JP2011196392A - Vacuum heat insulation material and method for producing the same - Google Patents

Vacuum heat insulation material and method for producing the same Download PDF

Info

Publication number
JP2011196392A
JP2011196392A JP2010060662A JP2010060662A JP2011196392A JP 2011196392 A JP2011196392 A JP 2011196392A JP 2010060662 A JP2010060662 A JP 2010060662A JP 2010060662 A JP2010060662 A JP 2010060662A JP 2011196392 A JP2011196392 A JP 2011196392A
Authority
JP
Japan
Prior art keywords
vacuum heat
heat insulating
fiber sheet
fiber
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010060662A
Other languages
Japanese (ja)
Other versions
JP5398604B2 (en
Inventor
Toshio Shinoki
俊雄 篠木
Shunkei Suzuki
俊圭 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010060662A priority Critical patent/JP5398604B2/en
Publication of JP2011196392A publication Critical patent/JP2011196392A/en
Application granted granted Critical
Publication of JP5398604B2 publication Critical patent/JP5398604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical vacuum heat insulation material having high heat insulation performance.SOLUTION: The vacuum heat insulation material is formed by stacking a plurality of fiber sheets whose ease of bending varies between the perpendicular directions in a plane with the directions of greater ease of bending being aligned to make a plate-like core material, by vacuum-sealing the core material in a packing material and by curving it so that the direction in which the ease of bending of the fiber sheet is larger is made a circumferential direction of the cylindrical surface. The difference in ease of bending is provided by controlling the making speed or the production speed by a melt spinning method of the fiber sheet. The insertion of a film with a small friction coefficient between the inner circumferential surface of the core material and the packing material is proposed.

Description

この発明は、真空断熱材およびその製造方法に関するものである。   The present invention relates to a vacuum heat insulating material and a manufacturing method thereof.

従来、例えば給湯機の断熱貯湯タンクなどに使用する真空断熱材の高性能化を図るために、芯材を構成するガラス繊維を、伝熱方向に対して垂直方向に配向させ且つ伝熱方向に隣接する繊維同士が同一方向を向かないように積層して加熱加圧成形した真空断熱材が提案されている(例えば、特許文献1参照)。   Conventionally, in order to improve the performance of a vacuum heat insulating material used in, for example, a heat insulating hot water storage tank of a water heater, the glass fibers constituting the core material are oriented in a direction perpendicular to the heat transfer direction and in the heat transfer direction. A vacuum heat insulating material that has been laminated and heated and pressed so that adjacent fibers do not face the same direction has been proposed (for example, see Patent Document 1).

特開2006−161972号公報JP 2006-161972 A

しかしながら従来の提案においては、真空断熱材を平板パネルとして使用する場合は高性能が得られるものの、例えば給湯機の貯湯タンクの円筒形断熱材などに用いるために、円筒形状に曲げて使用する場合、曲げ難いという問題があった。また、曲げた時にガラス繊維芯材が折れ、これが真空包装材を突き破ってしまうなど問題があった。さらに、曲げたときに折れた繊維軸方向が伝熱方向と平行に近づくために、ガラス繊維からの熱移動が大きくなり断熱性能を低下させるなどの問題があった。   However, in the conventional proposal, when a vacuum heat insulating material is used as a flat panel, high performance can be obtained, but for use in a cylindrical heat insulating material of a hot water storage tank of a water heater, etc. There was a problem that it was difficult to bend. Further, there is a problem that the glass fiber core material breaks when bent, and this breaks through the vacuum packaging material. Furthermore, since the direction of the fiber axis that is broken when bent is close to parallel to the heat transfer direction, there is a problem that heat transfer from the glass fiber is increased and the heat insulation performance is lowered.

従ってこの発明の目的は、板状の真空断熱材を曲げ加工し易くし、さらに曲げたときの信頼性を向上させるとともに高い断熱性能を有する円筒形状の真空断熱材を提供することである。   Accordingly, an object of the present invention is to provide a cylindrical vacuum heat insulating material that makes it easy to bend a plate-shaped vacuum heat insulating material, further improves the reliability when bent, and has high heat insulating performance.

この発明の真空断熱材は、面内で互いに直交する方向において曲がりやすさの差がある複数の繊維シートを、曲がりやすさの大きい方向を揃えて積層して構成した板状の芯材と、上記芯材を真空密封する包装材とを備え、上記繊維シートの曲がりやすさの大きい方向が円筒面の周方向となるように湾曲していることを特徴とするものである。   The vacuum heat insulating material of the present invention is a plate-like core material configured by laminating a plurality of fiber sheets having a difference in easiness of bending in a direction orthogonal to each other in a plane, with the direction of easiness of bending being laminated, and And a packaging material for vacuum-sealing the core material, wherein the fiber sheet is bent so that the direction in which the fiber sheet is easily bent becomes the circumferential direction of the cylindrical surface.

またこの発明の真空断熱材の製造方法は、面内で互いに直交する方向において曲がりやすさの差がある複数の繊維シートを製造する工程と、上記繊維シートの曲がりやすさの大きい方向を揃えて積層して板状の芯材を製造する工程と、上記芯材を包装材内で真空密封する工程と、上記包装材内に真空密封された上記芯材を上記繊維シートの曲がりやすさの大きい方向が円筒面の周方向となるように湾曲させる工程とを備えたことを特徴とするものである。   Moreover, the manufacturing method of the vacuum heat insulating material of this invention arrange | positions the process of manufacturing the some fiber sheet which has a difference in the ease of bending in the direction orthogonal to each other in a plane, and the direction where the said fiber sheet is easy to bend. A step of producing a plate-shaped core material by laminating, a step of vacuum-sealing the core material in a packaging material, and the core material vacuum-sealed in the packaging material is easy to bend the fiber sheet. And a step of bending so that the direction is the circumferential direction of the cylindrical surface.

この発明によれば、繊維の折れも少なく高性能かつ高信頼性の円筒形状の真空断熱材が得られる。   According to the present invention, a high-performance and highly reliable cylindrical vacuum heat insulating material with less fiber breakage can be obtained.

この発明の実施の形態1による真空断熱材を示す断面模式図である。It is a cross-sectional schematic diagram which shows the vacuum heat insulating material by Embodiment 1 of this invention. 図1の真空断熱材を円筒形状に成形した概略斜視図である。It is the schematic perspective view which shape | molded the vacuum heat insulating material of FIG. 1 in the cylindrical shape. 図1の真空断熱材の繊維シートの一部の拡大模式図である。It is a one part expansion schematic diagram of the fiber sheet of the vacuum heat insulating material of FIG. この発明の実施の形態2による繊維シートの一部の拡大模式図である。It is a one part expansion schematic diagram of the fiber sheet by Embodiment 2 of this invention. この発明の実施の形態3による樹脂繊維シートの表面を表す模式図である。It is a schematic diagram showing the surface of the resin fiber sheet by Embodiment 3 of this invention. この発明の実施の形態4による円筒形状の真空断熱材を示す概略斜視図である。It is a schematic perspective view which shows the cylindrical vacuum heat insulating material by Embodiment 4 of this invention. 図6の真空断熱材の断面模式図である。It is a cross-sectional schematic diagram of the vacuum heat insulating material of FIG.

以下、この発明をより詳細に説明するため、この発明の実施の形態を添付の図面を参照して説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。また図における各部の形状および寸法は発明の理解を助けるために誇張あるいは変型して記載してあることがある。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings in order to explain the present invention in more detail. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably. In addition, the shape and size of each part in the drawings may be exaggerated or modified to help understand the invention.

実施の形態1.
図1において、この発明の真空断熱材1は、繊維シート2を積層して構成された芯材3と、芯材3を覆って真空密封する包装材4とを有している。図2には真空断熱材1が円筒形状に曲げ成形された状態を斜視図で示してあり、図3には繊維シート2の一部を拡大模式図で示してある。
Embodiment 1 FIG.
In FIG. 1, the vacuum heat insulating material 1 of this invention has the core material 3 comprised by laminating | stacking the fiber sheet 2, and the packaging material 4 which covers the core material 3 and is vacuum-sealed. FIG. 2 is a perspective view showing a state in which the vacuum heat insulating material 1 is bent into a cylindrical shape, and FIG. 3 shows a part of the fiber sheet 2 in an enlarged schematic view.

繊維シート2は概ね直径1μm程度、長さ1mm程度のガラス繊維5を抄造したものであって、概ね0.2mmから2mm程度の厚みで充填率が約10%である。繊維シート2の面内において図3の矢印Aで示す或る方向の引張強度が、この方向と直交する矢印Bで示す方向の引張強度よりも例えば1.5倍程度大きくされていて、繊維シート2の面内で互いに直交する方向において引張強度に差が与えられている。このような引張強度の差を持つ繊維シート2は例えば繊維シート2の抄造速度の調整によって製作することができる。芯材3は、複数の繊維シート2を、引張強度の大きい方向で揃えて積層したものであり、芯材3の面内で互いに直交する方向において引張強度に差がある板状の部材として構成されている。このような芯材3は、包装材4で真空密封され、芯材3の引張強度の小さい方向が円筒面の周方向となるように湾曲させられて図2に示すような真空断熱材1の円筒形状パネルとされている。   The fiber sheet 2 is made of glass fiber 5 having a diameter of about 1 μm and a length of about 1 mm, and has a thickness of about 0.2 mm to 2 mm and a filling rate of about 10%. In the plane of the fiber sheet 2, the tensile strength in a certain direction indicated by an arrow A in FIG. 3 is, for example, about 1.5 times larger than the tensile strength in a direction indicated by an arrow B orthogonal to this direction. A difference is given to the tensile strength in directions orthogonal to each other in the plane of the two. The fiber sheet 2 having such a difference in tensile strength can be manufactured, for example, by adjusting the paper making speed of the fiber sheet 2. The core material 3 is formed by laminating a plurality of fiber sheets 2 in the direction in which the tensile strength is large, and is configured as a plate-like member having a difference in tensile strength in a direction orthogonal to each other in the plane of the core material 3. Has been. Such a core material 3 is vacuum-sealed with a packaging material 4 and is bent so that the direction in which the tensile strength of the core material 3 is small becomes the circumferential direction of the cylindrical surface, and the vacuum heat insulating material 1 as shown in FIG. It is a cylindrical panel.

真空断熱材1の製造にあたっては、まず、例えば水または硫酸に直径1μm程度、長さ1mm程度のガラス繊維5を分散させ、自動送り式抄紙機で抄紙して引き出してシート状に形成した後、乾燥工程を経てロール状に巻き取られた繊維シート2のシートロールを作製する。一般にこうして抄紙機で作製された繊維シート2には、引き出し方向(縦方向)に延びた漉き目が生じ、漉き目の方向によって曲がりやすさ(引張強度)に差が生じる。図3に示す繊維シート2では、矢印Aで示す方向にガラス繊維5が並ぶ傾向があってその方向に漉き目が生じていて、その方向の引張強度は、それと直交する矢印Bの方向の引張強度よりも大きくなっている。このため、繊維シート2を曲げる際には、矢印Aの方向に曲げる(即ち矢印Aの方向が周方向となるように曲げる)よりも、矢印Bの方向に曲げる(即ち矢印Bの方向が周方向となるように曲げる)方が曲がりやすくなる。繊維シート2の矢印Bの方向の曲げやすさ(引張強度)は、所望のシート厚みにすべくガラス繊維と水または硫酸の濃度を変えながら、抄紙機の運転速度(矢印Aの方向の引き出し速度)を調整することによって変化させることができる。一般的には抄造速度を遅くすることでシート移動方向とそれに直交する方向の曲げやすさ(引張強度)に差がつくことになる。この抄紙速度の調整によって、曲げた時にガラス繊維芯材が折れることが少なく、従って折れた繊維が真空包装材を突き破ってしまったり、伝熱方向と平行な方向に配置されて断熱効率が低下したりする恐れがないようにすることができる。この調整は、繊維シート2の面内において矢印Aで示す方向の引張強度が、矢印Bで示す方向の引張強度よりも例えば1.5倍程度大きくなるように行われる。   In producing the vacuum heat insulating material 1, first, for example, glass fiber 5 having a diameter of about 1 μm and a length of about 1 mm is dispersed in water or sulfuric acid, and the sheet is drawn out by an automatic paper machine and formed into a sheet shape. A sheet roll of the fiber sheet 2 wound in a roll shape through the drying process is produced. In general, the fiber sheet 2 manufactured by the paper machine in this manner has a knot extending in the pulling direction (longitudinal direction), and a difference in ease of bending (tensile strength) occurs depending on the direction of the knot. In the fiber sheet 2 shown in FIG. 3, there is a tendency that the glass fibers 5 are arranged in the direction indicated by the arrow A, and a crack is generated in the direction, and the tensile strength in that direction is the tensile strength in the direction of the arrow B perpendicular to the direction. It is larger than the strength. For this reason, when the fiber sheet 2 is bent, it is bent in the direction of the arrow B (that is, the direction of the arrow B is the circumferential direction) rather than the direction of the arrow A (that is, the direction of the arrow A is the circumferential direction). It is easier to bend). The ease of bending (tensile strength) in the direction of arrow B of the fiber sheet 2 is determined by changing the concentration of glass fiber and water or sulfuric acid to obtain a desired sheet thickness, while operating the paper machine (drawing speed in the direction of arrow A). ) Can be changed by adjusting. In general, by slowing the paper making speed, there is a difference in bendability (tensile strength) between the sheet moving direction and the direction perpendicular thereto. By adjusting this papermaking speed, the glass fiber core material is less likely to break when bent, so the broken fiber may break through the vacuum packaging material or be placed in a direction parallel to the heat transfer direction, reducing the heat insulation efficiency. Can be avoided. This adjustment is performed so that the tensile strength in the direction indicated by the arrow A in the plane of the fiber sheet 2 is, for example, about 1.5 times larger than the tensile strength in the direction indicated by the arrow B.

次に、このシートロールからシートを引き出して裁断して繊維シート2を作製し、複数の繊維シート2を引張強度の大きい方向で揃えて重ねて芯材3を作製する。   Next, the fiber sheet 2 is produced by drawing the sheet from the sheet roll and cutting it, and the core material 3 is produced by aligning and stacking the plurality of fiber sheets 2 in the direction of high tensile strength.

この芯材3を、1部の開口部を除いて予め封止した袋状の包装材4に挿入し、包装材4で覆われた芯材3を真空チャンバ内に配置し、例えば0.1〜3Pa程度の真空圧になった状態で包装材4を密封して平板状の真空断熱材1を作製する。完成した真空断熱材1の内部空間は真空状態に保持され、包装材4および芯材3は外部との圧力差による圧縮力を受けている。必要に応じて包装材4で覆われた空間には、適当なガス吸着剤を挿入することもできる。包装材4は、例えばアルミラミネートシートで構成されており、その代表的なフィルム層は、外側よりナイロン15μm+ポリエチレンテレフタレート12μm+アルミシート6μm+ポリエチレン50μmからなる。但し、これに限定されるものではない。   The core material 3 is inserted into a bag-shaped packaging material 4 that is sealed in advance except for one opening, and the core material 3 covered with the packaging material 4 is placed in a vacuum chamber. The packaging material 4 is sealed in a state where the vacuum pressure is about 3 Pa, and the flat vacuum heat insulating material 1 is produced. The interior space of the completed vacuum heat insulating material 1 is maintained in a vacuum state, and the packaging material 4 and the core material 3 are subjected to a compressive force due to a pressure difference with the outside. If necessary, an appropriate gas adsorbent can be inserted into the space covered with the packaging material 4. The packaging material 4 is made of, for example, an aluminum laminate sheet, and a typical film layer is made of nylon 15 μm + polyethylene terephthalate 12 μm + aluminum sheet 6 μm + polyethylene 50 μm from the outside. However, it is not limited to this.

なお、繊維シート2に含有される水分については、抄紙時の乾燥工程とは別に、裁断前後などに繊維シート2を加熱しながら減圧するような工程を設けてこの水分を除去してもよい。また、包装材4で覆われた芯材3が真空チャンバ内で減圧された状態において、真空チャンバ内を加熱するような機構を設けて、繊維シート2自体に熱収縮や熱分解などの熱負荷がからない温度で、かつ真空放電などを誘発しない圧力にするなど、適切な条件を設定して繊維シート2の水分を除去してもよい。   In addition, about the water | moisture content contained in the fiber sheet 2, you may provide the process of decompressing, heating the fiber sheet 2 before and behind cutting, etc. separately from the drying process at the time of papermaking, and may remove this water | moisture content. Further, in the state where the core material 3 covered with the packaging material 4 is depressurized in the vacuum chamber, a mechanism for heating the inside of the vacuum chamber is provided, and the fiber sheet 2 itself is subjected to a thermal load such as thermal contraction or thermal decomposition. It is also possible to remove moisture from the fiber sheet 2 by setting appropriate conditions such as a temperature at which no discharge occurs and a pressure that does not induce vacuum discharge.

次に、図2に示すように、平板状の真空断熱材1を2軸あるいは3軸のロールベンダやプレス成形などによって、繊維シート2の曲げやすい方向(引張強度の弱い方向)が円周方向になるように、即ち矢印Bの方向に所望の曲率の円筒形状になるように湾曲させると真空断熱材1が製造できる。   Next, as shown in FIG. 2, the direction in which the fiber sheet 2 is easily bent (the direction in which the tensile strength is weak) is the circumferential direction by using a biaxial or triaxial roll bender or press forming the flat vacuum heat insulating material 1. Thus, in other words, the vacuum heat insulating material 1 can be manufactured by curving so as to have a cylindrical shape with a desired curvature in the direction of arrow B.

このように、この真空断熱材1は、面内で互いに直交する方向(矢印AおよびB)において曲がりやすさの差がある複数の繊維シート2を、曲がりやすさの大きい方向(矢印B)を揃えて積層して芯材3とし、この芯材3を包装材4で真空密封して、繊維シート2の曲がりやすさの大きい方向(矢印B)が円筒面の周方向となるように湾曲成形しているので、芯材3を構成する繊維シート2の平面内で漉き目の縦方向と横方向で繊維分散、つまり、縦横の向きの示す比率が異なるシートになることから、曲げやすく、繊維軸方向と垂直方向を円筒形状円周方向に曲げることでガラス繊維5の折れによる包装材4の破損防止が図れる。また、真空断熱材1の厚さ方向であるガラス繊維5の伝熱方向への立ち上がりを抑制するので高性能化が図れる。   As described above, the vacuum heat insulating material 1 has a plurality of fiber sheets 2 having a difference in easiness of bending in a direction orthogonal to each other (arrows A and B) in a plane, and a direction (arrow B) in which the easiness of bending is large. The core material 3 is vacuum-sealed with a wrapping material 4 by laminating and aligning the core material 3, and the fiber sheet 2 is bent so that the direction in which the fiber sheet 2 is easily bent (arrow B) is the circumferential direction of the cylindrical surface. Therefore, since the fibers are dispersed in the longitudinal direction and the transverse direction of the mesh in the plane of the fiber sheet 2 constituting the core material 3, that is, the ratio indicated by the longitudinal and transverse directions is different, it is easy to bend and the fibers By bending the axial direction and the vertical direction in the cylindrical circumferential direction, it is possible to prevent damage to the packaging material 4 due to breakage of the glass fiber 5. Moreover, since the rising to the heat transfer direction of the glass fiber 5 which is the thickness direction of the vacuum heat insulating material 1 is suppressed, high performance can be achieved.

また、真空断熱材1の製造方法は、繊維シート2の面内で互いに直交する方向(矢印AおよびB)において曲がりやすさの差がある複数の繊維シート2を製造する工程と、繊維シート2の曲がりやすさの大きい方向(矢印B)即ち漉き目を揃えて積層して板状の芯材3を製造する工程と、芯材3を包装材4内で真空密封する工程と、包装材4内に真空密封された芯材3を繊維シート2の曲がりやすさの大きい方向(矢印B)が円筒面の周方向となるように湾曲させる工程とを備えたものである。   Moreover, the manufacturing method of the vacuum heat insulating material 1 includes a step of manufacturing a plurality of fiber sheets 2 having a difference in ease of bending in directions orthogonal to each other (arrows A and B) in the plane of the fiber sheet 2, and the fiber sheet 2. In the direction of large bendability (arrow B), that is, the step of producing a plate-like core material 3 by aligning the perforations, the step of vacuum-sealing the core material 3 in the packaging material 4, and the packaging material 4 A step of bending the core material 3 vacuum-sealed therein so that the direction in which the fiber sheet 2 is easily bent (arrow B) is the circumferential direction of the cylindrical surface.

一般に、真空断熱材の芯材は、空隙が大きいつまり繊維充填率が低い方が好ましい。そのため繊維シートを作製する場合、より均一な繊維分散になる様にすることで高性能化が図れる。そこで、比較値を得るために、平均直径が約φ1μmのガラス繊維を均一分散させた厚み0.5mmの繊維シートを作製してこれを25枚積層して芯材とした比較例としての真空断熱材を製作した。なおこの時の繊維シートの曲がりやすさ(引張強度)は、シートが進む方向である縦方向およびシートが進む方向と垂直な横方向ともほぼ同一になる様に抄造設備を調整して製作した。この平板状の真空断熱材の熱伝導率を測定した結果、0.0019W/mKが得られた。次にこれを3軸ロールベンダにて曲率半径250mmの円筒形状化させて熱伝導率を測定した結果、0.0027W/mKが得られた。この性能低下は、円筒形状化することによって真空断熱材の外周および内周に周長差が生じ、これを吸収するために内周側にシワが発生し、さらにこのシワが芯材3を構成するガラス繊維をシート平面に対して垂直方向に立ち上げたためであると推定される。   Generally, it is preferable that the core material of the vacuum heat insulating material has a large gap, that is, a low fiber filling rate. Therefore, when producing a fiber sheet, high performance can be achieved by making the fiber dispersion more uniform. Therefore, in order to obtain a comparative value, a vacuum insulation as a comparative example as a core material in which a fiber sheet having a thickness of 0.5 mm in which glass fibers having an average diameter of about φ1 μm are uniformly dispersed is prepared and 25 sheets are laminated. Made the material. The fiber sheet at this time was manufactured by adjusting the papermaking equipment so that the bending direction (tensile strength) of the fiber sheet was substantially the same in the longitudinal direction, which is the direction in which the sheet travels, and in the lateral direction perpendicular to the direction in which the sheet travels. As a result of measuring the thermal conductivity of the flat vacuum heat insulating material, 0.0019 W / mK was obtained. Next, this was formed into a cylindrical shape with a curvature radius of 250 mm by a triaxial roll bender, and the thermal conductivity was measured. As a result, 0.0027 W / mK was obtained. This deterioration in performance is caused by the difference in circumference between the outer circumference and the inner circumference of the vacuum heat insulating material due to the cylindrical shape, and wrinkles are generated on the inner circumference side to absorb this, and this wrinkle constitutes the core material 3. It is presumed that this is because the glass fiber to be raised was raised in the direction perpendicular to the sheet plane.

次に、同じ素材のガラス繊維5で抄造製法を調整して縦方向の引張強度が横方向の約1.5倍になる繊維シート2を作製した。この時の繊維シート2を構成するガラス繊維5の軸方向は、図3に示す様にシート横方向よりも縦方向に対して平行側に向いている比率が大きいことが観察された。この繊維シート2を引張強度が同じ向きになる様に積層して芯材3とし、包装材4で真空密封して平板状の真空断熱材1を製作して熱伝導率を測定した結果、0.0022W/mKが得られた。さらにこれを引張強度が弱い方向(矢印B)が円周方向になる様に3軸ロールベンダにて曲率半径250mmの円筒形状に曲げ、同様に熱伝導率を測定した結果、0.0025W/mKが得られた。   Next, the paper sheet manufacturing method was adjusted with the glass fiber 5 of the same raw material, and the fiber sheet 2 whose longitudinal tensile strength was about 1.5 times of the horizontal direction was produced. It was observed that the ratio of the axial direction of the glass fibers 5 constituting the fiber sheet 2 at this time was larger in the direction parallel to the longitudinal direction than in the lateral direction of the sheet as shown in FIG. This fiber sheet 2 is laminated so that the tensile strengths are in the same direction to form a core material 3, and vacuum-sealed with a packaging material 4 to produce a flat plate-like vacuum heat insulating material 1. 0022 W / mK was obtained. Further, this was bent into a cylindrical shape with a radius of curvature of 250 mm by a triaxial roll bender so that the direction of weak tensile strength (arrow B) was in the circumferential direction, and the thermal conductivity was measured in the same manner. As a result, 0.0025 W / mK was gotten.

この比較試験によると、本発明の実施の形態1による真空断熱材1は、平板形状では縦方向と横方向の引張強度がほぼ同一のシートと比べて断熱性能が僅かに低い(熱伝導率が比較例の0.0019W/mKに対して0.0022W/mK)ものの、円筒形状では逆に高い性能を示す(熱伝導率が比較例の0.0027W/mKに対して0.0025W/mK)ものである。したがって、余分なコストをかけずに高性能な円筒形状の真空断熱材1を提供することができる。   According to this comparative test, the vacuum heat insulating material 1 according to the first exemplary embodiment of the present invention has a slightly lower heat insulating performance in the flat plate shape than the sheet having substantially the same tensile strength in the vertical direction and the horizontal direction (the thermal conductivity is low). Although it is 0.0022 W / mK with respect to 0.0019 W / mK of the comparative example, the cylindrical shape shows high performance (thermal conductivity is 0.0025 W / mK with respect to 0.0027 W / mK of the comparative example). Is. Therefore, the high-performance cylindrical vacuum heat insulating material 1 can be provided without extra cost.

実施の形態2.
図4において、この発明を実施するための実施の形態2における真空断熱材1に用いる繊維シート2は、概ね直径φ1μm程度、長さ1mm程度のガラス繊維5と、これらガラス繊維5内に分散配置された直径約φ6μmで長さ6mmの引き出し法によって製造された太径のガラス繊維6とで構成されている。真空断熱材1のその他の構成は実施の形態1と同様である。このように、この真空断熱材は、繊維シートが、引き出し法によって製造されたチョップドガラス繊維を含有しており、チョップドガラス繊維は直径4μm以上20μm以下であるのが望ましく、また含有率が10%以上であるのが望ましい。
Embodiment 2. FIG.
In FIG. 4, a fiber sheet 2 used for the vacuum heat insulating material 1 in Embodiment 2 for carrying out the present invention is a glass fiber 5 having a diameter of about φ1 μm and a length of about 1 mm, and dispersedly arranged in these glass fibers 5. And a large-diameter glass fiber 6 manufactured by a drawing method having a diameter of about 6 μm and a length of 6 mm. Other configurations of the vacuum heat insulating material 1 are the same as those in the first embodiment. As described above, in this vacuum heat insulating material, the fiber sheet contains chopped glass fibers produced by the drawing method, and the chopped glass fibers preferably have a diameter of 4 μm or more and 20 μm or less, and the content is 10%. The above is desirable.

この真空断熱材1の繊維シート2の作製にあたっては、例えば水または硫酸に細径のガラス繊維5と太径のガラス繊維6とを分散させ、自動送り式抄紙機で抄紙してシート状に形成することができる。それ以降の工程は実施の形態1で示したものと同様である。   When the fiber sheet 2 of the vacuum heat insulating material 1 is produced, for example, the glass fiber 5 having a small diameter and the glass fiber 6 having a large diameter are dispersed in water or sulfuric acid, and the sheet is formed by an automatic feed type paper machine. can do. The subsequent steps are the same as those shown in the first embodiment.

この真空断熱材1を製造するために、抄造製法を調整して縦方向(矢印A)の引張強度が横方向(矢印B)の約2倍になる繊維シート2を作製し、この繊維シート2を引張強度の方向を揃えて積層して芯材3とし、包装材4で覆って平板状の真空断熱材1を製作して熱伝導率を測定した結果、0.0016W/mKが得られた。さらにこれを図2と同様に引張強度が弱い方向(矢印B)が円周方向になる様に3軸ロールベンダにて曲率半径250mmの円筒形状に曲げた。同様に熱伝導率を測定した結果、0.0019W/mKが得られた。また、内側表面のシワの凹凸が抑制されていた。   In order to manufacture this vacuum heat insulating material 1, a fiber sheet 2 is prepared by adjusting the papermaking method so that the tensile strength in the longitudinal direction (arrow A) is about twice that in the lateral direction (arrow B). As a result of producing a flat vacuum heat insulating material 1 by covering with a packaging material 4 and measuring the thermal conductivity, 0.0016 W / mK was obtained. . Further, as in FIG. 2, this was bent into a cylindrical shape with a curvature radius of 250 mm by a triaxial roll bender so that the direction of weak tensile strength (arrow B) was the circumferential direction. Similarly, as a result of measuring the thermal conductivity, 0.0019 W / mK was obtained. Moreover, the wrinkles unevenness of the inner surface was suppressed.

本発明の実施の形態2の真空断熱材1は、平板形状でも比較例として製作した真空断熱材1よりも高い性能を示す。さらに、円筒形状化しても実施の形態1と性能低下が殆ど変わらなかったため、より高性能な円筒形状の真空断熱材1が提供できる。また、ガラス繊維5および6の立ち上がりを防止できることから、包装材4の破損を抑制できるという効果が得られる。   The vacuum heat insulating material 1 according to the second embodiment of the present invention exhibits higher performance than the vacuum heat insulating material 1 manufactured as a comparative example even in a flat plate shape. Furthermore, since the performance degradation was almost the same as that of the first embodiment even when the cylindrical shape was achieved, a higher-performance cylindrical vacuum heat insulating material 1 can be provided. Moreover, since the rising of the glass fibers 5 and 6 can be prevented, the effect that the damage of the packaging material 4 can be suppressed is acquired.

実施の形態3.
図5に示す真空断熱材1の繊維シート2は、例えばPP(ポリプロピレン)やPET(ポリエチレンテレフタレート)などの樹脂ペレットを素材とし、これを融点まで加熱しつつギアポンプで送り出す。溶融された樹脂は、複数のノズルから吐出されて冷却することによって紡糸される。さらにスパンボンド方式やメルトブロー方式により、約φ12μm程度の径まで繊維を延伸させる。延伸された繊維はコンベア上に吐出してシート化される。コンベアの後段では、必要に応じてフラットもしくはエンボスロールを用いて繊維を一部熱溶着させてシート強度の向上を図って繊維シート2とし、ロール化する。この樹脂繊維シートでは延伸された繊維速度よりもコンベヤ速度の方が遅くなるため、図5に示したように樹脂繊維は多数のコイル7がずれて重ね合わされて巻かれたものになる。このコイル7の縦方向と横方向の径の比率が変わるようにシートを作製することで縦横の曲がりやすさ(引張強度)の異なるシートを製作することができる。次に、このシートロールからシートを引き出して必要なサイズに裁断した繊維シート2を複数枚重ねた芯材3を作製する。それ以降の工程は、先に説明した実施の形態と同様である。
Embodiment 3 FIG.
The fiber sheet 2 of the vacuum heat insulating material 1 shown in FIG. 5 uses resin pellets such as PP (polypropylene) and PET (polyethylene terephthalate), for example, and feeds them with a gear pump while heating them to the melting point. The molten resin is spun by being discharged from a plurality of nozzles and cooled. Further, the fiber is stretched to a diameter of about φ12 μm by a spunbond method or a melt blow method. The stretched fiber is discharged onto a conveyor to form a sheet. In the subsequent stage of the conveyor, if necessary, the fibers are partially heat welded using a flat or embossing roll to improve the sheet strength, thereby forming the fiber sheet 2 and roll. In this resin fiber sheet, the conveyor speed is slower than the stretched fiber speed. Therefore, as shown in FIG. 5, the resin fiber is wound with a large number of coils 7 being overlapped. By producing a sheet so that the ratio of the diameters of the coil 7 in the vertical direction and the horizontal direction is changed, it is possible to manufacture sheets having different vertical and horizontal bending easiness (tensile strength). Next, a core material 3 is produced in which a plurality of fiber sheets 2 that are cut out to a required size are drawn out from the sheet roll. The subsequent steps are the same as those in the embodiment described above.

この真空断熱材1においては、繊維シート2の曲がりやすさ(引張強度)の差が、繊維シート2の溶融紡糸法による樹脂材料の押し出し量とコンベヤの送り速度の調整によって与えられたものである。つまり、繊維シート2の曲げやすさの(引張強度)は、所望のシート目付量にすべく樹脂材料の押し出し量を変えながら、コンベヤの送り速度を調整することによって変化させることができる。繊維の延伸線速度に対してコンベヤ速度を早くすることでコイル7がコンベヤ進行方向に伸びた形状となることからコンベヤ進行方向と直交方向が曲げやすく(引張強度が小さく)できる。繊維の延伸線速度に対してコンベヤ速度を遅くすることでその逆も可能である。このため、真空断熱材1の芯材3の製造コストならびに材料コストを低減して同等の性能を得ることができる。この製造方法についても、円筒形状化による断熱性能低下を抑制することが可能で、低い製造コストで高性能な曲げ形状の真空断熱材1を提供できる。   In this vacuum heat insulating material 1, the difference in bendability (tensile strength) of the fiber sheet 2 is given by adjusting the extrusion amount of the resin material by the melt spinning method of the fiber sheet 2 and the feed rate of the conveyor. . That is, the bendability (tensile strength) of the fiber sheet 2 can be changed by adjusting the feed rate of the conveyor while changing the extrusion amount of the resin material to obtain a desired sheet weight. By increasing the conveyor speed with respect to the fiber drawing linear speed, the coil 7 has a shape extending in the conveyor traveling direction, so that the direction perpendicular to the conveyor traveling direction can be easily bent (the tensile strength is small). The reverse is also possible by slowing the conveyor speed relative to the fiber drawing line speed. For this reason, the manufacturing cost of the core material 3 of the vacuum heat insulating material 1 and material cost can be reduced, and equivalent performance can be obtained. Also for this manufacturing method, it is possible to suppress a decrease in the heat insulation performance due to the cylindrical shape, and it is possible to provide a high-performance bent-shaped vacuum heat insulating material 1 at a low manufacturing cost.

実施の形態4.
図6および図7に示す真空断熱材1においては、芯材3の湾曲の内周面と包装材4との間に小摩擦係数のフィルム8が挿入されている。図示の例では、真空断熱材1の繊維シート2で形成された芯材3の片面と包装材4との間に複数枚のポリエチレンテレフタレート(PET)のフィルム8が挿入されていて、小摩擦係数のフィルム8が配置された側が径方向内側になるように湾曲させて円筒形状に成形したものである。その他の構成は実施の形態1と同様である。
Embodiment 4 FIG.
In the vacuum heat insulating material 1 shown in FIGS. 6 and 7, a film 8 having a small friction coefficient is inserted between the curved inner peripheral surface of the core material 3 and the packaging material 4. In the illustrated example, a plurality of polyethylene terephthalate (PET) films 8 are inserted between one side of the core material 3 formed of the fiber sheet 2 of the vacuum heat insulating material 1 and the packaging material 4, and a small coefficient of friction. The film 8 is curved so that the side on which the film 8 is disposed is radially inward and is formed into a cylindrical shape. Other configurations are the same as those of the first embodiment.

この真空断熱材1の製造にあたっては、実施の形態1で説明した工程と同様に作製した芯材3に、例えばポリエチレンテレフタレート(PET)等の小摩擦係数のフィルム8を複数枚重ね合わせて袋状の包装材4に挿入し、その後実施の形態1で説明した工程と同様に平板状の真空断熱材1を作製し、最後の曲げ加工においてフィルム8を挿入した側が径方向内側になる様に曲げ加工した。   In manufacturing the vacuum heat insulating material 1, a plurality of films 8 having a small coefficient of friction such as polyethylene terephthalate (PET) are overlapped on the core material 3 produced in the same manner as described in the first embodiment. The flat vacuum heat insulating material 1 is produced in the same manner as described in the first embodiment, and then bent so that the side on which the film 8 is inserted is radially inward in the final bending process. processed.

実施の形態1で作製した芯材3に厚み75μmのPET製のフィルム8を4枚挿入して包装材4で覆って作製した平板状の真空断熱材1の熱伝導率は、0.0016W/mKであった。さらにこれを矢印Bで示す曲がりやすさが大きい方向(引張強度が弱い方向)が円周方向になる様に3軸ロールベンダにて曲率半径250mmの円筒形状に曲げて製作した真空断熱材1の熱伝導率を測定した結果、0.0017W/mKが得られた。円筒形状化した真空断熱材1の内側面を観察してみると、発生したシワのピッチが大きくまた凹凸差も減少していた。また、繊維シート面に対するガラス繊維5の立ち上がりが抑制されていることも確認された。   The thermal conductivity of the flat vacuum heat insulating material 1 produced by inserting four PET films 8 having a thickness of 75 μm into the core material 3 produced in Embodiment 1 and covering with the packaging material 4 is 0.0016 W / mK. Further, the vacuum heat insulating material 1 manufactured by bending it into a cylindrical shape with a curvature radius of 250 mm by a triaxial roll bender so that the direction in which the bending ease indicated by the arrow B is large (the direction in which the tensile strength is weak) becomes the circumferential direction. As a result of measuring the thermal conductivity, 0.0017 W / mK was obtained. When the inner surface of the cylindrical vacuum heat insulating material 1 was observed, the pitch of the generated wrinkles was large and the unevenness difference was reduced. It was also confirmed that the rise of the glass fiber 5 with respect to the fiber sheet surface was suppressed.

このように、この真空断熱材1においては、芯材3の湾曲の内周面と包装材4との間に小摩擦係数のフィルム8を挿入してあるので、真空断熱材1を円筒形状化した時の断熱性能低下を抑制することができ、より高性能化が図れるとともに包装材4の破損が防止できる。また、この真空断熱材1は、平板形状では実施の形態1で示した真空断熱材1と同等の性能を有するものであった。さらに、円筒形状化することによって、より高性能な円筒形状真空断熱材が提供できる。また、ガラス繊維の立ち上がりを防止できることから、包装材4の破損を抑制できるばかりか、フィルム8自体が包装材4の保護シートの役割を果たすことから、より信頼性が向上できるという効果がある。   Thus, in this vacuum heat insulating material 1, since the film 8 with a small coefficient of friction is inserted between the curved inner peripheral surface of the core material 3 and the packaging material 4, the vacuum heat insulating material 1 is formed into a cylindrical shape. Decrease in the heat insulation performance at the time of the operation can be suppressed, higher performance can be achieved, and damage to the packaging material 4 can be prevented. Moreover, this vacuum heat insulating material 1 had the performance equivalent to the vacuum heat insulating material 1 shown in Embodiment 1 in flat form. Furthermore, a cylindrical vacuum heat insulating material with higher performance can be provided by forming into a cylindrical shape. In addition, since the rising of the glass fiber can be prevented, not only can the breakage of the packaging material 4 be suppressed, but also the film 8 itself serves as a protective sheet for the packaging material 4, so that the reliability can be further improved.

以上に図示して説明した真空断熱材およびその製造方法は単なる例であって様々な変形が可能であり、またそれぞれの具体例の特徴を全てあるいは選択的に組み合わせて用いることもできる。   The vacuum heat insulating material and the manufacturing method thereof illustrated and described above are merely examples, and various modifications can be made, and the features of each specific example can be used altogether or selectively combined.

この発明は真空断熱材およびその製造方法として利用できるものである。   The present invention can be used as a vacuum heat insulating material and a manufacturing method thereof.

1 真空断熱材、2 繊維シート、3 芯材、4 包装材、5、6 ガラス繊維、7 コイル、8 フィルム。   1 vacuum heat insulating material, 2 fiber sheet, 3 core material, 4 packaging material, 5 and 6 glass fiber, 7 coil and 8 film.

Claims (7)

面内で互いに直交する方向において曲がりやすさの差がある複数の繊維シートを、曲がりやすさの大きい方向を揃えて積層して構成した芯材と、上記芯材を真空密封する包装材とを備え、
上記繊維シートの曲がりやすさの大きい方向が円筒面の周方向となるように湾曲していることを特徴とする真空断熱材。
A core material formed by laminating a plurality of fiber sheets having a difference in bendability in a direction orthogonal to each other in a plane, with the direction in which the bendability is large aligned, and a packaging material for vacuum-sealing the core material Prepared,
A vacuum heat insulating material, wherein the fiber sheet is curved so that the direction in which the fiber sheet is easily bent is the circumferential direction of the cylindrical surface.
上記繊維シートの上記曲がりやすさが、上記繊維シートの面内の引張強度であることを特徴とする請求項1に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the bendability of the fiber sheet is an in-plane tensile strength of the fiber sheet. 上記繊維シートは、引張強度の大きい方向の引張強度が、引張強度の小さい方向の引張強度の1.5倍であることを特徴とする請求項2に記載の真空断熱材。   The vacuum heat insulating material according to claim 2, wherein the fiber sheet has a tensile strength in a direction with a high tensile strength that is 1.5 times a tensile strength in a direction with a low tensile strength. 上記繊維シートが、引き出し法によって製造されたチョップドガラス繊維を含有していることを特徴とする請求項1〜3のいずれか一項に記載の真空断熱材。   The said fiber sheet contains the chopped glass fiber manufactured by the drawer | drawing-out method, The vacuum heat insulating material as described in any one of Claims 1-3 characterized by the above-mentioned. 上記チョップドガラス繊維は、直径4μm以上20μm以下の繊維で、含有率を10%以上であることを特徴とする請求項4記載の真空断熱材。   5. The vacuum heat insulating material according to claim 4, wherein the chopped glass fiber is a fiber having a diameter of 4 μm or more and 20 μm or less and a content rate of 10% or more. 上記芯材の上記湾曲の内周面と上記包装材との間に小摩擦係数のフィルムを挿入してあることを特徴とする請求項1〜5のいずれか一項に記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 5, wherein a film having a small coefficient of friction is inserted between the curved inner peripheral surface of the core material and the packaging material. 面内で互いに直交する方向において曲がりやすさの差がある複数の繊維シートを製造する工程と、
上記繊維シートの曲がりやすさの大きい方向を揃えて積層して板状の芯材を製造する工程と、
上記芯材を包装材内で真空密封する工程と、
上記包装材内に真空密封された上記芯材を上記繊維シートの曲がりやすさの大きい方向が円筒面の周方向となるように湾曲させる工程とを備えたことを特徴とする真空断熱材の製造方法。
Producing a plurality of fiber sheets having a difference in ease of bending in a direction orthogonal to each other in a plane;
The step of producing a plate-shaped core material by aligning and laminating the direction in which the fiber sheet is easily bent,
Vacuum-sealing the core material in a packaging material;
A step of bending the core material vacuum-sealed in the packaging material so that the direction in which the fiber sheet is easily bent becomes the circumferential direction of the cylindrical surface. Method.
JP2010060662A 2010-03-17 2010-03-17 Vacuum insulation material and manufacturing method thereof Active JP5398604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060662A JP5398604B2 (en) 2010-03-17 2010-03-17 Vacuum insulation material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060662A JP5398604B2 (en) 2010-03-17 2010-03-17 Vacuum insulation material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011196392A true JP2011196392A (en) 2011-10-06
JP5398604B2 JP5398604B2 (en) 2014-01-29

Family

ID=44874886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060662A Active JP5398604B2 (en) 2010-03-17 2010-03-17 Vacuum insulation material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5398604B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393076A (en) * 2011-10-31 2012-03-28 本科电器有限公司 Water heater adopting vacuum insulation panel to insulate heat and preserve heat
WO2012052849A3 (en) * 2010-10-18 2012-06-21 三菱電機株式会社 Vacuum insulation material, and manufacturing method for same
WO2013065162A1 (en) * 2011-11-03 2013-05-10 三菱電機株式会社 Vacuum heat insulating material, method for manufacturing same, heat retaining tank using same, and heat pump water heater
JP2014119081A (en) * 2012-12-19 2014-06-30 Hitachi Appliances Inc Vacuum insulation material and refrigerator using vacuum insulation material
WO2015159646A1 (en) * 2014-04-17 2015-10-22 三菱電機株式会社 Vacuum heat-insulating material and heat-retaining body with same
JP2017002949A (en) * 2015-06-08 2017-01-05 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same
JP2017501350A (en) * 2013-12-10 2017-01-12 サムスン エレクトロニクス カンパニー リミテッド Vacuum insulation material and refrigerator including the same
JP2019184020A (en) * 2018-04-16 2019-10-24 アクア株式会社 Vacuum heat insulation material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071399U (en) * 1993-06-04 1995-01-10 日東紡績株式会社 Mineral fiber pipe cover
JPH11280989A (en) * 1998-02-19 1999-10-15 Wacker Chemie Gmbh Plate-like evacuated heat insulating molded body and heat insulating method for curved surface by using heat insulating material
JP2004502118A (en) * 2000-06-30 2004-01-22 サエス ゲッターズ ソチエタ ペル アツィオニ Vacuum panel for thermal insulation of non-planar objects
JP2005265038A (en) * 2004-03-18 2005-09-29 Nippon Sheet Glass Co Ltd Vacuum heat insulating material and method for manufacturing inorganic fiber sheet for vacuum heat insulating material
JP2006017151A (en) * 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd Vacuum heat insulating material
JP2006064089A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Heat insulating member, and heat insulating member-applied equipment
JP2007155065A (en) * 2005-12-07 2007-06-21 Nisshinbo Ind Inc Vacuum heat insulating material and its manufacturing method
JP2007205530A (en) * 2006-02-06 2007-08-16 Hitachi Appliances Inc Vacuum heat-insulating material and its manufacturing method
JP2007263186A (en) * 2006-03-28 2007-10-11 Hitachi Appliances Inc Heat insulating panel and equipment using the same
JP2008223922A (en) * 2007-03-14 2008-09-25 Sharp Corp Vacuum heat insulating material
JP2009162267A (en) * 2007-12-28 2009-07-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material, and manufacturing method for them

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071399U (en) * 1993-06-04 1995-01-10 日東紡績株式会社 Mineral fiber pipe cover
JPH11280989A (en) * 1998-02-19 1999-10-15 Wacker Chemie Gmbh Plate-like evacuated heat insulating molded body and heat insulating method for curved surface by using heat insulating material
JP2004502118A (en) * 2000-06-30 2004-01-22 サエス ゲッターズ ソチエタ ペル アツィオニ Vacuum panel for thermal insulation of non-planar objects
JP2005265038A (en) * 2004-03-18 2005-09-29 Nippon Sheet Glass Co Ltd Vacuum heat insulating material and method for manufacturing inorganic fiber sheet for vacuum heat insulating material
JP2006017151A (en) * 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd Vacuum heat insulating material
JP2006064089A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Heat insulating member, and heat insulating member-applied equipment
JP2007155065A (en) * 2005-12-07 2007-06-21 Nisshinbo Ind Inc Vacuum heat insulating material and its manufacturing method
JP2007205530A (en) * 2006-02-06 2007-08-16 Hitachi Appliances Inc Vacuum heat-insulating material and its manufacturing method
JP2007263186A (en) * 2006-03-28 2007-10-11 Hitachi Appliances Inc Heat insulating panel and equipment using the same
JP2008223922A (en) * 2007-03-14 2008-09-25 Sharp Corp Vacuum heat insulating material
JP2009162267A (en) * 2007-12-28 2009-07-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material, and manufacturing method for them

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052849A3 (en) * 2010-10-18 2012-06-21 三菱電機株式会社 Vacuum insulation material, and manufacturing method for same
US8911847B2 (en) 2010-10-18 2014-12-16 Mitsubishi Electric Corporation Vacuum insulation material and manufacturing method thereof
CN102393076A (en) * 2011-10-31 2012-03-28 本科电器有限公司 Water heater adopting vacuum insulation panel to insulate heat and preserve heat
WO2013065162A1 (en) * 2011-11-03 2013-05-10 三菱電機株式会社 Vacuum heat insulating material, method for manufacturing same, heat retaining tank using same, and heat pump water heater
CN103917818A (en) * 2011-11-03 2014-07-09 三菱电机株式会社 Vacuum heat insulating material, method for manufacturing same, heat retaining tank using same, and heat pump water heater
JP2014119081A (en) * 2012-12-19 2014-06-30 Hitachi Appliances Inc Vacuum insulation material and refrigerator using vacuum insulation material
JP2017501350A (en) * 2013-12-10 2017-01-12 サムスン エレクトロニクス カンパニー リミテッド Vacuum insulation material and refrigerator including the same
WO2015159646A1 (en) * 2014-04-17 2015-10-22 三菱電機株式会社 Vacuum heat-insulating material and heat-retaining body with same
JPWO2015159646A1 (en) * 2014-04-17 2017-04-13 三菱電機株式会社 Vacuum heat insulating material and heat insulator provided with the same
JP2017002949A (en) * 2015-06-08 2017-01-05 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same
JP2019184020A (en) * 2018-04-16 2019-10-24 アクア株式会社 Vacuum heat insulation material

Also Published As

Publication number Publication date
JP5398604B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5398604B2 (en) Vacuum insulation material and manufacturing method thereof
CN102448900B (en) Glass ribbon and process for production thereof
CN102083713B (en) Glass roll
US8911847B2 (en) Vacuum insulation material and manufacturing method thereof
CN103224165B (en) Take-up winding facility
US20230241837A1 (en) Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same
JP2018128116A5 (en)
CN102913691A (en) Reinforced composite pipe and manufacturing method thereof
US20160339650A1 (en) Manufacturing method of tank and tank manufacturing apparatus
EP3457018B1 (en) Vacuum heat-insulating material and manufacturing method therefor
JP2018149737A (en) Method of manufacturing reinforcing layer
WO2011045947A1 (en) Vacuum heat insulation material and refrigerator
US8245381B2 (en) Method of providing flexible duct having different insulative values
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
JP5627773B2 (en) Vacuum heat insulating material and heat insulating box using the same
KR20150038470A (en) Reel member, film container, and method for manufacturing film container
JP2010215338A (en) Tubular body
EP3758445B1 (en) Heating roller and spun yarn drawing device
JP2008290308A (en) Method and apparatus for manufacturing fiber reinforced resin made container
TWI818959B (en) Anisotropic thermally conductive resin component and manufacturing method thereof
KR20090008125A (en) Method for winding polyamide film
JP2008057793A5 (en)
JP2011005660A (en) Filament winding method
JP2015140237A (en) Film roll-manufacturing device, and film roll-manufacturing method
JP6444375B2 (en) Vacuum insulation core material containing organic synthetic fiber and vacuum insulation material containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5398604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250