intermediate layer, and gas barrier consisting of high density polyethylene resin as the innermost layer A film etc. are mentioned.

本発明の真空断熱材において外包材の中には芯材のみを入れるだけでも、断熱性に優れた真空断熱材を得ることができるが、経時的な断熱性をより向上させる観点から、さらに水蒸気もしくは空気の構成ガスのうち少なくとも1種類を吸着するガス吸着剤(ゲッター材)を封入することが好ましい。   In the vacuum heat insulating material of the present invention, it is possible to obtain a vacuum heat insulating material excellent in heat insulating properties by only including a core material in the outer packaging material. Alternatively, it is preferable to enclose a gas adsorbent (getter material) that adsorbs at least one of the constituent gases of air.

本発明の真空断熱材の製造方法について好ましい一実施形態を以下説明する。
繊維集合体をニードルパンチ法等によりシート状に成形し、芯材を得る。得られた芯材を、適当な大きさ及び形(例えば、四角形)にカットし、内部に含まれる水分等を除去するために乾燥を行う。当該乾燥は、120℃で1時間程度の条件にて行われるが、よりポリエステル繊維の水分等を除去するために、120℃において真空乾燥するのが好ましい。さらに、遠赤外線による乾燥を併用してもよい。真空度については、0.5〜0.01Torr程度で乾燥を行うのが好ましい。
A preferred embodiment of the method for producing a vacuum heat insulating material of the present invention will be described below.
The fiber assembly is formed into a sheet shape by a needle punch method or the like to obtain a core material. The obtained core material is cut into an appropriate size and shape (for example, a square shape), and dried to remove moisture and the like contained therein. The drying is performed at 120 ° C. for about 1 hour, but it is preferable to vacuum dry at 120 ° C. in order to further remove moisture and the like of the polyester fiber. Furthermore, you may use together the drying by far infrared rays. About a vacuum degree, it is preferable to dry at about 0.5-0.01 Torr.

次に、該芯材を袋状にシールされた外包材の中に挿入する。なお、この時ゲッター材を一緒に挿入してもよい。この状態で真空引き装置内に入れて、内圧が0.1〜0.01Torr程度の真空度となるよう減圧排気する。その後、外包材の袋状開口部を熱融着により封止し、真空断熱材が得られる。なお、芯材厚みを調整すべく、室温でプレス加工することによって、芯材密度の制御も可能である。   Next, the core material is inserted into an outer packaging material sealed in a bag shape. At this time, a getter material may be inserted together. In this state, it is put in a vacuuming device and evacuated under reduced pressure so that the internal pressure becomes a degree of vacuum of about 0.1 to 0.01 Torr. Thereafter, the bag-shaped opening of the outer packaging material is sealed by heat sealing, and a vacuum heat insulating material is obtained. It should be noted that the core material density can be controlled by pressing at room temperature in order to adjust the core material thickness.

<芯材に使用する繊維>
表に記載のポリエステル繊維を使用した。ポリエステル繊維は、いずれも繊維長51mmのポリエチレンテレフタレート繊維であった。
<Fiber used for core material>
The polyester fibers listed in the table were used. The polyester fibers were all polyethylene terephthalate fibers having a fiber length of 51 mm.

<実施例1>
表に記載のポリエステル繊維をニードルパンチ法によりシート状に加工した。加工直後のシート目付は550g/mであった。当該シートを200mm×200mmの大きさに裁断し、温度120℃にて1時間乾燥を行った。乾燥後のシートを4枚積層し、当該積層したものを芯材としてナイロン、アルミ蒸着PET、アルミ箔、高密度ポリエチレンの4層構造からなるガスバリアフィルム製外包材に挿入し、同時にゲッター材(サエス ゲッターズ社製:COMBO)を1個外包材の中に挿入した。その後、真空引き装置にて、内圧が0.01Torrとなるよう真空引きを行い、熱融着により密封した。得られた真空断熱材は、200mm×200mmの大きさで厚み10mmであった。得られた真空断熱材の芯材の密度は220kg/mであった。
<Example 1>
The polyester fibers listed in the table were processed into a sheet by the needle punch method. The sheet basis weight immediately after processing was 550 g / m 2 . The sheet was cut into a size of 200 mm × 200 mm and dried at a temperature of 120 ° C. for 1 hour. Four sheets after drying are laminated, and the laminated sheet is inserted into a gas barrier film outer packaging material having a four-layer structure of nylon, aluminum vapor-deposited PET, aluminum foil, and high-density polyethylene as a core material. A piece of Getters: COMBO) was inserted into the outer packaging. Thereafter, evacuation was performed with an evacuation apparatus so that the internal pressure was 0.01 Torr, and sealing was performed by heat sealing. The obtained vacuum heat insulating material had a size of 200 mm × 200 mm and a thickness of 10 mm. The density of the core material of the obtained vacuum heat insulating material was 220 kg / m 3 .

<実施例2〜8、比較例1〜2の製造方法>
芯材に使用する繊維の種類・量を表に記載のように変更した以外は、実施例1と同様の方法にて真空断熱材を得た。なお、比較例2においてはシート状への加工を行うことなく、わた状の繊維をそのまま用いた。
<The manufacturing method of Examples 2-8 and Comparative Examples 1-2>
A vacuum heat insulating material was obtained in the same manner as in Example 1 except that the type and amount of fibers used for the core material were changed as shown in the table. In Comparative Example 2, cotton fibers were used as they were without being processed into sheets.

<比較例3>
連続気泡ポリウレタンフォームを用い、まず200mm×200mm×10mmにカットした。当該芯材を、温度120℃にて1時間乾燥した。乾燥後、実施例と同様の外包材に挿入し、同時にゲッター材を1個外包材の中に挿入した。その後、真空引き装置にて、内圧が0.01Torrとなるよう真空引きを行い、熱融着により密封して真空断熱材を得た。
<Comparative Example 3>
First, it was cut into 200 mm × 200 mm × 10 mm using an open cell polyurethane foam. The core material was dried at a temperature of 120 ° C. for 1 hour. After drying, it was inserted into the same outer packaging material as in the example, and at the same time, one getter material was inserted into the outer packaging material. After that, vacuuming was performed with a vacuuming device so that the internal pressure was 0.01 Torr, and sealing was performed by heat fusion to obtain a vacuum heat insulating material.

<初期断熱性>
初期断熱性の評価は、「Autoλ HC−074」(英弘精機(株)製)を用いて、平均温度20℃の熱伝導率を測定することにより行った。なお、測定は真空引き工程から1日経過後に測定した。
<Initial insulation>
The initial heat insulation was evaluated by measuring the thermal conductivity at an average temperature of 20 ° C. using “Autoλ HC-074” (manufactured by Eihiro Seiki Co., Ltd.). The measurement was made after 1 day from the vacuuming step.

<長期断熱性>
長期断熱性の評価は、初期断熱性を評価した真空断熱材を70℃の恒温槽に入れ、4週間経過後に取り出し、「Autoλ HC−074」(英弘精機(株)製)を用いて、平均温度20℃の熱伝導率を測定することにより行った。
<Long-term insulation>
Evaluation of long-term heat insulation is carried out by putting the vacuum heat insulating material evaluated for initial heat insulation into a constant temperature bath of 70 ° C. and taking it out after 4 weeks, and using “Autoλ HC-074” (manufactured by Eihiro Seiki Co., Ltd.) This was done by measuring the thermal conductivity at a temperature of 20 ° C.

<作業性>
繊維集合体を外包材に挿入するときの作業性を以下の基準に従って評価した。
○;繊維集合体を容易に外包材に挿入できる;
×;芯材が脆く、外包材に繊維集合体を均一に挿入できない。
<Workability>
The workability when inserting the fiber assembly into the outer packaging material was evaluated according to the following criteria.
○: The fiber assembly can be easily inserted into the outer packaging material;
X: The core material is brittle, and the fiber assembly cannot be uniformly inserted into the outer packaging material.

Figure 2006029505
Figure 2006029505

Claims (6)

少なくとも芯材と該芯材を収納し内部を減圧状態に維持できる外包材とを備えてなり、前記芯材が、繊維太さ1〜6デニールのポリエステル繊維を50重量%以上含有するシート状繊維集合体であることを特徴とする真空断熱材。   A sheet-like fiber comprising at least a core material and an outer packaging material capable of accommodating the core material and maintaining the inside in a reduced pressure state, wherein the core material contains 50% by weight or more of a polyester fiber having a fiber thickness of 1 to 6 denier A vacuum heat insulating material characterized by being an aggregate. ポリエステル繊維の平均繊維径が9〜25μmである請求項1に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the polyester fiber has an average fiber diameter of 9 to 25 µm. ポリエステル繊維がポリエチレンテレフタレート繊維である請求項1または2に記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein the polyester fiber is a polyethylene terephthalate fiber. 繊維集合体がニードルパンチ法によってシート状に加工されている請求項1〜3のいずれかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein the fiber assembly is processed into a sheet shape by a needle punch method. 芯材の密度が150〜300Kg/mである請求項1〜4のいずれかに記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 4, wherein the density of the core material is 150 to 300 Kg / m 3 . 芯材がポリエステル繊維のみからなる繊維集合体である請求項1〜5のいずれかに記載の真空断熱材。

The vacuum heat insulating material according to any one of claims 1 to 5, wherein the core material is a fiber assembly made only of polyester fibers.

JP2004211678A 2004-07-20 2004-07-20 Vacuum heat insulating material Pending JP2006029505A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004211678A JP2006029505A (en) 2004-07-20 2004-07-20 Vacuum heat insulating material
KR1020077003781A KR100965971B1 (en) 2004-07-20 2005-07-19 Vacuum heat insulation material
PCT/JP2005/013255 WO2006009146A1 (en) 2004-07-20 2005-07-19 Vacuum heat insulation material
CNB2005800314991A CN100538147C (en) 2004-07-20 2005-07-19 Vacuum thermal insulating material
KR1020087031650A KR20090017645A (en) 2004-07-20 2005-07-19 Vacuum heat insulation material
US11/632,911 US7947347B2 (en) 2004-07-20 2005-07-19 Vacuum heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004211678A JP2006029505A (en) 2004-07-20 2004-07-20 Vacuum heat insulating material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007301871A Division JP5033595B2 (en) 2007-11-21 2007-11-21 Vacuum insulation

Publications (1)

Publication Number Publication Date
JP2006029505A true JP2006029505A (en) 2006-02-02

Family

ID=35896100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004211678A Pending JP2006029505A (en) 2004-07-20 2004-07-20 Vacuum heat insulating material

Country Status (2)

Country Link
JP (1) JP2006029505A (en)
CN (1) CN100538147C (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239764A (en) * 2006-03-06 2007-09-20 Kurabo Ind Ltd Usage of vacuum heat insulating material and vacuum heat insulating material
JP2008286282A (en) * 2007-05-16 2008-11-27 Unitica Fibers Ltd Vacuum heat insulation material
DE102007043946A1 (en) * 2007-09-14 2009-03-19 Bayerisches Zentrum für Angewandte Energieforschung e.V. Fiber composites and their use in vacuum insulation systems
WO2010007706A1 (en) * 2008-07-17 2010-01-21 日立アプライアンス株式会社 Vacuum heat insulating material
JP2010053977A (en) * 2008-08-28 2010-03-11 Hitachi Appliances Inc Vacuum heat insulation material
JP2010242975A (en) * 2010-07-13 2010-10-28 Toshiba Home Technology Corp Insulating material and its manufacturing method
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US8617684B2 (en) 2009-01-29 2013-12-31 Mitsubishi Electric Corporation Vacuum thermal insulating material and thermal insulating box including the same
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
JP7388348B2 (en) 2018-03-01 2023-11-29 株式会社レゾナック Anisotropically thermally conductive resin fiber, anisotropically thermally conductive resin member, and manufacturing method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103790246B (en) * 2012-10-30 2016-08-24 昆山蓝胜建材有限公司 Vacuum heat-insulating plate for building and preparation method thereof
WO2014103773A1 (en) * 2012-12-25 2014-07-03 株式会社 東芝 Refrigerator, heat insulating box for refrigerator, and method for manufacturing heat insulating box for refrigerator
DE102013104712A1 (en) * 2013-05-07 2014-11-13 Saint-Gobain Isover Method for producing vacuum insulation panels
CN104372865A (en) * 2013-08-12 2015-02-25 苏州维艾普新材料股份有限公司 Vacuum insulation plate with ventilation bars and manufacturing method of vacuum insulation plate
CN104373764A (en) * 2013-08-12 2015-02-25 苏州维艾普新材料股份有限公司 Programmable heat seal equipment and application method thereof
CN103985196B (en) * 2014-06-05 2016-09-28 上海理工大学 Automatic vending machine
KR101587487B1 (en) * 2014-06-10 2016-01-22 주식회사 경동원 Method for continuously preparing a vacuum insulation
CN106364803A (en) * 2016-12-02 2017-02-01 合肥美菱股份有限公司 Ultralow-temperature biomedical storage box and manufacturing method thereof
US20200340612A1 (en) * 2017-06-16 2020-10-29 Panasonic Intellectual Property Management Co., Ltd. Thermal insulation sheet and multilayer thermal insulation sheet using same
CN107975656B (en) * 2017-11-27 2020-01-07 无锡市明江保温材料有限公司 Method for manufacturing vacuum heat insulating material
CN109896134A (en) * 2019-04-03 2019-06-18 张家港富瑞特种装备股份有限公司 Molecular sieve packet
CN112522901A (en) * 2020-12-11 2021-03-19 江门市富源无纺布厂有限公司 Production facility of non-woven fabrics

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590758B2 (en) * 2000-06-06 2004-11-17 松下冷機株式会社 Notebook computer
JP2002174485A (en) * 2000-12-08 2002-06-21 Hitachi Ltd Refrigerator
JP3656028B2 (en) * 2000-12-21 2005-06-02 松下冷機株式会社 Vacuum heat insulating material, vacuum heat insulating material, vacuum heat insulating material or recycling method of vacuum heat insulating material
JP2002333092A (en) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd Fiber and fine particle composite heat-insulating material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239764A (en) * 2006-03-06 2007-09-20 Kurabo Ind Ltd Usage of vacuum heat insulating material and vacuum heat insulating material
JP2008286282A (en) * 2007-05-16 2008-11-27 Unitica Fibers Ltd Vacuum heat insulation material
DE102007043946A1 (en) * 2007-09-14 2009-03-19 Bayerisches Zentrum für Angewandte Energieforschung e.V. Fiber composites and their use in vacuum insulation systems
WO2010007706A1 (en) * 2008-07-17 2010-01-21 日立アプライアンス株式会社 Vacuum heat insulating material
JP2010025182A (en) * 2008-07-17 2010-02-04 Hitachi Appliances Inc Vacuum heat insulating material
JP2010053977A (en) * 2008-08-28 2010-03-11 Hitachi Appliances Inc Vacuum heat insulation material
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US8617684B2 (en) 2009-01-29 2013-12-31 Mitsubishi Electric Corporation Vacuum thermal insulating material and thermal insulating box including the same
US8920899B2 (en) 2009-10-16 2014-12-30 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
JP2010242975A (en) * 2010-07-13 2010-10-28 Toshiba Home Technology Corp Insulating material and its manufacturing method
JP7388348B2 (en) 2018-03-01 2023-11-29 株式会社レゾナック Anisotropically thermally conductive resin fiber, anisotropically thermally conductive resin member, and manufacturing method thereof

Also Published As

Publication number Publication date
CN100538147C (en) 2009-09-09
CN101023291A (en) 2007-08-22

Similar Documents

Publication Publication Date Title
JP2006029505A (en) Vacuum heat insulating material
JP2006283817A (en) Vacuum heat insulation material
KR20090017645A (en) Vacuum heat insulation material
CN101660648B (en) Vacuum heat insulation material, heat insulation box body using the same, and refrigerator
JP4012903B2 (en) Vacuum insulation
JP2008286282A (en) Vacuum heat insulation material
JP6014759B2 (en) Vacuum insulation containing annealed binderless glass fiber
JP5111331B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JP2006162076A (en) Vacuum thermal insulating material
KR101583651B1 (en) Core for Heat Insulating Material, Method for Manufacturing the Same and Slim Type Heat Insulating Material Using the Same
JP5033595B2 (en) Vacuum insulation
KR20120097326A (en) Material for vacuum insulation pannel and method for fabricating the same
JP2010060045A (en) Vacuum heat insulating material, refrigerator using the same, and manufacturing method of vacuum heat insulating material
JP2010230082A (en) Core material for vacuum heat insulating material, vacuum heat insulating material, and method for manufacturing them
EP2105648B1 (en) Vacuum heat insulating material and heat insulating box using the same
JP2006183810A (en) Method of manufacturing vacuum heat insulating material
JP2006057213A (en) Core material for vacuum heat insulator and vacuum heat insulator using the core material
JP2007239764A (en) Usage of vacuum heat insulating material and vacuum heat insulating material
JP2006161939A (en) Vacuum thermal insulating material
WO2010116720A1 (en) Vacuum insulation material and device provided with same
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP4997198B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
JP4813847B2 (en) Manufacturing method of vacuum insulation member
JP2012026059A (en) Core material for vacuum heat insulator and vacuum heat insulator using the core material
JP2013036595A (en) Vacuum heat insulating material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071227

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080222