WO2016121372A1 - Heat insulator and method for manufacturing heat insulator - Google Patents

Heat insulator and method for manufacturing heat insulator Download PDF

Info

Publication number
WO2016121372A1
WO2016121372A1 PCT/JP2016/000360 JP2016000360W WO2016121372A1 WO 2016121372 A1 WO2016121372 A1 WO 2016121372A1 JP 2016000360 W JP2016000360 W JP 2016000360W WO 2016121372 A1 WO2016121372 A1 WO 2016121372A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
xerogel
fiber
weight
Prior art date
Application number
PCT/JP2016/000360
Other languages
French (fr)
Japanese (ja)
Inventor
孝太郎 中西
笑美子 中西
源 植田
Original Assignee
オゾンセーブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オゾンセーブ株式会社 filed Critical オゾンセーブ株式会社
Publication of WO2016121372A1 publication Critical patent/WO2016121372A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a heat insulating material having a heat insulating property and a method for manufacturing the heat insulating material.
  • Refrigerated and frozen products such as pharmaceuticals and food products are usually corrugated cardboard with insulation such as foamed polystyrene containers and urethane foam that have heat insulation properties in environments other than refrigerated and frozen conditions to prevent quality deterioration during transportation. It is housed and transported in an insulated container (for example, Patent Document 1) such as a box. Since such a heat insulating container is bulky as compared with the product to be stored, there has been a problem that the transportation cost of the product is increased. In addition, it is essential to prepare an insulated container separately from the product itself, and to store and pack the product, which has been a factor in complicating the transportation procedure.
  • an insulated container for example, Patent Document 1
  • a container that keeps the product at a high temperature for a relatively long time is required.
  • Such a container is often required to be touched with a bare hand at the same time as the outside does not become hot at the time of use.
  • a bulky material container such as foamed polystyrene, a paper container having a laminated structure on the side wall, or the like is used in order to provide heat retention.
  • a paper container having a laminated structure on the side wall for example, a paper container having an air layer inside the laminated side wall is known as in Patent Document 2. In any case, the whole is bulky as compared with the inner volume, and a large space is required for transporting and storing the container itself.
  • an object of the present invention is to provide a heat insulating material that is less bulky than the prior art, has excellent workability, and can be applied to a fine structure, and a manufacturing method capable of manufacturing such a heat insulating material.
  • the heat-insulating material of the present invention that solves the above problems is at least one water-soluble polymer selected from the group consisting of a main fiber, xerogel and / or aerogel, a cationic polymer and an amphoteric polymer, and / or a low-melting-point synthesis.
  • a xerogel and aerogel having a density of less than 0.5 g / cm 3 and a thermal conductivity of 0.02 W / (m ⁇ K) or less, wherein the main fiber
  • the xerogel and / or airgel is blended in a total weight of 35 to 210 parts by weight with respect to 100 parts by weight.
  • the heat insulating material of the present invention having the above-described structure is low in volume like ordinary paper and has excellent workability, and in addition to a certain amount, xerogel and / or airgel with low density and low thermal conductivity. , Has excellent heat insulation.
  • the heat insulating material of the present invention includes at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer as a binder in addition to the main fiber, xerogel and / or aerogel, and / or low melting point synthesis. Contains fiber. By containing the binder, the particle shape of the xerogel and the airgel in the paper making process or the like is not easily broken, and the heat insulating property is easily maintained.
  • the “density” refers to that measured in the state of particles at 25 ° C. and 1 atm.
  • the “xerogel” and “aerogel” referred to here are fine particles having a continuous matrix of a solid material having a large number of nanometer-scale pores from which air is dispersed.
  • “parts by weight” is based on dry weight except for water.
  • the “low-melting-point synthetic fiber” as used herein means a synthetic fiber having a melting point lower than the melting point when the main fiber has a melting point at least 140 ° C. at least on the surface of the fiber. Shall point to.
  • the heat insulating material of the present invention contains xerogel and / or aerogel.
  • the physical properties (such as density and thermal conductivity) and the amount of compounding of xerogel and aerogel are defined in this book.
  • the heat insulating material of the invention contains both a xerogel and an airgel, both satisfy the provisions of the physical properties, and the total weight of both of them satisfies the provisions of the blending amount.
  • the binder preferably contains the water-soluble polymer, and the water-soluble polymer is preferably at least one of cationized starch and amphoteric starch.
  • the binder preferably includes the low-melting synthetic fiber, and the low-melting synthetic fiber is a vinylon binder fiber.
  • the xerogel and aerogel are preferably porous silica particles obtained by converting a methylsilicate monomer into a xerogel by atmospheric drying or aerogeling by critical drying.
  • the normal pressure dried gel or critical dried gel of methyl silicate is easy to produce at low density, and since the porous shape does not easily collapse in an aqueous solution, the shape is easily retained in the papermaking slurry.
  • the xerogel and the airgel preferably have an average particle diameter of 2 to 140 ⁇ m and a specific surface area of 400 m 2 / g or more.
  • the average particle size of xerogel and airgel is set to 2 to 140 ⁇ m, it is possible to give sufficient heat insulation to the heat insulating material and to exhibit heat insulating performance even in a low-volume heat insulating material.
  • the specific surface area of porous silica activation being 400 m ⁇ 2 > / g or more.
  • the heat insulating material of the present invention is preferably in the form of a sheet having a thickness of 15 ⁇ m to 1.2 cm, a basis weight of 5 to 480 g / m 2 , and a density of 0.5 to 1.5 g / cm 3 .
  • the method for producing a heat insulating material according to the present invention comprises a main fiber of 100 parts by weight, a density of less than 0.5 g / cm 3 , and a thermal conductivity of 35 to 210 weights in total weight of 0.02 W / (m ⁇ K) or less.
  • a heat insulating material having an excellent heat insulating property in addition to having a low bulk as in ordinary paper and having excellent workability.
  • the mixed slurry at the time of papermaking is preferably pH 7-8.
  • a slurry having a pH of 7 to 8 the characteristics and properties of xerogel and airgel are likely to be stable, and at the same time, when the main fiber contains pulp, fibrillation is likely to be promoted.
  • the binder of the mixed slurry contains the water-soluble polymer, and the water-soluble polymer and the xerogel and / or the airgel are at least the main fibers suspended in water.
  • the heat insulating material of the present invention has sufficient heat insulating properties, is low in bulk, and has excellent workability. Moreover, the manufacturing method of the heat insulating material of this invention can provide the heat insulating material which was low in bulk and excellent in workability, maintaining sufficient heat insulation.
  • the heat insulating material of the present invention and the method for producing the heat insulating material will be described as an example.
  • the heat insulating material of the present invention includes a main fiber, xerogel and / or airgel, at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer, and / or a low melting point synthetic fiber.
  • a xerogel and an airgel having a density of less than 0.5 g / cm 3 and a thermal conductivity of 0.02 W / (m ⁇ K) or less, and 100 parts by weight of the main fiber
  • the xerogel and / or the airgel is blended in a total weight of 35 to 210 parts by weight.
  • each compounding component of the said heat insulating material is explained in full detail.
  • the main fiber of the heat insulating material of the present invention either a synthetic fiber or a natural fiber can be used.
  • the main fibers are not particularly limited.
  • Acrylic fiber, polylactic acid fiber, polyvinyl chloride fiber, vinylidene fiber, polyphenylene sulfide fiber, ceramic fiber, alumina fiber, glass fiber can be used, polyester fiber is preferable, polyethylene terephthalate (hereinafter referred to as PET) fiber Is more preferable.
  • PET polyethylene terephthalate
  • a pulp can be used.
  • the type of pulp is not particularly limited, and any of wood pulp, non-wood pulp, and deinked pulp, which are usually used as raw materials for paper, can be used. Chemical pulp, semi-chemical pulp, mechanical pulp Any pulp can be used.
  • the selection of various main fibers can be appropriately changed according to the desired flexibility, heat resistance, flame retardancy, non-flammability, flexibility, strength, and weight of the heat insulating material. Only one type of fiber can be contained, or a plurality of types of fibers can be contained.
  • the strength tends to be low although it has high heat insulating properties.
  • microfibrillated pulp cellulose nanofibers
  • Paper-like strength and workability can be imparted.
  • synthetic fibers having a small fiber diameter are desirable in order to retain the xerogel and the airgel.
  • the xerogel and aerogel used in the present invention are fine particles having a continuous matrix of solid material from which a large number of nanometer-scale pores are dispersed and from which air is dispersed. For example, 99% is composed of air and is very light. It becomes an effective heat insulating material.
  • known silica compounds such as silica, methyl silicate and silica / alumina, and porous particles such as resorcinol / formaldehyde, cellulose and cellulose nanofiber can be used.
  • the thermal conductivity of the material itself is 0.15 W / (m ⁇ K) or less, particularly 0.1 W / (m ⁇ K) or less, and further 0.06 to 0.018 W / ( m ⁇ K) is preferably used.
  • methyl silicate monomer xerogel by atmospheric drying or airgel by critical drying can be easily manufactured at low density, and can easily form a porous structure or hollow structure at the nano level. It can be suitably used because it is difficult to disintegrate in an aqueous solution.
  • the porosity of xerogel and airgel is preferably 50.0 to 99.8%, particularly preferably 70 to 99.8%, and more preferably 86 to 99.8%.
  • the average particle size is not particularly limited, but is preferably 2 to 140 ⁇ m. If the particle size of the xerogel and airgel of the porous silica particles is more than 140 ⁇ m, it is necessary to increase the thickness of the heat insulating material, and it is difficult to achieve the object of the present application to provide a heat insulating material agent having a low bulk and a heat insulating effect. Further, if it is less than 2 ⁇ m, it is difficult to obtain a sufficient heat insulating effect.
  • the specific surface area By increasing the specific surface area, the porosity can be increased.
  • the weight of the whole heat insulating material can also be reduced.
  • the amount of xerogel and / or aerogel in the heat insulating material of the present invention is preferably 35 to 210 parts by weight based on 100 parts by weight of the main fiber in terms of total weight. If the amount of xerogel and / or aerogel is less than 35 parts by weight in total weight, there is a possibility that sufficient heat insulating properties cannot be given to the heat insulating material. Moreover, when the total amount of xerogel and / or airgel exceeds 210 parts by weight, the strength of the heat insulating material decreases, and it becomes difficult to obtain the desired paper-like processability. Problems such as falling off, scattering, etc. may occur.
  • the main fiber contains pulp and the binder described later contains at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer, from the same point of view, compounding of xerogel and / or airgel
  • the total amount is preferably 35 to 75 parts by weight, particularly 35 to 60 parts by weight, and more preferably 38 to 52 parts by weight based on 100 parts by weight of the main fiber.
  • the main fiber includes a synthetic fiber and the binder described later includes a low melting point synthetic fiber, from the same viewpoint as described above, the compounding amount of xerogel and / or aerogel is 100 parts by weight of the main fiber in terms of the total weight.
  • the amount is preferably 100 to 210 parts by weight.
  • a heat insulating material having equivalent performance can be obtained when xerogel is contained and when airgel is contained.
  • the heat insulating material of the present invention contains at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer, and / or a binder containing low-melting synthetic fibers. That is, the binder contained in the heat insulating material of the present invention includes at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer, and / or a low melting point synthetic fiber.
  • the water-soluble polymer those obtained by cationizing and / or amphotericizing starch, polyvinyl alcohol (PVA), polyvinyl acetate, aqueous urethane and the like can be preferably used.
  • cationized starch and amphoteric starch can be used more suitably because bubbles are not easily generated in the aqueous solution during paper making, and stable paper making and high yield are possible.
  • the cationized starch and the amphoteric starch can be carried out by using known methods described in, for example, JP-A No. 2003-64101 (cationized starch), JP-A No. 2001-19701 (amphoteric starch) and the like. .
  • a cationic starch suitably, for example, Nippon Food Chemical Co., Ltd. Neotuck series etc. are applicable.
  • the “water-soluble polymer” includes a hydrocolloid in addition to a water-soluble polymer.
  • the low melting point synthetic fiber has a melting point of 140 ° C. or lower at least on the surface of the fiber, and is lower than the melting point when the main fiber has a melting point (for example, when the main fiber contains a synthetic fiber). It is not particularly limited as long as it is a synthetic fiber having a melting point, and as the low melting point synthetic fiber, for example, a vinylon binder fiber, an olefin binder fiber, a polyester binder fiber or the like can be suitably used. As the low melting point synthetic fiber, a vinylon binder fiber is particularly preferable, and the fiber dissolves in water at 70 ° C., so that the xerogel and / or the airgel and the fiber can be bonded to each other at the time of drying.
  • a commercially available vinylon binder fiber can be used as appropriate, and for example, VPB105-1 manufactured by Kuraray Co., Ltd. is applicable.
  • the binder fiber may be a core-sheath fiber whose core is a high melting point component and whose sheath is a low melting point component.
  • At least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer and / or a low-melting synthetic fiber as a binder, by containing the binder, in a papermaking process, etc.
  • the particle shape of the xerogel and the airgel is less likely to collapse, and the heat insulating property is easily maintained.
  • the main fiber contains pulp and the xerogel and / or aerogel is porous silica particles, more specifically methyl silicate particles
  • the pulp is usually anionic in a pulp slurry containing water and pulp.
  • the porous silica particles, particularly methyl silicate particles, added to the slurry exhibit anionic or amphoteric properties.
  • Anionic pulp and anionic or amphoteric porous silica particles are unlikely to aggregate with each other and the yield tends to be low.
  • a cationic polymer and / or an amphoteric polymer as a binder, it is possible to promote the aggregation of pulp and porous silica particles and to increase the yield.
  • the yield can be further increased by using a known flocculant containing chitin, chitosan and the like.
  • the binder is preferably blended in an amount of 0.3 to 125 parts by weight with respect to 100 parts by weight of the main fiber.
  • the blending amount of the binder is less than 0.3 parts by weight, the particle shape of the xerogel and the airgel in the paper making process or the like is unlikely to occur, and the heat insulating property is easily maintained.
  • the compounding quantity of a binder exceeds 125 weight part, there exists a possibility that the intensity
  • the blending amount of the water-soluble polymer is The amount is preferably 0.3 to 33 parts by weight, more preferably 0.3 to 18 parts by weight, based on 100 parts by weight of the fiber.
  • the binder is preferably blended in an amount of 20 to 100 parts by weight with respect to 100 parts by weight of the main fiber.
  • the particle shape of the xerogel and the airgel in the paper making process or the like is less likely to be collapsed, and the heat insulating property is more easily maintained.
  • the amount of the binder is preferably 10 to 20 parts by weight with respect to 100 parts by weight of the airgel. In such a case, it is because the heat insulation of a heat insulating material can be ensured effectively.
  • a paper strength additive such as vegetable gum, aqueous cellulose derivative, sodium silicate, etc., which is usually used as an additive for papermaking, rosin, carboxymethyl cellulose, alkyl ketene dimer, alkenyl Add succinic anhydride and other sizing agents, yield improvers such as polyacrylamide and sodium silicate, paper-making adhesives such as polyacrylamide and polyethylene oxide, dyes, and pigments as necessary by internal addition or size press. be able to.
  • a dispersant such as a water-soluble polyurethane resin (for example, manufactured by Yoshimura Yuka Co., Ltd., Texanol PE-10F, etc.), an antifoaming agent (for example, manufactured by Meisei Chemical Industries, Ltd.) , Formless P new, etc.) can be used.
  • a water-soluble polyurethane resin for example, manufactured by Yoshimura Yuka Co., Ltd., Texanol PE-10F, etc.
  • an antifoaming agent for example, manufactured by Meisei Chemical Industries, Ltd.
  • Formless P new etc.
  • the heat insulating material composed of the above components can be a sheet having a thickness of 15 ⁇ m to 1.2 cm, a basis weight of 5 to 480 g / m 2 , and a density of 0.5 to 1.5 g / cm 3 . These numerical values are within the same range as general paper, and it can be seen that the heat insulating agent of the present invention has the same appearance and texture as paper.
  • the heat insulating material does not need to be only one layer of the papermaking sheet, and may have a multilayer structure in which a plurality of sheets are bonded with an adhesive or the like, and a resin layer such as polyethylene is provided on one or both sides of the sheet. A laminate structure may be used.
  • the thickness of the heat insulating material is more preferably 40 ⁇ m to 1.2 mm. Further, it is more preferable that the thickness is 40 ⁇ m to 1.2 mm, and by making the thickness within this range, sufficient manufacturability, handleability, and workability are maintained while maintaining sufficient heat insulation performance. Can be expensive. Further, the present invention can be applied in a fine structure requiring heat insulation or in a region where space is limited.
  • a heat insulating material excellent in processability and adaptable to a curved portion a heat insulating material manufactured by Aspen Co., Ltd. made of silica xerogel or silica airgel and fiber ("Cryogel (registered trademark)", “Pyrogel (registered trademark)")
  • the heat insulating material becomes a sheet having a thickness of 5 mm or more, and cannot be applied in a fine structure or a portion where space is limited.
  • a heat insulating material that is ultra-thin, excellent in workability, and capable of dealing with a curved portion
  • a heat insulating material manufactured by Panasonic (“NASBIS (registered trademark)”) in which a silica xerogel is combined with a fiber.
  • the thickness limit is about 0.1 mm due to the above properties. Therefore, conventionally, a heat insulating material having high heat insulating performance even in the thickness range and having high handleability and workability is desired for heat insulation in a fine structure or in a region where space is limited.
  • the heat insulating material of this embodiment can solve this problem suitably.
  • Preparation of papermaking slurry 100 parts by weight of the main fiber, 35 to 210 parts by weight of the above xerogel and / or airgel, and 0.3 to 125 parts by weight of the above binder were added to water and mixed to prepare a mixed slurry.
  • a papermaking slurry (mixed slurry) is prepared.
  • a water-soluble polymer and a xerogel and / or an airgel are added and mixed with the slurry which suspended the main fiber in water at least. It is preferable to adjust the papermaking slurry.
  • the slurry is obtained by suspending the pulp in water. It is preferable to prepare a papermaking slurry (mixed slurry) by adding and mixing silica particles and a binder.
  • the slurry When preparing the papermaking slurry, it is preferable to adjust the slurry by adding acid, alkali or the like as necessary so that the slurry has a pH of 7-8.
  • the xerogel and / or aerogel is a hydrophobized methyl silicate or the like, its chemical structure is most likely to be stable under the conditions of pH 7-8. Therefore, it is desirable to prepare a slurry under the above conditions in order to maintain the porous structure of the particles.
  • Papermaking process The papermaking slurry is made using a known papermaking machine usually used in paper production.
  • the slit width, drum diameter, drum rotation speed, press pressure, dryer temperature and the like of the paper machine can be appropriately changed depending on the desired properties of the heat insulating material sheet.
  • a plurality of sheets may be laminated via an adhesive, and a lamination process is performed by providing a resin layer such as polyethylene on one or both sides. May be.
  • the wet papermaking method is a production method in which fibers and the like are dispersed in water and then rolled up with a wire to form a sheet.
  • the main fiber, xerogel and / or aerogel, and a binder are dispersed in water to produce a heat insulating material having a thickness of 15 ⁇ m to 1.2 mm, more preferably 40 ⁇ m to It can be set to 1.2 mm.
  • the heat insulating material of this invention it is possible to show the heat insulation effect with respect to the target goods by means, such as packaging the target goods and sticking to the target goods.
  • the material of the target article is not particularly limited, and any material such as paper, plastic, plate material, and metal can be used. Its purpose of use can also be used for food and pharmaceutical containers and packaging materials, building materials, and the like.
  • the heat insulating material of the present embodiment is used as a heat countermeasure part for electronic devices, for example, used together with a heat dissipation material, or as an energy saving part or a safety countermeasure product such as a molding device, a mold apparatus, a piping member, etc. It is used as a building material and its peripheral members (roofing sheet, underfloor material, wallpaper, shoji paper, roll screen), used as an interior member of automobiles and transport vehicles, and as a packaging material with heat insulation performance To use.
  • the heat insulating material of the present invention can also be used for an electronic device (for example, a mobile phone, a digital camera, etc.) having a heat generating component inside.
  • the heat insulating material of the present invention can be used, for example, in an electronic device including a substrate on which a heat generating component is mounted and a housing that houses the substrate.
  • a heat conductive sheet is disposed between the heat generating component and the heat insulating sheet, or a heat conductive sheet is disposed between the housing and the heat insulating sheet (a side away from the heat generating component with respect to the heat insulating sheet). And / or both.
  • a heat insulation sheet including a heat insulating sheet in this way, when a heat conductive sheet is arranged between the heat generating component and the heat insulating sheet, the heat generated from the heat generating component is firstly transferred to the high heat conductive sheet. It is possible to prevent the heat conduction sheet from spreading over the entire surface of the heat conductive sheet and to locally increase the temperature, and subsequently to prevent the diffused heat from being transmitted to the housing by the heat insulating sheet.
  • the heat generated from the heat generating component is first prevented from being transmitted to the heat conductive sheet by the heat insulating sheet, and then from the heat insulating sheet.
  • the slight heat that has been transmitted to the heat conductive sheet can be spread over the entire surface of the heat conductive sheet, and the temperature of the housing can be prevented from rising locally. Therefore, even if the temperature rises locally due to the heat-generating component inside the housing, the temperature rise of the surface of the housing can be prevented.
  • the heat insulating material of this invention is not limited to the said example, A change can be added suitably.
  • Example 1 Thermal insulation material 300 mL of water was put in a 500 mL beaker, and 200 g of commercially available kenaf pulp, a critically dry hydrophobic gel powder of methyl silicate (average particle size 5 ⁇ m, specific surface area 750 m 2 / g, Aerogel Enova manufactured by Cabot) 100g, 0.8g of cationic starch (Nippon Food Chemical Co., Ltd. # 40T) was added and stirred using a handy mixer at 10,000rpm until the whole became uniform to prepare a pulp slurry. .
  • the pulp slurry is manually made using a papermaking screen (material: nylon), and dried at room temperature in a wire mesh shape, whereby a heat insulating material having a thickness of 0.2 mm and a basis weight of 200 g / m 2 (heat insulation). Sheet) was obtained.
  • a heat insulating material having a thickness of 0.2 mm and a basis weight of 200 g / m 2 (heat insulation). Sheet) was obtained.
  • the external appearance, the flexibility, etc. of the obtained heat insulation sheet were similar to a commercially available drawing paper.
  • Examples 2 to 5 Insulation Material Insulation sheets prepared by drying three, five, seven, and ten sheets before drying on a paper sheet made in the same manner as in Example 1 2, 3, 4, and 5.
  • Comparative Examples 1 to 5 Paper Commercially available drawing paper having a thickness of 0.2 mm and a basis weight of 210 g / m 2 was used as a comparative control. The one using only one drawing paper was Comparative Example 1, and the three, five, seven, and ten sheets were used as Comparative Examples 2, 3, 4, and 5, respectively.
  • the heat insulating material (heat insulating sheet) of the present invention is less likely to pass the temperature of hot water inside the paper cup through the outer surface. It was found that the insulation performance was excellent.
  • Example 6 Heat insulation material 700 mL of water was put into a 1 L handy mixer, and 3.5 g of a commercially available polyester fiber (PET fiber, TA04PN SD 0.1 dtex x 3 mm) manufactured by Teijin Ltd. was put there at a rotational speed of 10,000 rpm. Stir until is uniform. To this, 1.2 g of vinylon binder fiber (VPB105-1 x 3 mm manufactured by Kuraray Co., Ltd.) was added and stirred.
  • PET fiber TA04PN SD 0.1 dtex x 3 mm
  • VVB105-1 x 3 mm manufactured by Kuraray Co., Ltd.
  • a critically dry hydrophobic gel powder of methyl silicate (average particle size 90 ⁇ m, specific surface area 750 m 2 / g, Aerogel Enova manufactured by Cabot) was added and stirred in the same manner to prepare a papermaking slurry.
  • paper is made in the same manner as in Example 1, and dried with a rotary dryer to obtain a heat insulating material (heat insulating sheet) having a thickness of 0.25 mm and a basis weight of 100 g / m 2.
  • Heat insulating sheet having a thickness of 0.25 mm and a basis weight of 100 g / m 2.
  • the thickness of the heat insulating material of Example 6 was 0.5 mm).
  • the external appearance, the flexibility, etc. of the obtained heat insulation sheet were similar to a commercially available nonwoven fabric.
  • Examples 7 to 9 Insulating materials
  • the insulating materials produced by the same method as in Example 6 were used by superimposing four, six and eight sheets, respectively, which were designated as Examples 7, 8, and 9 (Examples respectively)
  • the thickness of the insulation material is 1.0 mm, 1.5 mm, and 2.0 mm).
  • Comparative Examples 6 to 9 Nonwoven fabric As a comparative control, 0.25 mm nonwoven fabric (polyester fiber (TA04PN SD 0.1 dtex x 3 mm manufactured by Teijin Ltd.) 100 parts by weight, vinylon binder fiber (VPB105-1 x 3 mm manufactured by Kuraray Co., Ltd.) 3 parts by weight) was used. A comparative example 6 was obtained by using only two non-woven fabrics, and comparative examples 7, 8, and 9 were obtained by superposing four sheets, six sheets, and eight sheets, respectively.
  • Example 10 Heat insulation material 700 mL of water was put into a 1 L handy mixer, and 3.5 g of commercially available polyester fiber (PET fiber, TA04PN SD 0.1 dtex x 3 mm) manufactured by Teijin Ltd. was put there at a rotation speed of 10,000 rpm. Was stirred until. To this, 1.2 g of polyester binder fiber (PET binder fiber, TK08PN SD 0.2 dtex x 3 mm, manufactured by Teijin Ltd.) was added and stirred. Furthermore, 3.1 g of cationic starch (Nippon Food Chemical Co., Ltd.
  • Examples 11 to 13 Heat insulating materials Heat insulating materials manufactured by the same method as in Example 10 were used as four, six, and eight sheets, and were used as Examples 11, 12, and 13, respectively (Examples respectively) The thickness of the insulation material is 1.0 mm, 1.5 mm, and 2.0 mm).
  • Comparative Examples 10 to 13 Nonwoven fabric As a comparative control, 0.25 mm nonwoven fabric (polyester fiber (TA04PN SD 0.1 dtex x 3 mm) manufactured by Teijin Ltd.), polyester binder fiber (PET binder fiber, Teijin Ltd. TK08PN SD 0.2 dtex x) 3 mm) 33 parts by weight and cationic starch (Nippon Food Chemical Co., Ltd. # 40T) 36 parts by weight) were used.
  • a comparative example 10 was obtained by using only two non-woven fabrics, and comparative examples 11, 12, and 13 were used by superimposing four, six and eight sheets, respectively.
  • heat insulating material (heat insulating sheet) of the present invention is less likely to pass through the temperature of a stainless steel cylinder and has excellent heat insulating performance as compared with a nonwoven fabric having an equivalent thickness.

Abstract

The present invention provides a heat insulator that is less bulky than in the related art, has excellent processability, and can be applied to a microstructure, and also provides a manufacturing method by which such a heat insulator can be manufactured. The heat insulator according to the present invention comprises a main fiber, xerogel and/or aerogel, at least one hydrosoluble polymer selected from the group consisting of a cationic polymer and an ampholytic polymer, and/or a binder including a low-melting-point synthetic fiber, and is characterized in that the xerogel and the aerogel have a density lower than 0.5 g/cm3 and a thermal conductivity of 0.02 W/(m·K) or lower and, in terms of the gross weight, 35-210 parts by weight of the xerogel and/or aerogel are combined with 100 parts by weight of the main fiber.

Description

断熱材及び断熱材の製造方法Insulating material and method of manufacturing the insulating material
 本発明は、断熱性を有する断熱材、及び該断熱材の製造方法に関する。 The present invention relates to a heat insulating material having a heat insulating property and a method for manufacturing the heat insulating material.
 医薬品、食品などの冷蔵製品及び冷凍製品は、輸送時の品質の劣化を防ぐため、冷蔵、冷凍条件以外の環境では、通常、断熱性を有する発泡スチロール容器や発泡ウレタン等の断熱材を付与した段ボール箱のような、断熱容器(例えば、特許文献1)に収納されて運搬される。このような断熱容器は、収納される製品と比して嵩高であるため、製品の運送コストがかさむ、という問題があった。また、製品自体とは別に断熱容器を用意し、製品を収納・梱包することが必須であり、運送手順が煩雑化する要因となっていた。 Refrigerated and frozen products such as pharmaceuticals and food products are usually corrugated cardboard with insulation such as foamed polystyrene containers and urethane foam that have heat insulation properties in environments other than refrigerated and frozen conditions to prevent quality deterioration during transportation. It is housed and transported in an insulated container (for example, Patent Document 1) such as a box. Since such a heat insulating container is bulky as compared with the product to be stored, there has been a problem that the transportation cost of the product is increased. In addition, it is essential to prepare an insulated container separately from the product itself, and to store and pack the product, which has been a factor in complicating the transportation procedure.
 一方、製品を高温状態で比較的長時間保つ容器が必要とされる場面も多い。このような容器は、通常、使用時に外部が高温とならず、使用者が素手で触れられることも同時に要求される場合が少なくない。このような容器としては、保温性を持たせるため、発泡スチロール等の嵩高の素材の容器や、側壁が積層構造を有する紙容器等が使用されている。側壁が積層構造を有する紙容器としては、例えば特許文献2のように、側壁の積層内部に空気の層を有するものが知られる。いずれにしても、内側の容積に比して、全体が嵩高であり、容器自体の運送時、収納時のスペースを多大に要するものであった。 On the other hand, there are many occasions where a container that keeps the product at a high temperature for a relatively long time is required. Such a container is often required to be touched with a bare hand at the same time as the outside does not become hot at the time of use. As such a container, a bulky material container such as foamed polystyrene, a paper container having a laminated structure on the side wall, or the like is used in order to provide heat retention. As a paper container having a laminated structure on the side wall, for example, a paper container having an air layer inside the laminated side wall is known as in Patent Document 2. In any case, the whole is bulky as compared with the inner volume, and a large space is required for transporting and storing the container itself.
特開平11-147577号公報JP-A-11-147777 特開2000-247377号公報JP 2000-247377 A 特開平7-48881号公報JP 7-48881 A
 上記のように、各分野における従来の断熱材は、多くが嵩高の形態であるため、運搬効率、収納効率を下げる要因となっていた。また、使用される素材も、ガラスウール、断熱ボード、発泡ウレタン、発泡スチロール等に限られており、その厚みと構造上の脆弱性により、微細な加工、成形が困難であり、ボックス状の断熱容器や、比較的大型の基材等、使用される対象が限られていた。 As described above, since most of the conventional heat insulating materials in each field are bulky, it has been a factor of lowering transportation efficiency and storage efficiency. In addition, the materials used are limited to glass wool, heat insulation board, foamed urethane, foamed polystyrene, etc., and due to their thickness and structural weakness, fine processing and molding are difficult, and box-shaped heat insulation containers Moreover, the object used, such as a comparatively large base material, was limited.
 そこで、本発明は、従来よりも嵩が低く、かつ、加工性に優れ、微細構造にも適用可能な断熱材およびこのような断熱材を製造可能な製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a heat insulating material that is less bulky than the prior art, has excellent workability, and can be applied to a fine structure, and a manufacturing method capable of manufacturing such a heat insulating material.
 上記課題を解決する本発明の断熱材は、主体繊維と、キセロゲル及び/又はエアロゲルと、カチオン性ポリマー及び両性ポリマーからなる群から選択される少なくとも1つの水溶性ポリマー、及び/又は、低融点合成繊維を含むバインダーと、を含む断熱材であって、前記キセロゲル及びエアロゲルは、密度が0.5g/cm未満、熱伝導率が0.02W/(m・K)以下であり、前記主体繊維100重量部に対して、前記キセロゲル及び/又はエアロゲルが総重量で35~210重量部配合された、ことを特徴とする。
 上記構成を備えた本発明の断熱材は、通常の紙同様に嵩が低く、優れた加工性を有するのに加え、一定量配合された、低密度、低熱伝導率のキセロゲル及び/又はエアロゲルにより、優れた断熱性を有する。また、本発明の断熱材は、主体繊維、キセロゲル及び/又はエアロゲルに加え、バインダーとして、カチオン性ポリマー及び両性ポリマーからなる群から選択される少なくとも1つの水溶性ポリマー、及び/又は、低融点合成繊維を含有する。当該バインダーを含有することで、抄紙工程等でのキセロゲル及びエアロゲルの粒子形状の崩壊が生じにくく、その断熱性を保持しやすい、という効果を奏する。
 なお、ここでいう「密度」は、粒子の状態で、25℃、1気圧の条件下で測定するものを指すものとする。また、ここでいう「キセロゲル」および「エアロゲル」とは、ナノメートル規模の孔が多数あり、そこから空気が分散される固体材料の連続マトリクスを持つ微粒子である。さらに、本発明において、「重量部」とは、水以外においては、すべて乾燥重量に基づくものである。
 また、ここでいう「低融点合成繊維」とは、少なくとも当該繊維の表面において、融点が140℃以下であって、主体繊維が融点を有する場合には当該融点よりも低い融点を有する合成繊維を指すものとする。
 さらにまた、本発明の断熱材は、キセロゲル及びエアロゲルの両方又はいずれか一方を含有しており、キセロゲル及びエアロゲルの、例えば物性(密度や熱伝導率など)及び配合量等についての規定は、本発明の断熱材がキセロゲル及びエアロゲルの両方を含有する場合は、その両方が当該物性の規定を満たし、また、その両方を合わせた総重量が、当該配合量の規定を満たすものとする。
The heat-insulating material of the present invention that solves the above problems is at least one water-soluble polymer selected from the group consisting of a main fiber, xerogel and / or aerogel, a cationic polymer and an amphoteric polymer, and / or a low-melting-point synthesis. A xerogel and aerogel having a density of less than 0.5 g / cm 3 and a thermal conductivity of 0.02 W / (m · K) or less, wherein the main fiber The xerogel and / or airgel is blended in a total weight of 35 to 210 parts by weight with respect to 100 parts by weight.
The heat insulating material of the present invention having the above-described structure is low in volume like ordinary paper and has excellent workability, and in addition to a certain amount, xerogel and / or airgel with low density and low thermal conductivity. , Has excellent heat insulation. Further, the heat insulating material of the present invention includes at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer as a binder in addition to the main fiber, xerogel and / or aerogel, and / or low melting point synthesis. Contains fiber. By containing the binder, the particle shape of the xerogel and the airgel in the paper making process or the like is not easily broken, and the heat insulating property is easily maintained.
Here, the “density” refers to that measured in the state of particles at 25 ° C. and 1 atm. Further, the “xerogel” and “aerogel” referred to here are fine particles having a continuous matrix of a solid material having a large number of nanometer-scale pores from which air is dispersed. Furthermore, in the present invention, “parts by weight” is based on dry weight except for water.
The “low-melting-point synthetic fiber” as used herein means a synthetic fiber having a melting point lower than the melting point when the main fiber has a melting point at least 140 ° C. at least on the surface of the fiber. Shall point to.
Furthermore, the heat insulating material of the present invention contains xerogel and / or aerogel. For example, the physical properties (such as density and thermal conductivity) and the amount of compounding of xerogel and aerogel are defined in this book. When the heat insulating material of the invention contains both a xerogel and an airgel, both satisfy the provisions of the physical properties, and the total weight of both of them satisfies the provisions of the blending amount.
 前記バインダーは、前記水溶性ポリマーを含み、前記水溶性ポリマーは、カチオン化デンプン及び両性デンプンの少なくとも一方であることが好ましい。バインダーとして、カチオン化デンプン又は両性デンプンを使用することで、抄紙時におけるキセロゲル及びエアロゲルの粒子形状がより壊れにくく、これを用いた断熱材の断熱性能を保持することができる。
 また、前記バインダーは、前記低融点合成繊維を含み、前記低融点合成繊維は、ビニロンバインダー繊維であることが好ましい。バインダーとして、ビニロンバインダー繊維を使用することで、効率よく断熱材を製造することができる。
The binder preferably contains the water-soluble polymer, and the water-soluble polymer is preferably at least one of cationized starch and amphoteric starch. By using cationized starch or amphoteric starch as the binder, the particle shape of the xerogel and the airgel at the time of papermaking is more difficult to break, and the heat insulating performance of the heat insulating material using this can be maintained.
The binder preferably includes the low-melting synthetic fiber, and the low-melting synthetic fiber is a vinylon binder fiber. By using a vinylon binder fiber as a binder, a heat insulating material can be produced efficiently.
 前記キセロゲル及びエアロゲルは、メチルシリケートモノマーを常圧乾燥でキセロゲル化し又は臨界乾燥でエアロゲル化した多孔質シリカ粒子であることが好ましい。メチルシリケートの常圧乾燥ゲル又は臨界乾燥ゲルは、低密度での製造が容易であり、水溶液中で多孔質形状が崩壊しにくいため、抄紙スラリー中でその形状が保持されやすい。 The xerogel and aerogel are preferably porous silica particles obtained by converting a methylsilicate monomer into a xerogel by atmospheric drying or aerogeling by critical drying. The normal pressure dried gel or critical dried gel of methyl silicate is easy to produce at low density, and since the porous shape does not easily collapse in an aqueous solution, the shape is easily retained in the papermaking slurry.
 前記キセロゲル及びエアロゲルの平均粒径が2~140μmであり、かつ、比表面積が400m/g以上であることが好ましい。キセロゲル及びエアロゲルの平均粒径を2~140μmとすることで、断熱材に十分な断熱性を与え、嵩の低い断熱材においても断熱性能を発揮させることが可能である。また、多孔質シリカ分活の比表面積を400m/g以上とすることで、より高い断熱性を断熱材に付与することが可能となる。 The xerogel and the airgel preferably have an average particle diameter of 2 to 140 μm and a specific surface area of 400 m 2 / g or more. By setting the average particle size of xerogel and airgel to 2 to 140 μm, it is possible to give sufficient heat insulation to the heat insulating material and to exhibit heat insulating performance even in a low-volume heat insulating material. Moreover, it becomes possible to provide higher heat insulation to a heat insulating material by the specific surface area of porous silica activation being 400 m < 2 > / g or more.
 本発明の断熱材は、厚さが15μm~1.2cm、坪量が5~480g/m、密度が0.5~1.5g/cmのシート状とすることが好ましい。断熱材を当該性状とすることで、紙様の質感、加工性をもたせることができる。 The heat insulating material of the present invention is preferably in the form of a sheet having a thickness of 15 μm to 1.2 cm, a basis weight of 5 to 480 g / m 2 , and a density of 0.5 to 1.5 g / cm 3 . By making a heat insulating material into the said property, paper-like texture and workability can be given.
 本発明の断熱材の製造方法は、100重量部の主体繊維と、密度が0.5g/cm未満、熱伝導率が0.02W/(m・K)以下の総重量で35~210重量部のキセロゲル及び/又はエアロゲルと、カチオン性ポリマー及び両性ポリマーからなる群から選択される少なくとも1つの水溶性ポリマー、及び/又は、低融点合成繊維を含む0.3~125重量部のバインダーと、を水に添加混合して混合スラリーを調製し、前記混合スラリーを抄紙する、ことを特徴とする。上記製造方法により、通常の紙同様に嵩が低く、優れた加工性を有するのに加え、優れた断熱性を有する断熱材の製造が可能である。 The method for producing a heat insulating material according to the present invention comprises a main fiber of 100 parts by weight, a density of less than 0.5 g / cm 3 , and a thermal conductivity of 35 to 210 weights in total weight of 0.02 W / (m · K) or less. A part of xerogel and / or aerogel, and at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer, and / or 0.3 to 125 parts by weight of a binder containing low melting point synthetic fibers, Is mixed with water to prepare a mixed slurry, and the mixed slurry is made into paper. According to the above production method, it is possible to produce a heat insulating material having an excellent heat insulating property in addition to having a low bulk as in ordinary paper and having excellent workability.
 本発明の断熱材の製造方法において、抄紙時の前記混合スラリーは、pH7~8とすることが好ましい。pH7~8のスラリー中においては、キセロゲル及びエアロゲルの形質、性状が安定しやすく、同時に主体繊維がパルプを含む場合にはそのフィブリル化が促進されやすい。 In the method for producing a heat insulating material of the present invention, the mixed slurry at the time of papermaking is preferably pH 7-8. In a slurry having a pH of 7 to 8, the characteristics and properties of xerogel and airgel are likely to be stable, and at the same time, when the main fiber contains pulp, fibrillation is likely to be promoted.
 また、本発明の断熱材の製造方法において、前記混合スラリーの前記バインダーが前記水溶性ポリマーを含み、前記水溶性ポリマー及び前記キセロゲル及び/又はエアロゲルを、少なくとも前記主体繊維を水に懸濁したスラリーに、添加混合して前記混合スラリーを調整することが好ましい。キセロゲル及び/又はエアロゲルが繊維に絡むことによりキセロゲル及び/又はエアロゲルと繊維の複合体が形成され、水面に浮上しにくくなるからである。 Also, in the method for producing a heat insulating material of the present invention, the binder of the mixed slurry contains the water-soluble polymer, and the water-soluble polymer and the xerogel and / or the airgel are at least the main fibers suspended in water. In addition, it is preferable to adjust the mixed slurry by addition and mixing. This is because the composite of xerogel and / or airgel and fiber is formed by entanglement of the xerogel and / or airgel with the fiber, and it is difficult to float on the water surface.
 本発明の断熱材は、十分な断熱性を有し、かつ、嵩が低く、加工性に優れるものである。また、本発明の断熱材の製造方法は、十分な断熱性を保持しつつ、嵩が低く、加工性に優れた断熱材を提供可能である。 The heat insulating material of the present invention has sufficient heat insulating properties, is low in bulk, and has excellent workability. Moreover, the manufacturing method of the heat insulating material of this invention can provide the heat insulating material which was low in bulk and excellent in workability, maintaining sufficient heat insulation.
 以下、本発明の断熱材及び該断熱材の製造方法について例示的に説明する。 Hereinafter, the heat insulating material of the present invention and the method for producing the heat insulating material will be described as an example.
1.断熱材
 本発明の断熱材は、主体繊維と、キセロゲル及び/又はエアロゲルと、カチオン性ポリマー及び両性ポリマーからなる群から選択される少なくとも1つの水溶性ポリマー、及び/又は、低融点合成繊維を含むバインダーと、を含む断熱材であって、前記キセロゲル及びエアロゲルは、密度が0.5g/cm未満、熱伝導率が0.02W/(m・K)以下であり、前記主体繊維100重量部に対して、前記キセロゲル及び/又はエアロゲルが総重量で35~210重量部配合された、ことを特徴とする。以下、前記断熱材の各配合成分について詳述する。
1. Heat insulating material The heat insulating material of the present invention includes a main fiber, xerogel and / or airgel, at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer, and / or a low melting point synthetic fiber. A xerogel and an airgel having a density of less than 0.5 g / cm 3 and a thermal conductivity of 0.02 W / (m · K) or less, and 100 parts by weight of the main fiber On the other hand, the xerogel and / or the airgel is blended in a total weight of 35 to 210 parts by weight. Hereafter, each compounding component of the said heat insulating material is explained in full detail.
<主体繊維>
 本発明の断熱材の主体繊維は、合成繊維及び天然繊維のいずれでも使用することができる。合成繊維を使用する場合、主体繊維としては、特に限定されるものではないが例えば、通常、不織布の原料として使用される合成繊維である、ポリエステル繊維、ビニロン繊維、オレフィン繊維、ポリウレタン繊維、アラミド繊維、アクリル繊維、ポリ乳酸繊維、ポリ塩化ビニル繊維、ビニリデン繊維、ポリフェニレンサルファイド繊維、セラミック繊維、アルミナ繊維、ガラス繊維を使用することができ、ポリエステル繊維が好ましく、ポリエチレンテレフタレート(以下、PETと称す)繊維がより好ましい。
 また、天然繊維を使用する場合、主体繊維としては、特に限定されるものではないが例えば、パルプを使用することができる。パルプの種類は、特に限定されるものではなく、通常、紙の原料として使用される木材パルプ、非木材パルプ、脱墨パルプのいずれも使用可能であり、また、ケミカルパルプ、セミケミカルパルプ、メカニカルパルプのいずれも使用可能である。
 各種主体繊維の選択は、断熱材の所望の柔軟性、耐熱性、難燃性、不燃性、可撓性、強度、重量に応じて適宜変更することができ、主体繊維には、上記の1種類のみの繊維を含有させることも、複数種類の繊維を含有させることもできる。
<Main fiber>
As the main fiber of the heat insulating material of the present invention, either a synthetic fiber or a natural fiber can be used. When synthetic fibers are used, the main fibers are not particularly limited. For example, polyester fibers, vinylon fibers, olefin fibers, polyurethane fibers, aramid fibers, which are synthetic fibers that are usually used as raw materials for nonwoven fabrics. Acrylic fiber, polylactic acid fiber, polyvinyl chloride fiber, vinylidene fiber, polyphenylene sulfide fiber, ceramic fiber, alumina fiber, glass fiber can be used, polyester fiber is preferable, polyethylene terephthalate (hereinafter referred to as PET) fiber Is more preferable.
Moreover, when using a natural fiber, although it does not specifically limit as a main fiber, For example, a pulp can be used. The type of pulp is not particularly limited, and any of wood pulp, non-wood pulp, and deinked pulp, which are usually used as raw materials for paper, can be used. Chemical pulp, semi-chemical pulp, mechanical pulp Any pulp can be used.
The selection of various main fibers can be appropriately changed according to the desired flexibility, heat resistance, flame retardancy, non-flammability, flexibility, strength, and weight of the heat insulating material. Only one type of fiber can be contained, or a plurality of types of fibers can be contained.
 特に、後述のキセロゲル及び/又はエアロゲルを多量に含有する本実施形態の断熱材においては、例えば主体繊維としてパルプのみにした場合などは、高い断熱性を有するもののその強度が低くなりやすい。この場合、主体繊維中に、ミクロフィブリル化されたパルプ(セルロースナノファイバー)を、全主体繊維100重量部中0.5~22重量部配合することで、断熱材の高い断熱性を維持しつつ、紙様の強度と加工性を付与することができる。
 後述のキセロゲル及び/又はエアロゲルを多量に含有する断熱材においては、キセロゲル及びエアロゲルの保持するため繊維径の細い合成繊維が望ましい。
In particular, in the heat insulating material of the present embodiment containing a large amount of xerogel and / or airgel, which will be described later, for example, when only the pulp is used as the main fiber, the strength tends to be low although it has high heat insulating properties. In this case, by mixing 0.5 to 22 parts by weight of microfibrillated pulp (cellulose nanofibers) in 100 parts by weight of all the main fibers in the main fiber, while maintaining the high heat insulating property of the heat insulating material. , Paper-like strength and workability can be imparted.
In a heat insulating material containing a large amount of xerogel and / or airgel, which will be described later, synthetic fibers having a small fiber diameter are desirable in order to retain the xerogel and the airgel.
<キセロゲル、エアロゲル>
 本発明に使用するキセロゲル及びエアロゲルは、ナノメートル規模の孔が多数あり、そこから空気が分散される固体材料の連続マトリクスを持つ微粒子であり、例えば99%が空気で構成され、非常に軽く、効果的な断熱材になる。またキセロゲル及びエアロゲルとしては、シリカ、メチルシリケート、シリカ・アルミナ等の公知のシリカ化合物、レゾルシノール・ホルムアルデヒド、セルロース、セルロースナノファイバー等の多孔質粒子を使用できる。多孔率の程度にかかわらず、素材自体の熱伝導率が0.15W/(m・K)以下、特に、0.1W/(m・K)以下、さらには0.06~0.018W/(m・K)のものを使用することが好ましい。特に、メチルシリケートモノマーを常圧乾燥でキセロゲル化し又は臨界乾燥でエアロゲル化したものが、低密度での製造が容易であること、ナノレベルでの多孔構造又は中空構造を比較的容易に形成し得ること、水溶液中で崩壊しにくいこと、などから、好適に使用可能である。
<Xerogel, Aerogel>
The xerogel and aerogel used in the present invention are fine particles having a continuous matrix of solid material from which a large number of nanometer-scale pores are dispersed and from which air is dispersed. For example, 99% is composed of air and is very light. It becomes an effective heat insulating material. As the xerogel and airgel, known silica compounds such as silica, methyl silicate and silica / alumina, and porous particles such as resorcinol / formaldehyde, cellulose and cellulose nanofiber can be used. Regardless of the degree of porosity, the thermal conductivity of the material itself is 0.15 W / (m · K) or less, particularly 0.1 W / (m · K) or less, and further 0.06 to 0.018 W / ( m · K) is preferably used. In particular, methyl silicate monomer xerogel by atmospheric drying or airgel by critical drying can be easily manufactured at low density, and can easily form a porous structure or hollow structure at the nano level. It can be suitably used because it is difficult to disintegrate in an aqueous solution.
 キセロゲル及びエアロゲルの多孔率は50.0~99.8%、特に70~99.8%、さらに86~99.8%とすることが好ましい。また、平均粒径は、特に限定されるものではないが、2~140μmとすることが好ましい。多孔質シリカ粒子のキセロゲル及びエアロゲルの粒径が140μm超であると、断熱材を厚くする必要があり、低嵩で断熱効果を有する断熱材剤を提供する、という本願の目的を達成しにくい。また、2μm未満であると、十分な断熱効果が得られにくい。 The porosity of xerogel and airgel is preferably 50.0 to 99.8%, particularly preferably 70 to 99.8%, and more preferably 86 to 99.8%. The average particle size is not particularly limited, but is preferably 2 to 140 μm. If the particle size of the xerogel and airgel of the porous silica particles is more than 140 μm, it is necessary to increase the thickness of the heat insulating material, and it is difficult to achieve the object of the present application to provide a heat insulating material agent having a low bulk and a heat insulating effect. Further, if it is less than 2 μm, it is difficult to obtain a sufficient heat insulating effect.
 キセロゲル及びエアロゲルは、比表面積が400m/g以上、特に500~1000m/g、さらに600~1000m/gのものを使用することが好ましい。比表面積を上げることで、多孔率を高くすることができる。また、断熱材全体の重量を軽減することもできる。 Xerogels and aerogels having a specific surface area of 400 m 2 / g or more, preferably 500 to 1000 m 2 / g, more preferably 600 to 1000 m 2 / g, are preferably used. By increasing the specific surface area, the porosity can be increased. Moreover, the weight of the whole heat insulating material can also be reduced.
 本発明の断熱材におけるキセロゲル及び/又はエアロゲルの配合量は、総重量で、主体繊維100重量部に対して35~210重量部とすることが好ましい。キセロゲル及び/又はエアロゲルの配合量を総重量で35重量部未満とすると、断熱材に十分な断熱性を与えられない可能性がある。また、キセロゲル及び/又はエアロゲルの配合量を総重量で210重量部超とすると、断熱材の強度が下がり、所望の紙様の加工性を得ることが困難となる、断熱材からのキセロゲル及びエアロゲルの脱落、飛散等が生じる、等の問題が生じ得る。
 また、主体繊維がパルプを含み、後述のバインダーがカチオン性ポリマー及び両性ポリマーからなる群から選択される少なくとも1つの水溶性ポリマーを含む場合には、同様な観点から、キセロゲル及び/又はエアロゲルの配合量は、総重量で、主体繊維100重量部に対して35~75重量部とすることが好ましく、特に35~60重量部、さらに38~52重量部とすることが好ましい。
 また、主体繊維が合成繊維を含み、後述のバインダーが低融点合成繊維を含む場合には、上記と同様な観点から、キセロゲル及び/又はエアロゲルの配合量は、総重量で、主体繊維100重量部に対して、100~210重量部配合することが好ましい。
 なお、本実施形態においては、キセロゲルを含有する場合とエアロゲルを含有する場合とでは、同等な性能を有する断熱材を得ることができる。
The amount of xerogel and / or aerogel in the heat insulating material of the present invention is preferably 35 to 210 parts by weight based on 100 parts by weight of the main fiber in terms of total weight. If the amount of xerogel and / or aerogel is less than 35 parts by weight in total weight, there is a possibility that sufficient heat insulating properties cannot be given to the heat insulating material. Moreover, when the total amount of xerogel and / or airgel exceeds 210 parts by weight, the strength of the heat insulating material decreases, and it becomes difficult to obtain the desired paper-like processability. Problems such as falling off, scattering, etc. may occur.
Further, when the main fiber contains pulp and the binder described later contains at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer, from the same point of view, compounding of xerogel and / or airgel The total amount is preferably 35 to 75 parts by weight, particularly 35 to 60 parts by weight, and more preferably 38 to 52 parts by weight based on 100 parts by weight of the main fiber.
Further, when the main fiber includes a synthetic fiber and the binder described later includes a low melting point synthetic fiber, from the same viewpoint as described above, the compounding amount of xerogel and / or aerogel is 100 parts by weight of the main fiber in terms of the total weight. The amount is preferably 100 to 210 parts by weight.
In the present embodiment, a heat insulating material having equivalent performance can be obtained when xerogel is contained and when airgel is contained.
<バインダー>
 本発明の断熱材は、カチオン性ポリマー及び両性ポリマーからなる群から選択される少なくとも1つの水溶性ポリマー、及び/又は、低融点合成繊維を含むバインダーを含有する。即ち、本発明の断熱材が含有するバインダーは、カチオン性ポリマー及び両性ポリマーからなる群から選択される少なくとも1つの水溶性ポリマー、及び/又は、低融点合成繊維を含む。水溶性ポリマーとしては、デンプン、ポリビニルアルコール(PVA)、ポリ酢酸ビニル、水性ウレタン等をカチオン化処理及び/又は両性化処理したものを好適に使用できる。特に、カチオン化デンプン及び両性デンプンの少なくとも一方が、抄紙時に水溶液に気泡等が生じにくく、安定した抄紙と、高い歩留まりを可能とすることから、より好適に使用できる。
 カチオン化デンプン、両性デンプンは、例えば、特開2003-64101号公報(カチオン化デンプン)、特開2001-19701号公報(両性デンプン)等に記載される公知の方法を用いることで実施可能である。なお、カチオン性デンプンは、市販されているものを適宜使用することができ、例えば、日本食品化工株式会社製ネオタックシリーズ等が適用可能である。
 なお、「水溶性ポリマー」とは、水に可溶性のポリマーの他、親水コロイドも含むものとする。
<Binder>
The heat insulating material of the present invention contains at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer, and / or a binder containing low-melting synthetic fibers. That is, the binder contained in the heat insulating material of the present invention includes at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer, and / or a low melting point synthetic fiber. As the water-soluble polymer, those obtained by cationizing and / or amphotericizing starch, polyvinyl alcohol (PVA), polyvinyl acetate, aqueous urethane and the like can be preferably used. In particular, at least one of cationized starch and amphoteric starch can be used more suitably because bubbles are not easily generated in the aqueous solution during paper making, and stable paper making and high yield are possible.
The cationized starch and the amphoteric starch can be carried out by using known methods described in, for example, JP-A No. 2003-64101 (cationized starch), JP-A No. 2001-19701 (amphoteric starch) and the like. . In addition, what is marketed can use a cationic starch suitably, for example, Nippon Food Chemical Co., Ltd. Neotuck series etc. are applicable.
The “water-soluble polymer” includes a hydrocolloid in addition to a water-soluble polymer.
 低融点合成繊維としては、少なくとも当該繊維の表面において、融点が140℃以下であって、主体繊維が融点を有する場合(例えば主体繊維に合成繊維が含有される場合)には当該融点よりも低い融点を有する合成繊維であれば特に限定されるものではなく、低融点合成繊維としては、例えば、ビニロンバインダー繊維、オレフィンバインダー繊維、ポリステルバインダー繊維等が好適に使用できる。
 低融点合成繊維としては、特にビニロンバインダー繊維が好ましく、当該繊維は、70℃で水中溶解するため、乾燥時にキセロゲル及び/又はエアロゲルと繊維間を接着することができる。ビニロンバインダー繊維は、市販されているものを適宜使用することができ、例えば、株式会社クラレ製VPB105-1等が適用可能である。
 また、バインダー繊維は芯が高融点成分で鞘が低融点成分である芯鞘繊維を用いてもよい。
The low melting point synthetic fiber has a melting point of 140 ° C. or lower at least on the surface of the fiber, and is lower than the melting point when the main fiber has a melting point (for example, when the main fiber contains a synthetic fiber). It is not particularly limited as long as it is a synthetic fiber having a melting point, and as the low melting point synthetic fiber, for example, a vinylon binder fiber, an olefin binder fiber, a polyester binder fiber or the like can be suitably used.
As the low melting point synthetic fiber, a vinylon binder fiber is particularly preferable, and the fiber dissolves in water at 70 ° C., so that the xerogel and / or the airgel and the fiber can be bonded to each other at the time of drying. A commercially available vinylon binder fiber can be used as appropriate, and for example, VPB105-1 manufactured by Kuraray Co., Ltd. is applicable.
The binder fiber may be a core-sheath fiber whose core is a high melting point component and whose sheath is a low melting point component.
 バインダーとして、カチオン性ポリマー及び両性ポリマーからなる群から選択される少なくとも1つの水溶性ポリマー、及び/又は、低融点合成繊維を使用することにより、当該バインダーを含有することで、抄紙工程等でのキセロゲル及びエアロゲルの粒子形状の崩壊が生じにくく、その断熱性を保持しやすい。特に、主体繊維がパルプを含み、キセロゲル及び/又はエアロゲルが多孔質シリカ粒子、より具体的にはメチルシリケート粒子である場合には、水とパルプを含むパルプスラリー中で、通常、パルプはアニオン性であり、また、該スラリー中に添加される多孔質シリカ粒子、特にメチルシリケート粒子は、アニオン性又は両性を示す。アニオン性のパルプ及びアニオン性又は両性の多孔質シリカ粒子は、互いに凝集しにくく歩留まりが低くなりやすい。ここで、バインダーとしてカチオン性ポリマー及び/又は両性ポリマーを使用することにより、パルプ及び多孔質シリカ粒子の凝集を促進し、歩留まりを高めることが可能である。
 なお、上記歩留まりは、さらにキチン・キトサン等を含む公知の凝集剤を用いることにより高めることが可能である。
By using at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer and / or a low-melting synthetic fiber as a binder, by containing the binder, in a papermaking process, etc. The particle shape of the xerogel and the airgel is less likely to collapse, and the heat insulating property is easily maintained. In particular, when the main fiber contains pulp and the xerogel and / or aerogel is porous silica particles, more specifically methyl silicate particles, the pulp is usually anionic in a pulp slurry containing water and pulp. In addition, the porous silica particles, particularly methyl silicate particles, added to the slurry exhibit anionic or amphoteric properties. Anionic pulp and anionic or amphoteric porous silica particles are unlikely to aggregate with each other and the yield tends to be low. Here, by using a cationic polymer and / or an amphoteric polymer as a binder, it is possible to promote the aggregation of pulp and porous silica particles and to increase the yield.
The yield can be further increased by using a known flocculant containing chitin, chitosan and the like.
 バインダーは、主体繊維100重量部に対して、0.3~125重量部配合することが好ましい。バインダーの配合量を0.3重量部未満とすると、抄紙工程等でのキセロゲル及びエアロゲルの粒子形状の崩壊が生じにくく、その断熱性を保持しやすい。また、バインダーの配合量を125重量部超とすると、断熱材の強度が下がり、所望の紙様の加工性を得ることが困難となる虞がある。
 また、主体繊維がパルプを含み、バインダーがカチオン性ポリマー及び両性ポリマーからなる群から選択される少なくとも1つの水溶性ポリマーを含む場合には、同様な観点から、水溶性ポリマーの配合量は、主体繊維100重量部に対して0.3~33重量部とすることが好ましく、特に0.3~18重量部とすることがより好ましい。
 また、主体繊維が合成繊維を含み、バインダーが低融点合成繊維を含む場合、バインダーは、主体繊維100重量部に対して、20~100重量部配合することが好ましい。かかる場合において、抄紙工程等でのキセロゲル及びエアロゲルの粒子形状の崩壊がより生じにくく、その断熱性をより保持しやすいためである。
 さらに、主体繊維が合成繊維を含み、バインダーが低融点合成繊維を含む場合、バインダーの配合量は、エアロゲル100重量部に対して、10~20重量部であることが好ましい。かかる場合において、断熱材の断熱性を効果的に確保することができるためである。
The binder is preferably blended in an amount of 0.3 to 125 parts by weight with respect to 100 parts by weight of the main fiber. When the blending amount of the binder is less than 0.3 parts by weight, the particle shape of the xerogel and the airgel in the paper making process or the like is unlikely to occur, and the heat insulating property is easily maintained. Moreover, when the compounding quantity of a binder exceeds 125 weight part, there exists a possibility that the intensity | strength of a heat insulating material may fall and it may become difficult to obtain desired paper-like processability.
When the main fiber contains pulp and the binder contains at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer, from the same viewpoint, the blending amount of the water-soluble polymer is The amount is preferably 0.3 to 33 parts by weight, more preferably 0.3 to 18 parts by weight, based on 100 parts by weight of the fiber.
Further, when the main fiber includes a synthetic fiber and the binder includes a low melting point synthetic fiber, the binder is preferably blended in an amount of 20 to 100 parts by weight with respect to 100 parts by weight of the main fiber. In such a case, the particle shape of the xerogel and the airgel in the paper making process or the like is less likely to be collapsed, and the heat insulating property is more easily maintained.
Further, when the main fiber includes a synthetic fiber and the binder includes a low melting point synthetic fiber, the amount of the binder is preferably 10 to 20 parts by weight with respect to 100 parts by weight of the airgel. In such a case, it is because the heat insulation of a heat insulating material can be ensured effectively.
<その他の成分>
 その他、特に限定されるものではないが、例えば製紙用添加剤として通常使用される、植物性ガム、水性セルロース誘導体、ケイ酸ソーダ等の紙力増強剤、ロジン、カルボキシルメチルセルロース、アルキルケテンダイマー、アルケニル無水コハク酸等のサイズ剤、ポリアクリルアミド、ケイ酸ソーダ等の歩留まり向上剤、ポリアクリルアミド、ポリエチレンオキサイド等の抄紙用粘剤、染料、顔料等を、必要に応じて内添又はサイズプレスにより添加することができる。また、上記以外に、例えば、添加剤としては、水溶性ポリウレタン樹脂などの分散剤(例えば、吉村油化株式会社製、テキサノールPE―10Fなど)、消泡剤(例えば、明成化学工業株式会社製、フォームレスPニューなど)を用いることができる。
<Other ingredients>
In addition, although not particularly limited, for example, a paper strength additive such as vegetable gum, aqueous cellulose derivative, sodium silicate, etc., which is usually used as an additive for papermaking, rosin, carboxymethyl cellulose, alkyl ketene dimer, alkenyl Add succinic anhydride and other sizing agents, yield improvers such as polyacrylamide and sodium silicate, paper-making adhesives such as polyacrylamide and polyethylene oxide, dyes, and pigments as necessary by internal addition or size press. be able to. In addition to the above, for example, as additives, a dispersant such as a water-soluble polyurethane resin (for example, manufactured by Yoshimura Yuka Co., Ltd., Texanol PE-10F, etc.), an antifoaming agent (for example, manufactured by Meisei Chemical Industries, Ltd.) , Formless P new, etc.) can be used.
<断熱材の性状>
 上記の成分よりなる断熱材の性状は、厚さ15μm~1.2cm、坪量5~480g/m、密度0.5~1.5g/cmのシート状とすることができる。これらの数値は、一般的な紙と同様の範囲内であり、これにより、本発明の断熱剤に、紙と同様の外観、質感を有することが分かる。断熱材は、抄紙シートの一層のみである必要はなく、複数のシートを接着剤等で貼合した多層構造であってもよく、また、シートの片面又は両面にポリエチレン等の樹脂層を設けたラミネート構造であってもよい。特にラミネート構造とすることで、シートからのキセロゲル及びエアロゲルの脱落を防ぐことができ、また、断熱材全体の強度、断熱性を高めることができる。なお、上記と同様な観点から、断熱材は、厚さが40μm~1.2mmであることがより好ましい。
 また、厚さが40μm~1.2mmであることがさらに好ましく、厚さを当該範囲にすることにより、断熱性能を高い状態で十分に維持ししつつ、製造性・取扱い性・加工性を十分に高いものとすることができる。また、断熱を要する微細構造内又は空間が制限された部位内に適用することができる。なお、加工性に優れ、湾曲部に対応可能な断熱材として、シリカキセロゲル又はシリカエアロゲルと繊維と複合シート化したAspen社製の断熱材(「Cryogel(登録商標)」、「Pyrogel(登録商標)」)があるが、当該断熱材は、5mm以上の厚さのシートとなり、微細構造内や空間が制限された部位内に適用することはできない。また、極薄で、加工性に優れ、湾曲部に対応可能な断熱材として、シリカキセロゲルを繊維と複合シート化したパナソニック社の断熱材(「NASBIS(登録商標)」)があるが、製造方法の性質上0.1mm程度が厚さの限界である。したがって、従来より、当該厚さ範囲となっても高い断熱性能を有しつつ高い取扱い性・加工性を有する断熱材は、微細構造内又は空間が制限された部位内における断熱のために、希求されてきたものであり、これに対して、本実施形態の断熱材は、この課題を好適に解決することができる。
<Properties of thermal insulation>
The heat insulating material composed of the above components can be a sheet having a thickness of 15 μm to 1.2 cm, a basis weight of 5 to 480 g / m 2 , and a density of 0.5 to 1.5 g / cm 3 . These numerical values are within the same range as general paper, and it can be seen that the heat insulating agent of the present invention has the same appearance and texture as paper. The heat insulating material does not need to be only one layer of the papermaking sheet, and may have a multilayer structure in which a plurality of sheets are bonded with an adhesive or the like, and a resin layer such as polyethylene is provided on one or both sides of the sheet. A laminate structure may be used. Particularly, by adopting a laminate structure, it is possible to prevent the xerogel and the airgel from falling off the sheet, and it is possible to increase the strength and heat insulating properties of the entire heat insulating material. From the same viewpoint as described above, the thickness of the heat insulating material is more preferably 40 μm to 1.2 mm.
Further, it is more preferable that the thickness is 40 μm to 1.2 mm, and by making the thickness within this range, sufficient manufacturability, handleability, and workability are maintained while maintaining sufficient heat insulation performance. Can be expensive. Further, the present invention can be applied in a fine structure requiring heat insulation or in a region where space is limited. As a heat insulating material excellent in processability and adaptable to a curved portion, a heat insulating material manufactured by Aspen Co., Ltd. made of silica xerogel or silica airgel and fiber ("Cryogel (registered trademark)", "Pyrogel (registered trademark)") However, the heat insulating material becomes a sheet having a thickness of 5 mm or more, and cannot be applied in a fine structure or a portion where space is limited. In addition, as a heat insulating material that is ultra-thin, excellent in workability, and capable of dealing with a curved portion, there is a heat insulating material manufactured by Panasonic (“NASBIS (registered trademark)”) in which a silica xerogel is combined with a fiber. The thickness limit is about 0.1 mm due to the above properties. Therefore, conventionally, a heat insulating material having high heat insulating performance even in the thickness range and having high handleability and workability is desired for heat insulation in a fine structure or in a region where space is limited. On the other hand, the heat insulating material of this embodiment can solve this problem suitably.
<断熱材の製造方法>
1.抄紙用スラリーの調製
 主体繊維100重量部と、上記のキセロゲル及び/又はエアロゲル35~210重量部と、上記のバインダー0.3~125重量部とを水に添加混合して混合スラリーを調製し、抄紙用スラリー(混合スラリー)を調製する。
 なお、バインダーとして、上記の水溶性ポリマーを含有するものを使用する場合には、水溶性ポリマー、並びに、キセロゲル及び/又はエアロゲルを、少なくとも主体繊維を水に懸濁したスラリーに、添加混合して抄紙用スラリーを調整することが好ましい。具体的には、例えば、主体繊維としてパルプ、キセロゲル及び/又はエアロゲルとして多孔質シリカ粒子を使用し、バインダーが水溶性ポリマーを含有する場合には、パルプを水に懸濁したスラリーに、多孔質シリカ粒子と、バインダーとを添加混合して抄紙用スラリー(混合スラリー)を調製することが好ましい。
<Method for manufacturing heat insulating material>
1. Preparation of papermaking slurry 100 parts by weight of the main fiber, 35 to 210 parts by weight of the above xerogel and / or airgel, and 0.3 to 125 parts by weight of the above binder were added to water and mixed to prepare a mixed slurry. A papermaking slurry (mixed slurry) is prepared.
In addition, when using what contains said water-soluble polymer as a binder, a water-soluble polymer and a xerogel and / or an airgel are added and mixed with the slurry which suspended the main fiber in water at least. It is preferable to adjust the papermaking slurry. Specifically, for example, when a porous silica particle is used as the main fiber, pulp, xerogel and / or aerogel, and the binder contains a water-soluble polymer, the slurry is obtained by suspending the pulp in water. It is preferable to prepare a papermaking slurry (mixed slurry) by adding and mixing silica particles and a binder.
 抄紙用スラリーの調製に際して、スラリーがpH7~8となるように、必要に応じて酸、アルカリ等を添加して調整することが好ましい。特に、キセロゲル及び/又はエアロゲルが疎水化処理されたメチルシリケート等である場合、pH7~8の条件下で最もその化学構造が安定しやすい。そのため、粒子の多孔構造を保持するためにも、上記条件下でスラリーを調製することが望まれる。 When preparing the papermaking slurry, it is preferable to adjust the slurry by adding acid, alkali or the like as necessary so that the slurry has a pH of 7-8. In particular, when the xerogel and / or aerogel is a hydrophobized methyl silicate or the like, its chemical structure is most likely to be stable under the conditions of pH 7-8. Therefore, it is desirable to prepare a slurry under the above conditions in order to maintain the porous structure of the particles.
2.抄紙工程
 上記の抄紙用スラリーを、紙の製造において通常使用される公知の抄紙機を用いて抄紙する。抄紙機のスリット幅、ドラム径、ドラム回転速度、プレス圧、ドライヤー温度等は、断熱材シートの所望の性状によって、適宜変更可能である。
2. Papermaking process The papermaking slurry is made using a known papermaking machine usually used in paper production. The slit width, drum diameter, drum rotation speed, press pressure, dryer temperature and the like of the paper machine can be appropriately changed depending on the desired properties of the heat insulating material sheet.
3.付帯工程
 上記抄紙工程によって得られた抄紙シートについて、必要に応じて、複数のシートを接着剤を介して積層してもよく、また、片面又は両面にポリエチレン等の樹脂層を設けるラミネート加工を施してもよい。
3. Attached process About the papermaking sheet obtained by the above papermaking process, if necessary, a plurality of sheets may be laminated via an adhesive, and a lamination process is performed by providing a resin layer such as polyethylene on one or both sides. May be.
 なお、この断熱材の製造方法では、湿式抄紙法を用いることが好ましい。湿式抄紙法とは、水中に繊維等を分散させ、ワイヤーで漉き上げシート化するという製造方法である。
この断熱材の製造方法では、主体繊維と、キセロゲル及び/又はエアロゲルと、バインダーとを水中に分散させて製造することにより、断熱材の厚さを、15μm~1.2mm、より好ましくは40μm~1.2mmとすることができる。
In addition, in this manufacturing method of a heat insulating material, it is preferable to use a wet papermaking method. The wet papermaking method is a production method in which fibers and the like are dispersed in water and then rolled up with a wire to form a sheet.
In this method for producing a heat insulating material, the main fiber, xerogel and / or aerogel, and a binder are dispersed in water to produce a heat insulating material having a thickness of 15 μm to 1.2 mm, more preferably 40 μm to It can be set to 1.2 mm.
<断熱材による断熱方法>
 本発明の断熱材について、目的の物品を包装する、目的の物品に貼付する等の手段により、目的の物品に対して断熱効果を奏することが可能である。ここで、目的の物品の素材については特に限定されず、紙、プラスチック、板材、金属等何れにも使用可能である。その使用の目的についても、食品、医薬品の容器や包装材、建築材等に使用可能である。
 具体的には、本実施形態の断熱材は、電子機器類の熱対策部品として、例えば放熱材料とともに使用すること、成形機器・金型装置・配管部材などの省エネ対策部品又は安全対策品として使用すること、建築部材その周辺部材(ルーフィングシート・床下材・壁紙・障子紙・ロールスクリーン)として使用すること、自動車・輸送車の車両の内装部材として使用すること、断熱性能を付与した梱包資材として使用すること、が挙げられる。
<Thermal insulation method using thermal insulation>
About the heat insulating material of this invention, it is possible to show the heat insulation effect with respect to the target goods by means, such as packaging the target goods and sticking to the target goods. Here, the material of the target article is not particularly limited, and any material such as paper, plastic, plate material, and metal can be used. Its purpose of use can also be used for food and pharmaceutical containers and packaging materials, building materials, and the like.
Specifically, the heat insulating material of the present embodiment is used as a heat countermeasure part for electronic devices, for example, used together with a heat dissipation material, or as an energy saving part or a safety countermeasure product such as a molding device, a mold apparatus, a piping member, etc. It is used as a building material and its peripheral members (roofing sheet, underfloor material, wallpaper, shoji paper, roll screen), used as an interior member of automobiles and transport vehicles, and as a packaging material with heat insulation performance To use.
 また、本発明の断熱材は、内部に発熱部品を有する電子機器(例えば携帯電話、デジタルカメラ等)に用いることもできる。具体的には、本発明の断熱材は、例えば、発熱部品を実装した基板と、この基板を収納する筐体とを備えた電子機器において用いることができる。より具体的には、電子機器において、本発明の断熱材をシート状にした当該断熱シートと、高い伝熱性を有する熱伝導シート(例えばグラファイトシートなど)とを有する熱遮断シートを、発熱部品と対向する位置の筐体の内側に接着層等を介して配置することができる。なお、かかる場合、発熱部品と断熱シートの間に熱伝導シートを配置することや、筐体と断熱シートの間に熱伝導シートを配置すること(断熱シートに対して発熱部品から離間する側)や、又はその両方に配置することもできる。
 このように断熱シートを含む熱遮断シートを用いることにより、発熱部品と断熱シートの間に熱伝導シートを配置した場合には、発熱部品より発生した熱を、まず、熱伝導シートの高い熱伝導率でもって熱伝導シートの面全体に広げて局所的に高温になることを防ぎ、続いて、拡散された熱を、断熱シートで、筐体に伝わることを防止することができる。
 また、筐体と断熱シートの間に熱伝導シートを配置した場合には、発熱部品より発生した熱を、まず、断熱シートで、熱伝導シートに伝わることを防止し、続いて、断熱シートから熱伝導シートに伝わってしまった僅かな熱を、熱伝導シートの面全体に広げて、筐体の温度が局所的に上昇することを防止することができる。
 したがって、筐体内部で発熱部品によって局所的に高温となる状態となっても、筐体の表面の温度上昇を防ぐことができる。
The heat insulating material of the present invention can also be used for an electronic device (for example, a mobile phone, a digital camera, etc.) having a heat generating component inside. Specifically, the heat insulating material of the present invention can be used, for example, in an electronic device including a substrate on which a heat generating component is mounted and a housing that houses the substrate. More specifically, in an electronic device, a heat-insulating sheet having the heat-insulating sheet of the present invention in the form of a sheet and a heat-conducting sheet (eg, a graphite sheet) having high heat conductivity, a heat-generating component, It can arrange | position through the adhesive layer etc. inside the housing | casing of the position which opposes. In such a case, a heat conductive sheet is disposed between the heat generating component and the heat insulating sheet, or a heat conductive sheet is disposed between the housing and the heat insulating sheet (a side away from the heat generating component with respect to the heat insulating sheet). And / or both.
By using a heat insulation sheet including a heat insulating sheet in this way, when a heat conductive sheet is arranged between the heat generating component and the heat insulating sheet, the heat generated from the heat generating component is firstly transferred to the high heat conductive sheet. It is possible to prevent the heat conduction sheet from spreading over the entire surface of the heat conductive sheet and to locally increase the temperature, and subsequently to prevent the diffused heat from being transmitted to the housing by the heat insulating sheet.
In addition, when a heat conductive sheet is arranged between the housing and the heat insulating sheet, the heat generated from the heat generating component is first prevented from being transmitted to the heat conductive sheet by the heat insulating sheet, and then from the heat insulating sheet. The slight heat that has been transmitted to the heat conductive sheet can be spread over the entire surface of the heat conductive sheet, and the temperature of the housing can be prevented from rising locally.
Therefore, even if the temperature rises locally due to the heat-generating component inside the housing, the temperature rise of the surface of the housing can be prevented.
 以上、本発明の実施形態を説明したが、本発明の断熱材は、上記一例に限定されることは無く、適宜変更を加えることができる。 As mentioned above, although embodiment of this invention was described, the heat insulating material of this invention is not limited to the said example, A change can be added suitably.
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例になんら限定されるものではない。
 本発明の断熱材の効果を確かめるために以下の2つの実験を行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.
In order to confirm the effect of the heat insulating material of the present invention, the following two experiments were conducted.
[実験1]
<断熱材の作成>
1.実施例1:断熱材
 500mLビーカーに水300mLを入れ、ここに市販のケナフパルプを200g、メチルシリケートの臨界乾燥疎水ゲル粉末(平均粒径5μm、比表面積750m/g、キャボット社製Aerogel Enova)を100g、カチオン性デンプン(日本食品化工株式会社製 #40T)を0.8g添加して、ハンディミキサーを用いて10,000rpmの回転数で全体が均一になるまで攪拌して、パルプスラリーを調製した。
 次いで、上記パルプスラリーを抄紙用スクリーン(材質:ナイロン)を用いて手動にて抄紙し、金網状で室温で乾燥させることで、厚さ0.2mm、坪量200g/mの断熱材(断熱シート)が得られた。なお、得られた断熱シートの外観、撓み性等は、市販の画用紙に類似するものであった。
[Experiment 1]
<Creation of insulation>
1. Example 1: Thermal insulation material 300 mL of water was put in a 500 mL beaker, and 200 g of commercially available kenaf pulp, a critically dry hydrophobic gel powder of methyl silicate (average particle size 5 μm, specific surface area 750 m 2 / g, Aerogel Enova manufactured by Cabot) 100g, 0.8g of cationic starch (Nippon Food Chemical Co., Ltd. # 40T) was added and stirred using a handy mixer at 10,000rpm until the whole became uniform to prepare a pulp slurry. .
Next, the pulp slurry is manually made using a papermaking screen (material: nylon), and dried at room temperature in a wire mesh shape, whereby a heat insulating material having a thickness of 0.2 mm and a basis weight of 200 g / m 2 (heat insulation). Sheet) was obtained. In addition, the external appearance, the flexibility, etc. of the obtained heat insulation sheet were similar to a commercially available drawing paper.
2.実施例2~5:断熱材
 実施例1と同様に抄紙したスクリーン上の乾燥前のシートを、3枚、5枚、7枚、10枚重ねて乾燥させて作成した断熱シートを、それぞれ実施例2、3、4、5とした。
2. Examples 2 to 5: Insulation Material Insulation sheets prepared by drying three, five, seven, and ten sheets before drying on a paper sheet made in the same manner as in Example 1 2, 3, 4, and 5.
3.比較例1~5:紙
 比較対照として、厚さ0.2mm、坪量210g/mの市販の画用紙を使用した。前記画用紙を1枚のみ使用したものを比較例1とし、3枚、5枚、7枚、10枚重ねて使用したものを、それぞれ比較例2、3、4、5とした。
3. Comparative Examples 1 to 5: Paper Commercially available drawing paper having a thickness of 0.2 mm and a basis weight of 210 g / m 2 was used as a comparative control. The one using only one drawing paper was Comparative Example 1, and the three, five, seven, and ten sheets were used as Comparative Examples 2, 3, 4, and 5, respectively.
<断熱性能の評価>
 市販の紙コップ(9オンス、口径77mm×高さ91mm、材質:バージンパルプ(外側)、ポリエチレン(内側))の外周表面を覆うように、実施例1~5の断熱シート、比較例1~5の紙をそれぞれ巻きつけた。その際、断熱シート及び紙は、接着剤等を使用せず、紙コップに密着するように、かつ、重ならないように巻きつけて境界線のみ1cm幅×約5cmのセロハンテープで外側表面をテープ止めした。
 上記紙コップのそれぞれに95℃の熱湯を250mL入れ、入れた直後、10秒後、20秒後、30秒後のシート外側の表面温度を測定した。表面温度の測定結果を表1に示す。
<Evaluation of thermal insulation performance>
Insulating sheets of Examples 1 to 5 and Comparative Examples 1 to 5 so as to cover the outer peripheral surface of a commercially available paper cup (9 oz, caliber 77 mm × height 91 mm, material: virgin pulp (outside), polyethylene (inside)) Each piece of paper was wrapped around. At that time, heat insulation sheet and paper do not use adhesive etc., wrap so that it adheres closely to the paper cup and does not overlap, and tape the outer surface with cellophane tape of 1cm width x about 5cm only at the boundary line Stopped.
In each of the paper cups, 250 mL of hot water at 95 ° C. was added, and immediately after the addition, the surface temperature of the sheet outside after 10 seconds, 20 seconds, and 30 seconds was measured. Table 1 shows the measurement results of the surface temperature.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、同等の厚さ、坪量を有する普通紙(画用紙)と比して、本発明の断熱材(断熱シート)は、紙コップ内部の熱湯の温度を外側表面に通しにくく、断熱性能に優れることが判明した。 As shown in Table 1, compared with plain paper (drawing paper) having the same thickness and basis weight, the heat insulating material (heat insulating sheet) of the present invention is less likely to pass the temperature of hot water inside the paper cup through the outer surface. It was found that the insulation performance was excellent.
[実験2]
<断熱材の作成>
1.実施例6:断熱材
 1Lのハンディミキサーに水700mLを入れ、そこに市販のポリエステル繊維(PET繊維、帝人社製TA04PN SD 0.1dtex x 3mm)3.5gを入れ、10,000rpmの回転数で全体が均一になるまで攪拌する。これに、ビニロンバインダー繊維(株式会社クラレ製VPB105-1 x 3mm)1.2gを入れ撹拌した。このスラリーにメチルシリケートの臨界乾燥疎水ゲル粉末(平均粒径90μm、比表面積750m/g、キャボット社製Aerogel Enova)を7.0g加え、同様に撹拌し抄紙用スラリーを調整した。
 次いで実施例1と同様な方法で抄紙し、ロータリー式乾燥機で乾燥させることで、厚さ0.25mm、坪量100g/mの断熱材(断熱シート)を得、当該断熱材を2枚のみ使用したものを実施例6とした(実施例6の断熱材の厚さは0.5mm)。なお、得られた断熱シートの外観、撓み性等は、市販の不織布に類似するものであった。
[Experiment 2]
<Creation of insulation>
1. Example 6: Heat insulation material 700 mL of water was put into a 1 L handy mixer, and 3.5 g of a commercially available polyester fiber (PET fiber, TA04PN SD 0.1 dtex x 3 mm) manufactured by Teijin Ltd. was put there at a rotational speed of 10,000 rpm. Stir until is uniform. To this, 1.2 g of vinylon binder fiber (VPB105-1 x 3 mm manufactured by Kuraray Co., Ltd.) was added and stirred. To this slurry, 7.0 g of a critically dry hydrophobic gel powder of methyl silicate (average particle size 90 μm, specific surface area 750 m 2 / g, Aerogel Enova manufactured by Cabot) was added and stirred in the same manner to prepare a papermaking slurry.
Next, paper is made in the same manner as in Example 1, and dried with a rotary dryer to obtain a heat insulating material (heat insulating sheet) having a thickness of 0.25 mm and a basis weight of 100 g / m 2. Was used as Example 6 (the thickness of the heat insulating material of Example 6 was 0.5 mm). In addition, the external appearance, the flexibility, etc. of the obtained heat insulation sheet were similar to a commercially available nonwoven fabric.
2.実施例7~9:断熱材
 実施例6と同様な方法で製造した断熱材を4枚、6枚、8枚重ねて使用したものを、それぞれ実施例7、8、9とした(それぞれ実施例の断熱材の厚さは1.0mm、1.5mm、2.0mm)。
2. Examples 7 to 9: Insulating materials The insulating materials produced by the same method as in Example 6 were used by superimposing four, six and eight sheets, respectively, which were designated as Examples 7, 8, and 9 (Examples respectively) The thickness of the insulation material is 1.0 mm, 1.5 mm, and 2.0 mm).
3.比較例6~9:不織布
 比較対照として、0.25mmの不織布(ポリエステル繊維(帝人社製TA04PN SD 0.1dtex x 3mm)100重量部、ビニロンバインダー繊維(株式会社クラレ製VPB105-1 x 3mm)33.3重量部)を使用した。前記不織布を2枚のみ使用したものを比較例6とし、4枚、6枚、8枚重ねて使用したものを、それぞれ比較例7、8、9とした。
3. Comparative Examples 6 to 9: Nonwoven fabric As a comparative control, 0.25 mm nonwoven fabric (polyester fiber (TA04PN SD 0.1 dtex x 3 mm manufactured by Teijin Ltd.) 100 parts by weight, vinylon binder fiber (VPB105-1 x 3 mm manufactured by Kuraray Co., Ltd.) 3 parts by weight) was used. A comparative example 6 was obtained by using only two non-woven fabrics, and comparative examples 7, 8, and 9 were obtained by superposing four sheets, six sheets, and eight sheets, respectively.
4.実施例10:断熱材
 1Lのハンディミキサーに水700mLを入れ、そこに市販のポリエステル繊維(PET繊維、帝人社製TA04PN SD 0.1dtex x 3mm)3.5gを入れ、10,000rpmの回転数で全体が均一になるまで攪拌した。これに、ポリエステルバインダー繊維(PETバインダー繊維、帝人社製TK08PN SD 0.2dtex x 3mm)1.2gを入れ撹拌した。さらに、カチオン性デンプン(日本食品化工株式会社製 #40T)3.1g、メチルシリケートの臨界乾燥疎水ゲル粉末(平均粒径90μm、比表面積750m/g、キャボット社製Aerogel Enova)を7.0g加え、同様に撹拌し抄紙用スラリーを調整した。
 次いで実施例1と同様な方法で抄紙し、ロータリー式乾燥機で乾燥させることで、厚さ0.25mm、坪量130g/mの断熱材(断熱シート)を得、当該断熱材を2枚のみ使用したものを実施例10とした(実施例10の断熱材の厚さは0.5mm)。なお、得られた断熱シートの外観、撓み性等は、市販の不織布に類似するものであった。
4). Example 10: Heat insulation material 700 mL of water was put into a 1 L handy mixer, and 3.5 g of commercially available polyester fiber (PET fiber, TA04PN SD 0.1 dtex x 3 mm) manufactured by Teijin Ltd. was put there at a rotation speed of 10,000 rpm. Was stirred until. To this, 1.2 g of polyester binder fiber (PET binder fiber, TK08PN SD 0.2 dtex x 3 mm, manufactured by Teijin Ltd.) was added and stirred. Furthermore, 3.1 g of cationic starch (Nippon Food Chemical Co., Ltd. # 40T), 7.0 g of methyl silicate critical dry hydrophobic gel powder (average particle size 90 μm, specific surface area 750 m 2 / g, Cabot Aerogel Enova) In addition, stirring was similarly performed to prepare a papermaking slurry.
Next, paper is made in the same manner as in Example 1, and dried with a rotary dryer to obtain a heat insulating material (heat insulating sheet) having a thickness of 0.25 mm and a basis weight of 130 g / m 2. Was used as Example 10 (the thickness of the heat insulating material of Example 10 was 0.5 mm). In addition, the external appearance, the flexibility, etc. of the obtained heat insulation sheet were similar to a commercially available nonwoven fabric.
5.実施例11~13:断熱材
 実施例10と同様な方法で製造した断熱材を4枚、6枚、8枚重ねて使用したものを、それぞれ実施例11、12、13とした(それぞれ実施例の断熱材の厚さは1.0mm、1.5mm、2.0mm)。
5. Examples 11 to 13: Heat insulating materials Heat insulating materials manufactured by the same method as in Example 10 were used as four, six, and eight sheets, and were used as Examples 11, 12, and 13, respectively (Examples respectively) The thickness of the insulation material is 1.0 mm, 1.5 mm, and 2.0 mm).
6.比較例10~13:不織布
 比較対照として、0.25mmの不織布(ポリエステル繊維(帝人社製TA04PN SD 0.1dtex x 3mm)100重量部、ポリエステルバインダー繊維(PETバインダー繊維、帝人社製TK08PN SD 0.2dtex x 3mm)33重量部、カチオン性デンプン(日本食品化工株式会社製 #40T)36重量部)を使用した。前記不織布を2枚のみ使用したものを比較例10とし、4枚、6枚、8枚重ねて使用したものを、それぞれ比較例11、12、13とした。
6). Comparative Examples 10 to 13: Nonwoven fabric As a comparative control, 0.25 mm nonwoven fabric (polyester fiber (TA04PN SD 0.1 dtex x 3 mm) manufactured by Teijin Ltd.), polyester binder fiber (PET binder fiber, Teijin Ltd. TK08PN SD 0.2 dtex x) 3 mm) 33 parts by weight and cationic starch (Nippon Food Chemical Co., Ltd. # 40T) 36 parts by weight) were used. A comparative example 10 was obtained by using only two non-woven fabrics, and comparative examples 11, 12, and 13 were used by superimposing four, six and eight sheets, respectively.
<断熱性能の評価>
 約100℃に加熱したステンレス製の円柱(直径:47mm、高さ:57mm)の上に実施例6~13の断熱シート(40mm×40mm)、比較例6~13の不織布(40mm×40mm)を置いた。10秒後、20秒後、30秒後、60秒後のシート及び不織布の上面側(シート及び不織布と円柱が接触する側とは逆側)の表面温度を測定した。当該表面温度の測定結果を表2に示す。
<Evaluation of thermal insulation performance>
The heat insulating sheets (40 mm × 40 mm) of Examples 6 to 13 and the nonwoven fabrics (40 mm × 40 mm) of Comparative Examples 6 to 13 are placed on a stainless steel column (diameter: 47 mm, height: 57 mm) heated to about 100 ° C. placed. The surface temperature of the upper surface side of the sheet and nonwoven fabric after 10 seconds, 20 seconds, 30 seconds, and 60 seconds (the side opposite to the side where the sheet and nonwoven fabric contact with the cylinder) was measured. Table 2 shows the measurement results of the surface temperature.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、同等の厚さ不織布と比して、本発明の断熱材(断熱シート)は、ステンレス製の円柱の温度を通しにくく、断熱性能に優れることが判明した。 As shown in Table 2, it was found that the heat insulating material (heat insulating sheet) of the present invention is less likely to pass through the temperature of a stainless steel cylinder and has excellent heat insulating performance as compared with a nonwoven fabric having an equivalent thickness.

Claims (9)

  1.  主体繊維と、キセロゲル及び/又はエアロゲルと、カチオン性ポリマー及び両性ポリマーからなる群から選択される少なくとも1つの水溶性ポリマー、及び/又は、低融点合成繊維を含むバインダーと、を含む断熱材であって、
     前記キセロゲル及びエアロゲルは、密度が0.5g/cm未満、熱伝導率が0.02W/(m・K)以下であり、前記主体繊維100重量部に対して、前記キセロゲル及び/又はエアロゲルが総重量で35~210重量部配合された、ことを特徴とする断熱材。
    A heat insulating material comprising a main fiber, a xerogel and / or an airgel, at least one water-soluble polymer selected from the group consisting of a cationic polymer and an amphoteric polymer, and / or a binder containing a low-melting synthetic fiber. And
    The xerogel and the airgel have a density of less than 0.5 g / cm 3 and a thermal conductivity of 0.02 W / (m · K) or less, and the xerogel and / or the airgel is contained in 100 parts by weight of the main fiber. A heat insulating material characterized by containing 35 to 210 parts by weight in total weight.
  2.  前記バインダーは、前記水溶性ポリマーを含み、
     前記水溶性ポリマーは、カチオン化デンプン及び両性デンプンの少なくとも一方である、請求項1に記載の断熱材。
    The binder includes the water-soluble polymer,
    The heat insulating material according to claim 1, wherein the water-soluble polymer is at least one of cationized starch and amphoteric starch.
  3.  前記バインダーは、前記低融点合成繊維を含み、
     前記低融点合成繊維は、ビニロンバインダー繊維である、請求項1又は2に記載の断熱材。
    The binder includes the low melting point synthetic fiber,
    The heat insulating material according to claim 1, wherein the low melting point synthetic fiber is a vinylon binder fiber.
  4.  前記キセロゲル及びエアロゲルは、メチルシリケートモノマーを常圧乾燥でキセロゲル化し又は臨界乾燥でエアロゲル化した多孔質シリカ粒子である、請求項1~3のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 3, wherein the xerogel and the airgel are porous silica particles obtained by converting a methyl silicate monomer into a xerogel by atmospheric pressure drying or aerogeling by critical drying.
  5.  前記キセロゲル及びエアロゲルの平均粒径が2~140μmであり、かつ、比表面積が400m/g以上である、請求項1~4のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 4, wherein the xerogel and the airgel have an average particle diameter of 2 to 140 µm and a specific surface area of 400 m 2 / g or more.
  6.  厚さ15μm~1.2cm、坪量5~480g/m、密度0.5~1.5g/cmのシート状である、請求項1~5のいずれか1項に記載の断熱材。 6. The heat insulating material according to claim 1, wherein the heat insulating material is in the form of a sheet having a thickness of 15 μm to 1.2 cm, a basis weight of 5 to 480 g / m 2 , and a density of 0.5 to 1.5 g / cm 3 .
  7.  100重量部の主体繊維と、密度が0.5g/cm未満、熱伝導率が0.02W/(m・K)以下の総重量で35~210重量部のキセロゲル及び/又はエアロゲルと、カチオン性ポリマー及び両性ポリマーからなる群から選択される少なくとも1つの水溶性ポリマー、及び/又は、低融点合成繊維を含む0.3~125重量部のバインダーと、を水に添加混合して混合スラリーを調製し、
     前記混合スラリーを抄紙する、ことを特徴とする断熱材の製造方法。
    100 parts by weight of the main fiber, 35 to 210 parts by weight of xerogel and / or airgel with a total weight of less than 0.5 g / cm 3 and a thermal conductivity of 0.02 W / (m · K) or less, and a cation At least one water-soluble polymer selected from the group consisting of a water-soluble polymer and an amphoteric polymer, and / or 0.3 to 125 parts by weight of a binder containing a low-melting-point synthetic fiber are added to water and mixed to form a mixed slurry. Prepared,
    A method for producing a heat insulating material, wherein the mixed slurry is paper-made.
  8.  抄紙時の前記混合スラリーをpH7~8とする、請求項7に記載の断熱材の製造方法。 The method for manufacturing a heat insulating material according to claim 7, wherein the mixed slurry at the time of papermaking is adjusted to pH 7-8.
  9.  前記混合スラリーの前記バインダーが前記水溶性ポリマーを含み、
     前記水溶性ポリマー並びに前記キセロゲル及び/又はエアロゲルを、少なくとも前記主体繊維を水に懸濁したスラリーに、添加混合して前記混合スラリーを調整する、請求項7又は8に記載の断熱材の製造方法。
     
     
     
     
    The binder of the mixed slurry comprises the water-soluble polymer;
    The method for producing a heat insulating material according to claim 7 or 8, wherein the mixed slurry is prepared by adding and mixing the water-soluble polymer and the xerogel and / or aerogel to a slurry in which at least the main fiber is suspended in water. .



PCT/JP2016/000360 2014-01-30 2016-01-25 Heat insulator and method for manufacturing heat insulator WO2016121372A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014015388 2014-01-30
JP2015013731A JP6188245B2 (en) 2014-01-30 2015-01-27 Insulating material and method of manufacturing the insulating material
JP2015-013731 2015-01-27

Publications (1)

Publication Number Publication Date
WO2016121372A1 true WO2016121372A1 (en) 2016-08-04

Family

ID=54186811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000360 WO2016121372A1 (en) 2014-01-30 2016-01-25 Heat insulator and method for manufacturing heat insulator

Country Status (3)

Country Link
JP (1) JP6188245B2 (en)
TW (1) TWI619807B (en)
WO (1) WO2016121372A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010551A1 (en) * 2015-07-15 2017-01-19 日立化成株式会社 Aerogel composite material
CN108609911A (en) * 2018-04-28 2018-10-02 无锡市辰元科技有限公司 Heat insulating mortar and preparation method thereof, heat-insulated porcelain tendre and preparation method thereof and construction material
CN110258188A (en) * 2019-06-21 2019-09-20 苏州卓纳纳米技术有限公司 A kind of preparation method of the super-hydrophobic heat-insulated ultra-thin felt of aeroge
KR20190120228A (en) 2017-03-02 2019-10-23 미쯔비시 케미컬 주식회사 Laminated film, laminated body for image display apparatus, and image display apparatus
JP2019189519A (en) * 2018-04-23 2019-10-31 オゾンセーブ株式会社 Heat insulation material and manufacturing method for heat insulation material
CN111819387A (en) * 2018-03-14 2020-10-23 松下知识产权经营株式会社 Heat insulating sheet, heat insulator using same, and method for manufacturing same
US20210115622A1 (en) * 2018-11-15 2021-04-22 Panasonic Intellectual Property Management Co., Ltd. Heat-insulating sheet and manufacturing method therefor
EP3743464A4 (en) * 2018-01-23 2022-01-19 Bronx Creative&Design Centre Pte Ltd Organic-inorganic aerogel composites, methods and uses thereof
CN114008835A (en) * 2019-04-05 2022-02-01 电化株式会社 Heat insulating material composition, heat insulating material, and method for producing same
US11247446B2 (en) 2018-10-01 2022-02-15 Triple Point Innovations Llc Re-pulpable insulated paper products and methods of making and using the same
US11377798B2 (en) 2018-10-01 2022-07-05 Triple Point Innovations Llc Re-pulpable thermally insulated paper products and methods of making and using the same
CN115538217A (en) * 2022-11-02 2022-12-30 山东鲁阳节能材料股份有限公司 Soluble fiber composite paper and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196910B (en) * 2016-04-04 2023-11-10 菲博林科技有限公司 Compositions and methods for providing increased strength in ceilings, floors and building products
JP7027897B2 (en) * 2017-09-13 2022-03-02 王子ホールディングス株式会社 Foam Insulation Paper Container Paper Base Material, Foam Insulation Paper Container Sheet and Foam Insulation Paper Container
JP7027894B2 (en) * 2017-09-13 2022-03-02 王子ホールディングス株式会社 Foam Insulation Paper Container Paper Base Material, Foam Insulation Paper Container Sheet and Foam Insulation Paper Container
JP7121595B2 (en) * 2017-09-28 2022-08-18 住友理工株式会社 Insulation coatings and insulation
CN108570723B (en) * 2018-04-18 2020-11-24 浙江梵彼斯特轻纺发展有限公司 Aerogel-filled pineapple hemp-based composite fiber and preparation process thereof
JP7119916B2 (en) * 2018-11-05 2022-08-17 トヨタ自動車株式会社 Thermal barrier coating for internal combustion engine and method for forming thermal barrier coating
JP7285085B2 (en) * 2019-01-31 2023-06-01 住友理工株式会社 Insulation material and its manufacturing method
JP7223600B2 (en) * 2019-02-28 2023-02-16 住友理工株式会社 Thermal insulation member and manufacturing method thereof
JP6864384B2 (en) * 2019-06-11 2021-04-28 オゾンセーブ株式会社 Manufacturing method of heat insulating material and cutting material
JP2022082216A (en) * 2020-11-20 2022-06-01 黒崎播磨株式会社 Molded aerogel composite

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333092A (en) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd Fiber and fine particle composite heat-insulating material
US20040180176A1 (en) * 2003-03-14 2004-09-16 Rusek Stanley J. Vaccum insulation article
JP2009299893A (en) * 2008-05-15 2009-12-24 Nichias Corp Heat insulating material, heat insulating structure using it and its method for manufacturing
JP2010038288A (en) * 2008-08-06 2010-02-18 Nichias Corp Heat insulator
JP2014035044A (en) * 2012-08-09 2014-02-24 Panasonic Corp Heat insulating material and method for producing the same
US20140273701A1 (en) * 2013-03-15 2014-09-18 Cabot Corporation Aerogel blanket and method of production
JP2015124779A (en) * 2013-12-25 2015-07-06 パナソニックIpマネジメント株式会社 Heat insulation material and manufacturing method thereof
JP2016028880A (en) * 2014-07-18 2016-03-03 パナソニックIpマネジメント株式会社 Composite sheet and production method of the same, and electronic equipment using composite sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099029B2 (en) * 2011-11-08 2017-03-22 オゾンセーブ株式会社 Thermal insulation paint, thermal insulation method using the paint, and sheet material coated with the paint
WO2013141189A1 (en) * 2012-03-23 2013-09-26 井前工業株式会社 Heat insulator composition, heat insulator using same, and method for manufacturing heat insulator
CN103113043B (en) * 2013-02-04 2015-09-09 四川大学 Inorganic micro-and nano-particles/polymkeric substance composite building thermal insulation aerogel material and preparation method
CN103523789B (en) * 2013-10-11 2015-05-27 余煜玺 Preparation method of silica aerosil microballoon

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333092A (en) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd Fiber and fine particle composite heat-insulating material
US20040180176A1 (en) * 2003-03-14 2004-09-16 Rusek Stanley J. Vaccum insulation article
JP2009299893A (en) * 2008-05-15 2009-12-24 Nichias Corp Heat insulating material, heat insulating structure using it and its method for manufacturing
JP2010038288A (en) * 2008-08-06 2010-02-18 Nichias Corp Heat insulator
JP2014035044A (en) * 2012-08-09 2014-02-24 Panasonic Corp Heat insulating material and method for producing the same
US20140273701A1 (en) * 2013-03-15 2014-09-18 Cabot Corporation Aerogel blanket and method of production
JP2015124779A (en) * 2013-12-25 2015-07-06 パナソニックIpマネジメント株式会社 Heat insulation material and manufacturing method thereof
JP2016028880A (en) * 2014-07-18 2016-03-03 パナソニックIpマネジメント株式会社 Composite sheet and production method of the same, and electronic equipment using composite sheet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017010551A1 (en) * 2015-07-15 2018-02-22 日立化成株式会社 Airgel composite material
WO2017010551A1 (en) * 2015-07-15 2017-01-19 日立化成株式会社 Aerogel composite material
KR20190120228A (en) 2017-03-02 2019-10-23 미쯔비시 케미컬 주식회사 Laminated film, laminated body for image display apparatus, and image display apparatus
EP3743464A4 (en) * 2018-01-23 2022-01-19 Bronx Creative&Design Centre Pte Ltd Organic-inorganic aerogel composites, methods and uses thereof
CN111819387A (en) * 2018-03-14 2020-10-23 松下知识产权经营株式会社 Heat insulating sheet, heat insulator using same, and method for manufacturing same
JP2019189519A (en) * 2018-04-23 2019-10-31 オゾンセーブ株式会社 Heat insulation material and manufacturing method for heat insulation material
CN108609911A (en) * 2018-04-28 2018-10-02 无锡市辰元科技有限公司 Heat insulating mortar and preparation method thereof, heat-insulated porcelain tendre and preparation method thereof and construction material
US11377798B2 (en) 2018-10-01 2022-07-05 Triple Point Innovations Llc Re-pulpable thermally insulated paper products and methods of making and using the same
US11806973B2 (en) 2018-10-01 2023-11-07 Triple Point Innovations Llc Re-pulp able insulated paper products and methods of making and using the same
US11247446B2 (en) 2018-10-01 2022-02-15 Triple Point Innovations Llc Re-pulpable insulated paper products and methods of making and using the same
US20210115622A1 (en) * 2018-11-15 2021-04-22 Panasonic Intellectual Property Management Co., Ltd. Heat-insulating sheet and manufacturing method therefor
CN114008835A (en) * 2019-04-05 2022-02-01 电化株式会社 Heat insulating material composition, heat insulating material, and method for producing same
CN110258188A (en) * 2019-06-21 2019-09-20 苏州卓纳纳米技术有限公司 A kind of preparation method of the super-hydrophobic heat-insulated ultra-thin felt of aeroge
CN115538217A (en) * 2022-11-02 2022-12-30 山东鲁阳节能材料股份有限公司 Soluble fiber composite paper and preparation method thereof

Also Published As

Publication number Publication date
JP6188245B2 (en) 2017-08-30
TW201629184A (en) 2016-08-16
JP2015163815A (en) 2015-09-10
TWI619807B (en) 2018-04-01

Similar Documents

Publication Publication Date Title
WO2016121372A1 (en) Heat insulator and method for manufacturing heat insulator
JP6487494B2 (en) Flexible insulating structure and method for making and using the same
CN107709663B (en) Film products or method for producing films comprising amphiphilic polymers
KR20150047120A (en) Segmented gel composites and rigid panels manufactured therefrom
MX2011013817A (en) Low density non-woven material useful with acoustic ceiling tile products.
WO2016120528A1 (en) Thermoplastic fibrous materials and a method of producing the same
CN109072560A (en) Protective paper, dixie cup
EP3108060B1 (en) Method for producing a foam-formed insulation material
US11839069B2 (en) Electromagnetic wave absorbing sheet and method of manufacturing the same
CN102362115A (en) Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
KR102134072B1 (en) airogel adhensive coating component
JP6450201B2 (en) Sheet for heat insulation container, heat insulation container and method for manufacturing sheet for heat insulation container
JP6864384B2 (en) Manufacturing method of heat insulating material and cutting material
JP2022055295A (en) Composition for heat insulators and heat insulator
JP2009133030A (en) Foamed paperboard
JP2011241303A (en) Gas-barrier coating agent and gas-barrier material obtained using the same
JP6196763B2 (en) Paperboard, cardboard sheet and box
JP2010090489A (en) Multilayered paper-made cardboard
KR20200037990A (en) box
JPH11241297A (en) Thermally insulating sheet
JP2002103512A (en) Heat insulating material
JP2004036909A (en) Temperature control element
Li et al. MOF@ lignocellulosic nanofibril aerogel designed by carboxymethylated nanocellulose bridging for thermal insulation and fire retardancy
EP2038479A1 (en) Process for increasing bulk of a fiber product, fiber product and use thereof
JP3351599B2 (en) Foam board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742976

Country of ref document: EP

Kind code of ref document: A1