JP2015007450A - Vacuum heat insulation material vacuum-packaged doubly - Google Patents

Vacuum heat insulation material vacuum-packaged doubly Download PDF

Info

Publication number
JP2015007450A
JP2015007450A JP2013132783A JP2013132783A JP2015007450A JP 2015007450 A JP2015007450 A JP 2015007450A JP 2013132783 A JP2013132783 A JP 2013132783A JP 2013132783 A JP2013132783 A JP 2013132783A JP 2015007450 A JP2015007450 A JP 2015007450A
Authority
JP
Japan
Prior art keywords
vacuum
heat insulating
gas barrier
insulating material
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013132783A
Other languages
Japanese (ja)
Inventor
杉尾 圭太郎
Keitaro Sugio
圭太郎 杉尾
聡 千葉
Satoshi Chiba
聡 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2013132783A priority Critical patent/JP2015007450A/en
Publication of JP2015007450A publication Critical patent/JP2015007450A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulation material that can maintain stable heat insulation performance for a long term without largely impairing heat insulation performance over time, and can be used as a heat insulation material of a structure.SOLUTION: A vacuum heat insulation material 1 vacuum-packaged doubly includes: an internal vacuum heat insulation material 4 comprising a core material 2, and an inner covering material 3 covering the core material 2, formed by decompressing and sealing its inside and having gas barrier performance; and an outer covering material 5 covering the internal vacuum heat insulation material 4, formed by decompressing and sealing its inside and having gas barrier performance. The outer covering material 5 covers the internal vacuum heat insulation material 4 by thermally welding one sheet of a film having gas barrier performance.

Description

本発明は、長期間に渡り、安定した断熱性能を維持でき、特に、建築物の断熱材として用いることのできる真空断熱材に関する。   The present invention relates to a vacuum heat insulating material that can maintain stable heat insulating performance for a long period of time and can be used as a heat insulating material for buildings.

建築物に用いられる断熱材として、芯材をガスバリア性の外被材で被覆し、内部を減圧密封した真空断熱材が知られている。この真空断熱材は、初期の熱伝導率が0.0020〜0.0035W/mK程度であって、他の断熱材であるグラスウールの0.035〜0.050W/mKや硬質ウレタンフォームの0.024W/mKと比較して、格段に熱伝導率が低い断熱材である。また、断熱性能の評価として、下記式(1)で算出される熱抵抗値が用いられる。

熱抵抗値[m・K/W]=断熱材厚み[m]/熱伝導率[W/mK] (1)

すなわち、断熱性能を良くするためには、熱抵抗値を大きくすればよく、断熱材厚みを大きくするか、熱伝導率を小さくする必要がある。
一方で、建築物に用いられる断熱材の場合、建築基準法などの規制により、厚みに制限が設けられているため、断熱性能は、断熱材の熱伝導率によって決定される。
このように、真空断熱材は熱伝導率が他の断熱材と比較して低いため、他の断熱材と同じ厚みであれば、断熱性能に優れる断熱材となり、また、目的とする断熱性能を確保するための厚みを、他の断熱材よりも薄くすることができ、断熱材の軽量化が可能となる。
As a heat insulating material used for a building, a vacuum heat insulating material in which a core material is covered with a gas barrier outer covering material and the inside is sealed under reduced pressure is known. This vacuum heat insulating material has an initial thermal conductivity of about 0.0020 to 0.0035 W / mK, and is 0.035 to 0.050 W / mK of glass wool, which is another heat insulating material, or 0.005 of hard urethane foam. Compared to 024 W / mK, this is a heat insulating material with a significantly lower thermal conductivity. Moreover, the thermal resistance value calculated by following formula (1) is used as evaluation of heat insulation performance.

Thermal resistance value [m 2 · K / W] = Insulation thickness [m] / thermal conductivity [W / mK] (1)

That is, in order to improve the heat insulating performance, it is necessary to increase the thermal resistance value, and it is necessary to increase the thickness of the heat insulating material or decrease the thermal conductivity.
On the other hand, in the case of a heat insulating material used for a building, since the thickness is limited by regulations such as the Building Standard Law, the heat insulating performance is determined by the thermal conductivity of the heat insulating material.
Thus, since the vacuum heat insulating material has a low thermal conductivity compared to other heat insulating materials, if it has the same thickness as other heat insulating materials, it becomes a heat insulating material with excellent heat insulating performance, and the desired heat insulating performance is also achieved. The thickness for ensuring can be made thinner than other heat insulating materials, and the weight of the heat insulating materials can be reduced.

しかしながら、真空断熱材は、時間の経過により、減圧密封した箇所から空気などが侵入して真空度が徐々に低下するため、安定した断熱性能を長期間維持することが困難であった。また、真空断熱材の外被材に傷が付くと途端に真空状態が損なわれ、断熱性能が劣ってしまうことから、取り扱いには注意が必要であった。
特に、建築物に用いられる断熱材は、建築物に要求される耐用年数と同程度に、長期の安定した断熱性能が要求されているが、従来の真空断熱材では、その要求に対応するには十分ではなかった。
However, the vacuum heat insulating material is difficult to maintain a stable heat insulating performance for a long period of time because air or the like enters from a vacuum sealed location and the degree of vacuum gradually decreases with time. Moreover, since the vacuum state will be impaired as soon as the outer cover material of the vacuum heat insulating material is damaged, the heat insulating performance is inferior.
In particular, thermal insulation materials used in buildings are required to have long-term stable thermal insulation performance to the same extent as the service life required for buildings. Was not enough.

そこで、長期間、安定した断熱性能が維持できるような真空断熱材の改良が求められている。
従来から、芯材をガスバリア性の外被材で包む方法として、2枚の外被材で芯材を挟み、その周縁部4方を熱溶着しつつ、減圧密封する方法が用いられているが、例えば特許文献1には、熱溶着する箇所を4方から3方に減らすことで、真空度の低下を抑制できることが開示されている。
熱溶着する箇所を3方にする包み方として、1枚のガスバリア性の外被材を半分に折り曲げてその内部に芯材を挟み、その開口部3方を熱溶着する方法や、所謂ピロー形状とする方法などが特許文献1に記載されている。
Thus, there is a need for an improved vacuum heat insulating material that can maintain stable heat insulating performance for a long period of time.
Conventionally, as a method of wrapping a core material with a gas barrier outer cover material, a method of sandwiching the core material between two outer cover materials and thermally sealing the peripheral portion 4 while sealing under reduced pressure has been used. For example, Patent Document 1 discloses that the decrease in the degree of vacuum can be suppressed by reducing the number of heat-welded locations from four to three.
As a method of wrapping in three locations for heat welding, a method of bending a single gas barrier jacket material in half and sandwiching a core material inside it, and heat welding the three openings, so-called pillow shape Patent Document 1 describes such a method.

しかしながら、1枚のガスバリア性の外被材を用いた場合には、芯材が脆いものを用いると、内部を減圧する際に芯材の形状が崩れ、特に、角部や熱溶着部分では、外被材と芯材との間に隙間ができやすく、ガスや水蒸気などがその隙間に浸入し、真空度を低下させて、経時により熱伝導率が上昇してしまうという問題があった。   However, when using a single gas barrier jacket material, if the core material is brittle, the shape of the core material collapses when the inside is decompressed, especially in the corners and heat welded parts, There is a problem that a gap is easily formed between the jacket material and the core material, and gas, water vapor, or the like enters the gap, lowering the degree of vacuum, and increasing the thermal conductivity over time.

また、長期的な断熱性能を維持できる真空断熱材として、例えば、特許文献2には、第1の外包袋と、第2の外包袋とを重ねて2重にした袋体の内部にコア材を挿入し、両外包袋内を減圧密封した真空断熱材が記載されている。   Moreover, as a vacuum heat insulating material which can maintain long-term heat insulating performance, for example, Patent Document 2 discloses a core material inside a bag body in which a first outer bag and a second outer bag are doubled. And a vacuum heat insulating material in which both outer packaging bags are sealed under reduced pressure.

しかしながら、特許文献2の真空断熱材では、第1の外包袋と第2の外包袋の開口部を同じ方向に開口するように位置させ、両外包袋内の空気を真空排気し、1度に両開口部を熱溶着して密封しているため、外側の熱溶着部から侵入したガスや水蒸気は、そう時間を経過せずに、内側の熱溶着部から内部に侵入して真空度を低下させてしまい、熱伝導率が経時により上昇するため、長期の断熱性能を維持するには不十分であった。   However, in the vacuum heat insulating material of Patent Document 2, the openings of the first outer bag and the second outer bag are positioned so as to open in the same direction, and the air in both outer bags is evacuated to once. Since both openings are heat-sealed and sealed, the gas and water vapor that penetrated from the outer heat-welded part penetrates from the inner heat-welded part to the inside without lowering the time, and the degree of vacuum is lowered. As a result, the thermal conductivity increases with time, which is insufficient to maintain long-term heat insulation performance.

特開平7−269781号公報JP-A-7-269781 特開平8−082474号公報Japanese Patent Laid-Open No. 8-082474

本発明は、このような従来の問題を解決するものであり、安定した断熱性能を長期間維持できる真空断熱材であって、建築物の断熱材として用いることができる真空断熱材を提供することを目的とする。   The present invention solves such conventional problems, and provides a vacuum heat insulating material that can maintain stable heat insulating performance for a long period of time and can be used as a heat insulating material for buildings. With the goal.

上記課題を解決するため、本発明は、芯材と、前記芯材を被覆し、かつ内部を減圧密封して形成されるガスバリア性を有する内被材とからなる内部真空断熱材と、前記内部真空断熱材を被覆し、かつ内部を減圧密封して形成されるガスバリア性を有する外被材からなり、前記外被材は、1枚のガスバリア性フィルムを熱溶着することで、前記内部真空断熱材を被覆していることを特徴としている。   In order to solve the above-described problems, the present invention provides an internal vacuum heat insulating material comprising a core material, and an inner cover material having a gas barrier property which is formed by covering the core material and sealing the inside under reduced pressure, and the internal It is made of a jacket material having a gas barrier property that is formed by covering a vacuum heat insulating material and sealing the inside under reduced pressure, and the jacket material is formed by thermally welding a single gas barrier film, whereby the inner vacuum heat insulating material is formed. It is characterized by covering the material.

本発明は、芯材を、内被材及び外被材とで被覆し、各々の内部を減圧密閉して2重に真空包装されていること、及び外被材が1枚のガスバリア性フィルムを熱溶着して、内部真空断熱材を被覆していることから、ガスや水蒸気の侵入口である熱溶着部を減らし、真空度の低下を抑制できるため、経時により熱伝導率が大幅に上昇することなく、長期間、安定した断熱性能を維持できる。   In the present invention, the core material is covered with an inner sheath material and an outer sheath material, each inside is vacuum-sealed with a reduced pressure inside, and the outer shell material is a single gas barrier film. Since it is heat-welded and covers the internal vacuum heat insulating material, it can reduce the heat-welded part, which is the entrance of gas and water vapor, and can suppress the decrease in the degree of vacuum. Therefore, stable heat insulation performance can be maintained for a long time.

本発明において、内部真空断熱材の表面に、吸湿剤を担持した繊維基材が貼着されていてもよい。   In the present invention, a fiber substrate carrying a hygroscopic agent may be attached to the surface of the internal vacuum heat insulating material.

繊維基材に吸湿剤を担持させたものを使用すれば、真空度の低下を抑制できるとともに、減圧密封されても外被材表面に吸湿剤による凹凸が出来難くなり、2重真空断熱材の外観を損ねることがない。   By using a fiber base material with a moisture absorbent, it is possible to suppress a decrease in the degree of vacuum, and even when sealed under reduced pressure, it becomes difficult to form irregularities due to the moisture absorbent on the surface of the jacket material. Appearance is not impaired.

また、本発明において、外被材は、4層構造であって、外側から順に保護層、ガスバリア層、ガスバリア性樹脂層、熱溶着層の順に積層されたガスバリア性フィルムから形成されることが好ましい。   In the present invention, the covering material has a four-layer structure, and is preferably formed from a gas barrier film in which a protective layer, a gas barrier layer, a gas barrier resin layer, and a heat welding layer are sequentially laminated from the outside. .

外被材を4層構造のガスバリア性フィルムで形成することで、取り扱い時の物理的な傷による真空破断を抑えるとともに、当該フィルムからのガスや水蒸気の侵入をより一層抑制することができる。   By forming the jacket material with a gas barrier film having a four-layer structure, vacuum breakage due to physical scratches during handling can be suppressed, and intrusion of gas and water vapor from the film can be further suppressed.

また、本発明であれば、安定した断熱性能を長期間維持することが可能であるため、建築物の断熱材として用いれば、長期の断熱性能が維持できる断熱構造が得られる。   Moreover, if it is this invention, it is possible to maintain the stable heat insulation performance for a long period of time, Therefore If it uses as a heat insulating material of a building, the heat insulation structure which can maintain long-term heat insulation performance will be obtained.

本発明は、2重に真空包装されていること、及び外被材が1枚のガスバリア性フィルムを熱溶着して、内部真空断熱材を被覆していることから、ガスや水蒸気の侵入口である熱溶着部を減らし、真空度の低下を抑制できるとともに、外被材に物理的な傷が付いたとしても、内被材によって内部真空断熱材の真空度が維持されるため、経時により熱伝導率が大幅に上昇することなく、長期間、安定した断熱性能を維持できる。   Since the present invention is double vacuum-packed, and the outer cover material heat-welds one gas barrier film and covers the internal vacuum heat insulating material, A certain number of heat-welded parts can be reduced, and the decrease in the degree of vacuum can be suppressed, and even if the outer cover material is physically damaged, the inner cover material maintains the vacuum degree of the internal vacuum insulation material. Stable thermal insulation performance can be maintained for a long time without significantly increasing the conductivity.

また、本発明を用いた断熱構造は、経時により熱伝導率が大幅に上昇することなく、物理的な傷による真空破断を低減きるため、長期間、安定した断熱性能を維持することができる。   In addition, the heat insulating structure using the present invention can maintain a stable heat insulating performance for a long period of time because the vacuum conductivity due to physical scratches can be reduced without significantly increasing the thermal conductivity over time.

本発明の実施態様であり、一部外被材及び内被材を省いた状態を示す斜視図である。It is an embodiment of the present invention and is a perspective view showing a state in which a part of the jacket material and the inner jacket material are omitted. 図1におけるA−A線で切断した状態を示す断面図である。It is sectional drawing which shows the state cut | disconnected by the AA line in FIG. 図1におけるB−B線で切断した状態を示す断面図である。It is sectional drawing which shows the state cut | disconnected by the BB line in FIG. 本発明を内蔵した真空断熱ボードの面材を一部省いた状態を示す斜視図である。It is a perspective view showing the state where a part of face material of the vacuum heat insulation board incorporating the present invention was omitted. 本発明の一実施態様であり、建築物の断熱構造への適用を示す説明図である。It is explanatory drawing which is one embodiment of this invention, and shows the application to the heat insulation structure of a building. 実施例における熱伝導率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the thermal conductivity in an Example.

本発明の実施態様について、図面に基づいて説明する。
本発明の2重に真空包装された真空断熱材1は、図1〜3に示すように、芯材2と、芯材2を被覆し、かつ内部を減圧密封して形成されるガスバリア性を有する内被材3とからなる内部真空断熱材4と、内部真空断熱材4を被覆し、かつ内部を減圧密封して形成されるガスバリア性を有する外被材5から構成されている。
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the vacuum heat insulating material 1 that is double-packed in the present invention has a gas barrier property that is formed by covering the core material 2 and the core material 2 and sealing the inside under reduced pressure. An inner vacuum heat insulating material 4 composed of the inner covering material 3 and an outer covering material 5 having a gas barrier property which is formed by covering the inner vacuum heat insulating material 4 and sealing the inside under reduced pressure.

本発明の芯材2としては、非晶質シリカ、乾式シリカ、粒子表面に水酸基を持つ湿式シリカ、パーライト、及びこれら粉末の混合物などの無機粉体;連続気泡ポリウレタンフォーム、連続気泡ポリスチレンフォームなどの有機発泡体粉末;グラスファイバー、グラスウール、ロックウール、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、炭化ケイ素繊維などの無機繊維;ポリエステル繊維、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ナイロン繊維、ポリビニルアルコール繊維、ポリウレタン繊維、レーヨン繊維などの合成繊維;綿、麻、絹、羊毛などの天然繊維等、が使用できる。特に、無機粉体や無機繊維であれば、長期の断熱性能を維持する上で、好ましい。
また、これらの芯材2を、例えばバインダーと混合し、板状に加熱成形したり、通気性を有する内袋に充填し、板状に成形したものを使用してもよい。
Examples of the core material 2 of the present invention include amorphous silica, dry silica, wet silica having a hydroxyl group on the particle surface, pearlite, and inorganic powders such as a mixture of these powders; open cell polyurethane foam, open cell polystyrene foam, etc. Organic foam powder; inorganic fiber such as glass fiber, glass wool, rock wool, alumina fiber, silica alumina fiber, silica fiber, silicon carbide fiber; polyester fiber, acrylic fiber, polyethylene fiber, polypropylene fiber, nylon fiber, polyvinyl alcohol fiber, Synthetic fibers such as polyurethane fibers and rayon fibers; natural fibers such as cotton, hemp, silk, and wool can be used. In particular, inorganic powder and inorganic fiber are preferable in maintaining long-term heat insulation performance.
Further, these core materials 2 may be mixed with, for example, a binder and thermally molded into a plate shape, or filled into a breathable inner bag and molded into a plate shape.

また、必要に応じて、内部真空断熱材4には、芯材2とともに吸湿剤7を含ませてもよい。吸湿剤7は予め芯材2と混合してもよく、或いは不織布などの繊維基材に吸湿剤7を担持させて薄板状としたものを芯材2に付着させる方法などがあるが、特に限定されない。
吸湿剤7としては、活性炭、ゼオライト、ドーソナイト、ハイドロタルサイト、塩化カルシウム、酸化カルシウム、酸化マグネシウムなどの金属酸化物、水酸化カルシウム、水酸化マグネシウムなどの金属水酸化物などの粉末が挙げられる。
吸湿剤7は、内部真空断熱材に侵入したガスや主に水蒸気を吸着することで、より長期に渡って真空度を保ち、熱伝導率の上昇を抑制することができる。
Further, the internal vacuum heat insulating material 4 may include a moisture absorbent 7 together with the core material 2 as necessary. The hygroscopic agent 7 may be mixed with the core material 2 in advance, or there is a method in which the hygroscopic agent 7 is supported on a fiber base material such as a non-woven fabric and attached to the core material 2 in a thin plate shape. Not.
Examples of the hygroscopic agent 7 include powders of activated carbon, zeolite, dawsonite, hydrotalcite, metal oxides such as calcium chloride, calcium oxide, and magnesium oxide, and metal hydroxides such as calcium hydroxide and magnesium hydroxide.
The hygroscopic agent 7 can maintain the degree of vacuum for a longer period of time and suppress an increase in thermal conductivity by adsorbing the gas that has penetrated into the internal vacuum heat insulating material and mainly water vapor.

また、吸湿剤7は、内部真空断熱材4の表面に貼着させてもよい。
この場合、繊維基材に吸湿剤7を担持させたものを使用すれば、減圧密封されても外被材5表面に吸湿剤7による凹凸が出来難くなり、外観を損ねることがない。
また、図2、3に示すように、吸湿剤7を内被材3の熱溶着部6´に近い箇所に配置すれば、外被材5の熱溶着部6から侵入したガスや水蒸気などが、内被材の熱溶着部6´から侵入する前に吸着されるため、熱伝導率の上昇を抑制しやすくなり、好ましい。
Further, the hygroscopic agent 7 may be attached to the surface of the internal vacuum heat insulating material 4.
In this case, if a fiber base material carrying the hygroscopic agent 7 is used, unevenness due to the hygroscopic agent 7 is difficult to be formed on the surface of the outer covering material 5 even when sealed under reduced pressure, and the appearance is not impaired.
As shown in FIGS. 2 and 3, if the hygroscopic agent 7 is disposed at a location near the heat-welded portion 6 ′ of the inner jacket material 3, gas or water vapor that has entered from the heat-welded portion 6 of the outer jacket material 5 can be obtained. Since it is adsorbed before entering from the heat-welded portion 6 'of the inner jacket material, it is easy to suppress an increase in thermal conductivity, which is preferable.

本発明の内被材3、及び外被材5としては、ガスバリア性を有するフィルムが用いられる。
具体的には、表面側にガスバリア層と裏面側に熱溶着性のある樹脂層とが積層されたフィルム、或いは、さらに表面側に保護層を積層させたものが使用できる。
特に、外被材には、取り扱い時の物理的な傷による真空破断を抑えるためにも、保護層を設けることが好ましい。
As the inner covering material 3 and the outer covering material 5 of the present invention, a film having gas barrier properties is used.
Specifically, a film in which a gas barrier layer is laminated on the front surface side and a heat-weldable resin layer on the back surface side, or a film in which a protective layer is further laminated on the front surface side can be used.
In particular, it is preferable to provide a protective layer on the jacket material in order to suppress vacuum breakage due to physical scratches during handling.

熱溶着性のある樹脂層としては、塩化ビニル樹脂、低密度ポリエチレン樹脂、直鎖状低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ポリアクリロニトリル樹脂、無延伸ポリエチレンテレフタレート樹脂、無延伸ポリプロピレン樹脂、エチレン−ビニルアルコール共重合体樹脂、あるいはそれらの混合体樹脂などが用いられる。
熱溶着性のある樹脂層の厚みは、30〜50μmが好ましい。厚みが30μm未満だと、熱溶着が不十分となり、真空状態を長期間維持することが困難となる。また、厚みが50μmを超えると、そこからガスや水蒸気が侵入してしまい、真空度の低下速度を速めてしまう。
熱溶着は、幅が10mm以上あれば、真空状態を長期間維持することができる。
Examples of the resin layer having heat-welding properties include vinyl chloride resin, low density polyethylene resin, linear low density polyethylene resin, high density polyethylene resin, polyacrylonitrile resin, unstretched polyethylene terephthalate resin, unstretched polypropylene resin, ethylene-vinyl. Alcohol copolymer resins or mixed resins thereof are used.
The thickness of the heat-weldable resin layer is preferably 30 to 50 μm. If the thickness is less than 30 μm, heat welding becomes insufficient, and it becomes difficult to maintain the vacuum state for a long time. On the other hand, when the thickness exceeds 50 μm, gas and water vapor enter from there, and the rate of decrease in the degree of vacuum is increased.
If the width of the thermal welding is 10 mm or more, the vacuum state can be maintained for a long time.

ガスバリア層としては、アルミニウム、ステンレス、鉄などの金属箔や、金属蒸着したフィルムなどのガスバリア性を有するものが用いられる。また、金属箔又は金属蒸着したフィルムに、水蒸気の流入を防ぐことのできるガスバリア性樹脂層を積層してもよい。
金属蒸着されるフィルムとしては、ポリエチレンテレフタレート樹脂、エチレン−ビニルアルコール共重合体樹脂、ポリエチレンナフタレート樹脂、ナイロン樹脂、ポリアミド樹脂、ポリイミド樹脂などのフィルムが挙げられる。金属蒸着の材料としては、アルミニウム、コバルト、ニッケル、亜鉛、銅、銀、あるいはそれらの混合物などが挙げられる。
ガスバリア性樹脂層としては、エチレンビニルアルコール樹脂、ポリビニルアルコール樹脂、ポリアクリロニトリル樹脂などが用いられる。
As the gas barrier layer, a metal foil such as aluminum, stainless steel or iron, or a gas barrier layer such as a metal vapor deposited film is used. Moreover, you may laminate | stack the gas barrier resin layer which can prevent inflow of water vapor | steam on the metal foil or the metal vapor-deposited film.
Examples of the metal-deposited film include polyethylene terephthalate resin, ethylene-vinyl alcohol copolymer resin, polyethylene naphthalate resin, nylon resin, polyamide resin, and polyimide resin. Examples of the metal deposition material include aluminum, cobalt, nickel, zinc, copper, silver, or a mixture thereof.
As the gas barrier resin layer, ethylene vinyl alcohol resin, polyvinyl alcohol resin, polyacrylonitrile resin or the like is used.

また、ガスバリア層として、金属箔や金属蒸着したフィルムにガスバリア性樹脂層を積層したフィルムを用いる場合は、内被材3、外被材5のどちらか一方に用いればよく、特に、外被材5に用いることが好ましい。   Moreover, when using a film in which a gas barrier resin layer is laminated on a metal foil or a metal-deposited film as the gas barrier layer, the film may be used for either the inner covering material 3 or the outer covering material 5. 5 is preferably used.

保護層としては、ポリエチレンテレフタレート樹脂、ナイロン樹脂、ポリプロピレン樹脂の延伸加工品など、耐傷性や耐突き刺し性を有する樹脂が用いられる。
保護層の厚みは、10μm以上あればよい。
As the protective layer, a resin having scratch resistance and puncture resistance, such as a stretched product of polyethylene terephthalate resin, nylon resin, or polypropylene resin, is used.
The thickness of the protective layer may be 10 μm or more.

ガスバリア層と、熱溶着性樹脂層及び保護層を積層する方法としては、熱ラミネートや接着ラミネートなど、従来用いられている方法であればよく、特に限定されるものではない。   The method for laminating the gas barrier layer, the heat-weldable resin layer, and the protective layer is not particularly limited as long as it is a conventionally used method such as heat lamination or adhesive lamination.

本発明の内部真空断熱材4は、芯材2を内被材3で被覆し、内部を減圧密封して製造される。
具体的には、保護層、ガスバリア層、熱溶着層の3層構造からなるガスバリア性フィルムを用いて、熱溶着層側が内側になるように当該ガスバリア性フィルムを2枚重ね、4方のうち3方の端部を熱溶着して袋状の内被材3を形成し、残った端部を開口部とする。次に、開口部から、芯材2とともに吸湿剤7を挿入し、内被材3の内部を減圧排気し、真空度が1Pa以下に達した後、開口部を熱溶着して密封し、内部真空断熱材4を形成する。
The internal vacuum heat insulating material 4 of the present invention is manufactured by covering the core material 2 with the inner covering material 3 and sealing the inside under reduced pressure.
Specifically, using a gas barrier film having a three-layer structure of a protective layer, a gas barrier layer, and a heat welding layer, two gas barrier films are stacked so that the heat welding layer side is on the inside, and three of the four sides are stacked. One end portion is thermally welded to form a bag-shaped inner covering material 3, and the remaining end portion is used as an opening. Next, the moisture absorbent 7 is inserted together with the core material 2 from the opening, and the inside of the inner jacket material 3 is evacuated under reduced pressure. After the degree of vacuum reaches 1 Pa or less, the opening is thermally welded and sealed. A vacuum heat insulating material 4 is formed.

内被材3を形成する方法は、特に限定されないが、2枚のガスバリア性フィルムを重ね熱溶着させて内被材3を形成すれば、角部における芯材2と内被材3との隙間を生じることなく、減圧密封できるため好ましい。
なお、後述するように、1枚のガスバリア性フィルムを用いることも可能であるが、芯材2の種類によっては、減圧密封する際に、芯材2が圧縮されたり、脆くて形状を維持できず、内装材3と芯材2との間に隙間や内装材3にしわが生じてしまう虞があるため、2枚のガスバリア性フィルムを用いることが好ましい。
The method of forming the inner covering material 3 is not particularly limited, but if the inner covering material 3 is formed by stacking and thermally welding two gas barrier films, the gap between the core material 2 and the inner covering material 3 at the corners. Is preferable because it can be sealed under reduced pressure.
As will be described later, it is possible to use a single gas barrier film. However, depending on the type of the core material 2, the core material 2 is compressed or fragile and can maintain its shape when sealed under reduced pressure. First, since there is a possibility that a gap or a wrinkle is generated in the interior material 3 between the interior material 3 and the core material 2, it is preferable to use two gas barrier films.

内部真空断熱材4の熱溶着部6´は、折り曲げて、突出しない状態にすることが好ましい。
外被材5を被覆する際に、内部真空断熱材4の熱溶着部6´が突出していると、そこにしわが寄ったり、隙間が生じやすくなり、断熱性能が低下しやすくなるためである。
It is preferable that the heat welding portion 6 ′ of the internal vacuum heat insulating material 4 be bent so as not to protrude.
This is because, when the outer cover material 5 is covered, if the heat-welded portion 6 'of the internal vacuum heat insulating material 4 protrudes, wrinkles or gaps are likely to occur there, and the heat insulating performance is likely to deteriorate.

本発明の2重に真空包装された真空断熱材1は、内部真空断熱材4を、さらに外被材5で被覆し、内部を減圧密封して製造される。また、内部真空断熱材4を外被材5で被覆する方法として、1枚のガスバリア性フィルムを用いることが本発明の特徴である。
具体的には、図1〜3に示すように、保護層、ガスバリア層、熱溶着層の3層構造からなるガスバリア性フィルムを用いて、1枚の当該ガスバリア性フィルムの両端を内側が熱溶着層になるように熱溶着して、筒状の外被材5を形成し、その内部に内部真空断熱材4を挿入し、当該熱溶着部が内部真空断熱材4の端部に位置しないよう、筒状の外被材5の上下端の開口部を減圧しながら熱溶着して密封し、2重に真空包装された真空断熱材1を形成する。この包み方は、ピロー型と称されており、類似の包み方としては、マチを付けたガゼット型がある。
The vacuum heat insulating material 1 double-vacuum packaged according to the present invention is manufactured by further covering the internal vacuum heat insulating material 4 with an outer cover material 5 and sealing the inside under reduced pressure. In addition, as a method of covering the internal vacuum heat insulating material 4 with the jacket material 5, it is a feature of the present invention to use a single gas barrier film.
Specifically, as shown in FIGS. 1 to 3, a gas barrier film having a three-layer structure of a protective layer, a gas barrier layer, and a heat welding layer is used, and both ends of one gas barrier film are thermally welded on the inside. It forms into a layer and heat-welds so that it may become a layer, forms the cylindrical jacket material 5, inserts the internal vacuum heat insulating material 4 in the inside, and the said heat weld part does not locate in the edge part of the internal vacuum heat insulating material 4 The openings at the upper and lower ends of the cylindrical jacket material 5 are heat-welded while being reduced in pressure to form a vacuum heat insulating material 1 that is vacuum-packed twice. This wrapping method is called a pillow type, and a similar wrapping method includes a gusset type with a gusset.

外被材5の形成方法としては、前述した以外にも、1枚の当該ガスバリア性フィルムを熱溶着層側が内側になるように二つに折り曲げて、2方を熱溶着して袋状の外被材5を形成し、次いで残った開口部から内部真空断熱材4を挿入し、外被材5の内部を減圧しながら熱溶着して密封する方法や、1枚のガスバリア性フィルムの両端を帯状の熱溶着フィルムで接合して筒状の外被材5にし、その内部に内部真空断熱材4を挿入し、残りの開口部を減圧しながら熱溶着する方法、などが挙げられる。   As a method for forming the covering material 5, in addition to the above, one gas barrier film is folded in two so that the heat-welding layer side is inside, and two sides are heat-welded to form a bag-like outer A method for forming the material 5 and then inserting the internal vacuum heat insulating material 4 from the remaining opening and thermally sealing the inside of the outer material 5 while reducing the pressure, or both ends of one gas barrier film. Examples of the method include a method of joining with a belt-like heat-welded film to form a cylindrical jacket material 5, inserting the internal vacuum heat insulating material 4 therein, and thermally welding the remaining opening while reducing the pressure.

このように、1枚のガスバリア性フィルムを用いると、得られる2重に真空包装された真空断熱材1の熱溶着部分6が3箇所となり、2枚のガスバリア性フィルムを用いた4箇所よりも減らせる分、熱溶着部からのガスや水蒸気の侵入を防ぎ、真空度の低下を抑制できるため、経時により熱伝導率が大幅に上昇することなく、長期間、安定した断熱性能を維持できる。
特に、図1のように、外被材5を筒状にして形成する方法であれば、得られた2重に真空包装された真空断熱材1の熱溶着部6の2箇所のみが突出するように形成できるため、建築物の断熱材として用いる場合に、複数の真空断熱材を、隙間なく敷き詰めることができ、より好ましい。
As described above, when one gas barrier film is used, there are three heat-welded portions 6 of the double vacuum-packed vacuum heat insulating material 1 obtained, compared to four places using two gas barrier films. Since it can be reduced, gas and water vapor can be prevented from entering from the heat welded portion, and a decrease in the degree of vacuum can be suppressed, so that stable thermal insulation performance can be maintained for a long time without a significant increase in thermal conductivity over time.
In particular, as shown in FIG. 1, if the outer cover material 5 is formed in a cylindrical shape, only the two portions of the heat-welded portion 6 of the vacuum heat insulating material 1 that is obtained by vacuum-packaging in a double layer project. Therefore, when used as a heat insulating material for a building, a plurality of vacuum heat insulating materials can be spread without gaps, which is more preferable.

また、内被材3及び外被材5の内部を減圧密封する際、内被材3内部の真空度よりも、外被材5内部の真空度を高くすることで、内部真空断熱材4の膨張を防ぐことができる。 特に、内被材3内部の真空度は1Pa以下とし、外被材5内部の真空度は、50〜1000Paであることが好ましい。   Further, when the inside of the inner covering material 3 and the outer covering material 5 is sealed under reduced pressure, the degree of vacuum inside the outer covering material 5 is made higher than the degree of vacuum inside the inner covering material 3 so that the internal vacuum heat insulating material 4 Expansion can be prevented. In particular, the degree of vacuum inside the inner jacket material 3 is preferably 1 Pa or less, and the degree of vacuum inside the outer jacket material 5 is preferably 50 to 1000 Pa.

さらに、内部真空断熱材4を外被材5で被覆する際、図3で示すように、内被材3の熱溶着部6´が折り曲げられた面と、外被材5の熱溶着部6とが反対側に位置するように、内部真空断熱材4を配置することが好ましい。
外被材5の熱溶着部6と内被材3の熱溶着部6´との距離が離れている方が、長期間、断熱性能を維持する上で、効率的である。
Further, when the internal vacuum heat insulating material 4 is covered with the outer covering material 5, as shown in FIG. 3, the surface where the heat welding portion 6 ′ of the inner covering material 3 is bent, and the thermal welding portion 6 of the outer covering material 5. It is preferable to arrange the internal vacuum heat insulating material 4 so that and are located on the opposite side.
It is more efficient to maintain the heat insulation performance for a long time when the distance between the heat-welded portion 6 of the outer cover material 5 and the heat-welded portion 6 'of the inner cover material 3 is increased.

本発明の真空断熱材1は、2重に真空包装されているので、長期間、安定した断熱性能を維持できるとともに、取り扱い時の物理的な傷による真空破断を低減できることから、建築物の断熱材として用いることができる。
建築物の断熱材としては、2重に真空包装された真空断熱材1単独で用いてもよく、或いは、他の断熱材と複合化して使用することもできる。
Since the vacuum heat insulating material 1 of the present invention is double vacuum packaged, it can maintain stable heat insulation performance for a long period of time and can reduce vacuum breakage due to physical scratches during handling. It can be used as a material.
As the heat insulating material for buildings, the vacuum heat insulating material 1 double-packed in vacuum may be used alone, or it may be used in combination with other heat insulating materials.

他の断熱材としては、硬質ポリウレタンフォームやポリスチレンフォーム、ポリフェノールフォームなどの硬質発泡体、ガラスファイバー、ロックウールなどの繊維体などが挙げられる。   Examples of other heat insulating materials include rigid foams such as rigid polyurethane foam, polystyrene foam and polyphenol foam, and fiber bodies such as glass fiber and rock wool.

図4には、本発明の2重に真空包装された真空断熱材1と硬質ポリウレタンフォーム16とを複合した真空断熱ボード15を示す。
真空断熱ボード15の製造方法としては、例えば、面材上に本発明の2重に真空包装された真空断熱材1を置き、そこにポリウレタン発泡原液を吐出し、発泡状態とした後、さらに面材で被覆してサンドイッチ状に挟み込み、一定厚さに圧縮して発泡・硬化させる方法や、上下2枚の面材の間に硬質ポリウレタン発泡原液を吹き付け、上下面材でサンドイッチ状に挟み込んで一定厚さに圧縮して発泡・硬化させ、当該断熱ボードに2重に真空包装された真空断熱材1が入る凹部を形成し、これに当該真空断熱材1を装着する方法などが挙げられるが、特に限定されない。
FIG. 4 shows a vacuum heat insulating board 15 in which the vacuum heat insulating material 1 and the hard polyurethane foam 16 which are double vacuum packaged according to the present invention are combined.
As a manufacturing method of the vacuum heat insulation board 15, for example, the vacuum heat insulation material 1 of the present invention that has been double-packed in vacuum packaging is placed on the face material, and after the polyurethane foam stock solution is discharged and foamed, Covered with a material, sandwiched in a sandwich shape, compressed to a certain thickness and foamed / cured, or sprayed with a rigid polyurethane foam stock solution between two upper and lower surface materials, sandwiched in a sandwich shape between the upper and lower surface materials Although it is compressed to a thickness, foamed and cured, a concave portion into which the vacuum heat insulating material 1 double-packed in vacuum is placed on the heat insulating board, and a method of attaching the vacuum heat insulating material 1 to this is mentioned. There is no particular limitation.

ポリウレタン発泡原液としては、ポリオール、発泡剤、触媒などを含むポリオール成分と、ポリイソシアネート成分とを混合したもので、得られる硬質ポリウレタンフォーム16は、例えば厚みが9〜100mm、フォーム密度が20〜100kg/mとなるものが使用できる。 The polyurethane foam stock solution is a mixture of a polyol component containing a polyol, a foaming agent, a catalyst and the like and a polyisocyanate component. The resulting rigid polyurethane foam 16 has a thickness of 9 to 100 mm and a foam density of 20 to 100 kg, for example. / M 3 can be used.

面材17としては、厚みが0.1〜1.0mmのものが使用され、例えばプラスチックフィルム(厚さ15〜50μ)と一層以上の炭カル紙(100〜300g/m)とを積層したものを使用するが、クラフト紙や中芯紙などにアルミニウムなどの金属箔を積層したもの、クラフト紙や中芯紙などに金属を蒸着したもの、クラフト紙や中芯紙などにポリエチレンフィルム、ポリエステルフィルム等のプラスチックフィルムを積層したもの、これらのプラスチックフィルムを単独としたもの、これらプラスチックフィルムの複数を組み合わせて積層したもの、例えばポリエチレンフィルムと炭カル紙とポリエチレンフィルムとPETフィルムとの4層構造のものなどを挙げることができる。 As the face material 17, one having a thickness of 0.1 to 1.0 mm is used. For example, a plastic film (thickness 15 to 50 μ) and one or more charcoal paper (100 to 300 g / m 2 ) are laminated. Uses things such as kraft paper or core paper laminated with metal foil such as aluminum, kraft paper or core paper deposited metal, kraft paper or core paper, polyethylene film, polyester Laminates of plastic films such as films, those made of these plastic films alone, those laminated by combining a plurality of these plastic films, for example, a four-layer structure of polyethylene film, charcoal cal paper, polyethylene film and PET film Can be mentioned.

本発明の2重に真空包装された真空断熱材1を用いた建築物の断熱構造としては、例えば、図5に示すように、木造の建築物において、柱11、11間に本発明の2重に真空包装された真空断熱材1を充填した断熱構造10が挙げられる。本発明の2重に真空包装された真空断熱材1は、柱以外にも、梁や、根太、大引などの枠間に充填してもよい。
また、柱や、梁、根太、大引などの枠体の室外側に、図4で示した本発明の2重に真空包装された真空断熱材1を内蔵した真空断熱ボード15を固定した、外張り断熱工法にも用いることができる。
As a heat insulation structure of a building using the vacuum heat insulating material 1 double-packed in vacuum packaging of the present invention, for example, as shown in FIG. A heat insulating structure 10 filled with the vacuum heat insulating material 1 that is heavily vacuum packaged is exemplified. The vacuum heat insulating material 1 double-vacuum-packed according to the present invention may be filled between frames such as beams, joists, and large draws in addition to pillars.
Moreover, the vacuum insulation board 15 containing the vacuum heat insulating material 1 of the present invention double-packed in vacuum according to the present invention shown in FIG. It can also be used for the outer insulation method.

さらに、現場施工において、柱や、梁、根太、大引などの枠体に2重に真空包装された真空断熱材1を固定し、その上から硬質ポリウレタンフォームの原液を吹き付けて断熱構造を形成してもよい。   Furthermore, in the construction at the site, the vacuum insulation material 1 that is double-packed in vacuum is fixed to a frame such as a pillar, beam, joist, or large drawing, and a stock solution of rigid polyurethane foam is sprayed from above to form a heat insulation structure. May be.

木造の建築物の断熱構造について説明したが、本発明の2重に真空包装された真空断熱材は、鉄筋コンクリート製の住宅、マンションなどの断熱構造にも適用できる。
例えば、コンクリートの躯体に、隙間なく真空断熱材を敷き詰め、その表面に硬質ポリウレタン原液を吹き付けて断熱構造を形成してもよい。また、図4で示した本発明の2重に真空包装された真空断熱材1を内蔵した真空断熱ボード15をコンクリート壁面に貼着してもよい。
Although the heat insulation structure of the wooden building was described, the double vacuum-packed vacuum heat insulating material of the present invention can also be applied to heat insulation structures such as reinforced concrete houses and apartments.
For example, a heat insulating structure may be formed by spreading a vacuum heat insulating material on a concrete frame without gaps and spraying a hard polyurethane stock solution on the surface thereof. Moreover, you may stick the vacuum heat insulation board 15 which incorporated the vacuum heat insulating material 1 of the present invention shown in FIG.

以下、実施例を用いて説明するが、本発明は実施例に限定されるものではない。   Hereinafter, although demonstrated using an Example, this invention is not limited to an Example.

[実施例1、比較例1]
芯材として、板状に形成した平均繊維径3μm以下のグラスウールを用い、内側が熱溶着層となるように2枚のガスバリア性フィルムを重ね、周縁の3方を熱溶着して袋状の内被材を形成し、その内被材の内部に芯材とともに吸湿剤(ゼオライト粉末)を担持した厚み0.5mmの薄板状の不織布を挿入し、内部を減圧排気して真空度が1Pa以下に達した後、残りの1辺を熱溶着し、4方が熱溶着された幅200mm、長さ200mm、厚み10mmの真空断熱材(A)を作成した。ガスバリア性フィルムは、熱溶着層として厚み30μmの無延伸ポリプロピレンフィルム、ガスバリア層として厚み9μmのアルミ箔、保護層として厚み25μmの二軸延伸ポリプロピレンフィルムをラミネートした3層構造のフィルムを使用した。
次いで、1枚のガスバリア性フィルムを内側が熱溶着層となるように端部を熱溶着して筒状の外被材を形成し、外被材内部に、真空断熱材(A)の熱溶着部分を折り曲げてテープなどで固定したものを、吸湿剤(ゼオライト粉末)を担持した厚み0.5mmの薄板状の不織布とともに挿入し、筒状とした外被材の上下端の一方を熱溶着し、内部を減圧排気して真空度が100Paに達した後、残りの1辺を熱溶着し、3方が熱溶着されてピロー型に包装された厚み10mmの2重に真空包装された真空断熱材(B)を作成した。外被材を形成したガスバリア性フィルムは、熱溶着層として厚み30μmの無延伸ポリプロピレン、ガスバリア層として厚み9μmのアルミ箔に、厚み12μmのポリビニルアルコールフィルムを積層させたもの、保護層として厚み25μmの二軸延伸ポリプロピレンフィルムをラミネートした4層構造のフィルムを使用した。
なお、真空断熱材(A)は比較例1、真空断熱材(B)は実施例1とする。
[Example 1, Comparative Example 1]
As a core material, glass wool with an average fiber diameter of 3 μm or less formed in a plate shape is used, and two gas barrier films are stacked so that the inner side becomes a heat-welded layer, and three sides of the periphery are heat-welded to form a bag-shaped inner A base material is formed, a thin-plate nonwoven fabric having a thickness of 0.5 mm carrying a moisture absorbent (zeolite powder) together with a core material is inserted into the inner base material, and the inside is evacuated to a vacuum of 1 Pa or less. Then, the remaining one side was heat-welded to prepare a vacuum heat insulating material (A) having a width of 200 mm, a length of 200 mm, and a thickness of 10 mm, in which the four sides were heat-welded. As the gas barrier film, a non-stretched polypropylene film having a thickness of 30 μm was used as the heat welding layer, a 9 μm thick aluminum foil was used as the gas barrier layer, and a biaxially stretched polypropylene film having a thickness of 25 μm was laminated as the protective layer.
Next, one end of the gas barrier film is heat-welded so that the inner side becomes a heat-welding layer to form a cylindrical outer covering material, and the vacuum heat insulating material (A) is heat-welded inside the outer covering material. Insert the part that is folded and fixed with tape etc. together with a thin non-woven fabric with a thickness of 0.5mm carrying a hygroscopic agent (zeolite powder), and heat weld one of the upper and lower ends of the jacket material After the vacuum is exhausted and the degree of vacuum reaches 100 Pa, the remaining one side is heat-welded, and the three sides are heat-welded and wrapped in a pillow shape. Material (B) was prepared. The gas barrier film in which the covering material is formed is a non-stretched polypropylene having a thickness of 30 μm as a heat-welded layer, an aluminum foil having a thickness of 9 μm as a gas barrier layer, and a polyvinyl alcohol film having a thickness of 12 μm, and a protective layer having a thickness of 25 μm. A four-layer film laminated with a biaxially stretched polypropylene film was used.
The vacuum heat insulating material (A) is Comparative Example 1, and the vacuum heat insulating material (B) is Example 1.

[比較例2]
内側が熱溶着層となるように2枚のガスバリア性フィルムを重ね、周縁の3方を熱溶着して袋状の外被材を形成し、その外被材内部に、上記の通り作成した真空断熱材(A)の熱溶着部分を折り曲げてテープなどで固定したものを、吸湿剤(ゼオライト粉末)を担持した厚み0.5mmの薄板状の不織布とともに挿入し、内部を減圧排気して真空度が100Pa以下に達した後、残りの1辺を熱溶着し、4方を熱溶着された厚み10mmの2重に真空包装された真空断熱材(C)を作成した。
[Comparative Example 2]
Two gas barrier films are overlapped so that the inner side becomes a heat-welded layer, and three sides of the periphery are heat-welded to form a bag-shaped outer covering material, and the vacuum created as described above inside the outer covering material The heat-welded part of the heat insulating material (A), which is bent and fixed with a tape or the like, is inserted together with a thin non-woven fabric having a thickness of 0.5 mm carrying a hygroscopic agent (zeolite powder), and the inside is evacuated to reduce the degree of vacuum. After the temperature reached 100 Pa or less, the remaining one side was thermally welded, and a vacuum heat insulating material (C) that was vacuum-packed in 10 mm thickness that was heat-welded on four sides was created.

真空断熱材(A)〜(C)について、温度70℃の熱伝導率の経時変化について測定した。その結果を表1に示し、図6に図示する。熱伝導率は、JIS A 1412に準拠して測定した値である。   About vacuum heat insulating material (A)-(C), it measured about the time-dependent change of the heat conductivity of the temperature of 70 degreeC. The results are shown in Table 1 and illustrated in FIG. The thermal conductivity is a value measured according to JIS A 1412.

表1及び図6より、実施例1は、比較例1,2よりも、経時による熱伝導率の上昇率が小さいことがわかる。
また、実施例1は、2重の真空包装で、かつ外被材が1枚のガスバリア性フィルムで形成されていることで、真空度の低下を抑制し、経時により熱伝導率が大幅に上昇することはなかった。
From Table 1 and FIG. 6, it can be seen that Example 1 has a smaller rate of increase in thermal conductivity over time than Comparative Examples 1 and 2.
Further, in Example 1, double vacuum packaging and the outer cover material is formed of a single gas barrier film, so that the decrease in the degree of vacuum is suppressed, and the thermal conductivity significantly increases with time. I never did.

本発明は、2重の真空包装によって、長期間、安定した断熱性能を維持することができるため、建築物の断熱構造に用いることができる。   Since the present invention can maintain stable heat insulation performance for a long period of time by double vacuum packaging, it can be used for a heat insulation structure of a building.

1 2重に真空包装された真空断熱材
2 芯材
3 内被材
4 内部真空断熱材
5 外被材
6 外被材の熱溶着部
6´ 内被材の熱溶着部
7 吸湿剤
8 真空部
10 断熱構造
11 柱
12 面材
13 外装材
15 硬質断熱ボード
16 硬質ポリウレタンフォーム
17 面材
DESCRIPTION OF SYMBOLS 1 Vacuum insulation material vacuum-packed in 2 2 Core material 3 Inner coating material 4 Internal vacuum insulation material 5 Outer coating material 6 Thermal welding part of outer coating material 6 'Thermal welding part of inner coating material 7 Hygroscopic agent 8 Vacuum part DESCRIPTION OF SYMBOLS 10 Thermal insulation structure 11 Column 12 Face material 13 Exterior material 15 Hard heat insulation board 16 Hard polyurethane foam 17 Face material

Claims (4)

芯材と、前記芯材を被覆し、かつ内部を減圧密封して形成されるガスバリア性を有する内被材とからなる内部真空断熱材と、
前記内部真空断熱材を被覆し、かつ内部を減圧密封して形成されるガスバリア性を有する外被材からなり、
前記外被材は、1枚のガスバリア性フィルムを熱溶着することで、前記内部真空断熱材を被覆していることを特徴とする2重に真空包装された真空断熱材。
An internal vacuum heat insulating material comprising a core material, and an inner jacket material having a gas barrier property which is formed by covering the core material and sealing the inside under reduced pressure;
Covering the internal vacuum heat insulating material, and consisting of a jacket material having a gas barrier property formed by sealing the inside under reduced pressure,
The double-vacuum vacuum-insulated material, wherein the jacket material covers the internal vacuum heat-insulating material by thermally welding one gas barrier film.
前記内部真空断熱材の表面に、吸湿剤を担持した繊維基材が貼着されていることを特徴とする請求項1に記載の2重に真空包装された真空断熱材。   The double vacuum packaged vacuum heat insulating material according to claim 1, wherein a fiber base material carrying a hygroscopic agent is attached to a surface of the internal vacuum heat insulating material. 前記外被材は、4層構造であって、外側から順に保護層、ガスバリア層、ガスバリア性樹脂層、熱溶着層の順に積層されたガスバリア性フィルムから形成されることを特徴とする請求項1または2に記載の2重に真空包装された真空断熱材。   2. The covering material according to claim 1, wherein the covering material has a four-layer structure, and is formed of a gas barrier film in which a protective layer, a gas barrier layer, a gas barrier resin layer, and a heat welding layer are sequentially laminated from the outside. Or the vacuum heat insulating material of the double vacuum packaging of 2. 請求項1〜3のいずれか1項に記載の2重に真空包装された真空断熱材を用いることを特徴とする建築物の断熱構造。

The heat insulation structure of the building characterized by using the vacuum heat insulating material of the double vacuum-packaging of any one of Claims 1-3.

JP2013132783A 2013-06-25 2013-06-25 Vacuum heat insulation material vacuum-packaged doubly Pending JP2015007450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013132783A JP2015007450A (en) 2013-06-25 2013-06-25 Vacuum heat insulation material vacuum-packaged doubly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013132783A JP2015007450A (en) 2013-06-25 2013-06-25 Vacuum heat insulation material vacuum-packaged doubly

Publications (1)

Publication Number Publication Date
JP2015007450A true JP2015007450A (en) 2015-01-15

Family

ID=52337853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013132783A Pending JP2015007450A (en) 2013-06-25 2013-06-25 Vacuum heat insulation material vacuum-packaged doubly

Country Status (1)

Country Link
JP (1) JP2015007450A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3070471A1 (en) * 2017-08-22 2019-03-01 Hutchinson ASSEMBLY WITH REINFORCED INSULATION
KR20190084047A (en) * 2016-11-08 2019-07-15 바-큐-텍 아게 Vacuum insulation panel
JP2019147357A (en) * 2018-02-28 2019-09-05 リンテック株式会社 Flame retardant heat insulation sheet and electricity storage module
JP2020166563A (en) * 2019-03-29 2020-10-08 倉敷紡績株式会社 Insulation thickness management system and building
EP3944018A1 (en) 2014-04-02 2022-01-26 Shin-Etsu Chemical Co., Ltd. Pellicle for lithography

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269781A (en) * 1994-03-31 1995-10-20 Toshiba Corp Vacuum heat insulating material and manufacture thereof and heat insulating box body using vacuum heat insulating body therein
JPH0882474A (en) * 1994-09-12 1996-03-26 Toshiba Corp Vacuum heat insulating material
US20040074208A1 (en) * 2000-05-30 2004-04-22 Advantek, Inc. Vacuum insulation panels and method for making same
JP2009287586A (en) * 2008-05-27 2009-12-10 Panasonic Corp Vacuum heat insulating material
JP2012063029A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2013040717A (en) * 2011-08-16 2013-02-28 Hitachi Appliances Inc Vacuum heat insulation material, and refrigerator using the same
JP2013076459A (en) * 2011-09-12 2013-04-25 Hitachi Appliances Inc Vacuum heat insulating material, refrigerator using the same, and equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269781A (en) * 1994-03-31 1995-10-20 Toshiba Corp Vacuum heat insulating material and manufacture thereof and heat insulating box body using vacuum heat insulating body therein
JPH0882474A (en) * 1994-09-12 1996-03-26 Toshiba Corp Vacuum heat insulating material
US20040074208A1 (en) * 2000-05-30 2004-04-22 Advantek, Inc. Vacuum insulation panels and method for making same
JP2009287586A (en) * 2008-05-27 2009-12-10 Panasonic Corp Vacuum heat insulating material
JP2012063029A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2013040717A (en) * 2011-08-16 2013-02-28 Hitachi Appliances Inc Vacuum heat insulation material, and refrigerator using the same
JP2013076459A (en) * 2011-09-12 2013-04-25 Hitachi Appliances Inc Vacuum heat insulating material, refrigerator using the same, and equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3944018A1 (en) 2014-04-02 2022-01-26 Shin-Etsu Chemical Co., Ltd. Pellicle for lithography
KR20190084047A (en) * 2016-11-08 2019-07-15 바-큐-텍 아게 Vacuum insulation panel
KR102463476B1 (en) * 2016-11-08 2022-11-04 바-큐-텍 아게 vacuum insulation panel
FR3070471A1 (en) * 2017-08-22 2019-03-01 Hutchinson ASSEMBLY WITH REINFORCED INSULATION
JP2019147357A (en) * 2018-02-28 2019-09-05 リンテック株式会社 Flame retardant heat insulation sheet and electricity storage module
JP2020166563A (en) * 2019-03-29 2020-10-08 倉敷紡績株式会社 Insulation thickness management system and building
JP7296235B2 (en) 2019-03-29 2023-06-22 倉敷紡績株式会社 Insulation thickness control system

Similar Documents

Publication Publication Date Title
KR101286342B1 (en) Core material for vacuum insulation panel, method for fabricating the same and vacuum insulation panel using the same
JP6965410B2 (en) Vacuum insulation panel and its manufacturing method
KR101560442B1 (en) Covering material for vacuum insulation panel, vacuum insulation panel and insulation wall
JP2015007450A (en) Vacuum heat insulation material vacuum-packaged doubly
JP2013540607A5 (en)
JP2013088036A (en) Thermal insulation box, refrigerator, and storage type water heater
KR20110080426A (en) Vacuum insulation pannel and method for fabricating the same
JP3482408B2 (en) Vacuum insulation and refrigerators using vacuum insulation
KR101353647B1 (en) Core material for vacuum insulation panel and vacuum insulation panel using the same
KR20060113436A (en) Vacuum heat insulation material and method for production thereof
JP3507776B2 (en) refrigerator
JP2010031958A (en) Vacuum heat insulation material
JP2010071303A (en) Vacuum heat insulating material
JP4813847B2 (en) Manufacturing method of vacuum insulation member
JPH0341198Y2 (en)
JP4334525B2 (en) refrigerator
JP6535202B2 (en) Vacuum insulation material and insulation box using the same
JP5377451B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JPH10160092A (en) Vacuum heat insulating material
JP6793571B2 (en) Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material
JP2004218747A (en) Vacuum heat insulating material
JP5788714B2 (en) Vacuum insulation panel and refrigerator using the same
JP2007016834A (en) Method of bending and cutting vacuum heat insulating material
JP5424929B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
WO2021132457A1 (en) Heat insulation bag, heat retention bag, and method for manufacturing heat insulation bag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170824